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Abstract

Background: Detecting somatic mutations in whole exome sequencing data of cancer samples has become a
popular approach for profiling cancer development, progression and chemotherapy resistance. Several studies
have proposed software packages, filters and parametrizations. However, many research groups reported low
concordance among different methods. We aimed to develop a pipeline which detects a wide range of
single nucleotide mutations with high validation rates. We combined two standard tools – Genome Analysis
Toolkit (GATK) and MuTect – to create the GATK-LODN method. As proof of principle, we applied our pipeline
to exome sequencing data of hematological (Acute Myeloid and Acute Lymphoblastic Leukemias) and solid
(Gastrointestinal Stromal Tumor and Lung Adenocarcinoma) tumors. We performed experiments on simulated
data to test the sensitivity and specificity of our pipeline.

Results: The software MuTect presented the highest validation rate (90 %) for mutation detection, but limited
number of somatic mutations detected. The GATK detected a high number of mutations but with low specificity. The
GATK-LODN increased the performance of the GATK variant detection (from 5 of 14 to 3 of 4 confirmed variants), while
preserving mutations not detected by MuTect. However, GATK-LODN filtered more variants in the hematological
samples than in the solid tumors. Experiments in simulated data demonstrated that GATK-LODN increased both
specificity and sensitivity of GATK results.

Conclusion: We presented a pipeline that detects a wide range of somatic single nucleotide variants, with good
validation rates, from exome sequencing data of cancer samples. We also showed the advantage of combining
standard algorithms to create the GATK-LODN method, that increased specificity and sensitivity of GATK
results. This pipeline can be helpful in discovery studies aimed to profile the somatic mutational landscape of
cancer genomes.
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Abbreviations: ALL, Acute lymphoblast leukemia; AML, Acute myeloid leukemia; FDR, False discovery rate;
GATK, Genome analysis toolkit; GIST, Gastrointestinal stromal tumor; LA, Lung adenocarcinoma; MAF, Minor
allelic frequency; PPV, Positive predictive value; SNVs, Single nucleotide variants; VAF, Variant allelic frequency;
WES, Whole exome sequencing

Background
Somatic mutations play a key role in cancer development,
progression and chemotherapy resistance. Therefore, sev-
eral studies have been profiling somatic mutations in can-
cer samples by applying next generation sequencing
technologies, allowing the discovery of drug targets, prog-
nostic DNA markers and protocols of targeted therapies.
Whole Exome Sequencing (WES) has become a popular
approach because it is cost effective and it detects ap-
proximately 25,000 single nucleotide variants (SNVs) in
the coding region of human DNA. However, the detection
of somatic mutations in normal-cancer paired samples
presents unique challenges: 1) detecting low allelic fre-
quency mutations due to tumor heterogeneity, subclonal-
ity and copy number variation events; 2) differentiating
true mutations from alignment artifacts and sequencing
errors; 3) classifying mutations as somatic or germ-line
polymorphisms; and 4) analyzing tumor samples contami-
nated by normal cells and vice-versa [1]. The understand-
ing of the mutational landscape of cancer genomes
requires the development of methods that detect somatic
mutations and deal with these challenges.
Several studies have compared the performance of dif-

ferent pipelines, softwares and parametrizations [2–7]. In
general, the available tools classify the somatic mutations
by either independently or simultaneously analyzing the
tumor and normal samples; but, since they have different
prior assumptions and error modeling approaches, many
research groups have reported low concordance among
methods [4, 8]. The available tools either detect too many
false positives in order to get all true positives or lose too
many true positives in order to reduce the number of false
positives [9]. In the first case, the researcher spends much
time and resource validating the set of candidate variants
to select the true ones. In the second case, important mu-
tations that explain the biological characteristics of the
cancer cells, may be missed. This evidence, along with the
variability in the performance of each software according
to studies and tumor type, indicates that the research
community faces a big challenge choosing the right pipe-
line among all available options.
In this study, we aimed to develop a pipeline that de-

tects a wide and high confident profile of single nucleo-
tide variants in sequencing data of cancer samples. Our
pipeline brings together the benefits of two standard
tools: Genome Analysis Toolkit (GATK) and MuTect.
GATK independently calls variants in the normal and

tumor samples, while MuTect performs the analysis sim-
ultaneously. We created the GATK-LODN method,
which is part of the MuTect algorithm, that is applied
downstream to the GATK analysis in order to ensure
the somatic classification of the GATK results and re-
duce its false positive calls. As proof of principle, we ap-
plied our pipeline to hematological (Acute Myeloid and
Acute Lymphoblastic Leukemias) and solid (Gastrointes-
tinal Stromal Tumor and Lung Adenocarcinoma) tu-
mors. We also tested our pipeline on simulated data and
technical replicate samples to evaluate its sensitivity and
specificity. Our results show that the pipeline performed
well and we believe that it can be helpful in discovery
studies aimed to profile the somatic mutational land-
scape of cancer genomes.

Methods
Sequencing data
Primary samples were collected from Acute Myeloid
Leukemia (n = 37) and Acute Lymphoblastic Leukemia
patients (n = 41) after obtaining informed consent as ap-
proved by the Institutional Ethical Committee (protocol
number 253/2013/O/Tess) of Azienda Ospedaliero-
Universitaria, Policlinico Sant’Orsola-Malpighi (Bologna,
Italy) in accordance with the Declaration of Helsinki.
Leukocytes were enriched from bone marrow and per-
ipheral blood samples by separation on Ficoll density
gradient. Saliva samples, used as normal matching, were
collected with the Oragene Discover kit (DNA Genotek).
The DNA was extracted from leukocytes by column
purification (AllPrep DNA/RNA/Protein Mini Kit and
QIAcube, Qiagen) and from saliva by paramagnetic par-
ticles (Maxwell® 16 LEV DNA Blood Purification Kit and
Maxwell® MDx Instrument), according to manufacturer’s
protocol. The exonic regions were captured by TrueSeq™
Exome Enrichment Kit and Nextera Rapid Capture
Expanded Exome, comprising a targeted region of
62 Mb, and 201,121 exonic regions. Illumina HiSeq2000
sequencing produced an average of 55.2 and 63 million
100 bp paired-end reads per sample in AML and
ALL cohorts, respectively. The AML and ALL data
sets are available upon request to the Next Generation Se-
quencing for Targeted Personalized Therapy of Leukemia
consortium. We also selected two public datasets of Illu-
mina HiSeq 2000 whole exome sequencing from the
NCBI Sequence Read Archive: 1) seven Gastrointestinal
Stromal Tumors (GIST) samples, and their matching
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peripheral blood samples, with an average of 35.5 million
100 bp paired-end reads per sample [SRA: SRR1299130-
141 and SRR1299144-147] [10]; and 2) two Lung Adeno-
carcinoma samples, and their normal counterparts, with
an average of 56.5 million 100 pb paired-end reads per
sample [SRA: ERR160124, ERR160136, ERR166338, and
ERR166339] [11]. After the quality control check, the
average of final coverages were: 72X (±30X), 119X (±28X),
76X (±7X), 133X (±64X); for AML, ALL, GIST, and
Lung Adenocarcinoma, respectively (Additional file 1
provides, for each tumor type, the samples IDs and
coverage information).

Pipeline for somatic variant discovery
Initially, the sequencing reads were submitted to a qual-
ity control check by using the scripts fastq_quality_fil-
ter.pl and fastq_quality_trimmer.pl from FASTX-Toolkit
[12]. The phred value 20 was chosen as the minimum
threshold for base quality. The reads having more than
80 % of low quality bases were removed or had their 3′
extremity bases trimmed when the minimum threshold
was not reached. After, the reads were aligned to the hu-
man reference genome hg19/GRCh37 using BWA-MEM
[13] with default parameters and Picard [14] was applied
for post-alignment procedures as sorting, indexing, and
marking duplicates. The alignments were submitted to
local realignment around INDELs and base quality score
recalibration (BQSR) by using the Genome Analysis
Toolkit (GATK) version 3.0 [15].
MuTect [16] and GATK (Haplotype Caller) were used

for the single nucleotide variant calling. GATK variants
were filtered with the Variant Quality Score Recalibra-
tion tool following the best practices on the GATK web-
site. GATK performs the variant calling and filtration in
the normal and tumor samples independently, thus the
subtraction between the tumor and the normal variants
resulted in our first set of candidate somatic variants.
To ensure the somatic classification of the SNVs called

by GATK, we adapted the MuTect algorithm and ap-
plied its LODN classifier after the GATK variant calling
and filtering. The LODN is a bayesian classifier that
compares the likelihood of two models: (1) the mutation
does not exist in the normal sample and all non-
reference bases are explained by sequencing noise, and
(2) the mutation truly exists in the normal sample as a
germ-line heterozygous variant. The ratio of these two
likelihoods is called LOD (Log Odds) score and when it
exceeds a decision threshold, the mutation can be classi-
fied as somatic. For this filtering, we considered only
sites that had total read depth greater or equal than 8 in
the normal sample and greater or equal than 14 in the
tumor sample. Our final candidate list consisted in the
union of MuTect and GATK-LODN results.

The variants were annotated by ANNOVAR [17], with
the Ensembl Gene annotation database for human gen-
ome build 37 (http://www.ensembl.org/), and searched
for matches in the dbSNP138 and 1000 Genomes data.
We selected exonic single nucleotide variants (SNVs)
that were non-synonymous and gain or loss of stop
codon. Variants present in dbSNP138 and 1000 Ge-
nomes with minor allele frequency (MAF) greater than
0.05 were removed. Figure 1 shows the summary of the
pipeline steps. The scripts for running the main pipeline
steps are availabe in the link: https://bitbucket.org/
BBDA-UNIBO/wes-pipeline.
A subset of variants from MuTect, GATK and GATK-

LODN calls were selected for validation. Variants with al-
lelic frequency higher than 0.2 were validated by Sanger
Sequencing and those with allelic frequency lower than
0.2 were validated by using the Illumina TruSight Myeloid
Sequencing Panel and Illumina MiSeq sequencing. Data
were analyzed by the VariantStudio software (Illumina),
according to manufacturer’s instruction.

Pipeline testing
As MuTect eventually miscalled variants already profiled
by Sanger sequencing at the moment of diagnosis, we
tested adapting the MuTect algorithm by lowering its two
main parameters and thresholds – ΘT > = 6.5 and
ΘN|dbSNP site > = 5.5 – that determine the mutation detec-
tion and classification as somatic or germ-line. We calcu-
lated the ΘT and ΘN values for each variant in the GATK
raw output and set the thresholds to the minimum values
that would permit the correct classification of 10 variants
previously identified by Sanger sequencing.
We simulated datasets to evaluate the specificity and

sensitivity of the three variant calling methods: MuTect,
GATK and GATK-LODN. The specificity was evaluated
by splitting the sequencing data of the same sample in
two, applying the three variant calling methods, and
counting the number of total SNVs called. One saliva
sample of our AML cohort (80X) had its reads random-
ized (reads sorted by query name) and it was split in two
by using the bamutils tool of NGSUtils package [18].
The resultant alignment files were applied to each vari-
ant calling method. The sensitivity was calculated by cre-
ating artificial tumor samples, applying the variant
calling methods, and counting the number of true posi-
tives called. We adapted the mutate_sample.py script
from the Shimmer package [19] to create mutations in a
saliva sample alignment. Three artificial tumors were
created with 22, 25 and 25 SNVs, which had variant al-
lelic fractions range of 0.02 to 0.25, 0.5 to 0.86, and 0.97
to 1.0, respectively (Table 1). For each artificial tumor
sample, we created subsets by randomly excluding reads
and simulated sequencing coverages in the range of 5X
to 80X, with intervals of 5X. The creation of the subsets
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was performed by the DownsampleBam tool of Picard.
We then evaluated the performance of each variant call-
ing method at different coverage levels.

Results
We built a pipeline for discovery of single nucleotide vari-
ants (SNVs) in whole exome sequencing data and applied it
to Acute Myeloid Leukemia (AML), Acute Lymphoid
Leukemia (ALL), Gastrointestinal Stromal Tumor (GIST),
and Lung Adenocarcinoma samples. First, we compared
the results of the three variant calling procedures: MuTect,
GATK, and GATK-LODN. GATK detected 3 to 20 times
more SNVs than MuTect (Fig. 2a) and the results for the
Lung Adenocarcinoma dataset presented the highest con-
cordance (30 %) between the two methods. GATK-LODN

strongly reduced the number of SNVs in GATK results for
the hematological tumors (Fig. 2b). For the solid tumors,
approximately 10 % of GATK specific SNVs remained after
applying GATK-LODN, and, for the GIST dataset, it de-
tected about three times more variants than MuTect.
The MuTect algorithm has two main parameters: ΘT

and ΘN. We calculated these values for a set of variants
candidates (AML dataset) from GATK results and tested
if we could reduce the number of false negatives by low-
ering these thresholds. We set the two parameters for

ΘT > = 4.5 and ΘN|dbSNP site > = 3 and it permitted the
detection of 10 variants previously profiled by Sanger se-
quencing, but not detected by the original MuTect ana-
lysis. However, the number of final candidates increased
about 1.3 to 10 times in comparison with the original
MuTect output (Table 2).
We selected a set of candidate variants from the AML

dataset and performed the validation experiment of each
method in two rounds. In the first, we tested just the
tumor samples, in order to evaluate the performance of
each method in detecting the mutations. In the second
round, we tested both tumor and normal samples, in
order to evaluate the performance of each method in
classifying mutations as somatic events. We observed
that 18 out of 48 and 5 out of 18 GATK variants were
correctly detected and classified, respectively, while
MuTect presented high performance in both rounds (6
out of 7 and 2 out of 3, respectively). The GATK-LODN

presented better validation rates than GATK for both
mutation detection (18 out of 48 to 6 out of 9) and clas-
sification (5 out of 14 to 3 out of 4) (Table 3).
Simulated data permitted the evaluation of sensitivity

and specificity of the three variant calling methods. We
measured the specificity by splitting a saliva sample align-
ment (80X) in two, applying to the pipeline and counting

Fig. 1 Pipeline of SNV detection in sequencing data of cancer samples. Summary of steps and their respective tools in the detection of SNVs in
paired normal-cancer sequencing data
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the number of called SNVs. Mutect, GATK, and GATK-
LODN resulted in 8, 76 and 35 false positives, respectively.
Then, we applied technical replicates of the same saliva
sample to the pipeline and it resulted in 7, 84 and 33 false
positives, respectively. We measured the sensitivity by
simulating three artificial tumors with different Variant
Allelic Frequency (VAF) ranges: one with high-frequency
variants (n = 25, VAF: 0.97 to 1.0), one with intermediate-
frequency variants (n = 25, VAF: 0.5 to 0.86), and another
with low-frequency variants (n = 22, VAF: 0.02 to 0.25).
MuTect presented a Positive Predictive Value (PPV) of 19/
22 for low VAF mutations and its false negatives were
composed by: one variant with VAF = 0.02, and two vari-
ants that had either VAF < 0.1 and total read depth smaller
than 24 (Table 4). GATK presented the smallest perform-
ance for somatic variants, since it detected 2206 candi-
dates out of 22 or 25 true positive variants. GATK-LODN

presented a PPV of 17/22 for the low allelic frequency var-
iants, but it missed variants with VAF < 0.095 (Table 4).

MuTect detected all intermediate and high allelic fre-
quency variants, while GATK-LODN presented PPVs of
23/30 and 23/31, respectively (Table 4).
For each artificial tumor, we simulated different sequen-

cing coverages and evaluated the number of false nega-
tives and true positives detected. We observed that, at
different coverage levels, GATK-LODN and MuTect pre-
sented almost identical performance for the artificial
tumors with high and intermediate variant frequency
SNVs, except in the number of false negatives detected by
GATK-LODN in the coverage interval of 5 to 20X. GATK-
LODN presentedincreased number of detected true posi-
tives than MuTect in the coverage interval of 50 to 55X
for high and intermediate-frequency variants, and in the
coverage 20X for low-frequency variants (Fig. 3).

Discussion
Our data show that the combination of standard tools -
Genome Analysis Toolkit (GATK) and MuTect – improves

Table 1 Artificial tumor samples. Coordinate list of the single nucleotide variants inserted in the artificial tumor samples and their
variant allelic frequencies

Chromosome Position REF > ALT Artificial tumors variant allelic frequencies Normal variant allelic frequencies

0.02 – 0.26 0.5 – 0.86 0.97 – 1

11 19854088 G > A 0.03 0.69 1.00 0

11 36484167 C > T 0.08 0.62 1.00 0.027

11 4608116 T > C 0.13 0.71 1.00 0.020

11 4661826 T > C 0.11 0.60 0.97 0.028

11 4673788 G > A 0.26 0.64 1.00 0.021

11 4928841 T > C 0.13 0.61 1.00 0

11 5372856 A > G 0.24 0.69 1.00 0.023

11 5373562 C > A 0.09 0.68 1.00 0.029

11 5443887 T > C 0.10 0.86 1.00 0

11 5443893 G > A 0.10 0.86 1.00 0

11 5462255 C > G 0.16 0.56 1.00 0

11 5906203 T > G 0.19 0.70 1.00 0

11 6519642 G > A 0.08 0.61 1.00 0

11 824789 T > C 0.11 0.63 1.00 0.026

12 25398281 C > T 0.12 0.63 1.00 0

12 75715330 C > A 0.13 0.60 1.00 0

22 24891418 A > C 0.21 0.70 1.00 0.030

22 44083442 T > C NA 0.78 1.00 0

13 101289801 C > A 0.13 0.65 1.00 0

20 61537337 G > T 0.13 0.65 1.00 0

17 48557299 G > T 0.11 0.74 1.00 0

5 45262378 G > T 0.08 0.50 1.00 0

1 94476902 T > C 0.15 0.65 1.00 0

2 110372199 G > T NA 0.57 1.00 0

5 64907465 C > A 0.10 0.57 1.00 0
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the range of detected single nucleotide variants (SNVs) in
whole exome sequencing data of cancer samples. We also
developed the GATK-LODN method, which reduced the
number of GATK false positive calls. Our study has the ad-
vantage of actually combining two different algorithms ra-
ther than proposing ways of unifying results of different
tools [9, 20]. As one method originally presented high
amounts of false positive calls (type I error) and the other
high amounts of false negative calls (type II error), the
GATK-LODN is an option of amplifying the range of de-
tected SNVs without severely compromising sensitivity and
specificity.
The GATK uses a Bayesian model to estimate the likeli-

hood of a genotype given the observed sequence reads that
cover the locus. It independently calls genotypes in tumor
and normal samples, being the somatic mutations classified
as those only present in the tumor sample. However, GATK
detects many false positives likely due to germ-line variants

with low sequencing coverage or low allelic frequency, that
are not called in the normal samples. MuTect jointly ana-
lyzes tumor and normal samples, presenting high sensitiv-
ity, specificity and validation rates. Each method detects
variants that the other does not detect, and a previous study
demonstrated that the SNVs found only by GATK had rela-
tively high validation rates [4]. One option would be taking
into account just the results obtained from one tool, but it
risks the selection of errors for which the algorithm is vul-
nerable [21]. Another option would be taking the intersec-
tion of multiple variant callers, but it will result in high

Fig. 2 The GATK-LODN method reduces the number of GATK false positive calls. Comparison of the number of SNVs between GATK and MuTect
before (a) and after (b) applying the GATK-LODN method for each cancer whole exome sequencing dataset. AML: Acute Myeloid Leukemia, ALL:
Acute Lymphoblastic Leukemia, GIST: Gastrointestinal Stromal Tumor, LA: Lung Adenocarcinoma

Table 2 Relaxing MuTect parameters increases the number of
false positive calls. Number of variants found by MuTect, before
and after relaxing the ΘT and ΘN parameters for six Acute
Myeloid Leukemia (AML) normal-cancer sample pairs

Patients MuTect MuTect Adapteda

a1024 11 39

a1025 31 41

b1014 22 54

b2002 10 25

b2035 43 419

b2042 58 338
aApplying the computation of ΘT and ΘN, from the MuTect algorithm, with
lowered threshold values (4.5 and 3, respectively) downstream to the
GATK analysis

Table 3 The GATK-LODN method increases the GATK perform-
ance for both mutation detection and classification. The Sanger
sequencing validation was performed in two rounds: in the first
round we tested whether the methods correctly detected the
mutation and in the second one we assessed whether the
methods correctly classified the mutations as somatic events.
The variant subsets tested (AML datatset) presented variants
method specific and variants detected by one or more methods

Mutation
Detectiona

Mutation
Classificationb

Tested Validated Tested Validated

GATK-LODN - specific 4 1 2 2

GATK-LODN (All variants) 9 6 4 3

GATK (without LODN) - specific 37 11 9 2

GATK (without LODN) (All Variants) 48 18 14 5

MuTect - specific 22 21 8 8

MuTect (All Variants) 29 27 11 10

MuTect & GATK 7 6 3 2
avariants tested for correct mutation detection
bvariants tested for correct classification as somatic events
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false negative rates, since each tool uniquely identifies true
variants [4]. We discarded the option of relaxing the
MuTect parameters, since we observed that it included the
detection of variants previously miscalled, but with the cost
of including many false positives. Our study demonstrates
the advantage of merging the results of MuTect and
GATK-LODN, since GATK-LODN reduces the number of
GATK false positives and detect variants not detected by
MuTect. The GATK-LODN increased the performance of
GATK in the sequencing validation experiments and in the
simulated artificial tumor samples. We observed that the
GATK-LODN also outperformed MuTect in some

simulated sequencing coverages. As sequencing datasets
usually present large variability in coverage and quality, the
different error modeling approaches and prior assumptions
associated to the two methods should permit good perfor-
mances in a wide scenario.
We performed the validation experiments just for vari-

ants from the hematological tumors (available in our la-
boratories), thus the validation rate might change for solid
tumors. The results show that GATK-LODN filtered more
variants in the hematological tumors than in the solid
tumors and we hypothesized that the normal samples
from hematological tumors may be more prone to

Table 4 The GATK-LODN method presented good performance in artificial tumor samples. Performance of MuTect and GATK-LODN

for artificial tumor samples that had variants with diverse allelic frequencies

Artificial Tumor Samples

Low Frequency Variants
(n = 22) VAF: 0.02 – 0.26

Intermediate Frequency Variants
(n = 25) VAF: 0.5 – 0.86

High Frequency Variants
(n = 25) VAF: 0.97 – 1

MuTect Somatic Candidates 22 25 25

TP 19 25 25

FN 0 0 0

FP 3 0 0

PPV 19/22 25/25 25/25

FDR 3/22 0/25 0/25

GATK-LODN Somatic Candidates 27 32 33

TP 17 23 23

FN 5 5 2

FP 5 7 8

PPV 17/22 23/30 23/31

FDR 5/22 7/30 8/31

TP True positives, FN False negatives, FP False positives, PPV Positive Predictive Value (#TP / #FP + #TP), FDR False Discovery Rate (#FP / #FP + #TP), VAF Variant
Allelic Frequency
GATK results were not reported in the table since it detected more than 2200 candidates out of 22 or 25 TPs

Fig. 3 Number of False Negatives and True positives at different coverage levels. Three artificial tumors were created with 22, 25 and 25 SNVs,
which had variant allelic fractions range of 0.02 to 0.25, 0.5 to 0.86, and 0.97 to 1.0, respectively. We counted the number of False Negatives (FN)
and True positives (TP) for different levels of simulated sequencing coverage
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contamination by cancer cells. Although GATK-LODN

provided a small number of variants in the hematological
datasets, even a single variant can give insights into the
mechanisms of malignant transformation and help design
personalized therapeutic approaches [22, 23]. We ob-
served that the Lung Adenocarcinoma presented the big-
gest concordance between methods, maybe because
patients with this type of cancer usually presents high mu-
tation frequencies and harbors more somatic mutations
compared with other cancer types [24–27]. The results
also show that different methods may present bias to cer-
tain nucleotide substitution mutations, but more studies
involving larger groups of tumors are needed.
The GATK-LODN is suitable for application together

with other post-calling filtering features as: strand bias,
nearby polymorphisms and technology specific sequen-
cing errors removal [28–30]. For instance, Carson et al.
[7] suggested new thresholds for genotype and variant
filters to be used in conjunction with the GATK pipeline
analysis, that could increase the GATK-LODN perform-
ance in population-based studies. Altogether, the GATK-
LODN allows enough flexibility to deal with different
study designs and requirements about how stringent the
analysis must be.
Here, we presented a tested pipeline that combines

standard tools, aiming to detect a wide range of somatic
single nucleotide variants with high specificity and sensi-
tivity. We developed the GATK-LODN method, which
can be helpful in large-cohort discovery studies aimed to
profile the somatic mutational landscape from whole ex-
ome sequencing data of cancer samples.

Conclusion
Next generation sequencing analysis has drastically im-
proved the biological knowledge of human cancers. Sev-
eral tools and strategies are available to detect single
nucleotide variants in normal-cancer paired samples, but
many research groups report low concordance among
them. In this study, we proposed a pipeline that applies
two standard tools (MuTect and GATK) and one
adapted method (GATK-LODN) that increased the per-
formance of its original algorithm. The GATK-LODN

method improved the overall performance by reducing
the number of false positive calls and permitted the de-
tection of variants not detected by MuTect. We believe
that the proposed pipeline will help in the understanding
of cancer biology through the discovery of somatic single
nucleotide variants in cancer sequencing data.

Additional file

Additional file 1: Supplementary information. A.xls file including
supplementary tables. (XLS 25 kb)
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