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Abstract 

The genosensors based on thiolated ssDNA probe deposited on the two types of gold 

electrodes: screen-printed (miniaturized) and disc electrodes destined for determination 

of specific sequences of DNA and RNA derived from Avian Influenza Virus H5N1 

have been proposed. The working principle of genosensor is based on the ion–channel 

mechanism. The analytical signals generated upon hybridization processes were 

recorded using electrochemical technique – Osteryoung square wave voltammetry in 

the presence of a redox active marker [Fe(CN)6]
3-/4-

 in the sample solution. The 

miniaturized genosensor was able to detect the 20-mer complementary DNA 

oligonucleotide sequence as well as 280-mer RNA sequences containing the 

complementary 20-mer sequence in various positions: at 3’-terminus, at 5’-terminus 

and in the middle of the RNA transcript at the 1 pM concentration. The measuring 

systems were selective. Non-complementary 20-mer oligonucleotide sequence as well 

as RNA transcript without complementary region generated weak response. The RNA 

transcripts were also tested with GDEs modified in the same manner. This classical 

device was able to detect 280-mer RNA sequences, but at higher concentration of 10 

pM. The good discrimination of the position of complementary part in the 280-mer 

RNA sequences was observed with using both type of modified electrodes. 
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1. Introduction 

Avian influenza virus (AIV), especially H5N1 has become nowadays a very dangerous 

pathogen threatening not only for poultry. The H5N1 is the virus which mainly affects the 

birds and usually does not spread among people. Nevertheless, highly pathogenic H5N1 virus 

has been registered in about 650 confirmed human infections (with approximately 60% of 

deaths) in 15 countries [1]. The greatest threat to mankind can be the case when the person 

who is ill with seasonal flu will be infected with avian flu. Then there is the probability that 

the H5N1 virus can exchange genetic information with the human flu virus and acquire the 

ability for transmission from human to human. An easily human-transmissible AIV strain 

could have disastrous implications. Thus, the development of methods for early diagnosis, as 

well as for preventions are essential. Highly sensitive, accurate and rapid tests for 

identification of AIV infection would allow early antiviral therapy. 

However, the most commonly used methods of virus detection are laborious, time-

consuming, expensive, require specialized equipment and trained personnel. These include, 

for example: cultivation of viruses in cell culture, immunofluorescence, serological methods, 

enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR) [2-7], 

reverse transcription-polymerase chain reaction (RT-PCR) [8,9], RT-PCR with detection by 

ELISA [10], real-time reverse transcription-polymerase chain reaction (RRT-PCR) [11,12] 

and nucleic acid sequence-based amplification (NASBA) [13-15]. 

Therefore, in order to minimize the social and economic costs, the development of 

rapid diagnostic tests is indispensable [16]. It is believed that this type of tests should meet the 

following conditions: high efficiency, the ability to detect multiple targets, accuracy: 

sensitivity and specificity, speed, ease of use, the appropriateness of the use of research in the 

field and affordable price. These conditions fulfil the electrochemical biosensors. The 

biosensors are analytical tools developed for specific and selective detection of analytes such 

as: nucleic acids, drugs or proteins that are crucial in the field of diagnostics. Electrochemical 

biosensors offer a sensitive, selective, practical, time-saving and fast data analysis, as well as 

being suitable for the design of miniaturized portable point-of-care tools. Thus, the area of 

electrochemical biosensor technology has expanded from day to day [17-22].  
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The screen-printed electrodes have been designed especially for miniaturization of 

electrochemical analytical systems. These disposable sensors can be easily modified in 

various ways. They are also suitable candidates for measuring of multiple biological samples, 

as they require a small sample volume [23]. 

Here, we report on a sensitive ion-channel mimetic miniaturized genosensor 

incorporated mixed monolayer of thiolated DNA probe (SH-NC3) and 6-mercaptohexanol 

(MCH) deposited onto screen printed gold electrode (SPGE) surfaces for electrochemical 

detection of specific DNA and RNA sequences derived from AIV H5N1. The 

electroanalytical signals generated based on the DNA-DNA and DNA-RNA duplexes formed 

at the electrode surface were explored using Osteryoung square wave voltammetry (OSWV) 

and cyclic voltammetry (CV) in the presence of [Fe(CN)6]
3-/4- 

as an electroactive redox 

marker. As targets short (20-mer) single stranded DNA sequences and long (ca. 280-mer) 

RNA transcripts with different localization of the 20-mer region complementary to the probe 

were used. The RNA transcripts responses recorded using modified SPGEs were compared 

with GDEs modified in the same manner. 

 

2. Materials and Methods 

2.1. Reagents and Materials 

6-mercaptohexan-1-ol (MCH), potassium ferro- and ferricyanides, phosphate buffer 

saline (PBS) components (NaCl, KCl, Na2HPO4, KH2PO4) and sodium azide were obtained 

from Sigma–Aldrich (Poznań, Poland). Alumina slurries 0.3 and 0.05 μm were purchased 

from Buehler (USA). Sulphuric acid, potassium hydroxide, hydrogen peroxide, ethanol and 

methanol were supplied by POCh (Poland).  

The modified oligonucleotide SH-ss-DNA (5’-HS–(CH2)6-CCT CAA GGA GAG 

AGA AGA AG-3’) was used as a probe (named NC3) for immobilization on a surface of gold 

electrodes, while two unmodified oligonucleotides, c-NC3 (5’-CTT CTT CTC TCT CCT 

TGA GG-3’) and nc-NC3 (5’-GGA GTT CCT CTC TCA TCA TC-3’) served as 

complementary and non-complementary hybridization targets, respectively. The 

oligonucleotides were supplied by Biomers (Germany). 

The region complementary to the probe is located in the region of 83–102 nt, 242-261 

nt and 160–179 nt from the 5’-terminus of the RNA1, RNA2 and RNA3, respectively. The 
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RNA4 has no complementary sequence to the probe at all and was used for demonstration of 

the genosensor selectivity. DNA and RNA oligonucleotides were derived from the HA gene 

of Polish isolate of the HPAIV H5N1 (A/swan/Poland/305-135V08/2006) – Supplementary 

data. 

For DNA immobilization and hybridization 0.1 M PBS, pH 7.4 (consisting of 137 mM 

NaCl, 2.7 mM KCl, 10 mM KH2PO4, 1.8 mM Na2HPO4) was used. RNA hybridization buffer 

has the same composition and was prepared with sterile, nuclease free water from Sigma–

Aldrich (Poznań, Poland). 

All aqueous solutions were prepared using autoclaved Milli-Q water, resistivity 18.2 

MΩ·cm (Millipore Corporation, USA). Reagents and solvents were of analytical grade and 

used without further purification. All experiments were carried out at room temperature. 

 

2.2. Fabrication of Genosensors – Successive Steps of Gold Electrode Modification 

2.2.1. Gold disc electrodes 

 

The elements of genosensors are schematically shown in Figure 1. Gold disc working 

electrodes with a diameter of 2 mm were obtained from Bioanalytical Systems (BAS), West 

Lafayette, IN. 

GDEs were initially cleaned mechanically by polishing with alumina slurries (Alpha 

and Gamma Micropolish; Buehler, Lake Bluff, IL) with particles sizes of 0.3 and 0.05 m on 

microcloth pad (BAS) for 5 minutes each. Afterwards, they were carefully rinsed with Milli-Q 

water. The polished electrodes were further cleaned electrochemically by cyclic voltammetry 

(CV). At first they were dipped in 0.5 M KOH solution and swept with the potential between 

–0.4 V and –1.2 V against the Ag/AgCl reference electrode and the platinum wire counter 

electrode with scan rate of 0.1 Vs
–1

, number of cycles: 3, 50 and 10. Next, the electrodes were 

cleaned in 0.5 M H2SO4 in the potential window between -0.3 V and +1.5 V, number of 

cycles: 3, 10 and 3. Before modification, the surfaces of electrodes were refreshed in 0.5 M 

KOH solution for 10 cycles. After finishing of the electrochemical cleaning, each electrode 

was washed with MiliQ water and stored in water (for several minutes, until the next step) to 

avoid contaminations from air. All solutions were deoxygenated by purging with nitrogen 

(ultra pure 6.0, Air Products, Poland) for 10 minutes. 
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Directly after cleaning, the electrodes were rinsed repeatedly with water and PBS buffer pH 

7.4. Then, 10 L droplets of the mixture containing 1 M SH-ssDNA and 10 M MCH 

(backfiller) in PBS buffer pH 7.4 were placed on the surface of each electrode. The electrodes 

were covered with tubes and stored for 3h at room temperature. After self-assembled 

monolayer formation and oligonucleotide immobilization, 10 µL of 1 mM MCH was spotted 

on each electrode and incubated for 1h to reduce non-specific DNA binding. The modified 

electrodes were rinsed profusely with 0.1 M PBS, pH 7.4 and stored overnight at room 

temperature. 

 

2.2.2. Screen-printed gold electrodes 

The electrochemical measurements were also performed with miniaturized system – 

µStat 400 bipotentiostat/galvanostat (DropSens, S.L., Spain). For these experiments 

disposable SPGEs (DropSens, S.L., Spain) were applied. They include a three electrode 

configuration printed on the same strip. The dimensions of the strips are 34 x 10 x 0.5 mm 

(length x width x height). They are composed of gold working electrode, silver reference 

electrode and gold counter electrode. The working electrode has the diameter of 1.6 mm.  

Before the electrochemical cleaning, each SPGE was washed with Milli-Q water. 

Afterwards, the SPGES were cleaned electrochemically by CV. 40 L droplets of 0.5 M 

sulphuric acid were placed on the three electrodes surfaces, and swept with the potential 

window between -0.2 V and +1.1 V, with the scan rate of 0.1 Vs
–1

, number of cycles: 6, 10 

and 6. Before modification, the surfaces of electrodes were carefully rinsed with Milli-Q 

water and buffer.  

Directly after cleaning, the electrodes were rinsed repeatedly with water and 0.1 M 

PBS buffer pH 7.4. Then, 4 L droplets of the mixture containing 1 M SH-ssDNA and 10 

M MCH (backfiller) in PBS buffer pH 7.4 were placed on the surface of each working 

electrode. Then each electrode were closed in cells (vials) and stored for 3h at room 

temperature. After self-assembled monolayer (SAM) formation, 10 µL of 1 mM MCH was 

spotted on each electrode and incubated for 1 h to reduce non-specific DNA binding. Then, 

the modified electrodes were rinsed profusely with 0.1 M PBS, pH 7.4 and stored overnight in 

0.1 M PBS + 0.01 % NaN3 at 4°C. 

 

 



 

 

 6 

2.3. Hybridization Processes 

2.2.1. Gold disc working electrodes 

The GDEs surfaces modified with a SH-NC3/MCH SAM were covered with 10 L of 

a solution of target oligonucleotides (RNA1, RNA2, RNA3 and RNA4) of one concentration 

in 0.1 M PBS buffer (137 mM NaCl, 2.7 mM KCl, 10 mM KH2PO4, 1.8 mM Na2HPO4) pH 

7.4, for 30 minutes at room temperature. Then the electrodes were rinsed with 5 mL of PBS, 

pH 7.4 in order to remove the unbound targets. 

RNA transcripts (RNA1, RNA2, RNA3, RNA4) were diluted with the 0.1 M PBS 

hybridization buffer (pH 7.4) to the concentration of 10 pM.  

The hybridization processes were monitored using OSWV with a potential from +0.4 

V to −0.2 V, a step potential of 0.001 V, a square-wave frequency of 25 Hz and amplitude of 

0.05 V in 0.1 M PBS. The electrode responses were expressed as: (In – I0) / I0, where In is the 

peak current measured in the presence of the analyte and I0 the peak current before applying 

the analyte (in buffer without analyte). 

 

2.3.2. Screen-printed gold electrodes 

Nucleic acid targets, either oligonucleotides (c-NC3, nc-NC3) or RNA transcripts 

(RNA1, RNA2, RNA3, RNA4) were diluted with the 0.1 M PBS hybridization buffer (pH 

7.4) to the concentration of 1 pM for DNA and RNA targets. 

Hybridization reactions based on SPGE modified with a SH-NC3/MCH SAM were 

performed by dropping of the 4-µL aliquots of the respective dilutions of the targets (c-NC3, 

nc-NC3, RNA1, RNA2, RNA3 and RNA4). After 30 minutes at room temperature, the 

electrodes were rinsed with 5 mL of 0.1 M PBS, pH 7.4 in order to remove the unbound 

targets. 
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2.4. Cyclic Voltammetry (CV) and Osteryoung Square Wave Voltammetry (OSWV) 

Measurements 

2.4.1. Gold disc working electrodes 

The electrochemical measurements were performed with a potentiostat–galvanostat 

AutoLab (Eco Chemie, Utrecht, Netherlands) with a conventional three-electrode 

configuration. The voltammetric experiments were carried out in an electrochemical cell of 5 

mL volume containing the modified gold working electrode, an Ag/AgCl electrode and a 

platinum wire as an auxiliary electrode. The measurements were performed in the presence of 

0.1 M PBS buffer and 1.0 mM K3[Fe(CN)6]/ K4[Fe(CN)6] purged with nitrogen for 10 

minutes, in order to control electrode modification and to record the hybridization reaction.  

OSWV was performed with potential from + 0.6 V to −0.2 V and with a step potential 

of 0.001 V, a square-wave frequency of 25 Hz, and amplitude of 0.05 V for [Fe(CN)6]
3-/4-

. In 

CV, potentials were cycled from +0.6 V to –0.2 V with the scan rate of 0.1 V/s. 

The dependence of the sensor response on the concentration of analytes was expressed 

as the currents at the peak potential in OSWV measured in a solution containing no analyte. 

The electrode responses were expressed as: (In – I0) / I0 where In is the peak current measured 

in the presence of the analyte and I0 the peak current before applying analyte (in buffer 

without analyte). 

 

2.4.2. Screen-printed gold electrodes 

The electrochemical measurements were also performed with miniaturized system – 

µStat 400 bipotentiostat/galvanostat. For these experiments disposable SPGEs were applied. 

They include a three electrode configuration printed on the same strip – gold working 

electrode, silver reference electrode and gold counter electrode. Electrochemical 

measurements using SPGEs were carried out by dropping of 40 L of 0.1 M PBS with 1 mM 

of [Fe(CN)6]
3-/4- 

solution. 

    OSWV was performed with potential from +0.3 V to −0.2 V and with a step potential 

of 0.001 V, a square-wave frequency of 25 Hz, and amplitude of 0.05 V for [Fe(CN)6]
3-/4-

. In 

CV, potentials were cycled from +0.6 V to –0.2 V with the scan rate of 0.1 V/s. 
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3. Results and Discussion 

3.1. Characterization of electrochemical genosensors based on screen printed gold 

electrodes (SPGEs) and gold disc electrodes (GDEs) modified with SH-NC3/MCH 

monolayer  

Figure 1 illustrates the scheme of the genosensor fabrication. The SH-NC3 probe and 

MCH has been covalently attached to the gold electrode surface via Au-S bonds. After self-

assembling the mixed SH-NC3/MCH SAM, the electrode was treated with 1 mM solution of 

MCH to avoid non-specific adsorption and eliminate direct contact between the redox marker 

and the gold electrode surface. This step of genosensor preparation using SH-NC3 probe is 

widely applied [24-30]. 

 

Fig. 1. The scheme of the genosensor preparation on the gold electrodes.   

 

The immobilization of SH-NC3/MCH SAM was confirmed by CV and OSWV in the 

presence of Fe(CN)6
3-/4-

 as a redox marker. As expected, in the CV, the redox marker shows 



 

 

 9 

reversible behaviour on bare SPGE, with a peak-to-peak separation ΔEp = 0.071 ± 0.003 V 

(Figure 2A). After the covalent attachment of the SH-NC3/MCH SAM on the SPGE the peaks 

current decreased and increased peaks separation to 0.449 ± 0.013 V (Figure 2B). This 

indicates decreasing the reversibility of the system. 

 

 

Fig. 2. Cyclic voltammograms (scan rate 0.1 V/s) of: (A) bare SPGE; (B) SH-NC3/MCH 

SAM modified electrode; Solution composition: 1 mM K3[Fe(CN)6]/ K4[Fe(CN)6], 0.1 M 

PBS buffer, pH 7.4. The measuring conditions: screen printed electrode with three electrode 

configurations – gold working electrode, silver reference electrode and gold counter 

electrode.  

 

In OSWV on bare SPGE the values of peak potential and peak current were as 

follows: E = 0.111 ± 0.007 V, I = 2.0 ± 0.1 A, respectively (Figure 3A). After 

immobilization of the SH-NC3/MCH SAM the peak current decreased to I = 0.15 ± 0.01 

A, and the peak potential shifted towards the positive potential to E = 0.130 ± 0.007 V 

(Figure 3B). The results obtained by OSWV are in good accordance with CV measurements. 
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Fig. 3. Square wave voltammograms (frequency 25 Hz) of: (A) bare SPGE; (B) SH-

NC3/MCH SAM modified electrode; Solution composition: 1 mM K3[Fe(CN)6]/ 

K4[Fe(CN)6], 0.1 M PBS buffer, pH 7.4. The measuring conditions: screen printed electrode 

with three electrode configurations – gold working electrode, silver reference electrode and 

gold counter electrode.  

 

The same characteristics were also done on the GDEs. In order to confirm the 

attachment of the SH-NC3/MCH layer on gold surface, the CV and OSWV curves were 

recorded using a redox active marker [Fe(CN)6]
3-/4-

. The representative curves have been 

shown in Figure S1 (Supplementary data). In the CV a peak-to-peak separation registered on 

bare GDE was 92 ± 7 mV, and after the immobilization of the SH-NC3/MCH layer increased 

to 350 ± 13 mV. It correlates with the decreasing of the oxidation and reduction peaks current. 

In the case of OSWV we observed the same trend. Peak current values after deposition of the 

SH-NC3/MCH layer decreased from 9.9 ± 0.2 µA to 2.7 ± 0.1 µA. So, it means that formation 

of the SH-NC3/MCH layer on both kinds of electrodes was successful. 

 

3.2. Application of genosensor based on gold screen printed gold electrodes (SPGEs) and 

gold disc electrodes (GDEs) for monitoring of hybridization processes with 20-mer 

DNA target derived from AIV H5N1 

The working principle of the biosensor proposed is based on the ion-channel 

mechanism originally developed by Umezawa [31] and precisely described in our previous 

work [26]. 
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The hybridization reaction with ssDNA and RNA targets sequences were detected 

using [Fe(CN)6]
3-/4- 

as a redox marker present in the sample solution. The advantage of this 

approach is that oligonucleotides labeling is not necessary. In order to eliminate the capacitive 

current, the hybridization processes performed with genosensor proposed were controlled 

using OSWV. 

The applicability of genosensor proposed was tested by exploring the hybridization 

processes with specific 20-mer sequences of DNA related to the H5N1 using OSWV. The 

representative square wave voltammograms recorded in the presence of c-NC3 and nc-NC3 

are presented in Figure 4. Upon hybridization with c-NC3 target, the decrease of peak current 

was observed. The concentration of 1 pM of c-NC3 target caused 39.6 ± 4.6 % (n=7) 

decreasing of peak current. 1 pM of nc-NC3 generated weak response - oxidation/reduction 

peak current decreased 0.42 ± 5.0 %. The system was selective. The selectivity of the 

genosensor confirms the lack of response in the case of nc-NC3 sequence. 

 

Fig. 4. An example of square wave voltammograms obtained for SPGEs modified with SH-NC3 and 

MCH upon hybridization with c-NC3 and nc-NC3 at the concentration of 1 pM. Solution composition: 

1 mM K3[Fe(CN)6]/K4[Fe(CN)6], 0.1 M PBS (pH 7.4). The measuring conditions: screen printed 

electrode with three electrode configurations – gold working electrode, silver reference electrode and 

gold counter electrode. 

The  detection of 20-mer DNA target derived from AIV H5N1 (c-NC3) with using  

classic gold electrodes modified with SH-NC3/MCH has been already reported [26]. This 

system was selective. The decrease of reduction/oxidation peak current of 15.1 ± 2.86 % 

recorded in presence of the fully complementary c-NC3 and 0.67 ± 1.65 % in presence of 
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the non-complementary nc-NC3 target were observed [26]. These data indicated that 

measuring system based on SPGEs in the comparison to GDEs is more sensitive.  

 

3.3. Application of genosensor based on screen printed gold electrodes (SPGEs) and gold 

disc electrodes (GDEs) for monitoring of hybridization processes with 280-mer RNA 

transcripts derived from AIV H5N1 

The aim of this work was find the answer whether, in a given RNA sample the 

sequence of avian influenza is present. That was a reason to test the genosensor in one point 

of concentration .  

The sensitivity and selectivity of the genosensor constructed on SPGEs and GDEs 

were tested using four 280-mer RNA transcripts, with (RNA1, RNA2, RNA3) or without 

(RNA4) the 20 nucleotide (nt) region complementary to the SH-NC3 probe. The 

representative Osteryoung square-wave voltammograms recorded on SPGEs upon 

hybridization with RNA1 and RNA4 at the concentration of 1 pM were illustrated in Figure 5. 

The concentration of 1 pM caused 45 ± 1 (n=8), 10.0 ± 1 % (n=6) and 20.0 ± 1 % (n=7) 

decreasing of peaks current for RNA1, RNA2 and RNA3, respectively. RNA4 transcript 

generated weak response 1.0 ± 1 % (n=5) decreasing of peak current (Table 1). 

 

 

Fig. 5. Typical square wave voltammograms obtained for SPGEs modified with SH-

NC3/MCH SAM upon hybridization. Curve 1 – before hybridization and next curve 2 upon 

hybridization with: (A) RNA1; (B) RNA4 at concentration of 1 pM. Solution composition: 1 

mM K3[Fe(CN)6]/K4[Fe(CN)6], 0.1 M PBS (pH 7.4). The measuring conditions: screen 
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printed electrode with three electrode configurations – gold working electrode, silver 

reference electrode and gold counter electrode. 

 

The representative Osteryoung square-wave voltammograms recorded on GDEs upon 

hybridization with RNA1 and RNA4 at the concentration of 10 pM were illustrated in Figure 

6. The concentration of 10 pM caused 63.0 ± 6 % (n=7), 11.0 ± 1 % (n=12) and 20.0 ± 2 % 

(n=7) decreasing of peaks current for RNA1, RNA2 and RNA3, respectively. RNA4 

transcript generated weak response: 8.0 ± 1 % (n=5) decreasing of peak current (Table 1).  

It is important to underline that genosensor prepared on GDEs and SPGEs recognizes 

complementary RNA transcripts dependently on the target fragment contextual position in 

polynucleotide.  

 

 

Fig. 6. Typical square wave voltammograms obtained for GDEs modified with SH-

NC3/MCH SAM upon hybridization. Dashed curve – before hybridization and next curve 

upon hybridization with: (A) RNA1; (B) RNA4 at concentration of 10 pM. Solution 

composition: 1 mM K3[Fe(CN)6]/K4[Fe(CN)6], 0.1 M PBS (pH 7.4). The measuring 

conditions: gold disc – working electrode, Ag/AgCl - reference electrode, Pt wire – counter 

electrode. 
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Table 1. The relative redox marker changes current ΔI=(In – I0)/I0 [%] measured with gold 

electrodes modified Au/SH-NC3/MCH after hybridization with RNA transcripts on GDEs 

and SPGEs. (In is the current measured in the presence on a particular RNA transcripts 

concentration, I0 is the current measured in buffer with no analyte). 

RNA 

transcript  

SPGE GDE 

∆I [%] 

C = 1 [pM] 

∆I [%] 

C = 10 [pM] 

RNA1 -45 ± 1 (n=8) -63 ± 6 (n=7) 

RNA2 -10 ± 1(n=6) -11 ± 1 (n=12) 

RNA3 -20 ± 1 (n=7) -20 ± 2 (n=7) 

RNA4 -1 ± 1 (n=5) -8 ± 1 (n=5) 

 

The literature examples relating to biosensors for a microRNA (miRNA) detection are 

collected in a Table 2 [32-41]. Although the examples of sensors given in the Table 2 have 

lower detection limits, they are able to detect the RNA sequences up to 30-mer. An undoubted 

advantage of the biosensor proposed is the possibility of determining the 280-mer sequence 

containing 20-mer fragment complementary to the NC3 probe. 

The possibility for direct detection RNA in biological samples, without the necessity 

of transcription process of viral RNA to DNA is the main advantage of using RNA transcripts 

for sensing application. To our knowledge, there are no papers regarding determination of 

long RNA transcripts, excluding our previous publication about an application of a redox-

active monolayer designed for construction of biosensor for the detection of specific DNA 

and RNA oligonucleotide sequences related to the AIV type H5N1 [41]. The hybridization 

processes were monitored using the OSWV, and as the targets 20-mer DNA and ca. 280-mer 

RNA oligonucleotides were applied. The lowest detectable RNA concentration based on this 

device was 10 pM. The miniaturized genosensor proposed in this work is not only able to 

detect 1 pM of RNA transcripts, and additionally discriminate the different position of the 20-

mer sequence complementary to the probe. 

 

 

 

 

 

 

Table 2: Comparison of genosensor for detection RNA transcripts presented with those 

already published. 
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Abbreviations: SPCE – screen printed carbon electrode, PGE – pencil graphite electrode, MCH- 6-

mercaptohexanol, s-MB – streptavidin coated magnetic beads; Au – gold electrode, ssDNA – single stranded 

DNA, LSV – linear sweep voltammetry, Am – amperometry, TGA - thioglycolic acid, cpDNA- capture DNA 

probe, SPGE – screen printed gold electrode, tetra-DNA - Tetrahedral nanostructure-based capture probes, 

DenAu - dendritic gold nanostructure, LNA - integrated molecular beacon probe, MPA - Mercaptopropanoic 

acid, ChA - chronoamperometry 

 

 

4. Conclusions  

The genosensor presented is fabricated based on self-assembling mixture of thiolated 

ssDNA probe and MCH on the two types of gold electrode surfaces – GDEs and SPGEs. The 

genosensor displayed good sensitivity and selectivity. Both, the non-complementary 20-mer 

oligonucleotide and the RNA transcripts without complementary sequence generated weak 

responses. It is worth to emphasize that one of the main advantages of the genosensor 

presented here is its simple fabrication, the suitability for determination of the single stranded 

RNA transcripts and distinguishing of the different positions of the complementary parts. 

Considering the above analytically important parameters, the presented genosensor 

could be successfully applied for detection of the H5N1 virus. We believe miniaturized 

genosensor proposed has a great potential as a point-of-care device for the early diagnosis of 

AIV H5N1. 
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