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ABSTRACT  

Analysis of 664 known structures of protein kinase complexes with halogenated ligands 

revealed 424 short contacts between a halogen atom and a potential protein X-bond acceptor, 

the topology and geometry of which were analyzed according to the type of a halogen atom 

(X=Cl, Br, I) and a putative protein X-bond acceptor. Among 236 identified halogen bonds, the 

most represented ones are directed to backbone carbonyls of the hinge region and may replace 

the pattern of ATP-like hydrogen bonds. Some halogen-π interactions with either aromatic 

residues or peptide bonds, that accompany the interaction with the hinge region, may possibly 

enhance ligand selectivity. Interestingly, many of these halogen-π interactions are bifurcated. 

Geometrical preferences identify iodine as the strongest X-bond donor, less so bromine, 

while virtually no such preferences were observed for chlorine; and a backbone carbonyl as the 

strongest X-bond acceptor. The presence of a halogen atom in a ligand additionally affects the 

properties of proximal hydrogen bonds, which according to geometrical parameters get 

strengthened, when a nitrogen of a halogenated ligand acts as the hydrogen bond donor.  

 

INTRODUCTION 

Post-translational modifications (PTMs), both reversible and irreversible, may affect 

intracellular localization of proteins, regulate their interactions with protein or non-protein 

partners, modulate their catalytic activity, or select some of them for degradation. In general, 
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PTMs increase proteome diversity by at least an order of magnitude, when compared to the 

transcriptome, and even more so relative to the genome. They also enable rapid response or 

adaptation to extracellular factors, contributing to signal transduction and regulation of 

numerous cellular pathways. The most frequent modifications include glycosylation, lipidation, 

methylation, N-acetylation, S-nitrosylation and sumoylation. A particular role is played by 

reversible protein phosphorylation. The residues most susceptible to phosphorylation are serine, 

threonine and tyrosine, less frequently histidine (Klumpp & Krieglstein, 2002; Besant et al., 

2003; Steeg et al., 2003; Besant & Attwood, 2005; Ciesla et al., 2011), and rarely aspartate 

(Wagner & Vu, 2000; Lapek et al., 2015), cysteine (Pannifer et al., 1998; Feng et al., 2008), 

lysine (Matthews, 1995; Khorasanizadeh, 2004; Besant et al., 2009) or arginine (Fuhrmann et 

al., 2009; Elsholz et al., 2012). Protein kinases, which catalyze phosphorylation of proteins, 

display a large spectrum of substrate specificities. Most use ATP as a phosphate donor, albeit 

some may accept GTP (Ventimig & Wool, 1974). 

Protein kinases are attractive molecular targets for drug design (Cohen, 2002), since they 

are playing key roles in the regulation of many cellular processes, including the cell cycle, 

growth and apoptosis. To date, most promising protein kinase inhibitors are small ATP-

competitive molecules (Zhang et al., 2009; Fabbro, 2015), which bind at the highly conserved 

ATP-binding site. To enhance target selectivity, some designed ligands are large enough to 

interact also with other functional sites of a kinase, i.e. bi-substrate inhibitors bind 

simultaneously at the ATP and substrate-binding sites (Parang et al., 2001; Parang & Cole, 

2002; Fischer, 2004; Gower et al., 2014). Furthermore, some ligands forming a covalent bond 

with the kinase-specific nucleophilic residue located within the ATP-binding pocket have been 

developed (Liu et al., 2013). Other options to improve selectivity include non-ATP-competitive 

inhibitors (Harrison et al., 2008; Battistutta, 2009; Kirkland & McInnes, 2009; Garuti et al., 

2010), such as allosteric ones (Bogoyevitch & Fairlie, 2007; Lamba & Ghosh, 2012; Cowan-

Jacob et al., 2014), some of which preferably bind to the “DFG-out” conformation of a kinase, 

stabilizing its inactive conformation (Dietrich et al., 2010; Zhao et al., 2014). 

Nonetheless, most of the currently used protein kinase inhibitors locate, at least partially, in 

the ATP-binding pocket. These ligands must mimic the overall properties of the ATP molecule, 

i.e. they are locally flat, preferably aromatic, and capable of hydrogen bond formation and 

efficient electrostatic interactions with residues that form the protein kinase ATP-binding site. 

According to the Lock-and-Key analogy originally postulated in 1894 by Fischer, and further 

extended to the Induced-Fit Theory (see Koshland, 1994 for review), which is a biochemical 



3 
 

equivalent of the Pauli exclusion principle: a low-mass ligand should fit to a binding site 

attainable for ligands in the solvent phase. Van der Waals (vdW) interactions, both attractive 

and repulsive, are short-range contacts that control binding events (Barratt et al., 2005), 

favoring the ligands that fit to the protein binding site. Electrostatic interactions between a 

protein and a ligand are dominated by short contacts between charged groups (known as salt 

bridges, formally zero order term in multipole expansion of electrostatic interactions). Their 

contribution to the Gibbs free energy of ligand binding approaches 40 kJ/mol (Hendsch & 

Tidor, 1994). However, the subsequent moments in multipole expansion related to static 

(charge-dipole, dipole-dipole, etc) or induced-charge distributions (i.e. Debye and London 

forces), stacking interactions (electron correlation in proximal π-electron systems), hydrogen 

and halogen bonding, may also contribute significantly. The significance of these interactions is 

well described, with the exception of halogen bonding, the contribution of which is still under 

debate (Eckenhoff & Johansson, 1997; Liu et al., 2005; Voth et al., 2007; Memic & Spaller, 

2008; Kraut et al., 2009; Zou et al., 2009; Hauchecorne et al., 2010; Sarwar et al., 2010; Carter 

& Ho, 2011; Hardegger et al., 2011; Aakeroey et al., 2013; Poznanski et al., 2014), with 

estimates of the free energy of an individual X-bond varying from 0.8 (Sarwar et al., 2010) up 

to 30 kJ/mol (Voth et al., 2007). 

Halogen bonding (X-bond) has been identified in many crystal structures of low-mass 

compounds and their supramolecular ensembles (see Metrangolo et al., 2008 for review), and 

more recently in complexes of biomolecules with halogenated ligands (Auffinger et al., 2004; 

Voth & Ho, 2007; Rendine et al., 2011). Specific interactions between the ligand halogen 

atoms (Cl, Br, I) and the electron pairs of an oxygen/nitrogen/sulfur/π-electron system have 

been described, based largely on the observation that the distance between a halogen atom and 

its electron-donating partner, dX···Acc, is significantly shorter than the sum of their vdW radii 

(Figure 1A). Fluorine, because of its high electronegativity, is a very poor halogen bond donor 

(Politzer et al., 2007), but it may act as an efficient hydrogen bond acceptor (Howard et al., 

1996; Dunitz, 2004)  

The role of halogenated ligands in biological systems has been widely reviewed, amongst 

others by Auffinger et al., 2004, Parisini et al., 2011, Rendine et al., 2011, Voth et al., 2007, 

Voth et al., 2009, Scholfield et al., 2013, Wilcken et al., 2013, Persch et al., 2015 and also by 

us (Poznanski & Shugar, 2013; Poznanski et al., 2014). These systematic structural studies 

show numerous examples of halogen bonds formed between a ligand and a protein electron-

donating group. The geometry of these halogen bonds has been well described, with a 
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preference for the X···Acc-C (θA) angle of 160°, roughly resembling that of a hydrogen bond 

(Figure 1), albeit the distributions of θX and θD angles differ significantly. It should be however 

noted that the distribution of θA and θD angles depend on the hybridization of the involved 

atoms.  
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Figure 1. The structural analogy between a halogen (A) and a hydrogen (B) bond. 

 

Numerous natural drugs (Smit, 2004; Wang et al., 2005; Cabrita et al., 2010) and an 

increasing number of synthetic drug candidates (Hernandes et al., 2010; Pauletti et al., 2010) 

are halogenated, comprising approximately 20% of low-mass protein ligands accessible in the 

Protein Data Bank (PDB), and an even larger number of tested protein kinase inhibitors. 

The growing number of high-resolution structures of protein kinase-ligand complexes aids in 

silico development of new inhibitors (Niefind et al., 2009; Ibrahim, 2011; 2012; Lepsik et al., 

2013), many of them halogenated. Understanding the structural requirements for the binding of 

halogenated ligands, and the estimated contribution of the halogen bonding to the Gibbs free 

energy of ligand binding is crucial for in silico design of halogenated drugs (Ibrahim, 2012; 

Jorgensen & Schyman, 2012; Kolar & Hobza, 2012; Wang et al., 2014). 

Herein we present a detailed analysis of the geometry and topology of short contacts of 

halogen atoms identified in all complexes of protein kinases with halogenated ligands 

accessible in the Protein Data Bank. A statistical approach was applied to estimate, 

independently for Cl, Br and I as halogen bond donors, their relative contribution to the free 

energy of halogen bond formation in protein-ligand systems. 

 

MATERIAL AND METHODS 

Structural data. The Protein Data Bank (PDB) was searched to identify all entries of protein 

kinases (EC 2.7.10, 2.7.11 and 2.7.12), while histidine protein kinases (2.7.13) were omitted.  
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Structural analysis. All analyses were performed with the aid of the Yasara Model package 

(Krieger et al., 2009). For each halogen atom type, all intermolecular ligand-protein contacts 

were identified, using 4 Å as a threshold for the distance between a halogen atom and a putative 

halogen bond acceptor. The analysis was further restricted to interactions characterized by the 

dX···Acc distance between a halogen atom and a potential halogen bond acceptor shorter than the 

sum of their vdW radii. The contacts for which the C-X···Acc angle exceeded 140º (Figure 1) 

were annotated as halogen bonds. Multiple protein molecules in the unit cell, as well as objects 

displaying multiple partially occupied forms (i.e. side-chain rotamers or ligand locations) were 

analyzed separately. 

Structure validation. The analysis was done with the aid of Coot (Emsley & Cowtan, 2004; 

Emsley et al., 2010) and figures with the PyMol program (DeLano & Lam, 2005). Reliability of 

the presence, position and identity of solvent molecules in the vicinity of the halogen atoms was 

assessed in several ways. First, we eliminated all structures with resolution lower than 2 Å and 

structures with muliple conformations of the halogenated part of the ligand. Next, we manually 

inspected EDS- (Kleywegt et al., 2004) and PDB REDO- (Joosten et al., 2014) generated Fo-Fc 

(difference maps indicating disagreement between the observed, Fo, and calculated, Fc, electron 

densities) as well as 2Fo-Fc electron density maps (maps calculated with model phases and 

experimental structure factors, with an additional Fo-Fc correction that counteracts the model 

bias). Finally we analyzed B-factors, coordination geometry and topology of the solvent 

molecules in question. Since there were only a few molecules fulfilling all selection criteria, we 

restricted solvent analysis to hi-res structures (<2.5Å) with deposed electron density maps, for 

which all solvent molecules in extremely short contacts with the halogen atoms (<2.5Å) were 

omitted. In all analyzed cases there were some ions of molecular weight comparable to water 

present in the crystallization buffer (Na+, Mg2+ or NH4
+). While metal ions should, in principle, 

be distinguishable from water on the basis of the coordination sphere, it is very hard to tell apart 

the ammonium ion and water based solely on crystallographic methods, and thus we cannot 

absolutely exclude the polar character of the identified interactions. X-ray radiation induced 

partial ligand decomposition also cannot be excluded. 

Statistical analysis. To overcome the categorization issue, all distributions are presented in a 

cumulative manner as a CDF (cumulative distribution function), which is the integral of a 

commonly used distribution function. This form of presentation helps in visual comparison of 

various distributions of samples of a limited size. Since, according to the Anderson-Darling test 

(Anderson & Darling, 1952), most distributions were found to be non-Gaussian (data not 
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shown), the statistical significance of observed differences was estimated according to the 

Mann-Whitney U test (Mann & Whitney, 1947) for comparison of two datasets, and the 

Kruskal-Wallis H test (Kruskal & Wallis, 1952) for 3 or more groups. When the above tests did 

not show statistically significant differences in the location of the analyzed distributions, the 

Kolmogorov-Smirnov two-sample test, sensitive much more for the distribution shape, was 

applied (Massey, 1951). All analyses were performed using Statistica 10 (StatSoft, 2011). Null 

hypotheses that given distributions do not differ from each other were tested at a significance 

level of α = 0.05, and those with p-values below 0.05 were rejected. The p-values listed in the 

text are indexed according to the applied method: pMW, pKW and pKS for Mann-Whitney, 

Kruskal-Wallis and Kolmogorov-Smirnov test, respectively. In general, the distributions of 

dX···Acc distance and C-X···Acc angle (judged by the smaller-larger principle), were preferably 

analyzed using Mann-Whitney or Kruskal-Wallis tests, and the X···Acc-C angle distribution, 

(interpreted in the wider-narrower terms), with the Kolmogorov-Smirnov two-sample test. 

RESULTS AND DISCUSSION 

Preferred topology of short contacts between a halogen atom of a ligand and a protein 

kinase. A total number of 424 short contacts between halogen atoms and potential X-bond 

acceptors was found in 320 of 664 structures of protein kinases in complexes with halogenated 

ligands. This includes 151 PDB records for protein-tyrosine kinases (Enzyme Classification 

2.7.10), 386 for protein-serine/threonine kinases (EC 2.7.11) and 127 for dual-specificity 

protein kinases (EC 2.7.12). Short contacts were identified using thresholds calculated 

individually according to X-bond donor and acceptor types as the sum of their van der Waals 

(vdW) radii of 1.52, 1.55, 1.70, 1.75, 1.80, 1.85 and 1.98 Å for oxygen, nitrogen, carbon, 

chlorine, sulfur, bromine and iodine, respectively (Bondi, 1964). Overall, 223, 148 and 53 short 

contacts were identified for chlorine, bromine and iodine atoms attached to a carbon atom 

(halide ions were excluded from the analysis). This includes, respectively, 102, 88 and 46 

interactions fulfilling distance and angle requirements for a halogen bond (Desiraju et al., 

2013). The numbers of identified short contacts and halogen bonds, are presented in Table 1. 

Only three of the highest populated X-bond acceptor types were present in sufficient numbers 

to assess the statistical significance of the observed halogen-dependent differences in the 

parameters describing the halogen bond geometry.  

The most targeted protein kinase regions are the β-sheets of the N-terminal lobes, for which 

putative acceptors include both carbonyl oxygen and/or π-electrons of a peptide bond; and 
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carbonyls of residues located in the hinge region that are involved in the ATP binding (see 

Figure 2 below). 

A carbonyl oxygen, in accordance with the PDB screenings (Auffinger et al., 2004; Lu et 

al., 2009; Hardegger et al., 2011; Parisini et al., 2011), is the most abundant putative acceptor 

of a halogen bond, contributing, together with an amide nitrogen, to over 50% of identified 

short intermolecular contacts. Due to geometrical reasons, most of the contacts between a 

halogen atom and a backbone nitrogen are accompanied by interaction(s) with a proximal 

carbonyl group. There are, however, some structures strictly representing the concept of 

orthogonal halogen bonds to π-electrons of the amide group, originally identified by Voth 

(Voth et al., 2009). In the complex of human CDK2 with a brominated triazole-pyrimidine 

inhibitor (pdb2c69; Richardson et al., 2006), the separate X-bond to the backbone nitrogen of 

Glu12 could be identified (Figure 2A), while in the complex of epidermal growth factor 

receptor variant with PD168393 (pdb4lrm; Yasuda et al., 2013) the bromine atom makes 

numerous short orthogonal contacts with X-bond acceptors located in the proximal β-sheet 

(Figure 2B).  

Interestingly, the side chain of aspartate located in the DFG loop may also interact with a 

halogen atom. This interaction has been rarely identified in the PDB records (Lu et al., 2009; 

Wilcken et al., 2013). However, there are nine PDB structures of protein kinases that display 

short contacts between a halogen atom and the carboxyl group of the aspartate located in the 

DFG motif: CK2α (pdb1zoh; Battistutta et al., 2005, pdb4bxa, pdb4bxb, pdb4kwp; Cozza et 

al., 2014), mitogen-activated kinases MAPK14 (pdb3fsf; Goldstein et al., 2011) and MEK1 

(pdb4u7z; Robarge et al., 2014, pdb3eqc; Fischmann et al., 2009), BTK kinase (pdb3pj1; 

Kuglstatter et al., 2011), and serine/threonine protein kinase 10 (pdb4bc6), in most of which the 

orientation of a C-X bond relative to the proximal carboxyl group deviates from linearity by 

approximately 40º (Figure 2CD).  

 

Figure 2. 

 

Halogen bonding to the π-electron system of an aromatic residue. Protein kinase sequences 

show that each includes many aromatic residues, some of which are involved in catalysis, either 

by direct binding of ATP or transfer of the phosphate group. Those located in the vicinity of the 

ATP-binding site may form short contacts with halogenated ATP-competitive ligands. The 
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conserved aromatic residues in protein kinases are generally found in the glycine-rich loop 

(Y50 in CK2α/Y15 in CDK2), hinge region (F113/F80 and Y115/F82), catalytic loop 

(H154/H125 and H160/Q131), and the DFG-motif (W176/F146). Locations of aromatic 

residues for protein kinase CK2α are shown in Supplementary Figure 1. Interestingly, the 

aromatic residues are not strongly conserved in protein kinases and thus may be targeted by X-

bonding to enhance ligand specificity. 

Halogen bonding to π-electron systems is well documented in the Cambridge Structural 

Database (CSD), however only several structures demonstrating interactions between halogen 

atoms in organic systems and aromatic groups, the separation of which is shorter than the sum 

of their van der Waals radii, have been reported (Reddy et al., 1996; Hubig et al., 2000). 

Halogen bonds to π-electron systems have also been identified in complexes of halogenated 

ligands with various proteins, e.g. serine protease Xa (Nazare et al., 2005), farnesyltransferase 

(Tong et al., 2003), or HIV-1 reverse transcriptase (Das et al., 2004). 

Three modes of interaction between a halogen atom and an aromatic system have been 

identified, based on the orientation of the aromatic ring with respect to a C-X bond, which can 

be positioned either perpendicular or parallel to the normal vector defined by the plane of the 

aromatic ring. When a C-X bond is perpendicular to the plane of an aromatic ring (i.e. parallel 

to the normal vector), the halogen atom may interact either with the center of the π-electron 

system (Figure 3A) or with its rim (Figure 3B). The mode in which the C-X bond lies over the 

plane of the aromatic ring (Figure 3C), does not fulfill the formal geometrical requirements for 

halogen bonding, since the σ-hole, located along the C-X axis (Clark et al., 2007), is not 

directed toward the potential halogen bond acceptor. When a halogen atom is attached to an 

aromatic moiety, possible π-π stacking interactions additionally compete with a halogen atom 

for a proximal π-electron system (Li et al., 2012). 

 

Figure 3. Schematic representation of perpendicular “over the center” (A), “over the rim” (B) and parallel (C) 

orientations of bromomethane relative to a proximal benzene aromatic ring. 



9 
 

Screening of structures of protein kinases in complexes with halogenated ligands has 

evidenced numerous close contacts between halogen atoms and π-electron systems. Their 

topology varies, but several classes can be identified. The most abundant short contacts with 

halogen atoms involve the phenylalanine residue of the hinge region (F113 in CK2α), next is a 

tyrosine residue located in the glycine-rich loop (Y50), and an aromatic residue from the DFG 

motif (W176). All structures that display short contacts between a halogen atom and an 

aromatic ring are collected in Table 2. The representative geometries are shown in Figure 2E-L. 

It should be noted, however, that the orientation of a C-X bond relative to a proximal aromatic 

ring for numerous identified systems disagrees with the idealized geometry of a halogen bond 

(see Figure 3AB). Thus, the halogenated ligand may be involved in a canonical π-π interaction 

with protein aromatic residue, as shown in Figure 2EF for chlorinated and brominated ligands 

(1RU with hepatocyte growth factor receptor in pdb4knb (Steinig et al., 2013) and TV4 with 

serine/threonine-protein kinase B-Raf in pdb3tv4 (Wenglowsky et al., 2011), respectively). 

In numerous structures, the C-X· · ·Acc angle differs substantially from the range of 160-

180° found optimal in CSD (Rosokha & Kochi, 2008), as shown in Figure 2GH for RTX with 

serine/threonine-protein kinase pim-1 (pdb4med) and Z21 with subunit alpha of cAMP-

dependent protein kinase (pdb4c37; Couty et al., 2013). The largest number of short contacts 

with strongly perturbed geometry is observed for chlorinated ligands (>60% of all identified), 

in contrast to brominated and iodinated ones, for which the geometry close to optimal is 

preserved in the majority of analyzed cases (95 and 100%, respectively). Finally, a total number 

of 24 halogen bonds to π-electron aromatic systems, for which all geometrical requirements for 

efficient halogen bonding are fulfilled, have been identified (Table 2 and Figure 2I-L). 

The halogen bond with the phenylalanine of the hinge region is often accompanied by two 

parallel hydrogen bonds formed with the backbone of the downstream residue (Phe+3), that for 

polyhalogenated ligands may be substituted by halogen bond(s) to the carbonyl groups of 

residues (+1) and (+3) (Figure 2JL). Alternatively, a halogen-π interaction may involve an 

aromatic residue of the glycine-rich loop, as observed in the complexes of mitogen-activated 

protein kinase 1 with E57 (pdb4fv6) or VTX-11e (pdb4qte; Chaikuad et al., 2014), and cAMP-

dependent protein kinase with H-89 (pdb3vqh; Pflug et al., 2012) or CCT196539 (pdb4c37; 

Couty et al., 2013). All these ligands also make hydrogen bond(s) with the (+3) residue of the 

hinge region. 

Interestingly, a C-X· · ·π halogen bond is frequently accompanied by a parallel interaction of 

the halogen atom with a proximal solvent molecule, identified in over 50 percent of the 
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analyzed structures (see Table 2). For ligands forming an X-bond with the hinge region, 

location of this solvent molecule is highly conserved, and the distance between the halogen 

atom and the oxygen atom (in case this solvent molecule is interpreted as water) is substantially 

shorter than the vdW limit. This may represent a possible example of a bifurcated halogen bond 

identified in crystals of small organic compounds (Lu et al., 2006; Carlsson et al., 2015; Novak 

et al., 2015). The observed C-X· · ·Owat angle of approximately 120° (see Table 2) strictly 

corresponds to a minute maximum identified in the distribution of the C-X· · ·O angles by 

Scholfield (Scholfield et al., 2013), however it seems to be too far from the optimal 160-180° 

found for a plausible halogen bond in previous screenings of the PDB (Auffinger et al., 2004; 

Parisini et al., 2011; Poznanski & Shugar, 2013; Scholfield et al., 2013) and CSD (Metrangolo 

et al., 2005). Solvent molecules proximal to an X-bond have also been identified in other 

protein-ligand complexes (Beale et al., 2013), but this type of three-body interaction has to date 

not been listed in the IUPAC definition of a halogen bond (Desiraju et al., 2013). Moreover, a 

water molecule itself does not fulfill the actual IUPAC definition of an X-bond acceptor.  

Halogen bond between a ligand and the backbone carbonyl oxygen. The shortest distances 

between a halogen atom and the carbonyl oxygen are observed for bromine (median of 3.19 Å 

calculated for all halogen-oxygen contacts shorter than 3.5 Å, see Figure 4I), whereas, 

notwithstanding the large difference in vdW radii, the distributions for chlorine and iodine 

donors are almost identical (medians of 3.25 and 3.28 Å, respectively). This, in view of the 

vdW radii (1.52, 1.75, 1.85 and 1.98 Å for O, Cl, Br and I, respectively), denotes that medians 

for Br and I are smaller than the sum of the corresponding vdW radii by approximately 0.2 Å, 

indicative of a halogen bond formation (Desiraju et al., 2013). Figure 4A shows the 

distributions of what we refer to as the "void" distance ΔdX···O, i.e. shortening of halogen to 

oxygen distance relative to the vdW radii sum, calculated for all structures for which 

ΔdX···O < 0. 

 

Figure 4. 

 

The distribution of halogen-to-oxygen distances shows that the interaction between a 

chlorine and a carbonyl oxygen is substantially weaker than for bromine and iodine, i.e. ΔdCl·· ·O 

is less negative than ΔdBr···O and ΔdI· · ·O (pMW = 0.003 and 0.03, respectively), which do not 

differ from each other significantly (pKS > 0.1, solid lines in Figure 4A). Correspondingly, θX 

(C-X···Acc) and θA (X···Acc-C) angles, which define the geometry of an X-bond, differ 
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qualitatively (Figure 4BC). For iodine, the distribution of θX is indicative of formation of the 

halogen bond, while for chlorine and bromine it is much more broadly distributed (pMW=3·10-11 

and 9·10-7), with minimal difference between the two (pMW > 0.3; pKS < 0.1). Moreover, in 

contrast to iodine, for chlorine and bromine in approximately 25% of structures the θX angle is 

smaller than the assumed limit of 140º, and in only about a half of all cases falls within the 

optimal range of 160-180º (Figure 4B).  

The sharp maximum in the θA (X···Acc-C) distribution for iodine, observed as the upcast in 

the cumulative distribution at 126º (Figure 4C), coincides with the halogen-oxygen orientation 

optimal provided the spatial distribution of electron density of oxygen in sp2 hybridization. The 

same effect can also be observed for 40% of carbonyl-bromine contacts (θA ~ 133º), and less 

evidently for 20% of carbonyl-chlorine interactions. It should be noted that, despite the minute 

differences in location, these distributions differ significantly in the shape (pKS < 0.03 for Cl vs. 

Br, and pKS < 0.001 for I vs. Br/Cl). Consequently, much more narrower distributions are 

indicative for stronger halogen-carbonyl interaction, i.e. iodine is significantly better X-bond 

donor than bromine, while virtually no preferences are observed for chlorine. These is better 

visible, when the restricted set of contacts with θX>140º was analyzed, as it is evidenced by 

chopped lines in Figure 4A-C, however due to decreased number of analyzed structures, the 

differences in distributions are less significant.  

Statistically, a halogen bond between a carbonyl oxygen and iodine is stronger than that 

between a carbonyl and bromine, geometry of which is less restricted to values optimal for a 

halogen bond (θX
≈160-180º and θA

≈120-160º), while virtually no propensity for halogen 

bonding is observed for chlorine.  

Short contacts between a halogen atom of a ligand and a side-chain oxygen. There are no 

halogen-type specific differences in either distance or angle distributions of short contacts 

between a halogen atom and a side-chain oxygen (in all cases pKS > 0.1, Figure 4D-F). 

Moreover, the angular preferences of such contacts differ, for each halogen type tested, from 

that made with a backbone carbonyl (in all cases pMW < 0.03, Figure 4BC vs. 4EF), clearly 

confirming that the backbone carbonyl is a stronger X-bond acceptor than a side-chain oxygen. 

These differences cannot be explained by heterogenic hybridization of side-chain oxygen atoms 

(sp2 for Asn, Asp, Gln and Glu, and sp3 for Ser, Thr, Tyr). However, the differences observed 

for distance distributions are not significant (only for chlorine pMW < 0.05, Figure 4A vs. 4D).  

Short contacts between a halogen atom and a solvent molecule. The distance distribution 

between a halogen atom and a proximal solvent molecule resembles trends found for a carbonyl 
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oxygen acting as an X-bond acceptor (pKS > 0.1, Figure 4G vs. 4A), however the distribution of 

the θX (C-X···O) angle is visibly broader (for each halogen type pMW < 0.0003, Figure 4H vs. 

4B). Contrary to the conclusions for contacts with side-chain oxygen, the distance preferences 

for θX angle depend of the halogen type, and for chlorine are weaker than for the other ones 

(pMW = 0.02 and 0.10 for Cl vs. Br and I, respectively). It follows that, if solvent molecules 

were correctly identified as water, some of them may be regarded as a weak, but noticeable, X-

bond acceptors (Figure 2R-T).  

Halogen vs. hydrogen bonding in protein kinase-ligand complexes. Interestingly, the 

geometry of a halogen bond involving a backbone carbonyl of a protein kinase visibly differs 

from that observed for a hydrogen bond formed between a backbone carbonyl of a protein 

kinase and a nitrogen of either halogenated or non-halogenated ligand. The largest differences 

concern distance between a halogen atom and a carbonyl acceptor, which is approximately 0.3 

Å larger than the nitrogen to oxygen distance of 2.87 Å observed for a hydrogen bond, which 

precisely corresponds to the difference in radii between N and X (see Figure 4I). Broad 

distributions of the θA angle for halogen bonds are shifted toward the idealized value of 120°, 

significantly differing from that observed for an H-bond (pMW < 10-8, chopped lines in Figure 

4C), clearly indicating that the geometry of an X-bond is much more restricted. Moreover, θX 

qualitatively differs from θD (see Figure 1 for definitions), approaching the expected linear 

configuration for C-X···O, while  for C-N···O angle of 120° is favored for ligand nitrogen, 

found mostly in sp2 hybridization, acting as an H-bond donor. (chopped lines in Figure 4B).  

Resuming, despite the general topological similarity of a halogen and hydrogen bond, 

geometrical requirements for both are visibly different, so they may not be equivalent when 

ligands are tightly packed inside the ATP-binding cavity of a protein kinase. A significant 

contribution of vdW interactions between atoms neighboring donor and acceptor sites, results in 

systematic deviation of θA from its optimal value of 120°, expected for the sp
2 hybridization of 

the carbonyl oxygen. 

The most known example of a replacement of an H-bond by an X-bond is observed in the 

recurring pattern of two halogen bonds with backbone carbonyls in the hinge region, which 

resembles the common mode of ATP-recognition by a protein kinase (pdb1hck; Schulze-

Gahmen et al., 1996, Figure 2Q vs. 2M).  

Hydrogen bonds formed by halogenated ligands. More detailed analysis shows that the 

presence of a halogen atom in the ligand affects the geometry of hydrogen bonds that it forms. 

The effect is less pronounced for the cases, when a ligand oxygen forms an H-bond with a 
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protein backbone amide than for those, in which backbone carbonyl acts as an H-bond acceptor 

(Figure 4M-O and 4J-L, red and blue lines vs. black ones). Small differences are observed for 

N···O distance distributions (Figure 4J and 4M, red vs. black lines), but variations in θD (Figure 

4K,N) and θA (Figure 4L,O) are even more remarkable. All these differences are indicative of 

enhancement of the strength of a hydrogen bond. They are statistically significant when a 

nitrogen of a halogenated ligand acts as an H-bond donor (Figure 4J-L; pKW < 0.05), but not for 

those in which a ligand oxygen acts as an H-bond acceptor (Figure 4M-O; pKW < 0.05 only for 

angle C-O···N). The foregoing supports the trend of H-bond strengthening for halogenated 

ligands carrying a nitrogen H-bond donor, identified in a larger set of PDB structures 

(Poznanski et al., 2014), however it is worth noting that the geometry of an H-bond, in which a 

ligand oxygen is the acceptor, is closer to the idealized geometry than that when a ligand 

donates an H-bond (Figure 4O vs. 4K, pKW < 0.01). 

Electrostatic contribution to ligand binding. Structure-activity screening of halogenated 

benzimidazole derivative inhibitors revealed a reasonably good correlation between the 

inhibitory activity and the change of ligand solvent-accessible surface upon binding (Battistutta 

et al., 2007), which is indicative of predominance of hydrophobic interactions. However, 

comparison of binding modes of tetrabromobenzotriazole (TBBt) by two closely related protein 

kinases: CDK2 (pdb1p5e; De Moliner et al., 2003) and CK2α (pdb1j91; Battistutta et al., 2001) 

clearly shows that small differences in charge distribution may result in an alternative mode of 

TBBt binding (Figure 2MN). Similarly, three structurally related ligands: TBBt, 

tetrabromobenzimidazole (K17, TBBz, pdb2oxy; Battistutta et al., 2007) and 

pentabromoindazole (K64, pdb3kxg; Sarno et al., 2011) bind to CK2α in different orientations 

(Figure 2N-P). However, the poses for TBBt with CDK2 and TBBz with CK2α are almost 

identical (Figure 2M vs. 2O). Altogether, the analysis of protein kinase complexes with 

halogenated benzimidazoles suggests that subtle electrostatic interactions contribute 

substantially to ligand binding. 

We have systematically explored electrostatic contribution to ligand binding by analyzing 

the structure-activity relationship for a series of TBBt derivatives (Wasik et al., 2010), in which 

the Br at C(5) of TBBt is replaced by various groups differing in their physicochemical 

properties, and also for a series of nine bromobenzotriazoles representing all possible patterns 

of halogenation on the benzene ring (Wasik et al., 2012a). Overall, the hydrophobicity of the 

monoanionic form of the ligand appeared to be the principal factor governing its inhibitory 

activity against CK2α (Wasik et al., 2010; Wasik et al., 2012b). Furthermore, the moderate 
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inhibitory activity exhibited by 4,5,6,7-tetramethylbenzotriazole (Zien et al., 2003), which in 

contrast to TBBt is in the neutral form at physiological pH (Poznanski et al., 2007), again 

points to a balance of electrostatic and hydrophobic interactions as an important factor 

contributing to CK2α inhibition. Accordingly, recent DSC-derived thermodynamic data for 

binding of TBBt, TBBz and their close structural analogues to CK2α (Winiewska et al., 2015a; 

Winiewska et al., 2015b) confirm the predominant contribution of electrostatic and 

hydrophobic interactions. For ligands that are mostly dissociated (i.e. pKa<6.5), the aqueous 

solubility and pKa for dissociation of the triazole proton together account for more than 95% of 

the variance of the free energy of binding determined with the aid of Microscale 

Thermophoresis (Figure 5). Three remaining, less dissociated ligands, 4-bromobenzotriazole, 

5-bromobenzotriazole and 5,6-dibromobenzotriazole are most probably differently oriented in 

the ATP binding site, as qualitatively confirmed by tyrosine quenching (Winiewska et al., 

2015a). 
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Figure 5. Correlation between the aqueous solubility (Cw) and pKa for dissociation with binding affinity to protein 

kinase CK2α for a series of nine benzotriazoles halogenated on the benzene ring. Data for three ligands (open 

circles), pKa for which is close to the physiological pH, disagree with the general trend. 

 

CONCLUSIONS 

The foregoing analysis clearly shows that in the tightly packed ATP binding pocket of a 

protein kinase, due to observed significant differences in geometrical preferences, a pattern of 

H-bonds cannot a priori be replaced by X-bonds. However, the ATP-like H-bonding pattern to 

the hinge region may be replaced by two parallel X-bonds formed between backbone carbonyl 

groups and two halogen atoms attached to vicinal carbons of the benzene ring. This interaction 

with the hinge region (either via halogen or hydrogen bonds), when accompanied by an X-bond 

formed with the aromatic residue located upstream of the hinge region, may possibly be used to 

strengthen ligand binding, or to enhance ligand selectivity.  
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Apart from direct effects of halogenation: increased ligand hydrophobicity and possible 

X-bonding, there are additional effects. These include modulation of the electron density, pKa 

changes of a dissociable group, or strengthening of H-bonds formed between a halogenated 

ligand and a protein. All these factors affect the binding mode, so that closely related ligands 

may bind in different orientations, as a result of a subtle balance of electrostatic, hydrogen-

bonding and halogen-bonding interactions, with the hydrophobic and electrostatic components 

predominating. This makes computer-aided drug design for protein kinases extremely 

challenging. 

ACKNOWLEDGEMENTS  

This work was supported by the Polish National Science Centre grant 2012/07/B/ST4/01334.  

 

 

 

Table 1. Short intermolecular contacts between the halogen atom of a ligand and various types of potential X-bond 

acceptors identified in 320 PDB structures of protein kinases with halogenated ligands. The second numbers 

reported in each cell represent values determined for X··Acc interactions with C-X··Acc angle > 140º. 

 

X-bond donor 
Median for X···Acc distance 

[Å] 

Median for C-X···Acc 

angle [°] X-bond acceptor 

Cl Br I 

Total 

Cl Br I Cl Br I 

O (backbone) 88; 64 64; 52 32; 30 184; 146 3.15; 3.12 3.17; 3.12 3.30; 3.29 156; 159 158; 162 173; 173 

O (side-chain) 52; 16 10; 3 6; 2 68; 21 3.05; 3.10 3.18; 3.22 3.25; 3.04 105; 158 128; 146 120; 158 

O (water)* 39; 13 44; 15 7; 6 90; 34 3.13; 3.09 3.19; 3.04 3.19; 3.25 129; 164 130; 167 145; 159 

N (backbone) 19; 2 6; 0 0; 0 25; 2 3.15; 3.03 3.39; - - 127; 144 110; - - 

N (side-chain) 12; 3 1; 1 0; 0 13; 3 3.25; 3.11 3.00; 3.00 - 127; 146 165; 165 - 

Aromatic side-chain 8; 3 18; 17 4; 4 30; 24 3.39; 3.30 3.89; 3.91 4.09; 4.09 133; 168 159; 160 151; 151 

S (side-chain) 5; 1 5; 0 4; 4 14; 5 3.10; 3.37 3.49; - 3.65; 3.65 128; 160 84; - 154; 154 

Total 223; 102 148; 88 53; 46 424; 236       

 

* The identity of the solvent molecule cannot be deduced with 100% certainty from X-ray crystallographic data 
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Table 2. Short contacts between a halogen atom and aromatic ring identified in complexes of protein kinases with 

halogenated ligands. All contacts marked in bold fulfill the formal definition of an X···π halogen bond.  

proximal solvent Aromatic residue 

Dist [Å] Angle Dist [Å] Angle  PDB 
Res 

[Å] 
Mol Res Motif Ligand Type 

X··O CX··O X··C X··rim X··q  CX··q CX··π π· ·π 

3nux 2.70 A F98 < hinge 3NV rim 3.61 96 3.30 3.44 3.91 156 77 77 

3owk 1.80 A F113 < hinge 18E rim 3.01 127 3.27 3.24 3.64 132 35 35 

4a06 2.00 A F157 < hinge A06 rim   3.02 3.04 3.19 130 37 85 

4a07 1.85 A F157 < hinge AZ7 rim   2.98 2.98 3.17 134 46 83 

4fv6 2.50 A Y34 Gly-loop E57 cen 3.87 80 3.42 3.37 3.27 168 81 81 

4knb 2.40 C Y1230 cat loop 1RU π-π   3.37 3.36 3.47 84 10 25 

4med 2.80 A F49 Gly-loop RTX rim   3.16 3.25 3.64 111 40 46 

4qte 1.50 A Y36 Gly-loop 390 cen   3.44 3.37 3.30 168 74 75 

               

1h08 1.80 A F80 < hinge BWP rim 3.11 116 3.45 3.43 4.00 163 37 49 

1p5e 2.22 A F80 < hinge TBS rim 2.91 122 3.26 3.23 3.49 154 44 45 

1p5e 2.22 C F80 < hinge TBS rim 3.03 112 3.24 3.26 3.68 175 55 58 

1zoe 1.77 A F113 < hinge K25 rim 2.87 126 3.49 3.55 3.93 163 44 47 

1zog 2.30 A F113 < hinge K37 rim 3.14 106 3.23 3.19 3.53 154   

1zog 2.30 A F113 < hinge K37 rim 3.20 115 3.47 3.49 3.87 159 42 43 

1zoh 1.81 A F113 < hinge K44 rim   3.51 3.50 3.92 159 41 42 

2oxy 1.81 A F113 < hinge K17 rim 2.90 126 3.66 3.59 3.91 154   

2oxy 1.81 B F113 < hinge K17 rim 3.06 118 3.53 3.51 3.81 156 44 45 

2r3j 1.65 A F80 < hinge SCJ rim   3.41 3.41 3.95 163 39 60 

2r3k 1.70 A F80 < hinge SCQ rim   3.37 3.31 3.91 163 40 59 

2r3l 1.65 A F80 < hinge SCW rim   3.51 3.49 4.05 160 36 57 

2r3q 1.35 A F80 < hinge 5SC rim 3.01 154 3.52 3.55 3.96 155 35 51 

3kxh 1.70 A F113 < hinge K66 rim   3.35 3.38 3.53 165 57 59 

3kxm 1.75 A F113 < hinge K74 rim 3.02 117 3.49 3.50 3.81 155 42 42 

3vqh 1.95 A F54 Gly-loop IQB rim   3.26 3.24 3.70 162 65 65 

4bxa 1.75 A F113 < hinge JRJ rim   3.47 3.47 3.97 163 42 44 

4c37 1.70 A Y54 Gly-loop Z21 rim 3.19 117 3.50 3.54 3.75 116 30 41 

               

2vuw 1.80 A F605 < hinge 5ID rim 3.71 137 3.52 3.60 4.14 153 43 47 

3iq7 2.00 A F605 < hinge 5ID rim 3.78 134 3.53 3.62 4.12 151 46 52 

4mne 2.85 H H87 cat loop  573 rim   3.53 3.53 3.82 141 52 61 

4ouc 1.90 A F605 < hinge 5ID rim 3.67 139 3.59 3.63 4.06 151 43 50 
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FIGURE LEGENDS 

Figure 1. The structural analogy between a halogen (A) and a hydrogen (B) bond. 

Figure 2. Representative structures of protein kinases in complexes with halogenated ligands 
that display short contacts between a halogen atom and a protein: (A,B) contacts orthogonal to 
the peptide bond; (C,D) an unusual interaction between a halogen atom and a proximal 
aspartate side-chain carboxyl; (E,F) π-π interaction between aromatic rings; (G,H) parallel 
orientation of the C-X bond relative to the aromatic ring; (I-L) halogen bonds between the 
ligand and an aromatic ring; (M,N) alternative binding modes of TBBt by two closely related 
protein kinases, and (N-P) closely related halogenated ligands that substantially differ in their 
location at the ATP-binding site of protein kinase CK2α; (Q) hydrogen bonding pattern with 
ATP; (R-T) short contacts between a halogen atom and a solvent molecule. The original pdb 
codes and protein acronyms are denoted for each structure. The figure includes EDS generated 
2Fo-Fc (grey) and Fo-Fc (red - negative, green - positive) electron density maps contoured at 
given rmsd levels (inaccessible for 1j91). The short contacts with the halogen atoms are colored 
grey and the hydrogen bonds in yellow. The halogen atoms are colored green. The glycine-rich 
loop, hinge region, catalytic loop and DFG motif are denoted in magenta, yellow, red and blue, 
respectively. 

Figure 3. Schematic representation of perpendicular “over the center” (A), “over the rim” (B) 
and parallel (C) orientations of bromomethane relative to a proximal benzene aromatic ring. 

Figure 4. Cumulative distributions of the parameters describing the geometry of an interaction 
between a halogenated ligand and a backbone carbonyl (A-C,I), side-chain oxygen (D-F) and a 
water molecule (G-H), determined separately for each halogen type. As a reference, the 
distributions for an H-bond between a non-halogenated ligand and a backbone carbonyl are 
presented as black lines in (B,C,I), and additionally are shown for non-halogenated (HL), 
fluorinated (FL) and otherwise halogenated (XL) ligands acting either as donors (J-L) or 
acceptors (M-O) of an H-bond. Chopped lines in (A-H) represent cumulative distributions 
obtained for θX restricted to the range of 140-180º, indicative of X-bond formation, which is 
denoted by vertical arrows (B,E,F). 

Figure 5. Correlation between the aqueous solubility (Cw) and pKa for dissociation with 
binding affinity to protein kinase CK2α for a series of nine benzotriazoles halogenated on the 
benzene ring. Data for three ligands (open circles), pKa for which is close to the physiological 
pH, disagree with the general trend. 

 


