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Abstract 

Precise water application conserves resources, reduces costs, and optimizes plant 

performance and quality. Existing irrigation scheduling utilizes single, localized measurements 

that do not account for spatial crop water need; but, quick, single-point sensors are impractical for 

measuring discrete variations across large coverage areas. Thermography is an alternate approach 

for measuring spatial temperatures to quantify crop health. However, agricultural studies using 

thermography are limited due to previous camera expense, unfamiliar use and calibration, software 

for image acquisition and high-throughput processing specifically designed for thermal imagery 

mapping and monitoring spatial crop water need. Recent advancements in thermal detectors and 

sensing platforms have allowed uncooled thermal infrared (TIR) cameras to become suited for 

crop sensing.  

Therefore, a small, lightweight thermal infrared imaging system (TIRIS) was developed 

capable of radiometric temperature measurements. One-time (OT) and real-time (RT) radiometric 

calibrations methods were developed and validated for repeatable, temperature measurements 

while compensating for strict environmental conditions within a climate chamber. The Tamarisk® 

320 and 640 analog output yielded a measurement accuracy of ±0.82°C or 0.62ºC with OT and RT 

radiometric calibration, respectively. The Tamarisk® 320 digital output yielded a measurement 

accuracy of ±0.43 or 0.29ºC with OT and RT radiometric calibration, respectively. Similarly, the 

FLIR® Tau 2 analog output yielded a measurement accuracy of ±0.87 or 0.63ºC with OT and RT 

radiometric calibration, respectively.  

A TIRIS was then built for high-throughput image capture, correction, and processing and 

RT environmental compensation for monitoring crop water stress within a greenhouse and 

temperature mapping aboard a small unmanned aerial systems (sUAS). The greenhouse TIRIS was 

evaluated by extracting plant temperatures for monitoring full-season crop water stress index 

(CWSI) measurements. Canopy temperatures demonstrated that CWSI explained 82% of the soil 

moisture variation. Similarly, validation aboard a sUAS provided radiometric thermal maps with 

a ±1.38°C (α=0.05) measurement accuracy. Due to the TIR cameras’ performance aboard sUAS 

and greenhouse platforms, a TIRIS provides unparalleled spatial coverage and measurement 

accuracy capable of monitoring subtle crop stress indicators. Further studies need to be conducted 

to produce spatial crop water stress maps at scales necessary for variable rate irrigation systems.
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Chapter 1 - Use of Thermography for Crop Stress Assessment: A 

Review 

1.1 INTRODUCTION  

Tactical agriculture management that uses on-demand remote sensing relies on accurate 

measurements, rapid response times, inexpensive sensor platforms, and user-intuitive techniques 

to achieve well-informed decisions. By spatially monitoring crop stress, producers use thermal 

remote sensing for crop canopy temperature mapping (Alves & Pereira, 2000; Ayeneh, et al., 2002; 

Berni, et al., 2009; Taghvaeian, et al., 2013; Wang, et al., 2010), measuring individual crop profile 

temperatures (Leinonen & Jones, 2004), scheduling variable rate irrigation (Cohen, et al., 2005; 

Colaizzi, et al., 2012; Fitzgerald, et al., 2007), crop breeding (Grant, et al., 2006; Liu, et al., 2011; 

Zia, et al., 2013), assessing fruit detection and quality (Bulanon, et al., 2009; Sepulcre-Canto, et 

al., 2007;; Zhao, et al., 2005), estimating biomass (Wooster, et al., 2013), forecasting yield (Hackl, 

et al., 2012), detecting disease, and determining nutrient deficiency (Hashimoto, et al., 1984; 

Tilling, et al., 2007; Chaerle, et al., 1999). Crop stress broadly describes a factor that limits crop 

yield potential (Jackson, et al., 1981) in which severity depends on stress types, timing, and 

duration. As producers strive for increased output from available land, economic and 

environmental considerations will become more critical for knowledge-based management 

techniques intended to increase farming efficiency, enhance profitability, lessen environmental 

impact, and promote precision technology advancement (Herwitz, et al., 2004; Taghvaeian, et al., 

2013). 

Of the many stress types placed on an agricultural production crop, water stress is the most 

common and limiting factor impacting potential yield (Zia, et al., 2013; Luvall & Holbo, 1991; 

Scherrer, et al., 2011). In the United States, agriculture annually uses approximately 80% of the 

consumptive ground and surface water use (USDA, 2014). Consequently, water conservation 

potential relies heavily on precision technologies for water decision support (Rodriguez, et al., 

2005) in order to increase water use efficiency (Cohen, et al., 2005; Ballester, et al., 2013; Gontia 

& Tiwari, 2008). In addition, future municipal demand for clean water will restrict agricultural 

water usage and create more governmental regulations, potentially leading to water shortages and 

strict water allocations. Therefore, deficit irrigation is a scheduling technique to reduce irrigation 

application and improve water use efficiency (Ballester, et al., 2013; Evett, et al., 2014; Scherrer, 
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et al., 2011) while tolerating an acceptable reduction in yield (Moller, et al., 2007; Sepulcre-Canto, 

et al., 2007). The decision to irrigate is critical, but accurate determination of irrigation amount 

and location is as equally important for site-specific irrigation (Alves & Pereira, 2000; Cohen, et 

al., 2005; Wanjura, et al., 1992) that matches the precise crop water need at manageable increments 

to achieve desired crop performance (Cohen, et al., 2005; Taghvaeian, et al., 2013). However, 

extensive variability exists within commercial agricultural fields, including soil type and depth, 

topography, climate, crop growth stage, and variance in producer operation (Cohen, et al., 2005; 

Evett, et al., 2014). 

The aim of this review is to demonstrate the utility of thermography in agriculture. Because 

crop canopy temperature can indicate crop stress, thermography is essential in agricultural studies 

in order to acquire qualitative and quantitative crop characteristics for supporting management 

decisions (Colaizzi, et al., 2012; Evans, et al., 2000). In addition, the spatial resolution (ground 

sample distance (e.g., 1cm/pixel)) and image processing functionality of low-resolution 

thermography help increase the use of crop canopy temperature characteristics in agriculture 

(Luquet, et al., 2003). Because arable land is currently unable to meet the increased demand for 

food, fuel, and fiber for future generations, available land and resources must be managed more 

efficiently in order to increase productivity. These management practices will be enabled with the 

use of precision agriculture technology such as thermography. In addition, crops sensing 

capabilities can increase land productivity, efficiently apply inputs (Brown, et al., 1994; Goel, et 

al., 2000), and sustain production growth.  

Thermal infrared (TIR) sensors are categorized as thermometry and thermography. 

Thermometrics utilize infrared thermometers (IRT) to provide a single-point measurement of the 

average temperature of all objects within the field of view (FOV) (Hackl, et al., 2012), with 

practical use limited to ground and laboratory applications. In thermography, a TIR camera uses a 

thermal image sensor to generate a thermal image in which each pixel represents the average 

temperature of all objects in the specific pixel’s area of interest (AOI) (Grant, et al., 2006).  

The use of thermography in agriculture is attributed to the fundamentals of thermal sensing 

and the recent advancements in thermal sensor technology and sensing platforms that will be 

reviewed in four sections. First, the thermal domain of the electromagnetic spectrum; laws of 

Stefan-Boltzmann, Wien, Kirchhoff, and Planck; kinetic and radiance temperatures; emissivity 

and atmospheric correction; and thermal inertia are discussed. Physical limitations and constraints 
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impacting thermal sensing accuracy are also discussed. Thermometry is briefly discussed because 

basic physical fundamentals of surface temperature measurements are identical for both types of 

thermal sensors. Second, techniques to increase thermal sensitivity are briefly discussed in relation 

to intrinsic properties of thermal cameras and image analysis, as well as future needs regarding 

thermographic development. Third, thermal sensing platforms for production crops are 

summarized with an emphasis on low-altitude imagery achieved with small Unmanned Aerial 

Systems (sUAS) because of the ground coverage and level of sensing detail not previously 

possible. Lastly, thermal sensing for crop stress is discussed with regards to early crop sensing, 

alternative crop sensing methods, crop stress indicators, thermal indices, and cost versus benefit.  

1.2 FUNDAMENTALS OF THERMAL SENSING  

Thermal domain of the electromagnetic spectrum, laws of Stefan-Boltzmann, Wien, 

Kirchhoff, and Planck; kinetic and radiance temperatures; emissivity and correction; thermal 

inertia; and physical limitations and constraints that impact thermal camera measure accuracy 

(closeness to the true value) are discussed in the following sections. 

     1.2.1 Basics of Thermal Radiation  

Temperature plays a fundamental and often limiting role in many biological processes that 

control the rate of chemical reactions between plants and surrounding microclimates (Luvall & 

Holbo, 1991). Physical plant mechanisms assessed with crop sensing are often regarded as cause 

and effect in order to simplify and describe a system (Monteith & Unsworth, 2013). In natural 

sciences, such as agriculture, long-wave infrared (LWIR) of the electromagnetic spectrum (7 to 14 

µm) ranges in surface temperature from -66.2°C to 140.0°C (Kuenzer, 2014), as shown in Figure 

1.1. The LWIR region of the electromagnetic spectrum demonstrates a longer wavelength 

compared to the visible (VIS) and near infrared (NIR) regions. Compared to VIS and NIR 

detectors, TIR detectors measure emitted radiation instead of reflected radiation (Kuenzer, 2014). 



4 

 
Figure 1.1. Electromagnetic Spectrum. Reproduced from Schepers ( 2012). 

All objects with internal temperature greater than 0 K emit radiant electromagnetic energy 

with respective wavelengths (Maes & Steppe, 2012; Vasterling & Meyer, 2013). As suggested by 

the Wien Displacement Theory, the emitted energy’s wavelength from an object is a reciprocal of 

the object’s temperature, as shown in Figure 1.2. A shorter electromagnetic energy wavelength 

yields a higher absolute kinetic temperature. Molecules within an object vibrate, creating a 

vibrating motion that emit energy at a specific wavelength directly related to internal kinetic 

temperature (Hecker, et al., 2013). Because this vibration is related to physical and chemical 

material compositions, distinctive features in the TIR electromagnetic spectrum can be 

undetectable in the VIS and NIR electromagnetic range (Hecker, et al., 2013). 

 
Figure 1.2. Absolute kinetic temperature of a blackbody’s emitted radiation 

According to Planck’s Fundamental Blackbody Radiation Law, a blackbody emits radiant 

energy at a given wavelength dependent on the absolute temperature (Kuenzer, 2014). At a given 

wavelength, shown in Figure 1.3, the radiated energy’s wavelength can be calculated from surface 

temperature in Equation 1.1 which is rearranged to form Equation 1.2 in order to directly measure 

surface temperature. 

-100

-50

0

50

100

150

200

7 8 9 10 11 12 13 14

T
em

pe
ra

tu
re

 (
°C

)

Emitted Radiant Energy Wavelength (µm)



5 

R=ε��� 
(1.1) 

 

� = � ����
	 �


 (1.2) 

Where: 
 R=Radiant energy flux of blackbody [W m-2])  
 ɛ=emissivity (i.e., ɛ=1 for blackbody object) 
 σ=Stefan-Boltzmann constant [5.6697 x 10-8 W m-2 K-4] 
 T=Kinetic Temperature [K]. 

The radiant energy-to-internal temperature relationship shown in Figure 1.3 can be used to 

measure the temperature of a blackbody surface with a TIR sensor (Kuenzer, 2014). A blackbody 

object is idealized as a perfect absorber and emitter, with a blackbody temperature corresponding 

to the object’s radiant energy (Maes & Steppe, 2012), as defined by Stefan-Boltzmann’s Law of 

radiant energy, Equation 1.2. 

 
Figure 1.3. Measured temperature from a blackbody object’s emitted radiant energy 

However, natural objects are not perfect emitters or absorbers because they reflect an 

amount of background temperature, resulting in temperature estimation errors. Maes et al.  (2012) 

asserted that the Stefan-Boltzmann Law defines total long-wave radiation (Lout) from a system, as 

shown in Equation 1.3. 

��� = �������� + ���������� (1.3) 

Where: 
 Lout = Outgoing radiant energy  
 Lemitted = Emitted radiant energy 
 Lreflected = Reflected radiant energy. 

In Equation 1.3, outgoing radiant energy (Lout) corresponds to the apparent temperature 

(Tap) comprised of emitted radiant energy (Lemitted) and reflected radiant energy (Lreflected) from the 

object’s surface. According to Maes et al. (2012), apparent temperature is influenced by 

background temperature (Tbg), surface temperature (Ts), and surface emissivity (ɛ), defined by 

Equation 1.4:  
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 �� = ����� − (1 − �)� !��
"

 (1.4) 

Where:  
 Ts = Surface temperature 
 Tap = Apparent temperature 
 ɛ = Emissivity 
 Tbg = Background temperature 

For the two types of thermal sensors, IRTs measure average apparent temperature (Tap) 

within the FOV, resulting in temperature estimation errors. However, after accounting for 

background temperatures (Tbg) and surface emissivity (ɛ), thermal cameras provide surface 

temperature (Ts) rather than apparent temperature (Tap). In application, background temperatures 

can be accounted for directly or indirectly with an IRT sensitive to the same LWIR region as the 

thermal sensor (Maes & Steppe, 2012). Direct background temperatures of the sky are measured, 

while indirect background temperature can be measured from a horizontal lambert radiator, blotted 

aluminum foil.  

     1.2.2 Emissivity (Ɛ)   

Emissivity must be identified in order to accurately quantify kinetic temperature from 

emitted radiant temperature (Hecker, et al., 2013). Thermal sensing accounts for emissivity using 

empirical laboratory and/or field measurements (Hecker, et al., 2013). Surface emissivity reduces 

emitted radiant energy, as shown in Figure 1.4. 

 
Figure 1.4. Simulated temperature from emitted radiant energy based on varying surface emissivity 

Emissivity correction is crucial when analyzing thermal imagery because objects with 

identical kinetic temperature and different emissivity will emit and reflect different levels of 

radiant temperature (Kuenzer, 2014). Because plant leaves consist primarily of water, plant leaves 

closely emit and absorb thermal radiation as near-blackbodies with a general emissivity (ɛ) of 0.95 

(Berni, et al., 2009; Hecker, et al., 2013). Actual emissivity of vegetation should be validated 

because of complex chemical interactions within the leaf and varying leaf structures that 

0
10
20
30
40
50
60

315 415 515 615

T
em

pe
ra

tu
re

 [
C

]

Radiant Energy [W m-2]

ɛ=1
ɛ=.95
ɛ=.9
ɛ=.85



7 

consequently produce subtle differences in emissivity between vegetation species types (Hecker, 

et al., 2013; Jones, 1999; Vasterling & Meyer, 2013). If surface temperature (Ts), apparent 

temperature (Tap), and background temperature (Tbg) are known, emissivity can be estimated, as 

defined by Equation 1.5: 

 � = ���� − � !���� − � !�  (1.5) 

In addition to empirical emissivity measurements, accurate background and surface 

temperature can reduce measurement error (Maes & Steppe, 2012). Idso et al. (1969) empirically 

determined crop leaf emissivity for a range of species, as shown in Table 1.1. 

Table 1.1. Emissivity (ɛ ± standard deviation) of determined crops leaves. Adapted from 
Idso, Jackson, Ehrler, and Mitchell (1969). 

Species Infrared Emittance 
Aralia - Aralia seboldi 0.968 ± 0.006 

Avocado - Persea drymifolia 0.979 ± 0.009 
Beavertail Cactus - Opuntia basilaris 0.978 ± 0.002 
Blind Prickly pear - Opuntia rufida 0.977 ± 0.002 
Cactus Pear - Opuntia ficus indica 0.957 ± 0.002 

Chili Pepper - Capsicum frutescens cv. Long Green 0.979 ± 0.005 
Common Bean - Phaseolous vulgaris cv. Bountiful (center leaflet) 0.938 ± 0.008 
Common Bean - Phaseolus vulgaris cv. Bountiful (lateral leaflet) 0.964 ± 0.005 

Cordyline - Cordyline terminalis 0.967 ± 0.003 
Cotton - Gossypium hirsutum cv. Deltapine 0.964 ± 0.007 

Cottonwood - Populus Fremontii 0.977 ± 0.004 
Crested Cactus - Lophocereus schottii 0.973 ± 0.004 

Geranium - Pelargonium domesticum var. Martha Washington 0.992 ± 0.002 
Ivy - Hedera helix var. Algerian 0.969 ± 0.005 

Lacy Tree Philondendron - Philodendron selloum 0.990 ± 0.010 
Long Cotton - Gossypium barbadense cv. Pima S-4 0.979 ± 0.008 

Maize - Zea mays cv. Mexican June 0.944 ± 0.004 
Orange - Citrus aurantium 0.972 ± 0.008 

Papaya - Carica papaya 0.982 ± 0.004 
Prickle pear - Opuntia engelmannii 0.961 ± 0.004 

Purple Prickly pear - Opuntia orbicular 0.971 ± 0.006 
Rose - Rosa 0.993 ± 0.006 

Rough Lemon - Citrus jambhiri 0.975 ± 0.008 
San Pedro Cactus - Cereus bridgesii 0.973 ± 0.001 

San Rita Prickly pear - Opuntia santa rita 0.969 ± 0.002 
Snailseed - Cocculus laurifolius 0.973 ± 0.003 

Sugarcane - Saccharum officinarum 0.995 ± 0.004 
Tobacco - Nicotiana tabacum 0.972 ± 0.006 

Tomato - Lycopersicon esculentum cv. Pearson Improved 0.982 ± 0.004 
Tongue Prickly pear - Opuntia linguiformis 0.965 ± 0.001 

Upland Cotton - Gossypium hirsutum cv. Hopicala 0.967 ± 0.011 
Water Lily - Nymphaea odorata 0.957 ± 0.006 
White Mulberry - Morus alba 0.976 ± 0.008 

Wild Privet - Ligustrum vulgare cv. Japanese 0.964 ± 0.003 

Based on Table 1.1 and empirical tests, Idso et al. (1969) found no apparent correlation 

between species and corresponding emissivity, thereby suggesting necessary measurements are 

required for emissivity correction. Detailed surface emissivity correction is recommended when 
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attempting to retrieve exact surface temperature (Maes & Steppe, 2012). This can complicate 

thermography because each image pixel could be comprised of multiple surfaces of varying 

emissivity. However, emissivity correction can be performed with image processing techniques. 

     1.2.3 Natural Physics in Crop Sensing 

Land surface objects, vegetation, soil, and water all have diurnal (i.e., day and night cycle) 

temperature characteristics throughout a 24 h period. This dynamic temperature change is 

dependent on the object’s material properties (regarding thermal inertia), season (strength of 

illumination), atmospheric conditions, and orientation to the sun (aspect, slope) (Kuenzer, 2014). 

In addition, the microclimate surrounding an object is highly dependent on the incident radiation, 

as shown in Figure 1.5.  

 
Figure 1.5. Diurnal temperature variation of desert sand depending on aspect ratio to the sun. Adapted 

from Kuenzer ( 2014). 

Solar illumination time, intensity, and orientation must be accounted for in order to 

compare vegetative temperature for real-time decisions (Evans, et al., 2000). Therefore, vegetative 

characteristic data sets depicting leaf surface temperature should only be compared with 

comparable circumstances (i.e., day of year, acquisition time, sensor configuration, and calibration 

methods) (Kuenzer, 2014). In addition, site-specific attributes contribute to dynamic leaf and 

canopy energy balance based on leaf orientation (Kuenzer, 2014), water requirement for the crop 

species, and current water status. This fundamental suggests that air temperature is not an accurate 

predictor of leaf temperature when typical air temperature measurements are remote and cannot 

account for field and crop variability (Luvall & Holbo, 1991). The following sections include brief 

discussion of aspects of natural physics in crop sensing including thermal inertia (TI), artifacts of 

wind, and atmospheric corrections. 
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     1.2.4 Thermal Inertia 

Materials heat up at varying rates based on material properties primarily determined by TI. 

TI is the material’s ability to store and conduct heat (Kuenzer, 2014; Notarnicola, et al., 2013), as 

expressed in Equation 1.6.  

 �# = $% × ' × ( (1.6) 

Where: 
 TI = thermal inertia [J m-2 K-1 s-0.5] 
 c = heat capacity [J kg-1 K-1] 
 ρ = density [kg m-3] 
 k = thermal conductivity [W m-1 K-1]. 

Variations in TI result in changes in maximum and minimum temperature (∆T) during a 

diurnal solar cycle (Kuenzer, 2014). Low TI results in a high fluctuation temperature ∆T (e.g., 

rocks); whereas, a high TI resists temperature change with a low ∆T (e.g. water) (Kuenzer, 2014; 

Wooster, et al., 2013). Figure 1.6 illustrates differences between TI. 

 
Figure 1.6. Diurnal temperatures of natural objects determined by thermal inertia. Adapted from 

Kuenzer (2014) 

Spatial and temporal resolution provide opportunities for moisture content variability, such 

as soil moisture estimation, watershed management, irrigation scheduling for precision farming, 

environmental health monitoring, and climate analysis (Notarnicola, et al., 2013). Idso et al. (1975) 

used diurnal ∆T to derive soil moisture in the first 0-2 cm of a soil profile with temporal 
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measurements and the TI concept. Soil moisture analysis has been proven in studies of bare and 

vegetative cover based only on surface TI (Kuenzer, 2014). 

The strongest correlation between water stress and canopy temperature occurs after solar 

noon, a period from 12:00 to 16:00 h, when crop canopy-to-air temperature deficit is highest, 

regardless of crop growth stage (Ayeneh, et al., 2002). As suggested by Ayeneh et al. (2002), 

measuring crop leaf temperatures at solar noon limit error in assessing crop water status. Extensive 

research has been conducted to create models and methods that utilize a more flexible time 

schedule (Alves & Pereira, 2000; Zia, et al., 2013). Models created to prove a flexible sensing time 

period have been suggested by Alves et al. (2000), as shown in the Figure 1.7.  

 
Figure 1.7. Graphical representation of baselines accounting for wind and solar intensity with fixed 

temperature depression (Ts-Tw). Adapted from Alves and Pereira (2000). 

O’Shaughnessy et al. (2012) investigated a technique to increase the time window for crop 

stress characteristic assessment based on diurnal temperature measurements to estimate a 

temperature-scale algorithm, as shown in Equation 1.7: 

T*+,-./,1234 = T5+6,	 + 8T943-14,1234 − T5+6,	*+,-./:8T94+;<1234	94=494,*4 − T5+6,	*+,-./:T94=494,*4,1234 − T5+6,	*+,-./  (1.7) 

The temperature scaling algorithm was implemented aboard a center pivot system in which 

one fixed reference canopy temperature was scaled compared to the canopy temperature 

measurement from the sprinkler section in a remote location within the field (O'Shaughnessy, et 

al., 2012). In similar research by Peters et al. (2004), linear correlation among diurnal canopy 

temperature scaling provided significant support for minimal canopy temperatures throughout the 
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day for crop stress assessment (Peters & Evett, 2004). Figure 1.8 illustrates the ability of the scaling 

method to measure remote crop canopy temperatures.  

 
Figure 1.8. Temperature scaling algorithm’s prediction of canopy temperature at remote locations 

with one daily measurement. Reproduced from Peters and Evett (2004). 

     1.2.5 Wind Artifacts 

When considering heat loss from convection, the rate in which heat is lost from or to an 

object depends on the surface geometry, air speed, and the temperature gradient between the air 

temperature and leaf surface (Monteith & Unsworth, 2013). Regardless of the sensing platform, 

wind create artifacts within thermal imagery of crop vegetation to varying degrees based on wind 

speed, direction, and flow characteristics, as illustrated in Figure 1.9. Wind influences thermal 

imagery with wind smear and streaks. 

 
Figure 1.9. Wind artifacts within a thermal image. Reproduced from Schepers (2012). 
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For objects with a small surface area, such as a leaf, heating from radiation is dramatically 

overshadowed with convective heat transfer, thereby making temperature fluctuations more 

dependent on air conditions than incident radiation (Monteith & Unsworth, 2013). 

     1.2.6 Atmospheric Correction 

In addition to surface emissivity, diurnal temperature change, and wind artifacts, 

environmental conditions such as water vapor and sensing distance can influence temperature 

measurement of thermographic systems for path radiances between the target surface and sensor 

detector, as shown in Table 1.2. 

Table 1.2. Atmospheric conditions that influence thermographic systems. 
Adapted from Kuenzer (2014). 

Factors Influencing Time Series Observations 
Water Vapor Disturbance Skews actual temperature 

Aerosols Skews actual temperature 
Clouds Cannot Measure Through 

Cloud Shadows Crop within shadow will be cooler 
Topography  Uneven solar heating 
Emissivity Actual measurements 

Clouds artifact satellite imagery and create shadows that can impact ground and aerial-

based thermal imagery. Atmospheric corrections are based on sensing elevation. To account for 

varying absorption characteristics of atmospheric water vapor, the use of MODTRAN, an online 

application, provides atmospheric corrections that improve calculations of solar and thermal 

scattering from clouds and aerosols (Berk, et al., 1998), as shown in Figure 1.10. 

 
Figure 1.10. Diagram for atmospheric correction for sensing platforms. Recreated from Berk et al. 

(1998) 

The MODRAN atmospheric radiation technique improves accuracy of radiance 

measurements with influence from clouds and thick aerosols. 
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1.3 THERMOGRAPHY 

Thermography has been an advantageous thermal sensing technique because a thermal 

image provides spatial temperature to measure subtle characteristics of a sensing target. The spatial 

resolution and image processing functionality of low-resolution thermography increase the use of 

crop canopy temperature characteristics in agriculture (Luquet, et al., 2003) in order to provide 

qualitative and quantitative crop characteristics that support management decisions (Colaizzi, et 

al., 2012; Evans, et al., 2000). The following section includes a brief discussion of techniques to 

increase thermographic sensitivity related to intrinsic properties of thermal cameras and image 

analysis, as well as future development needs in thermography. 

     1.3.1 Intrinsic Properties of Thermal Cameras 

Due to the fractional cost compared to previous cooled TIR cameras, minimal size and 

weight, and lack of moving parts, uncooled TIR cameras are emphasized because of their potential 

use aboard sUAS, thereby increasing coverage area and crop stress assessments not previously 

possible in agricultural remote sensing. Thermal infrared (TIR) cameras have physical components 

and capabilities that influence temperature sensitivity, increase measurement error, and limit 

camera use in agricultural environments. Fundamentals of uncooled TIR cameras, including 

intrinsic properties, are briefly discussed in the following sections. 

     1.3.2 Thermal Image Sensor and Sensitivity 

Uncooled TIR cameras use a thermal detector, or microbolometer, in order to generate an 

image with the change of electrical properties (e.g., resistance) due to temperature change within 

the thermal detector pixel (Kuenzer, 2014). A single thermal detector, also referred to as a pixel, 

measures temperature intensity that is transformed into a raw digital number (DN). For 

thermography, the thermal image sensor measures temperature intensity at each pixel in order to 

generate a digital image, as shown in Figure 1.11.  

 
Figure 1.11. Comparison between medium and large pixel arrays for a microbolometer. Reproduced 

from Schepers (2012) 
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Because uncooled TIR cameras have a low signal-to-noise ratio, their thermal detectors are 

less sensitive (± 0.1°C) than other temperature sensors (Kuenzer, 2014); however, this accuracy 

make microbolometers sensitive to the subtle temperature differences (<0.5°C) necessary for 

accurate crop stress assessment (Blonquist & Bugbee, n.d.; Sepulcre-Canto, et al., 2007). For 

utility in agricultural sensing applications, TIR cameras are sensitive to the 7 to 14 µm longwave 

infrared (LWIR) which is the temperature range from -66ºC to 150ºC. Microbolometer pixel arrays 

are sensitive to LWIR radiation that strike the detector material, changing its electrical resistance 

from a temperature change, and transforming a temperature intensity into a raw digital value (DV) 

(Kuenzer, 2014). 

     1.3.3 Microbolometer Temperature Drift and Warm-Up Time  

Since uncooled TIR cameras do not have heavy cooling jackets, uncooled TIR cameras 

regulate their microbolometer thermal detectors with automatic re-calibration to maintain sensor 

accuracy while limiting measurement drift caused by temperature fluctuations of the thermal 

detector from internal circuit and external environmental temperatures (DRS Technologies, 

Network and Imaging Systems Group, n.d.). As a result, a shutter is used to recalibrate the thermal 

detector at a user defined time interval or based on an internal temperature change of the thermal 

detector (DRS Technologies, Network and Imaging Systems Group, n.d.). When the shutter closes, 

it blocks thermal energy to create a uniform thermal reference for the thermal detector. A 

recalibration algorithm is performed to ensure a uniform pixel intensity is measured across the 

whole sensor with the uniform shutter temperature. Such techniques are required for uncooled 

thermal cameras to maintain accurate temperature measurement due to their inability to regulate 

their internal temperatures (DRS Technologies, Network and Imaging Systems Group, n.d.). 

Limited literature test uncooled TIR camera measurement accuracies, provide standard 

operating protocol, and give general guidelines for practical sensing scenarios. Internal circuitry 

and ambient temperature conditions cause TIR cameras to have necessary warm-up periods in 

order to reach a steady-state operating temperature, as shown in Figure 1.12. 
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Figure 1.12. Radiometric temperature changes measured by a TIR camera during warm-up period. 

Adapted from Berni et al. (2009). 

The TIR camera studied by Berni et al. (2009) had a recommended warm-up period of 2 h 

before the measured temperature converged to a steady-state black body temperature, as illustrated 

in Figure 1.12. Therefore, adhering to the warm-up time would reduce inaccuracy as the TIR 

camera reaching operating temperature.  

     1.3.4 Lens Distortion 

Maintained lens focus over a wide range of temperatures is essential for sensing platform 

utility and image quality. An athermalized lens maintains performance using optical passivity 

through ranging scene temperatures. Compared to visible imagery, TIR camera lenses are subject 

to the same physical calibration parameters for distance, focal point, and radial image distortion 

(Kuenzer, 2014). Because thermal radiation does not transfer through glass, TIR camera lenses are 

made from germanium, a material that is transparent to thermal radiation (Kuenzer, 2014). 

Germanium lenses in TIR cameras have intrinsic properties identical to glass lenses in regards to 

geometric precision. These lenses are optimized for radiometric resolution, thereby are subject to 

varied degrees of lens distortion (Berni, et al., 2009) from short focal lengths and radial and 

tangential distortion (Laguela, et al., 2013). When a TIR camera captures an image, the image does 

not fully represent real spatial points but a distorted pixel location that is a function of the position 

within the lens’ field of view (FOV) (x1, y1), as defined by Equations 1.8 and 1.9 (The Mathworks, 

Inc., 2015): 
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>? = >	(1 + (	@? + (?@�) + 2B	>	C	 + B?(@? + 2>	?) (1.8) C? = C	(1 + (	@? + (?@�) + 2B?>	C	 + B	(@? + 2C	?) (1.9) 

Where: 
 x1, y1 = distorted pixel locations 
 x2, y2 = undistorted pixel locations 
 k1, k2 = radial distortion coefficients of the lens 
 p1, p2 = tangential distortion coefficients of the lens   

  @ = 	$(>	? + C	? 

Resulting lens distortion coefficients act as a basis for an image processing algorithm. 

Imaging processing automate batch processing in order to undistort images for spatial accuracy 

for precise location of actual points using Equations 1.8 and 1.9 for respective lens. Figure 1.13 

shows radial distortion of a germanium camera lens. 

 
Figure 1.13. Lens distortion prior to correction (left) and with correction (right). Adapted from 

Laguela et al. (2013).  

A comparison of handheld TIR cameras revealed a high level of geometric distortion for 

all TIR cameras, thereby requiring correction for further image processing (Taghvaeian, et al., 

2013). 

     1.3.5 Image Processing  

Thermography has demonstrated advantages over thermometrics and other crop sensors 

because it provides spatial temperatures, thereby allowing image processing not previously 

possible. Unlike thermometrics, thermography outputs images with the combination of spatial and 

temperature data. Techniques to capture, analyze, and interpret images also apply to thermal 

imagery, giving thermography an advantage over conventional thermal sensing techniques and 

crop stress assessment techniques. Manual image capture and processing can be labor intensive 

and are subject to user-based processing thresholds. Ballester et al. (2013) asserted that automatic 

imaging and analysis of individual trees has saved processing time with more uniformity and 

confidence in results due to automatic imaging (Ballester, et al., 2013). Image processing has been 
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widely used in remote sensing but has been rarely used in small research studies (Leinonen & 

Jones, 2004).  

Although slow processing speed, large memory requirements, and a high cost of hardware 

once limited imaging, it is being restudied for utility in precision agriculture (Wang, N., personal 

communication, November 1, 2013). Industrial application of thermography for automation and 

adoption have decreased hardware costs and increased sensing capabilities of image sensors. 

However, automatic image capture and analysis are needed to account for error incurred with 

manual measurements such as setup and capture inconsistencies and latency between images, 

leading to small microclimate changes. Therefore, automatic thermography captures temperature 

information with high spatial (ground distant measurement) and temporal (repeat frequency) 

coverage crucial for monitoring dynamics of crop phenomena (Kuenzer, 2014; Luquet, et al., 

2003). A thermal image allows plant vegetation to be identified and isolated for analysis based on 

the following types of segmentation: 

Temperature –Individual crop vegetation pixels within the FOV can be extracted based 

primarily on temperature emitted onto the TIR image sensor. Crop leaf temperature 

typically vary from that of soil within the FOV. In fact, the soil itself can greatly 

influence temperature measurement at partial canopy coverage (Luvall & Holbo, 

1991). In addition, TIR imaging is independent of an illumination source, such as the 

sun, so TIR data can be measured during the nighttime when VIS and NIR imagery is 

not possible (Kuenzer, 2014).  

Shape – Differences in leaf and stem shape can be used to identify plant species (Zhang, 

et al., 2006). Zhang et al. (2006) explained that this type of segmentation is based on 

physical leaf traits such as “elongation, size, curvature, center moment of inertia, and 

principal-axis moment of inertia.” 

Location – Location segmentation uses spatial knowledge of row spacing and population 

rates to identify where crop vegetation should be located. Application of this principle 

can segment soil from crop by identifying soil material between rows. 

Numerous physical characteristics of crop sensing limit thermometry adoption due to crop 

surface parameters that cannot be easily measured without extensive hardware, setup, and 

extensive thermal indices. According to Luquet et al. (2003) and Grant et al. (2007), thermography 

can identify the following crop characteristics: 
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1) Partial crop cover from exposed bare soil  

2) Plant variability due to growth stage and senescence 

3) Subtle difference across plant leaf 

New thermal imaging technologies advance integration into data loggers and 

microcomputer equipment, increasing ease of data collection and timely response of results 

(Evans, et al., 2000; Leinonen & Jones, 2004). Image processing is briefly discussed in this section 

in order to increase understanding of analysis and considerations necessary to ensure that thermal 

imagery data is accurate for well-informed decision making. Correction methods discussed in the 

following sections pertain to radiometric conversion, atmospheric corrections, and ground 

truthing.  

          1.3.5.1 Radiometric Conversion 

Radiometric conversion functions are linear transfer functions applied to images in order 

to convert digital values into temperature values. TIR camera calibration is necessary when 

saturation occurs with high and low temperatures beyond the temperature threshold of applied 

settings (Kuenzer, 2014). Accurate measurements typically modify transfer function coefficients 

for thermal camera settings and calibrations (Kuenzer, 2014). With radiometric conversion, each 

digital image pixel converts to a temperature value, as defined in Equation 1.10: 

�(�,D) = ���E + #(F, G)2H − 1����E (1.10) 

where: 
 T(i,j)  = Pixel temperature (oC) at row i and column j, 
 Tmin = Lowest temperature within the image (oC),  
 I(i,j) = Pixel intensity at row I and column j, 
 N = Number of bits for pixel intensity (e.g., N=8 for 8-bit images), and  
 Tspan = Span of temperature captured in the image. 

          1.3.5.2 Atmospheric Correction 

Physical atmospheric conditions apply accurate radiometric correction (Kuenzer, 2014). 

One method typically used for atmospheric corrections is derived from the MORTRAN radiative 

transfer model using inputs of air temperature, humidity, and barometric pressure (Berni, et al., 

2009). Figure 1.14 shows simulated atmospheric influence.  
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Figure 1.14. Simulated atmospheric conditions and flight altitude. Reproduced from Berni et al. (2009). 

Simulations shown in Figure 1.14 illustrate temperature differences between actual surface 

temperature measurements and measured surface temperature for atmospheric corrections with 

sensing elevation. Environmental correction techniques allow ground referenced land surface 

temperature at measurement accuracies less than 1 K (Berni, et al., 2009). 

          1.3.5.3 Image Management 

Image management is an important fundamental in order to process the data influx from 

imagery, thereby increasing image throughput for faster interpretation and quality. Image 

management aboard a sUAS consists of either on-board storage or wireless data-link to a ground 

station for storage. Zen et al. (2008) found that a continuous high-speed storage device on an 

aircraft can store images at 150 MB s-1 on a 280 GB disk for high resolution aerial photography 

surveying. On the other hand, Jones et al. (1999) used an on-board microprocessor to send 

compressed images and commands to the sUAS via digital data-link at a speed of 10.71 MB s-1 

to the ground station at altitudes up to 7,500 m. Imagery data size and permissible sUAS payload 

determines the necessary image management solution while considering the weight of the storage 

device compared to the digital data-link hardware weight. Digital data-link communication is 

subject to signal noise or line-of-sight obstruction interference; however, increased sUAS platform 

flight duration and range advances wireless data transfer technology for extended range and signal 

quality. In addition, digital data-link allows on-the-go sensor and/or sUAS control changes based 

on the data-link feedback. 
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          1.3.5.4 Image Fusion 

Image manipulation using image fusion combines two images from the same or different 

sources to create one image that typically enhances automatic detection (Bulanon, et al., 2009), 

thereby supporting utility aboard satellite, aerial, and ground-based remote sensing. Pixel-level 

(two or more image pixels fused into one), feature-level (combination of specific shape, extent, 

and neighborhood pixels), and decision-level (separately analyzed images for extraction followed 

by a decision-based, weighted combination) techniques combine two or more images (Pohl & Van 

Genderen, 1998). Image information, such as topography, global positing system (GPS) location, 

and time, are also combined into the resulting image. In application, pixel-level image fusion is 

more commonly used (Bulanon, et al., 2009). Image fusion has been used in medicine, military 

surveillance, and human identification and only recently investigated for agricultural use 

(Leinonen & Jones, 2004). 

Because VIS cameras typically have higher image sensor resolutions than thermal cameras, 

a critical aspect of image fusion is overlapping FOVs. A FOV within images must initially be 

defined before images can be fused in order to limit pixel combination errors. Physical control 

points typically are placed in the FOV of each camera (Leinonen & Jones, 2004). However, the 

assumption that a VIS camera and TIR camera image’s FOV directly overlap and align for image 

processing commonly leads to error (Wang, et al., 2010). One effective, consistent approach 

compares the mean canopy temperature and the thermal image exclusively and the mean canopy 

temperature of the fused image (Wang, et al., 2010). 

One source of error using image fusion is the subjectively manual user inputs. To address 

these concerns, features within an image can be isolated or discovered using practices such as 

standard deviation, wavelet transform, entropy change, and pixel variance changes. Nevertheless, 

robust image software requires a level of logical user input to set thresholds, input functions, and 

weight importance in order to reduce misidentified objects or features (Bulanon, et al., 2009), 

thereby requiring complex combinations of crop and soil elements in the sensors’ FOV for crop 

sensing (Wanjura, et al., 1992). From early growth stages until full canopy coverage, crop health 

characteristics require high spatial resolution to mask soil temperature influence in the thermal 

image (Hackl, et al., 2012; Rodriguez, et al., 2005).  

An advantage of image fusion is related to the synergy of the two image sources. Thermal 

imaging is able to detect LWIR radiant energy emitted from an object regardless of illumination, 
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whereas VIS imaging is able to detect differences in reflected visible radiant light (Pohl & Van 

Genderen, 1998) as shown in Figure 1.15. 

 
Figure 1.15. Visible color and thermal image comparison. Adapted from Taghvaeian et al. (2013). 

Image fusion demonstrates that together these sensor platforms can create automatic 

imaging tools to isolate objects of interest (i.e., fruit, leaves, stems) and exclude unwanted features 

(i.e., soil, shaded leaves, background features) (Bulanon, et al., 2009). In addition, together the two 

imaging sources isolate and detect objects at an increased confidence rate (Bulanon, et al., 2009; 

Leinonen & Jones, 2004). Image fusion has been successfully used to compensate for soil 

temperature influence (Leinonen & Jones, 2004; Tilling, et al., 2007; Wang, et al., 2010). 

Application of image fusion allows identification of leaves in the VIS image to discriminate pixels 

in order to extract TIR image pixels by overlaying images with corresponding spatial location 

within an image (Luquet, et al., 2003).  

Wang et al. (2010) used VIS images to identify the amount of leaf area distributed in the 

AOI. Based on this leaf area, canopy temperature was associated with leaf area to calculate 

statistical analysis. Figure 1.16 shows temperature extraction with leaf color.  

 
(a)     (b)    (c)   

Figure 1.16. Typical plant canopy temperature extraction (b) demonstrating color from the (a) visible 
color image and the resulting temperature association (c). Reproduced from Wang et al. (2010). 

Wang et al. (2010) used image processing to extract leaf material by color; yet, color alone 

can cause non-vegetation to be classified as leaves, thereby creating error with associated 

temperature. Typical image fusion discriminates sunlit and shaded bare soil and leaves while 



22 

allowing leaf canopy coverage percentage to be quantified for temperature analysis (Luquet, et al., 

2003; Zia, et al., 2013). 

A similar approach is the combination of normalized difference vegetative index (NDVI) 

values with TIR imagery. However, TIR and NDVI measurements are both subject to 

measurement error when used in partial canopy coverage (Moran, et al., 1994). Temperature 

relationships based on the partial canopy coverage have been investigated to reduce the influence 

from background temperatures. Figure 1.17 shows differences in the measured temperature of the 

actual canopy temperature and the FOV average temperature based on the partial canopy coverage. 

             
Figure 1.17. Difference between the characterized vegetation temperature of the actual crop canopy 

temperature (Tc) and the averaged FOV temperature (Ti) versus crop canopy coverage (a), and 
measured vegetation temperature of the actual crop canopy temperature (Tc) and the averaged FOV 
temperature (Ti) versus crop canopy coverage (b). Reproduced from Rodriguez et al. (2005). 

In Figure 1.17, the actual temperature of the leaf is shown (Tc) compared to the average 

temperature of the camera FOV (Ti) regression curve versus the partial canopy coverage. This 

illustration demonstrates the inaccuracy of temperature measurement when vegetation 

temperatures cannot be extracted from the background temperatures. By using Equation 1.11 

derived by Rodriquez et al. (2005), the difference (∆°C) in terms of inaccuracy can be solved. 

�� = �� − ∆(°K) (1.11)

Partial canopy coverage measurement is critical in sensing applications to limit the 

temperature influence from a warm soil background and shaded lower leaves (Ayeneh, et al., 2002; 

Luquet, et al., 2003; Maes & Steppe, 2012). Because biological crop material is unique, physical 

differences in plant architecture, such as color, leaf size, relative orientation to the sun, and field 

variability, cause temperature differences between any two plants (Ayeneh, et al., 2002; Luquet, 

et al., 2003), as shown in Figure 1.18. 
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Figure 1.18. Macro image of visible color and thermal image comparing leaf temperatures under sunlit 

and shaded regions. Adapted from Taghvaeian et al. 2013. 

As demonstrated in Figure 1.18, whole canopy temperature averages can differ from single 

leaf temperatures (Grant, et al., 2007). At high spatial resolutions and plant-by-plant analysis, 

inherent variability between each plant complicates crop health assessments. Subtle differences 

exist from plant to plant and at locations within each leaf (Cohen, et al., 2005; Grant, et al., 2007). 

When a high spatial resolution image is maintained, image processing can segment and exclude 

pixel intensities corresponding to a certain temperature range or object of interest. Figure 1.19 

illustrates soil at a warmer temperature than crop vegetation (peach orchard). 

 
Figure 1.19. Thermal orthomosaic image (left) from a sUAS over a peach orchard where vegetation is 

extracted from soil (lower right). Reproduced from Berni et al. (2009). 
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As shown in Figure 1.19, image segmentation isolates the crop foliage temperature (low 

pixel intensity) of the peach orchard. 

With the aforementioned capabilities of image combination, image fusion requires a TIR, 

visible camera, accurate algorithms, and a computer with imaging software and processors to 

efficiently perform the task of automating image capture, analysis, and interpretation for tactical 

irrigation. 

          1.3.5.5 Ground Truthing 

Ground truthing ensures accuracy of measured temperature from the sensing platform. 

Temperature ground truthing involves measuring radiant and kinetic temperatures of an object in 

order to determine emissivity and environmental correction factors. Typical ground truthing 

consists of handheld thermometers that use noncontact infrared readings and contact readings with 

thermistors (Ayeneh, et al., 2002; Berni, et al., 2009). Comparisons between sensing platforms are 

subject to measurement error from accuracy calibration, calibration errors, and time between 

measurements (Berni, et al., 2009). Automated thermography supports the inclusion of wet and 

dry temperature references for real-time thermal indices (discussed in Section 5.4.1). Reference 

temperatures can be automatically detected for analysis with treated leaves or artificial reference 

surfaces viewable within the AOI.  

Validation during a time series relies on permanently installed noncontact or contact 

(ground or air) measurement devices with data loggers capable of simultaneous measurements of 

wind speed and direction, humidity (Kuenzer, 2014), air temperature, and solar radiance. Optimal 

surfaces for ground truthing are high thermal inertia substances that resist temporal temperature 

changes. Items used for ground truthing should be viewable and recognizable from the sensing 

platform. Thermography ground truthing helps to reduce the influence from partial canopy 

coverage as soil dominates temperature measurement before a crop achieves full canopy cover 

(Rodriguez, et al., 2005). As provided from thermography, unprecedented measurements of bare 

soil and shaded and sunlit conditions aid in analyzing image view and orientation (Colaizzi, et al., 

2012 ; El-Shikha, et al., 2007 ; Luquet, et al., 2003).  

          1.3.5.6 Whole-field Coverage and Image Mapping 

Providing an accurate whole-field crop canopy temperature map has been a challenge in 

the past for each thermal sensing platforms because of the tradeoff between coverage area, 
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measurable crop characteristics, and sensing frequency. TIR cameras are inherently limited by 

their spatial resolution, therefore a compromise between resolution and efficiency exist dictating 

sensing distance and platform. Sensing distance and on-board sensor FOV must be considered in 

order to overlap neighboring pictures in order to limit environmental correction error from wide 

angle and bidirectional effects from lens distortion and incident radiant energy. Dynamic camera 

platforms capture a volume of images across the field covering more vegetation area in order to 

create high definition temperature maps using only the central image portion, nadir, in order to 

improve overall image quality (Berni, et al., 2009; Vasterling & Meyer, 2013). 

For whole-field coverage, individual images are stitched together to generate an 

orthomosaic image of the entire coverage area. Manual or automatic image processing software 

stitches images together while automatically georectifying images from common points within 

individual pictures, ground control points or by utilizing camera or platform GPS coordinates 

(Berni, et al., 2009). In images taken in a forward and lateral direction, common graphical features 

can be traced over several images in which neighboring images can be referenced (Vasterling & 

Meyer, 2013), therefore, an orthomosaic image is generated to form a whole-field composite image 

collected at a similar sensing distance.  

     1.3.6 Development Opportunities 

Thermography has been emphasized in crop sensing applications because of development 

opportunities over thermometry due to visible patterns revealed with image processing techniques 

(Grant, et al., 2007; Rodriguez, et al., 2005). Yet, thermography has only become widespread and 

investigated over the last decade (Hackl, et al., 2012) as a result of being declassified from the 

United States Military for civilian use (Maes & Steppe, 2012; Schepers, 2012). As a result, 

technical and physical barriers still limit thermal remote sensing, including image sensor 

resolution, image data capture and transmission, practical agricultural operating experience, 

thermal sensor cost, image processing software designed specifically for thermography, and 

complex image composition dominated by soil, leaf differences, and environmental temperature 

influence (Colaizzi, et al., 2012; Evett, et al., 2014; Rodriguez, et al., 2005). In addition, 

thermography should be a complementary crop characterization technology due to complex leaf 

dynamics “strongly influenced by morphological, physiological, and biochemical traits as well as 

environmental factors and their interactions” (Liu, et al., 2011). Agricultural studies that use 

thermographic systems have been limited because of the expense, unfamiliar use and operating 
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guidelines, system integration and complexity, and lack of proven durability in agricultural 

conditions, thereby restricting their use to laboratories, greenhouses, and intermittent use in 

prolonged field studies. Listed below are opportunities for thermography development: 

Influence from Soil - Directional influence from soil significantly impacts current thermal 

indices. Medium resolution thermal images cause pixels within the image to inevitably 

capture mixed soil-foliage pixels (Hackl, et al., 2012). Opportunity exists for advanced 

indices that are less impacted by background temperature influence from partially 

covering crops.  

Advancements in Weight, Cost Reduction, Durability, and System Hardware - 

Thermography research has been limited because of size, weight, and cost of TIR 

cameras. However, uncooled thermal imaging shows utility in agriculture because of 

their fractional cost to that of cooled thermal imagers, integration into automatic 

imaging systems, small envelope size and weight, and ability to collect data in sunny, 

cloudy, and slightly windy conditions. As a result, uncooled thermal cameras have 

increased thermography’s adoptability for large ground coverage (Kuenzer, 2014) and 

monitoring time studies (Sobrino & Julien, 2013). 

Thermal Camera Control Software - A limitation of TIR cameras is the accompanying 

software required to perform image analysis. While image combination with VIS 

images is conducted, automatic image conversion-to-radiometric images with 

temperature-based pixel intensities would improve post-processing ease (Taghvaeian, 

et al., 2013). Increased confidence in thermography techniques and hardware will 

ensure accurate crop health during all measurements to effectively assess plant growth 

parameters. 

TIR cameras’ cost, size, and weight and their ability to quickly assess crop stress 

characteristics potentially offset limitations. Therefore, proliferation of thermography and its 

capabilities provides opportunity for technological advancements to assist agricultural producers 

(Taghvaeian, et al., 2013). Although thermography has been implemented in laboratory research, 

practical research with thermal imaging in agricultural fields has been limited (Grant, et al., 2007).  

However, TIR cameras include features to meet the monitoring needs of non-agricultural uses, 

thereby providing incentive for TIR camera manufacturers to develop modified cameras intended 

for operation within agricultural fields and conditions (Taghvaeian, et al., 2013).  
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1.4 THERMAL SENSING PLATFORMS  

Thermal imaging sensors can be ground, aerial, or satellite-based (Kuenzer, 2014). 

Ground-based observations are statically or dynamically performed with handheld or rigidly 

mounted TIR cameras in order to detect, study, and manage high definition crop phenomena; 

airborne and satellite thermography assess whole-field temperature fluctuations. This range of 

capabilities relates crop temperature and water status at various scales in order to measure water 

supply (Jackson, et al., 1981; Moran, et al., 1994). As a result, large crop coverage areas and 

throughput need seamless monitoring from automatic or semi-automatic sensing platforms 

(Ballester, et al., 2013; Evett, et al., 2014; Romano, et al., 2011). In addition, the amount of  

measurable data has a practical threshold level dependent on physical processing means of the 

equipment used (i.e., data storage space, intrinsic sensor capability, sampling frequency, sensor 

sensitivity, data processing speed, sensing platform limitations, etc.). TIRIS measure a large 

volume of data within each image (e.g., 1 megapixel image = 1,000,000 samples), but imaging 

systems typically have a slow sampling frequency (e.g., <30 Hertz). On the other hand, 

thermometric systems capture less data in one sample at a very high sampling rate (e.g.,>100 

Hertz). However, equipment limitations can only capture an influx threshold of data. In other 

words, a distinct trade-off between the level of measurable crop characteristics and desired 

coverage area exist when selecting a sensing platform for the amount of data desired from the 

producer. As a result, increased use of thermal sensing in precision agriculture has been dependent 

on increased spatial and temporal resolution in order to increase effectiveness in aiding actionable 

decisions for precisely monitoring crop health (Sobrino & Julien, 2013) for the right agricultural 

input at the right time (Taghvaeian, et al., 2013).  

With ground-based thermal imagery, crop stress measurements are achieved on a plant-by-

plant basis with dynamic or stationary platforms. Until recently, TIR cameras have been used in 

preventative maintenance and when operating conditions are more regulated, unlike agricultural 

studies. In typical agricultural studies, ground-based systems assess crop stress variability for 

variable rate irrigation (Colaizzi, et al., 2012; El-Shikha, et al., 2007; Erdem, et al., 2010), water 

stress (Cohen, et al., 2005; Fitzgerald, et al., 2007; Grant, et al., 2007; Moller, et al., 2007; 

O'Shaughnessy, et al., 2011;  Wang, et al., 2010), biomass estimation Hackl, et al., 2012; Liu, et 

al., 2011), indirect stomatal conductance (Grant, et al., 2006; Hashimoto, et al., 1984; Zia, et al., 

2013), phenotype screening for water stress and/or heat stress (Merlot, et al., 2002; Prashar, et al., 
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2013;  Romano, et al., 2011; Zia, et al., 2013), automatic leaf geometry and extraction (Luquet, et 

al., 2003), nutrient influence on leaf temperature (Fitzgerald, et al., 2007), and disease detection 

(Chaerle, et al., 1999; Hashimoto, et al., 1984). Most thermographic applications have been used 

manually to complement thermometric systems; but, manual measurements increase sensing time, 

inconsistent setup errors, and latency between images, thereby leading to small leaf microclimate 

changes.  

Satellite-based platforms, the first application of remote sensing, carry multiple imaging 

sensors capable of multispectral or hyperspectral imaging of objects in the VIS, NIR, and TIR 

electromagnetic spectrum (Luvall & Holbo, 1991; Zhang & Kovacs, 2012). Satellite remote 

sensing uses high spectral cameras that capture multiple bandwidths measuring coarse thermal 

imagery to monitor crop health, soil characteristics (Goel, et al., 2000; Zhang & Kovacs, 2012), 

and agricultural market forecasting (Luvall & Holbo, 1991). However, accounting for low 

resolution of thermal imaging systems poses challenges. Current satellite imagery is limited to 

moderate resolution imaging spectroradiometer (MODIS) or advanced very high resolution 

radiometer (AVHRR) with spatial resolutions of 1 km (Colaizzi, et al., 2012), whereas the Landsat 

Thematic Mapper (TM) and advanced space borne thermal emission and reflection radiometer 

(ASTER) thermal scanners provide 120 m and 90 m, respectively (Berni, et al., 2009).  

Radio detection and ranging (RADAR), multi-spectral imager (MSI), MODIS, AVHRR, 

and Landsat TM satellite platforms are limited in practical use due to low sensing frequency 

incapable of producer demand and resolution (Brown, et al., 1994; Colaizzi, et al., 2012). As 

previously discussed, ground truthing and environmental correction for satellites imagery reduces 

the influence from obstructions such as cloud cover and atmospheric conditions (Notarnicola, et 

al., 2013), which require extensive attention in order to interpret crop characteristics. Although 

satellite-based remote sensing cover a broad ground area, it is expensive, has high operational 

complexity, and operates at unfavorably low spatial and temporal resolutions for precision 

agriculture applications (Berni, et al., 2009; Zhang, et al., 2006). 

Current satellite-based and ground-based products have limited thermography in 

commercial agriculture because of producer demand for a combination of measurable crop 

characteristics and coverage area. In order to meet this demand, TIRIS are flown aboard piloted 

aircrafts and sUAS. Recent advancements in uncooled TIR camera sensor technology have 

emphasized remote sensing and expanded its role in tactical farm management (Herwitz, et al., 



29 

2004) because thermography provide high spatial resolution (< 2 m) (Berni, et al., 2009) and has 

flexible revisit times for whole-field temperature mapping (Berni, et al., 2009; Cohen, et al., 2005; 

Zhang & Kovacs, 2012). In addition, aerial imagery resolves several ground-based and satellite-

based platform limitations because it exceeds the coverage area of ground-based platforms and 

low resolution of satellite-based platforms (Kuenzer, 2014), thereby providing whole-field crop 

stress assessment with spatial resolutions up to 2 m (Berni, et al., 2009; Sepulcre-Canto, et al., 

2007). In conducted studies, thermography aboard piloted aircrafts has been used to assess crop 

water stress  ( Scherrer, et al., 2011; Taghvaeian, et al., 2013; Tilling, et al., 2007; Wang, et al., 

2010), phenotype screening (Zhao, et al., 2005), soil compaction monitoring, and irrigation 

maintenance (Schepers, 2012). Even aboard piloted airplanes, the primary limitation is the spatial 

resolution of TIR cameras. In addition, the aircraft expense, fuel limitations, pilot fatigue, 

infrequent revisit times, and unfamiliar complexity of flying and hiring manned aerial imagery 

limit extensive commercial use (Berni, et al., 2009; Goel, et al., 2000; Herwitz, et al., 2004). In 

response, advancements in sUAS has increased their use in aerial imagery (Herwitz, et al., 2004). 

The sUAS industry is evolving rapidly to expand as a complementary platform to satellites and 

manned aerial imagery for tactical farm management (Zia, et al., 2013). Producers have supported 

adoption of this type of aerial imagery because sUAS platforms provide low-altitude imagery for 

high-definition images, on-demand response times, and low investment costs (Goel, et al., 2000). 

SUAS are capable of on-demand sensing and have analysis response times more suitable 

for commercial agricultural applications with results comparable, if not better, than applications 

using manned airborne missions (Berni, et al., 2009). SUASs can fly at low airspeeds (30 km h-1) 

under manual control or autopilot flight campaigns with predetermined flight routes for operation 

ease (Laliberte, et al., 2011; Rango, et al., 2009) in order to sense area not previously accessible 

based on distance, time, or terrain (Luvall & Holbo, 1991). These sensing platforms also fly at 

altitudes that provide spatial resolution necessary for characterizing pertinent features in 

agronomic decision management (Figure 1.20)  
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Figure 1.20. Thermal satellite imagery with overlay of sUAS imagery demonstrating the spatial 

resolution of satellite (90 m) to sUAS (<2m) aerial imagery. Adapted from Kuenzer (2014). 

Because of technological advancements focused on unprecedented performance and 

endurance (Hecker, et al., 2013), sUAS platforms have conducted long-duration flight campaigns 

that provide valuable contribution to tactical agriculture management. Herwitz et al. (2004) 

demonstrated advanced sUAS technology with NASA’s solar-powered Pathfinder-Plus by proving 

prolonged flight times (12 h) loitering over coffee production in Hawaii. The slow-flying aircraft 

was designed to be flown under pilot and air traffic control supervision while up-linking mission 

commands and down-linking on-demand imagery (Herwitz, et al., 2004).  

Currently, commercial autopilot control, cost-effective telemetry, and semi-automated 

image georectification systems promote the feasible use of sUAS in precision agriculture (Berni, 

et al., 2009; Wooster, et al., 2013). Commercialized sUAS systems, seamless imaging integration, 

GPS, and autopilot systems provide ready-to-fly (RTF) systems for operator ease at an inexpensive 

price compared to manned imagery that provide a sensible low-cost platform for high resolution 

imagery at sub-meter increments (Berni, et al., 2009; Herwitz, et al., 2004). As demonstrated with 

automated machine control, advances in technology will replace the human capacity for 

observation and decision making. Similarly, commercial sUAS will continue to employ automatic 

machine control to simplify the operation, regulate application uniformity and imaging quality, 

and increase the size of managed machinery. Nevertheless, field scouting and manual processing 

is still needed if growers are to understand and implement management zones (Goel, et al., 2000). 

However, sUAS are controlled from a remote control operator present in the field, thereby 
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allowing direct crop health characteristics to be measured for unprecedented ground truthing of 

the remote imagery prior to or after the flight campaign.  

Although low flight altitudes (40 to 200 m) increase thermography’s ability to measure 

crop health characteristics at scales more adoptable for agricultural production, sUAS are still 

subject to the same atmospheric effects of other thermography sensing platforms (Berni, et al., 

2009; Maes & Steppe, 2012). Thermography is prone to varying extents of artifacts related to 

varying degrees of wind, shadows, and clouds (Kuenzer, 2014). Table 1.3 compares the sensing 

platforms capabilities while Table 1.4 summarized the thermographic research conducted in 

agriculture. 

Table 1.3. Platform comparison between satellite, piloted aircraft, sUAS, and ground thermography. 
Platform Satellite Piloted Aircraft sUAS Ground 
Survey 

Area/Coverage 
Very Large Area Whole Field(s) Whole-Field / Small Small 

Resolution Coarse Medium Medium-to-Fine Fine 
Revisit Time Weekly / Daily Pilot Availability On-Demand On-Demand 
Sensing Time Very High Fast/Medium Fast/Medium/Slow Very Slow 

Data Processing 

Georeference 
Orthorectification 

Atmospheric 
Correction 

Emissivity Correction 

Image Mosaic 
Georeference 

Orthorectification 
Atmospheric 
Correction 

Emissivity Correction 

Image Mosaic 
Georeference 

Orthorectification 
Atmospheric Correction 
Emissivity Correction 

Emissivity 
Correction 

Interpolation 

 

Table 1.4. Summary of thermography use, thermal camera, sensing platform, imagery software, temperature sensitivity, 
and source. 

Use 
(Crop) 

Camera 
(Manufacturer) 

Platform 
Sensing 

distance/altitude 

Image Pixels 
(Spatial 

Resolution/pixel) 
Sensitivity 

Imaging Processing 
(LWIR) Range 

(FOV) 
Emissivity 

Citation 

Field CWSI mapping 
(Maize) 

FLIR IR E30 
(FLIR Systems, USA) 

Uncooled 

Aerial 
(Nadir) 

- 
0.2°C 

ArcGIS 10.0 
Convert image to 

radiometric 

7.5 to 13 µm 
NA 
NA 

(Taghvaeian, et al., 2013) 

Field Mapping Nitrogen & 
Water Stress  

(Wheat) 

ThermaCAM P40 
(FLIR Systems, USA) 

Aerial 
(Nadir) 

1 meter 
- 

Mean Canopy 
Temperature 

7.5 to 13 µm 
NA 
NA 

(Tilling, et al., 2007) 

Correlate canopy 
temperature to soil water 

potential 
(Mixed Forrest) 

VarioCAM 
(Infra Tech, Germany) 

Aerial 
(Nadir) 

100 meters 

3.5 meters 
0.1°C 

Compare with Visible 
imagery to isolate tree 

canopy 

NA 
NA 
NA 

(Scherrer, et al., 2011) 

Automate CWSI 
Measurements 
(Grapevines) 

FLIR PM570 
Aerial / Ground 

(Nadir) 
320/240 

- 

ThermaCAM Research 
Pro 

Isolate reference 
temperatures for CWSI 

NA 
NA 
NA 

(Wang, et al., 2010) 

Estimate daily ET 
(Wheat) 

SC2000 Thermal 
Camera 

(FLIR Systems) 

Airborne 
Nadir 

760 meters 

0.5 m 
- 

NA NA (French, et al., 2005) 

Automated leaf temperature 
extraction 

(Broad Bean) 

SnapShot 225 
(Infrared Solutions) 

Greenhouse 
- 

0.25 to 10 meters 

0.63 to 25.2 mm 
NA 

ENVI remote sensing 
(Research Systems) 

Automatically Segment 
leaves 

8 to 12 µm 
17.2° 
0.95 

(Leinonen & Jones, 2004) 

influence from soil, sunlit 
versus shaded leaves, and 

sun/sensor orientation 
(Cotton) 

760 IR Imaging 
Radiometer 

(FLIR) 

Ground 
(11 viewing angles) 
2 meters radius over 

canopy 

10 mm 
NA 

Matlab™ software 
transform digital image 

to temperature scale 
and geo-reference pixel 

8 to 12 µm 
70° 
Na 

(Luquet, et al., 2003) 
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Mean Canopy Temperature 
and Variability 

(Citrus Tree Crops) 

IR Thermal Camera 
TH9100 WR 

(NEC Avio Infrared 
Tech. Co., Ltd., Japan) 

Ground 
(Frontal) 

1-3 meters 

51 mm 
NA 

ArcGIS 9.3 
Average temperature 

and variability 

8 to 14 µm 
42° 
.98 

(Ballester, et al., 2013) 

Water Status Estimation 
(Cotton) 

ThermaCAM PM545 
(FLIR systems) 

Ground 
(Nadir) 

5 mm 
0.1°C 

ThermaCAM Explorer 
Matlab™ 

Apply Radiometric 
temperature scale to 

image pixel 

7.5 to 13 µm 
24° 
NA 

(Cohen, et al., 2005) 

Compare Nitrogen content 
to water stress 

(Wheat) 

ThermaCAM P40 
(FLIR, Sweden) 

Ground 
(nadir) 

2.5 meters 

- 
NA 

ThermaCAM Reporter 
Pro 7 

Extract full 
temperature of canopy, 

soil, and foliage 

7.5 to 13 µm 
24° 
NA 

(Fitzgerald, et al., 2007) 

Distinguish water stress 
Stomatal Conductance 
(Grapevines, Beans, & 

Lupins) 

IR Snapshot 525 
(Infrared Solutions, 
Minneapolis, USA) 

Ground 
(Horizontal) 

  

2.5 mm 
0.1°C 

SnapView Pro 
Test spatial camera 

drift 
Segment background 

temperature 

8 to 12 µm 
NA 

0.96, 0.95 

(Grant, et al., 2007) 
(Grant, et al., 2006) 

Biomass Estimation 
(Wheat) 

T335 Thermal Camera 
(FLIR Systems, 

Wilsonville, USA) 

Ground 
(Nadir) 

0.5-0.8 meters 

- 
0.05°C 

FLIR QuickReport 1.2 
Segment soil and non-

plant material 

7.5 to 13 µm 
34° 
0.96 

(Hackl, et al., 2012) 

Seedling biomass and 
drought during early growth 

stage 

ThermaCAM SC3000 
(FLIR Systems) 

Ground 
(Nadir) 

1.8 meters 

<3 mm 
.002°C 

ThermaCAM 
Researcher 

Measure overall leaf 
temperature 

8 to 9 µm 
20° 
0.95 

(Liu, et al., 2011) 

Water Stress 
(Grapevine) 

ThermaCAM SC2000 
(FLIR Systems) 

Ground 
(Nadir) 

15 meters 

17 mm 
NA 

Matlab 
(Mathworks) 

Combine thermal and 
digital images 

Segment soil and 
shaded leaves 

7.5 to 13 µm 
24° 
NA 

(Moller, et al., 2007) 

Correlate CWSI to Leaf 
Water Potential 

(Cotton/Soybeans) 

ThermaCAM SC2000 
(FLIR System) 

Ground 
(Nadir) 
7 meters 

- 
NA 

ThermaCAM Software 
7.5 to 13 µm 

24° 
NA 

(O'Shaughnessy, et al., 
2011) 

High Throughput 
Phenotyping 

(Potato) 

ThermaCAM P25 
(FLIR Systems) 

Ground 
(Off to one side) 

8 meters 

320-240 
NA 

ThermalCAM 
Research Pro 

Estimate mean plot 
canopy temperature 

7.5 to 13 µm 
NA 
NA 

(Prashar, et al., 2013) 

High Throughput 
Phenotyping for water stress 

(Maize) 

Midas 320L 
(Dias Infrared, 

Germany) 

Ground 
(Nadir) 
8 meters 

320*240 
NA 

Extract canopy leaves 
for average canopy 

temperature 

NA 
NA 
0.94 

(Romano, et al., 2011) 

Fruit Identification 
(Orange Orchard) 

ThermaCAM P65HS 
(FLIR Systems) 

Ground 
(Horizontal) 

2 meters 

320*240 
NA 

ThermaCAM 
Researcher 

(Mathworks, USA) 
Radiometric 
Conversion 

Image Fusion  

NA 
NA 
0.90 

(Bulanon, et al., 2009) 

Drought Tolerant Genotype 
Screening 

Relate stomatal closure & 
yield 

(Maize) 

VarioCAM 
(Infra Tech, Germany) 

Ground 
(Nadir) 

>5 meters 

- 
NA 

IRBIS-Professional 
Object emissivity, 

distance, and 
temperature. Merge 

VIS with TIR 

NA 
Wide Angle 

(Zia, et al., 2013) 

Localized Stomatal 
Conductance and Disease 

(Sunflowers) 

JTG-MD Thermal 
Camera 

(JTG-MD, Japan) 

Laboratory 
(Macro) 

<3 mm 
0.05°C 

Image distribution for 
measuring localized 

photosynthesis 

NA 
NA 
NA 

(Hashimoto, et al., 1984) 

Spatial and temporal 
stomatal conductance 
(French Bean Leaves) 

Thermovision 900 
LW/ST 
(NEED) 

Laboratory 
(Macro) 

0.2 to 0.7 mm 
0.08°C 

IRWinRes 
8 to 12 µm 

10° 
0.93 

(Jones, 1999) 

Crop Breeding for Drought 
Tolerance  

ThermaCAM PM250 
(FLIR Systems, USA) 

Laboratory 
(Nadir) 

0.4 meters 

320*240 
0.1°C 

Image Analysis 
Relative temperature 

differences 

3.4 to 5 µm 
16° 
1 

(Merlot, et al., 2002) 

Disease Detection 
(Tobacco) 

Agerna THV900LW 
(FSI, USA) 

Laboratory 
(Macro) 

-  
NA 

Observe temporal 
change in tobacco 

leaves after infections 

8 to 12 µm 
NA 
NA 

(Chaerle, et al., 1999) 

Detect range of water stress 
(Peach/Olive Orchard) 

SnapShot 
(Infrared Solutions, 

USA) 

Manned Aerial 
(Nadir) 

1000 meters 

2 m 
NA 

Detect the tree crown 
temperature within 
irrigation regimes 

8 to 14 µm 
NA 
NA 

(Sepulcre-Canto, et al., 
2007) 

Map spatial CWSI with 
site-specific environment 

parameters 
(Olive Orchards) 

Thermovision A40 M 
(FLIR, USA) 

sUAS 
(Nadir) 

150-200 meters 

40 cm 
0.08°C 

Segment soil and 
detect mean canopy 

temperatures 

7.5 to 13 µm 
40° 
0.98 

(Berni, et al., 2009); 
(Berni, et al., 2009) 
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1.5 THERMAL SENSING FOR CROP STRESS  

The following sections include descriptions of thermal sensing for crop stress with regards 

to early crop sensing, alternative crop sensing, crop stress indicators, thermal indices, ground 

truthing, and cost versus benefit.  

     1.5.1 Early Crop Sensing 

As producers strive for increased output from available land, techniques and technologies 

are needed to accurately classify spatial crop water need or crop water stress to gain economic and 

environment advantages (Herwitz, et al., 2004; Taghvaeian, et al., 2013). Several crop health 

monitoring methods that rely on a combination of single-point soil and atmospheric measurements 

are available to monitor crop water stress (Alves & Pereira, 2000; Cohen, et al., 2005). In addition, 

current methods require multiple sensors that are subject to localized, placement error and do not 

account for spatial crop variability that exist within a field (Moller, et al., 2007). As a result, site-

specific techniques that utilize input parameters from the plant instead of the soil to assess spatial 

crop water stress have been investigated (Jackson, et al., 1986). 

Established methods exist for detecting crop water stress which utilize pressure chambers 

and leaf diffusion porometers to measure individual leaf stomatal conductance and leaf and stem 

water potential, respectively (Ballester, et al., 2013; Berni, et al., 2009; Grant, et al., 2007; Idso, et 

al., 1977). However, these techniques are destructive, labor intensive, subject to placement error, 

limited by small sample size and unsuitable for automation (Ballester, et al., 2013; Berni, et al., 

2009; Cohen, et al., 2005; Gontia & Tiwari, 2008; Jones, 1999; Leinonen & Jones, 2004). 

Consequently, these drawbacks make invasive plant-based crop monitoring impractical in 

commercial applications, thereby limiting producer adoption for irrigation decision management 

(Ballester, et al., 2013).  

To address these concerns, thermal sensing approaches have been investigated because 

they are non-contact, less labor intensive, and offer non-destructive monitoring to assess crop 

stress from leaf canopy temperatures (Grant, et al., 2006; Leinonen & Jones, 2004). Since the 

1970s, crop canopy temperature has been accepted as a health indicator of crop water stress 

because plants close their leaf stomata, or leaf openings, when they experience water stress in order 

to retain water, thereby lowering stomatal conductance, reducing transpiration, and increasing leaf 

temperatures (Ballester, et al., 2013; Grant, et al., 2006; Idso, et al., 1977; Jones, 1999; Leinonen 

& Jones, 2004; Rodriguez, et al., 2005). On the other hand, when leaf stomata are open, water in 
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the leaf evaporates through transpiration which cools the leaf (Maes & Steppe, 2012). During 

transpiration, energy from the leaf is used to evaporate the water from a liquid to a vapor, inducing 

latent heat loss and cooling the leaf. In addition to transpiration, leaf temperature depends on 

ambient conditions such as relative humidity, wind speed, ambient temperature, and radiation 

incident on the leaf surface (Leinonen & Jones, 2004). As a result, canopy and leaf temperatures 

are controlled by a combination of thermal energy balances, vegetative genetics, and natural site-

specific elements (Luvall & Holbo, 1991). Although these environmental elements influence leaf 

temperature, they can be readily measured in real-time using commercially available sensors 

(Udompetaikul, et al., 2010).  

Current growth studies have primarily used ground-based thermometry to take canopy 

temperature measurements and develop thermal indices that account for canopy characteristics, 

soil temperature, and atmospheric conditions for site-specific irrigation management and breeding 

programs (Idso, et al., 1981; Jackson, et al., 1981; O'Toole & Real, 1986). According to Zia et al. 

(2013), growth stage does not significantly impact canopy leaf temperature, thereby promoting 

leaf temperature as a viable crop characteristic in growth performance. Highly integrated 

thermometric systems use an array of infrared thermometers (IRTs) mounted in fixed positions 

within the field and on center pivot irrigation systems to measure crop canopy temperatures and 

provide a means of irrigation scheduling (O'Shaughnessy, et al., 2012). However, because of their 

single-point measurement, IRTs are limited to ground-based systems because they lack the ability 

of measuring subtle heterogeneity characteristics of leaf dynamics which are readily enabled with 

thermography (Liu, et al., 2011). 

Because thermal sensing is primarily used to detect crop water stress, several robust indices 

have been proposed to aid irrigation scheduling, such as Stress Degree Day (SDD) (Idso, et al., 

1981), CWSI (Jackson, et al., 1981), Water Deficiency Index (WDI) (Moran, et al., 1994), 

Temperature-Time Threshold (TTT) (Wanjura, et al., 1992), and more recently, the Crop Stress 

Index (CSI) (Rodriguez, et al., 2005). Thermal-based indices have shown significant correlation 

between crop canopy temperature and stomatal conductance and leaf water potential with stronger 

correlations with increased stress intensity (Hackl, et al., 2012). Increasing availability of sensitive 

TIRIS support high definition studies that assess canopy temperature in relation to dynamic leaf 

stomatal conductance and crop stress assessment (Jones, 1999; Liu, et al., 2011). Numerous studies 

prove thermography’s ability to distinguish between irrigated and water-limited stress of 
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grapevines (Grant, et al., 2006; Grant, et al., 2007), cotton (Luquet, et al., 2003), citrus trees 

(Ballester, et al., 2013), olive orchards (Berni, et al., 2009), and sunflowers (Hashimoto, et al., 

1984) while supporting the development of greenhouse model comparisons (Grant, et al., 2006; 

Leinonen & Jones, 2004), genetic-based drought tolerance in maize (Liu, et al., 2011), leaf 

temperature association with biomass accumulation (Liu, et al., 2011), spatial awareness of 

different leaf architecture (Ballester, et al., 2013; Grant, et al., 2007). In addition, laboratory studies 

using TIRIS show an increase of understanding in the physiological utility while studying localized 

stomatal conductance of leaf material at the macro-scale (Hashimoto, et al., 1984; Jones, 1999). 

Localized infections and damage demonstrate themselves as areas of warm or cold spots due to 

change in transpiration rate at the localized leaf stomata (Chaerle, et al., 1999; Maes & Steppe, 

2012), as shown in Figure 1.21. 

 
Figure 1.21. Infected tobacco interaction Chaerle et al. (1999). 

Thermography has shown utility in correlating stomatal conductance and leaf temperatures 

in monitoring crop performance for genetic screening (Merlot, et al., 2002). As a form of high 

spatial sensing, a leaf’s response to temperature change can be used as an indicator while screening 

crop varieties for differences in stomatal response. Because it is non-invasive and easily 

automated, leaf stomatal function is not inhibited, thereby enabling analysis for undisturbed 

relationships between photosynthesis and stomatal conductance (Jones, 1999). Crop variety 

screening methods highly favor commercial traits for crop yield (Prashar, et al., 2013; Zia, et al., 

2013). However, expressed traits are a complex combination of genetics and chemical and physical 

reactions, and for advancing technologies in precision agriculture, phenotyping has been a 

bottleneck in breeding programs (Prashar, et al., 2013). A desire of any breeding program is to 

carry out breeding experiments under natural conditions outside of a greenhouse and 
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environmental chamber (Zia, et al., 2013). However, field trials place different constraints on crop 

sensing equipment due to large population sample size (Prashar, et al., 2013). 

Stomatal conductance is one trait directly linked to crop performance and photosynthesis 

while maintaining water use efficiency. Thermography offers the ability to screen for mutant 

populations at a higher throughput and scale that exhibit optimal stomatal response to water stress 

(Prashar, et al., 2013), as shown in Figure 1.22. 

 
Figure 1.22. Canopy temperature differences between canopy (Tc) and ambient air (Tair) of 61 maize 

genotypes in water stress and well-watered plants. Romano et al. (2011). 

As demonstrated in Figure 1.22, implementation of automated thermography in screening 

programs capable of sensing individual leaf differences can be a rapid and responsive tool for 

screening phenotypes and disease (Chaerle, et al., 1999). Similarly, Rodriguez et al. (2005) and 

Tilling et al. (2007) compared crop canopy temperature with respect to nitrogen treatments. Table 

1.5 illustrates the CSI from specific nitrogen applications to wheat. 

Table 1.5. Applied nitrogen rate versus crop stress index of wheat samples. Adapted from 
Rodriguez et al. (2005). 

  
Normalized Difference Vegetative Index 

(NDVI) 
Crop Stress Index (CSI) 

 (°C kPa-1) 
Nitrogen Rate   
(lbs. acre-1) 

Rain fed Irrigated Rain fed Irrigated 

0 0.32 0.43 3.43 1.67 
16 0.29 0.51 4.57 2.07 
39 0.47 0.63 3.50 1.60 
163 0.44 0.78 3.10 1.10 

As shown in Table 1.5, canopy temperature is more sensitive to water stress than nitrogen 

deficiencies, thereby supporting the use of canopy temperature as an indicator of a plant’s ability 

to utilize inputs such as nitrogen fertilizers (Rodriguez, et al., 2005; Tilling, et al., 2007).  
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     1.5.2 Alternatives to Thermal Crop Sensing 

Plant crop characteristics have been widely studied using multispectral and hyperspectral 

sensors for qualitative and quantitative analysis in the VIS and NIR light spectrum (400 to 2500 

nm spectral range) (Berni, et al., 2009). VIS sensors detect chemical differences of the plant 

material that interact with light between molecules and atoms on a micron scale within the plant 

material (Miller, n.d.). Based on this light interaction, monitoring select wavelengths can provide 

insight as to chemical compounds present in the sample specimen. This evidence has been 

repeatedly used to monitor plant phenology (Zia, et al., 2013) and crop vigor and yield (Berni, et 

al., 2009) and estimate biomass (El-Shikha, et al., 2007), fractional ground cover, chlorophyll 

content (Fitzgerald, et al., 2007), crop evapotranspiration (El-Shikha, et al., 2007), and nutrients 

(Fitzgerald, et al., 2007; Tilling, et al., 2007). Although VIS sensors quantify relative variation in 

crop growth performance, crop characteristics such as water stress limit their utility (El-Shikha, et 

al., 2007) because the first signs of measureable water stress assessments with VIS and NIR light 

sensors are due to the change in detected leaf angle from wilting when potential yields have most 

likely already been affected (Fitzgerald, et al., 2007).  

     1.5.3 Crop Stress Characteristics 

Precise crop stress characterization for tactical management conserves resources and 

reduces expensive growing costs while optimizing plant performance and quality growth 

parameters (Jackson, et al., 1986). Research continues to show that crop growth and yield is 

directly affected by crop water stress and only indirectly and partially affected by soil-water 

interaction (Sepulcre-Canto, et al., 2011; Zhang & Kovacs, 2012). For most crops, quality and 

quantity of production is directly related to efficient crop water use. More specifically, heat stress 

induced from lack of water is a abiotic stress factor that influences crop growth performance 

(Ayeneh, et al., 2002) hindering complex biological systems that impact transpiration, 

photosynthesis, leaf senescence, and grain development, consequently reducing economic return 

(Ballester, et al., 2013). For example, grain protein is largely dependent on the utilization of plant 

nitrogen accumulation and concentration in the grain during the filling stage (Zhao, et al., 2005). 

In addition, water stress during the filling stage influences the resulting grain protein content. As 

discussed, leaf temperatures are dependent on stomatal closure in order to provide nutrient delivery 

through water transport during critical periods during the growing season (Zhao, et al., 2005). As 
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a result, crops have periods during development in which they become more susceptible to stress; 

hence, tactical management can intervene to maintain yield potential (Taghaeian, et al., 2013). 

With the aforementioned potential for measuring spatial crop stress, thermography applied 

to the homogeneous nature of cropland reduced the complexity experienced in studies conducted 

in orchards with sparse canopy (Maes & Steppe, 2012) without spatial resolutions below 2 m 

(Sepulcre-Canto, et al., 2007).  As previously mentioned, plants close the leaf stomata, thereby 

lowering stomatal conductance and reducing transpiration (Liu, et al., 2011) in response to ambient 

conditions, as defined by Equation 1.12: 

8����������	��E��L − ����:M�� = @�(�E��) 'K�⁄  (1.12) 

Where: 
 Tpredicted canopy = Estimated temperature of the non-stressed leaf 
 Tair = Temperature of the air (°C) 
 ra = Aerodynamic resistance ambient temperature  
 ρ = Air density  
 Cp = Heat capacity of air  
 Rnet = Net radiation incident on the leaf surface. 

By applying a fundamental energy budget, microclimates (i.e., interactions between other 

vegetation and bare soil) can account for environmental inputs for crop characteristic comparisons 

between species and varying climates (Luvall & Holbo, 1991), as shown in Figure 1.23. 

 
Figure 1.23. Generalized energy balance of vegetation. Adapted from Blonquist and Bugbee (n.d.). 

     1.5.4 Thermal Indices and Techniques 

Thermography has been utilized to develop thermal indices and crop sensing techniques. 

The most commonly used thermal index, the CWSI, is discussed because of its utility by all sensing 
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platforms while the stress degree day (SDD), temperature time threshold (TTT), and canopy stress 

index (CSI) are also briefly discussed in the following sections. 

          1.5.4.1 Crop Water Stress Index 

Idso et al. (1981) found a direct relationship between ambient air conditions and the 

influenced transpiration rate of non-water stress crops. For example, a leaf temperature at or below 

predicted leaf temperature indicates a non-stressed plant, whereas leaf temperature above the non-

water stress baseline (NWSB) indicates a gradient level of water stress (Figure 1.24). Idso 

investigated the correlation between non-water stressed leaf temperatures under the same net 

radiation, similar vapor pressure deficit (VPD), and wind speed.  

 
Figure 1.24. (Tc-Ta) versus Vapor Pressure Deficit comparison. Reproduced from Blonquist and 

Bugbee (n.d.). 

Shown in Figure 1.24, the non-water stressed leaf canopy-to-air temperature deficit can be 

found versus specific VPD for the same net radiation and wind speed, as defined by Equation 1.13: 

T*+,-./ − T+29 = a − b × VPD (1.13) 

Where: 
 Tcanopy = Canopy Temperature (°C) 
 Tair = Measured air temperature (°C) 
 a = Crop specific intercept for NWSB 
 b = Crop specific coefficient  
 VPD= Vapor pressure deficit [pKa]   

The NWSB coefficients are empirically measured with daily leaf temperature 

measurements over a full growing season or with diurnal leaf temperature measurements over the 

course of several days. The relationship between canopy temperature and transpiration rate is 

defined as the normalized difference of the measured air-to-leaf canopy temperature deficit 
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between the lower base line (i.e., NWSB) and the upper base line, or water-stressed baseline 

(WSB), on a plot of air-to-leaf canopy temperature deficit vs. VPD as depicted in Equation 1.14 

(Idso, et al., 1981; Jackson, et al., 1981; Jackson, 1982): 

 KTU# = ∆���������� − ∆�		∆���������� − ∆���L	���� (1.14) 

Where: 
 ∆Tpredicted = (Tpredicted– Tair) 
 ∆Tdry = (Tdry – Tair) 
 ∆T1 = (Tactual – Tair) 

For example, stressed leaf (Tdry) and non-stress leaf (Tpredicted) boundary temperatures for a 

leaf are 25°C and 20°C, respectively. Air temperature is 23°C and actual temperature of the leaf is 

22°C. In this example, the CWSI is 0.4.  

This aforementioned crop-based relationship was used by Jackson et al. 1981 to indirectly 

measure soil moisture and apparent crop health through transpiration. As a result, the CWSI has 

been successfully developed and implemented using IRTs in order to base variable rate irrigation 

needs (Taghvaeian, et al., 2013). An advantage of the CWSI is the scale at which it can be 

implemented. With the addition of upper and lower boundaries for predicted leaf temperature, the 

CWSI approach has been the most used index aboard all thermal sensing platforms in various 

climate regions because of the inclusion of VPD, solar radiation, and wind speed (Maes & Steppe, 

2012; Rodriguez, et al., 2005). Figure 1.25 shows simulated relationships between solar radiation 

(Rnet), wind speed (U), and VPD. 

 
Figure 1.25. Simulated relationships of non-water stress baselines from varied environmental 

conditions compared to theoretical baselines. Reproduced from Berni et al. (2009). 

Various approaches have been suggested to compute CWSI for a particular crop species in 

actual environment parameters. In all platform types, theoretical CWSI relies on baseline 

temperature deficits, assuming that environmental conditions remain constant, thereby requiring 
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measurements of crop canopy temperatures, wet/dry reference temperatures, and environment 

conditions (Grant, et al., 2007; Luquet, et al., 2003). A robust technique relies on empirical NWSB 

during a particular research study that directly accounts for net radiation, aerodynamic resistance, 

and the particular crop’s microclimate (Ballester, et al., 2013; Blonquist & Bugbee, n.d.; El-

Shikha, et al., 2007; Erdem, et al., 2010; Fitzgerald, et al., 2007; Gontia & Tiwari, 2008; Grant, et 

al., 2007; Maes & Steppe, 2012). In order to directly measure upper and lower reference 

temperature bounds, leaves are wetted with water for a fully transpiring leaf (lower limit) and 

covered with petroleum jelly to indicate a non-transpiring leaf (upper limit). However, preparation 

of wet/dry leaf surfaces for reference leaf temperatures is not practical and subject to repeatability 

errors. 

Many studies have investigated the use of standardized measurements without manually 

preparing reference temperatures achieving similar CWSI results (Berni, et al., 2009b; Cohen, et 

al., 2005; Grant, et al., 2006; Grant, et al., 2007; Jones, 1999). Standard dry reference temperature 

recommendations include the use of an upper temperature bound of 5°C above air temperature 

(Alves & Pereira, 2000; Cohen, et al., 2005; Erdem, et al., 2010; Moller, et al., 2007; Moran, et 

al., 1994; Wanjura, et al., 2006). Standard wet reference temperature recommendations include 

measuring leaf temperature of well-watered plants (Ballester, et al., 2013; Blonquist & Bugbee, 

n.d.; El-Shikha, et al., 2007; Erdem, et al., 2010; Fitzgerald, et al., 2007; Gontia & Tiwari, 2008; 

Grant, et al., 2007; Maes & Steppe, 2012). These studies support crop water stress monitoring at 

any time of day regardless of incoming solar radiation and aerodynamic resistance, thereby 

increasing the ease of use for site-specific farm management (Alves & Pereira, 2000; Berni, et al., 

2009) where changing weather conditions may complicate acquisition of comparative sensing data 

(Luvall & Holbo, 1991). Blonquist and Bugbee (n.d) monitored crop water stress to allow for 

increased practical knowledge regarding sensitivity necessary to measure crop stress under various 

environmental conditions. Table 1.6 shows recommended sensor sensitivity to monitor CWSI to 

an accuracy of ± 0.05.  

Table 1.6. Recommended sensor accuracies to limit CWSI measurement error 
(Blonquist & Bugbee, n.d.). 

Parameter Sunny, Warm, Dry Cloudy, Cool, Humid 
Net Radiation ± 100 W m-2 ± 15 W m-2 

Relative Humidity ± 9 % ± 4 % 
Tair ± 2°C ± 0.2°C 

Tcanopy ± 1°C ± 0.2°C 
Wind ± 0.6 m s-1 ± 0.3 m s-1 

Canopy Height ± 0.06 m ± 0.03 m 
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Automated measurements with image processing increase thermography’s appeal as a 

sensing tool because instantaneous measurements can be used to account for consistent crop water 

stress (Maes & Steppe, 2012). Artificial measurements have provided a repeatable standard for 

applications of a higher scale when used in conjunction with thermal imaging (Moller, et al., 2007). 

Artificial wet reference surface targets are viewable within a FOV for significant pixel coverage 

and mounting height within the plant canopy to optimally capture leaf microclimate (Wang, et al., 

2010). However, no artificial dry reference exists to measure dry leaf (Prashar, et al., 2013). 

In order to overcome soil influence in thermometric sensor readings, Moran et al. (1994) 

developed the water deficit index (WDI) that applied a two-dimensional CWSI theory to partially 

covered canopies. This index relies on soil surface temperature measurements in order to evaluate 

crop water stress from partial to full crop canopies, making reference temperatures difficult to 

maintain and reducing index adoptability.  

In comparison studies between thermography and thermometry, thermometry inherently 

creates baseline temperature data over sunlight and shaded leaves as well as soil background. 

However, thermography can extract leaf vegetation, creating more accurate baselines for leaf 

canopy-to-air temperature deficit versus VPD (Taghvaeian, et al., 2013). Future studies must 

investigate thermal indices analyzed with thermography. For example, sunflower vegetative 

indices analyzed with thermography demonstrated slightly different slopes and intercepts (Nielsen, 

1994). A main contributor to limited commercial adoption of CWSI as a stress indicator is because 

the current sensing platforms (i.e., ground-based, aerial, and satellite) lack necessary temporal and 

spatial resolution for accurate and timely separation of sunlit and shaded soil and lower leaf 

backgrounds. In addition, CWSI values cannot account for differing net radiation and aerodynamic 

resistance without repeated empirical calibrations without non-water stressed plant samples 

(Berni, et al., 2009; Colaizzi, et al., 2012; Cohen, et al., 2005; El-Shikha, et al., 2007; Jackson, et 

al., 1986; Jones, 1999). 

          1.5.4.2 Stress Degree Day 

Irrigation scheduling based on canopy temperature depression (Tcanopy-Tair) is a method 

widely used as an indicator of crop health in regards to heat stress and drought stress in crops 

between irrigation regimes (Ehrler, 1973). With a canopy-to-air temperature deficits, automated 

irrigation occurs in accordance to the SSD when crop canopy temperatures rise above air 
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temperatures at 1 to 2 h following solar noon during a duration of days (n), as defined by Equation 

1.15 (Idso, et al., 1977): 

UV@WXX	YWZ@WW	Y[C =\8���E��L − ����:�
E
�]	

 (1.15) 

When SDD = 0, irrigation was automated. Because environmental conditions change, the 

CWSI has been widely adopted, thereby replacing SDD in most irrigation scheduling. However, 

SDD stills acts as a significant correlation to stomatal conductance as an estimator of yield and 

water use (Maes & Steppe, 2012). 

          1.5.4.3 Temperature-Time Threshold 

Similar to SDD proposed by Idso et al. (1977), the TTT concept is based on the correlation 

between crop performance and the amount of time the crop canopy surpasses a narrow temperature 

range. Temperature threshold concepts are also known as the biological identified optimal 

temperature interactive console (BIOTIC) protocol (Wanjura, et al., 2006). In practice, when the 

crop exceeds the threshold temperature for a certain period of time, irrigation is signaled 

(O'Shaughnessy, et al., 2012). Thermometric systems utilize an array of IRTs integrated onto a 

center pivot irrigation system for crops such as corn, soybeans, (Evett, et al., 2014), and cotton 

(Wanjura, et al., 2006). Ongoing irrigation studies suggest that the TTT approach is more robust 

than the more commonly known CWSI for assessing water stress and estimating yield (Wanjura, 

et al., 2006). Limitations of the TTT, however, include continuously monitoring crop temperatures 

and soil water potential to assess crop water stress and water deficit, respectively.  

          1.5.4.4 Canopy Stress Index 

With the availability of thermography, Rodriquez et al. (2005) introduced the CSI to 

normalize the leaf-to-air temperature deficit (Tcanopy-Tair) under a specific VPD, as defined by 

Equation 1.16: 

KU# = 8���E��L − ����:^_Y `℃	(_[<	b (1.16)

Approaches such as CSI attempt to reduce necessary sensors for instantaneous canopy 

stress assessment in precision agriculture. As reported by Rodriquez, CSI accounts for 80% of 

yield variation over that of the 46% correlation to NDVI values. As a result, most variation in crop 

performance was more correlated to water stress. Aside from this example, thermography provides 
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a unique opportunity to measure only canopy leaves reducing background temperature influence, 

allowing for new and advances relationships to be investigated not previously possible. 

     1.5.5 Precision Agriculture Cost/Benefit 

The importance of performance, cost/benefit, and increased yield potential for a particular 

actionable decision is only briefly discussed in this paper. Actionable decisions in precision 

agriculture rely on useful thermal sensing software and hardware with the capacity to use on-

demand imagery for actionable decisions while the level of incremental knowledge complements 

the practical management zone permitted by mechanical intervention (e.g., sprayer nozzle 

coverage, seeding row control, irrigation zones) (Cohen, et al., 2005; Herwitz, et al., 2004). Before 

implementing precision technology, the producer must first answer these questions: 

1. What is my goal? (i.e., I will change irrigation scheduling with this crop water 

assessment.) 

2. What type of data do I need to capture? (i.e., I need whole-field canopy temperature.) 

3. What is the best technique to achieve that information? (i.e., remote sensing 

platforms) 

4. Will it be useful, quick, and accurate? (i.e., actionable irrigation prescription, on-

demand, and based on crop need) 

5. What is my minimal management zone I can change? (i.e., individual 

nozzle/section/boom) 

6. How will I know I made a difference? (i.e., yield production data, resample) 

For precision agriculture, the more specific the application, the better a technology can be 

configured for the producers’ operation (Pohl & Van Genderen, 1998). In addition, the type of data 

the customer needs will suggest the type of sensor and platform necessary. The return on 

investment (ROI) of a tactical site-specific management must reduce (1) input costs, (2) machinery 

wear, and (3) loss in yield potential. Increased crop stress awareness for tactical management will 

rely on new technologies to capture on-demand information to support intervention within minimal 

management zones permitted by practical hardware. Advancing imaging platforms for sUAS 

increase crop characteristics assessment and will continue to evolve in capabilities regarding 1) 

high resolution images of entire fields, 2) automatic analysis from acquired images, and 3) 

practical needs or adjustment at a high spatial scale.  
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1.6 CONCLUSION 

Producers know their land and its productivity and therefore require on-demand 

information to increase actionable management. Thermography is well-suited for agriculture crop 

sensing because of its ability to provide imagery of whole-field assessment, automated analysis, 

and tactical decisions at a high level of precision. However, agricultural studies using 

thermography have been limited due to expense of past thermal camera systems, unfamiliar use 

and operation, system complexity, and unknown performance in agricultural conditions that 

restrict their use to laboratories, greenhouses, and intermittent use in prolonged field studies.  

TIR cameras, however, contain features that currently only meet the needs of non-

agricultural uses, thereby providing an incentive for TIR camera manufacturers to develop 

modified cameras intended for operation within agricultural fields and conditions. Due to their low 

cost compared to cooled TIR camera, minimal size and weight, and lack of moving parts, uncooled 

TIR cameras have been emphasized and utilized aboard sUAS platforms for unprecedented ground 

coverage and high spatial crop stress assessments.  

Crop temperature plays a fundamental and often limiting role in many biological processes 

that control the rate of chemical reactions between plants and surrounding microclimates. 

Therefore, most variation in crop performance is found to be related to water stress. The decision 

to irrigate is critical, but accurate determination of irrigation amount and location is as equally 

important for site-specific irrigation, or irrigation that matches precise crop need at manageable 

increments to achieve desired crop performance. However, extensive variability exists within 

commercial agricultural fields, including soil type and depth, topography, climate, crop growth 

stage, and variance in operation methods. Effective assessment of plant growth parameters requires 

confidence in thermography techniques and hardware in order to accurately assess crop stress 

during all measurements.  
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Chapter 2 - Selection and Utility of Uncooled Thermal Cameras for 

Spatial Crop Temperature Measurement within Precision 

Agriculture 

2.1 ABSTRACT  

Since previous research used local, single-point measurements to indicate crop water stress, 

thermography is presented as a technique capable of measuring spatial temperatures supporting its 

use for monitoring crop water stress. This study investigated measurement accuracy of uncooled 

thermal cameras under strict environmental conditions, developed hardware and software to 

implement uncooled thermal cameras and quantified intrinsic properties that impact measurement 

accuracy and repeatability. A DRS Tamarisk® 320 (CAM1) and FLIR® Tau 2 (CAM2) were 

selected for this study. Results indicated that wide and medium angle lens distortion was 19% for 

CAM1 and 30% for CAM2. A minimum of four pixels were recommended to maintain surface 

temperature integrity and maximize image coverage area. A 19 and 7 min warm-up was necessary 

for CAM1 and CAM2 respectively. A real-time (RT) and one-time (OT) radiometric calibration 

provided absolute surface temperatures with environmental compensation. CAM1 analog output 

yielded a configurable temperature span from 5°C-156°C, resolution from 0.02°C-0.61°C, and 

measurement accuracy of ±0.82°C or 0.62ºC with OT or RT radiometric calibration, respectively, 

whereas digital output yielded a fixed temperature span of 156°C, resolution of 0.01ºC and 

measurement accuracy of ±0.43 or 0.29ºC with OT or RT radiometric calibration, respectively. 

CAM2 yielded a controllable temperature span of 18°C-206ºC, resolution of 0.07°C-0.80ºC, and 

measurement accuracy of ±0.87 or 0.63ºC with OT or RT radiometric calibration, respectively. 

Both cameras were sensitive to surface temperatures (R2=0.99); but, CAM1 was more controllable. 

Results highlight that uncooled thermal cameras can measure spatial temperatures, thereby 

measuring subtle crop dynamics for water resource management.   

2.2 INTRODUCTION  

In the midst of recent droughts, increased water demand, and the implementation of water 

allocations for conservation, irrigated acreage throughout the United States increased by nearly 

1.3 million acres from 2002 to 2007 (USDA, 2014). The largest percentage of irrigated farms is 

located in the western United States where competition for irrigation water availability has 



47 

escalated in the past two decades (Taghaeian, et al., 2013). In the Midwest, for example, average 

irrigated corn yield has increased approximately 2.5 bushels per acre per year since the early 1970s. 

Diminishing irrigation water requires efficient water management practices using monitoring and 

control for sustainable water management (Adeuya, 2007). Other water conservation projects have 

developed smart-water systems that use less water from aquifers and above-ground freshwater 

sources while investigating soil-improving strategies in which drought-tolerant crop varieties are 

chosen according to a climate’s available water (Berton, 2006). Although these and other advances 

in precision irrigation technologies are becoming available to producers, adoption of these systems 

for commercial applications requires producers to monitor crop water stress at increased spatial 

(ground sample distance (e.g., 1 cm/pixel)) and temporal (revisit frequency) resolution.  

Research shows that crop growth and yield are directly affected by water stress but only 

partially affected by soil-water interaction (Zhang & Kovacs, 2012). Current irrigation schedules 

are typically based on soil moisture deficits; however, localized soil moisture sensors are not 

representative of spatial moisture variability that may exist throughout the field. As a result, direct 

measurement of canopy temperatures with manual or mounted infrared thermometers (IRTs) on 

pivot systems have been used to quantify crop water stress because plants close their leaf stomata 

under periods of water stress, thereby reducing transpiration and causing proportionally increased 

leaf temperatures (Evans, et al., 2000). 

Although irrigation scheduling has used canopy temperature and soil moisture monitoring, 

these tedious and time-consuming methods yield limited samples at less resolution than is required 

to perform precision irrigation, consequently proving the methods to be impractical for commercial 

applications (Jones, 2004). While an IRT can take quick measurements, a thermal infrared imaging 

system (TIRIS) can monitor multiple crop profiles per image. This novice, less studied technology 

can monitor spatial crop temperatures in irrigation applications and in periods of drought, weed 

infestation, heat tolerant phenotype trait expression, and herbicide and nutrient applications. 

Limited publications describe United States studies of thermal infrared (TIR) cameras for 

measuring crop temperature profiles, specifically crops whose yield significantly increases with 

irrigation in the water-stressed Midwest. 

Increased interest among United States agricultural producers regarding small unmanned 

aerial systems (sUAS) allows possibility for a TIRIS designed for lightweight, high-throughput 

sensing that could measure crop temperature variability and assess spatial crop water stress in 
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agricultural production. However, available knowledge regarding thermal sensing platform 

performance in agricultural field studies is limited, and producers are skeptical of technology that 

has demonstrated potential for measuring crop temperature profiles and enabling site-specific 

water management in orchards, vineyards, and other specialty crops in areas outside of the United 

States (Sepulcre-Canto, et al., 2011). Lack of knowledge can be attributed to the expense of cooled 

TIR cameras which has made crop temperature measurements in commercial agriculture 

economically unfeasible. However, innovation of the uncooled thermal sensor has led to 

development of new, lightweight TIR cameras that have no moving parts and require no cooling 

package, thereby providing extended operating life at a fraction of the cost of previous cooled TIR 

cameras. 

Because microbolometer thermal detectors are uncooled, they have a low signal-to-noise 

ratio, the amount of usable signal compared to noise signal. Consequently, uncooled TIR detectors 

are less accurate (±0.1°C) than other temperature sensors (Kuenzer, 2014); however, this accuracy, 

also known as sensor measurement confidence, make microbolometers’ sensitive to subtle 

temperature differences (<0.5°C) necessary for accurate crop health stress assessment (Blonquist 

& Bugbee, n.d.; Sepulcre-Canto, et al., 2007). In agricultural and environmental studies, natural 

objects have been found to emit long wave infrared (LWIR) radiation, a region of 7 to 14 µm 

wavelength bandwidth (-66.2°C to 140.0°C). Microbolometer image sensors are sensitive to LWIR 

radiation that strikes the detector material, changing the detectors’ electrical resistance from a 

change in temperature, thereby transforming temperature intensity into a raw digital value (DV) 

generating a thermal image (Kuenzer, 2014).  

Internal circuitry heat and external temperature exposure require uncooled TIR cameras to 

regulate their microbolometer sensors with automatic temperature recalibration. Consequently, 

TIR camera warm-up time can alter measurement accuracy (i.e., closeness to the true value) by 

microbolometer recalibration thereby requiring warm-up periods in order to reach a steady-state 

operating temperature (Figure 2.1). 
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Figure 2.1 Changes of radiometric temperature measured by TIR camera during warm-up period. 

Adapted from Berni et al. (2009). 

As shown in Figure 2.1, Berni et al. (2009) studied a TIR camera with a recommended 

warm-up period of 2 h before the measured temperature converged to a steady-state blackbody 

(i.e., object or system that absorbs and emits electromagnetic radiation equal to its internal kinetic 

temperature (Kuenzer, 2014)) temperature. As a result, limited literature exists testing uncooled 

TIR cameras in order to create standard operating protocols under practical scenarios. 

For a camera, the sensed object and desired sensing distance determines the choice of lens 

(Elfaki, et al., 2000). Maintained focus over a wide range of temperatures is essential for system 

performance, stability, and imaging quality. An athermalized lens maintains performance using 

optical passivity over the sensitive temperature span. Unlike typical visible cameras, the TIR 

camera lens focal length may need to be adjusted to focus on particular sensing distances (DRS 

Technologies A Finmeccanica Company, 2013). However, TIR camera lenses are subject to the 

same geometric calibration parameters as visible imagery including focal distance, point 

coordinates, and radial distortion (Berni, et al., 2009: Kuenzer, 2014). Because thermal radiation 

does not transfer through glass, TIR camera lenses are made from germanium that allows the 

transmission of TIR radiation (Kuenzer, 2014). Germanium lenses are optimized for radiant heat 

transmission, consequently making them more susceptible to geometric distortion. According to 

Laguela et al. (2013), increased lens distortion is more common for TIR cameras compared to 

glass lenses because of their short focal length and germanium material.  

Expectations associated with TIRIS rely on accurate temperature measurement, high 

imaging speed, limited image noise, and optimized storage of raw images. This research will 
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support future studies to develop a full system package for capturing accurate spatial canopy 

temperatures aboard sUAS and ground-based sensing platforms in order to create high definition 

canopy temperature maps and aid variable rate irrigation decision management. As stated, 

increased irrigated acres in the Midwest depend primarily on declining fresh water reserves. 

Significant studies have indicated that a very high level of management is required in order to 

maintain or improve irrigation water productivity and economic return with decreasing water 

resources. Researchers, TIR and sUAS manufacturers, agricultural service providers, and 

producers in the Midwest are eager to adopt thermal technologies in precision agriculture, such as 

a TIRIS aboard sUAS and ground-based platforms to assist with efficient and accurate water 

utilization. Therefore, this study investigated industry-leading TIR camera cores under strict 

laboratory conditions (i.e., air temperature, relative humidity, incident radiant heat) to determine 

measurement accuracy under anticipated field conditions. In addition to thermography potential, 

core objectives of this research were to (1) quantify measurement accuracy and intrinsic properties 

of two commercially available uncooled TIR camera cores, (2) investigate impact of physical 

properties and environmental conditions on measurement accuracy, and (3) determine necessary 

equipment and considerations when integrating an uncooled TIR camera core into a TIRIS for 

accurate crop temperature measurement. 

2.3 METHODS AND MATERIALS  

Strict laboratory experiments were conducted at the Department of Biological and 

Agricultural Engineering at Kansas State University, Manhattan, Kansas. A DRS Tamarisk® 320 

(DRS Technologies, Inc., Dallas, Texas) and FLIR® Tau 2-324 (FLIR® Systems, Inc., Boston, 

Massachusetts), hereafter referred as CAM1 and CAM2, were studied to benchmark their utility 

in precision agriculture. These cameras were selected because of their minimal size, lightweight 

design, and limited power consumption. Utility was investigated with regards to integration 

hardware and software, camera controllability for changing applications, and radiometric 

measurement accuracies. CAM1 was further investigated to determine environmental conditions 

that impact temperature measurement.  

     2.3.1 Determining Physical Properties of TIR Camera 

Cameras have physical parts and capabilities that influence their sensitivity to temperature 

differences, increase their measurement error, and limit their use in agricultural environments. Due 

to their relatively low cost compared to cooled thermal cameras, minimal size and weight, and no 
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moving parts, uncooled TIR cameras provide increased coverage area and crop stress assessments 

aboard different sensing platforms not possible with cooled TIR cameras and IRTs. The identified 

physical properties that restrict practical use of TIR cameras include: 

1. Lens selection and distortion 

2. Image resolution and measurement 

3. Radiometric characterization and measurement accuracy 

4. Warm-up time and automatic recalibration 

5. Connection ease, software, and controllability   

Considering these physical properties and their influence on accurate measurement may 

allow for their influence to be reduced or eliminated with proper camera configuration, hardware, 

standard operating protocol, and sensing platform. Therefore, intrinsic fundamentals of uncooled 

TIR cameras were investigated using the methods discussed in the following sections.  

          2.3.1.1 Lens Selection and Distortion 

Lens selection was investigated because specific target size and sensing distance 

determines the lens and resulting image size for a specific application. TIR cameras have 

germanium lenses that are factory-installed and calibrated, consequently increasing the cost of 

additional lenses and requiring expensive equipment for recalibration.  Due to the small lens focal 

length, both TIR camera lens distortions were investigated in order to correct lens distortion for 

spatial integrity. A distorted image does not fully represent real spatial points but a distorted 

location dependent on the position within the lens’ field of view (FOV) (x1, y2), as defined by 

Equations 2.1 and 2.2 (The Mathworks, Inc., 2015): 

>? = >	(1 + (	@? + (?@�) + 2B	>	C	 + B?(@? + 2>	?) (2.1) C? = C	(1 + (	@? + (?@�) + 2B?>	C	 + B	(@? + 2C	?) (2.2) 

Where: 
 x1, y1 = distorted pixel locations 
 x2, y2 = undistorted pixel locations 
 k1, k2 = radial distortion coefficients of the lens 
 p1, p2 = tangential distortion coefficients of the lens   

  @ = 	$(>	? + C	? 

CAM1 features an 11 mm, medium angle lens with a 27º×20º degree angle FOV and 

CAM2 features a 7.5 mm, wide angle lens with a 63º×50º degree angle FOV. Using a distortion 

model (grid) calibration approach (Sun, et al., 2013), each TIR camera lens distortion was 
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corrected based on multiple calibration grid images using a heated grid pattern tool, as shown in 

Figure 2.2.  

      
Figure 2.2. Grid pattern tool (left) and thermal image (right) used for lens distortion 

A wooden pegboard was warmed and placed on a cool flat surface to produce a 

distinguishable temperature difference (Figure 2.2). The grid distortion model required at least five 

images from different orientations in order to calibrate radial and tangential distortion coefficients. 

Thermal images were imported into the NI LabVIEW™ Vision Assistant (National Instruments 

Corporation, Austin, Texas) for lens distortion analysis.  

          2.3.1.2 Image Resolution and Measurement 

Since TIR cameras typically have lower resolution image sensors than visible cameras, the 

target size and sensing distance is more critical when determining the lens focal length (distance 

from the lens to the thermal detector) and resulting FOV degree angle. Critical pixel resolution 

was investigated by using a known target size and determining the necessary number of incident 

pixels in order to limit inaccuracies. A target measuring 16 mm in diameter was heated and placed 

on a flat surface at a stable temperature for TIR camera visibility (Figure 2.3).  

 
Figure 2.3. Investigation of necessary spatial resolution for temperature accuracy 

As shown in Figure 2.3, the thermal image was altered into a binary image (i.e., white=1 | 

black=0) in order to maximize the contrast between the accurate and inaccurate measured value of 

1 and 0, respectively. As the last image processing step, a series of increasing regions of interest 



53 

(ROI) were designated by increasing the offset pixel resolution by 1 pixel (i.e., 1×1, 3×3, 5×5, 

7×7,..., 333×333 pixel resolution) centered directly over the target. Increasing the spatial resolution 

by 1 pixel (or 0.33 mm/pixel) around the outer perimeter for each subsequent ROI allowed the 

average DV to be calculated with the LabVIEW™ Vision Assistant™. 

          2.3.1.3 Radiometric Characterization and Measurement Accuracy 

Uncooled TIR cameras measure LWIR energy intensity present on the image sensor, 

thereby generating a thermal image of radiated surface temperatures. CAM1 is sensitive to 8 to 14 

µm LWIR, or a theoretical temperature span from -66ºC to 90ºC (~∆156ºC), while CAM2 is 

sensitive to 7 to 14 µm LWIR, or a theoretical temperature span from -66ºC to 140ºC (~∆206ºC). 

However, the uncooled TIR camera cores only measure relative temperature values, leaving 

temperature measurements unquantified. Therefore, a calibration method was developed to 

characterize pixel intensity-to-actual temperature using reference temperature panels viewable 

within a camera’s FOV in order to create a radiometric calibration transfer function. A near-perfect 

blackbody enclosure, hereafter termed as “BB enclosure”, was built from wood and painted flat 

black to isolate the camera and target surfaces from outside influences while investigating this 

radiometric calibration method (Figure 2.4). 

Three reference surfaces were used to provide temperature differentials necessary for the 

radiometric calibration (Figure 2.4 c). An isolated 0.10×0.10 m piece of 8 mm thick wood, painted 

flat black, was used as a box reference that fluctuated with ambient air temperature. A 0.30×0.60 

m piece of 1.52 mm thick (14 gauge) aluminum sheet metal was fabricated for use as the heated 

target surface. An electric heating element in the BB enclosure was capable of heating the 

aluminum panel up to 65ºC at a manual or automatic rate determined by the BB enclosure heating 

element and air exchange vent controller, as shown in Figure 2.5. The third reference panel is 

identified as the wet reference. To make the wet reference, a highly evaporative cloth (Chilly Padd, 

Arab, Alabama) was placed around a solid wooden dowel and placed in a bottle of water for 

continuous wicking and evaporation, thereby creating a stable, cool reference temperature.  

For apparent temperature correction, a commercial IRT (Fluke 62 MAX, Fluke 

Corporation, Everett, Washington) with a measurement accuracy of ±1°C and an adjustable 

emissivity correction from 0.1 to 1 was used to determine the emissivity of the reference targets. 

To determine emissivity, surface temperatures measured with the IRT were corrected to match 

actual surface temperatures measured with the thermistors. Emissivities of 0.82, 0.88, and 0.96 
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were found for the flat-black painted wooden box and aluminum panel and wet reference, 

respectively.  

 
(a)   (b)       (c)   

Figure 2.4. (a) BB enclosure constructed to limit outside influence. (b) Surface mount thermistors 
measured actual target surface temperatures within an ROI (shown in red) to characterize pixel 
intensities. (c) Heating element, box reference equal to air temperature and a cool, wet reference.  

In addition to controlling the heating element, the BB enclosure regulates air exchange 

within the chamber until set air conditions are automatically or manually reached by using the vent 

controller (Figure 2.5). This function is directly used to determine the environmental influence as 

described in Section 2.3.2, below. 

 
Figure 2.5. BB enclosure heating element and air exchange vent controller user interface.  

Actual surface temperatures were measured with five surface-mounted thermistors (ON-

930-44033, OMEGA, Stamford, Connecticut) with a measurement accuracy of ±0.1°C (See 

Appendix A, Figure A.4 for more details). In addition, a surface-mount thermistor was attached to 

the camera housing, shown in Figure 2.6, to monitor operating camera housing temperatures 

during TIR camera evaluations.  

 
Figure 2.6. Thermistor mounted to camera housing temperature for subsequent testing 
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Thermistors were wired into a voltage divider to sense the change in voltage due to the 

temperature-based resistance (Figure 2.7 a). The resulting voltage (Vout) was used to determine 

temperature using a calibration curve provided by the manufacturer (Figure 2.7 b).  

            
      (a)       (b)  

Figure 2.7. (a) Voltage divider wiring diagram used to measure changing voltage from the 
corresponding change in the thermistor resistance. (b) Thermistor calibration curve used to quantify 
temperature with a change in voltage. (See Appendix A, Figure A.4 for more details) 

Relative humidity and air temperature within the BB enclosure were measured with a 

combination sensor (Omega Engineering Inc., Stamford, Connecticut) with an accuracy of ±3% 

and ±0.2°C, respectively. A data acquisition system was built using a NI myRIO (National 

Instruments Corporation, Austin, Texas) to monitor the surface mount thermistors, air temperature, 

and relative humidity inputs from sensors within the BB enclosure (Figure 2.8).  

 
(a)       (b)  

Figure 2.8. (b) Data acquisition (DAQ) system used to monitor BB enclosure sensors with (a) stereo 
plug connectors.   

A TIR Camera Evaluation Software program (Figure 2.9) was developed using NI 

LabVIEW™ (National Instruments Corporation, Austin, Texas) to acquire real-time image data, 

camera housing temperature, actual reference surface temperatures, air temperature, and relative 
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humidity while controlling test length and file specifications (Figure 2.10). Raw data was 

monitored at a sampling frequency of 9 Hz to match the frame rate of the TIR camera cores. 

 
Figure 2.9.  TIR Camera Evaluation system diagram used to control cameras, monitor BB enclosure 

conditions, and output test data. 

 
Figure 2.10. TIR Camera Evaluation Software VI used to conduct radiometric calibrations while 

recording raw data. (See Appendix A, Figure A.7 for more details) 

The TIR Camera Evaluation Software program averaged multiple image pixels within 

static ROIs within the TIR camera FOV to correlate pixel intensity-to-actual surface temperature 

(Figure 2.10, above). Raw pixel intensities (X1, X2) were combined with actual surface temperature 

(Y1, Y2) to determine the radiometric transfer function slope, as defined by Equation 2.3: 
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c = d? − d	e? − e	 (2.3)

By using the slope found in Equation 2.3 and a raw pixel and coinciding surface 

temperature (X1, Y1), the y-intercept of the radiometric transfer function was determined using 

Equation 2.4: 

d − d	 = c(e − e	) (2.4)

When a radiometric transfer function was found, each digital image pixel was converted to 

a temperature value defined by Equation 2.5:   

�(�,D) = ���E + #(F, G)2H − 1����E (2.5) 

where: 
 T(i,j)  = Pixel temperature (oC) at row i and column j, 
 Tmin = Lowest temperature within the image (oC),  
 I(i,j) = Pixel intensity at row I and column j, 
 N = Number of bits for pixel intensity (e.g., N=8 for 8-bit images), and  
 Tspan = Span of temperature captured in the image. 

The radiometric calibration method developed above was segmented into two methods in 

order to compare temperature measurement accuracies. The first method was referred to as the 

real-time (RT) radiometric calibration, in which RT image pixels are correlated to RT surface 

temperatures defined with Equations 2.3, 2.4, and 2.5. Similarly, the second method was termed 

the one-time (OT) radiometric calibration that utilized one calibration image to determine the 

radiometric transfer function. The RT radiometric calibration method was developed to test the 

measurement accuracy of the uncooled TIR cameras where reference temperature panels are 

consistently viewable within the camera FOV like a fixed platform. On the other hand, the OT 

radiometric calibration method was developed to test the measurement accuracy of the uncooled 

TIR camera when reference panels cannot be continuously viewed for practical reasons such as a 

dynamic sensing platform. 

          2.3.1.4 Warm-up Time and Automatic Recalibration 

Uncooled TIR cameras account for microbolometer temperature fluctuations without 

heavy cooling systems with automatic recalibration. A shutter recalibration technique is activated 

to conduct a non-uniformity correction (NUC) across the thermal detector at either a user-defined 

time interval and/or in the event of an internal temperature change of the thermal detector (DRS 

Technologies, Network and Imaging Systems Group, n.d.). During a NUC, the camera shutter 

closes to block incoming thermal energy, thereby providing a uniform thermal reference for the 
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detector. At that time, a recalibration algorithm ensures a uniform pixel intensity is measured 

across the entire microbolometer. Once powered on, an uncooled TIR camera begins to reach a 

steady state operating temperature as a result of internal circuitry temperature and ambient air 

conditions.  

To determine the amount of time needed to reach the steady state operating temperature 

from ambient conditions, the TIR cameras were operated in the BB enclosure with steady target 

temperature for 45 minutes while the video pixel intensities, target surface temperatures, camera 

housing temperature, and ambient air conditions were monitored. The resulting warm-up time was 

determined when the measured pixel intensity was within 5% of the stable target pixel intensity. 

Because automatic NUC is recommended during regular operation, additional tests were 

conducted to investigate the influence on temperature measurement accuracy from a 1 min, 5 min, 

and no NUC. Each test was run for 60 minutes because typical thermography applications occur 

in a short time span in order to limit time between samples (Maes & Steppe, 2012). Images for 

these tests were monitored using the DAQ system described above in Section 2.3.1.3 to determine 

the temperature measurement accuracy under the specific scenarios listed in Table 2.1. 

Table 2.1. Non-uniformity correction influence on measurement accuracy (±°C) with OT 
and  RT radiometric correction 

  Correction Time 

Video Output 
No Correction 

(Sensing Time) 
5-minute NUC  
(Sensing Time) 

1-minute NUC  
(Sensing Time) 

Analog  60 minutes 60 minutes 60 minutes 

Analog  30 minutes - - 

Analog  15 minutes - - 

Digital  60 minutes 60 minutes 60 minutes 

Digital  30 minutes - - 

Digital  15 minutes - - 

          2.3.1.5 Connection Ease, Software, and Controllability 

The TIR camera cores provide analog and digital video outputs. Analog output provides 

an 8-bit (256 discrete pixel intensity DV) thermal video, whereas digital output is 8-bit or 14-bit 

(256 or 16,384 discrete pixel intensity DV) video. These two modes of video output were 

investigated in regards to measurement accuracy, temperature resolution (i.e., smallest measurable 

temperature difference), and ease of image capture regarding necessary hardware and software 

functionality. Each TIR camera control software’s graphical user interface (GUI) configured the 

camera for video output and frame rate, user-defined NUC, and thermal detector sensitivity. 

Although both camera control softwares have distinguishing features, they are not discussed in 
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detail. However, both softwares adjust the thermal detector gain sensitivity (i.e., detectable scene 

temperature span) and level control (i.e., shift offset of the center temperature within the 

temperature span), thereby adjusting the slope (m) and level offset (b), respectively, defining a 

y=(m)x+(b) format (Figure 2.11). More specifically, the thermal detector gain sensitivity adjusts 

the upper and lower pixel saturation and temperature measurement resolution, thereby improving 

the visibility of desired scene temperatures. For example, a temperature span of 20°C is set by the 

camera gain control whereas a center temperature of 25°C is controlled by the level control. In this 

example, the lower and upper saturation temperatures would be at 15°C and 35°C, respectively. In 

addition, the temperature resolution of the resulting 8-bit image of a 20°C span would equal 

0.08°C, as defined by Equation 2.6: 

���������E	(℃) = �f��E 	(℃)2E  
(2.6) 

where: 
 Tspan=Span of temperatures (°C) measureable by the thermal detector 
 N=bits of resolution (e.g., N=8 for 8-bit images), and 
 Tresolution=theoretical temperature resolution 

 

 
Figure 2.11. Camera settings from level and gain control for a thermal detector. The gain control 

adjusts the thermal detector sensitivity to LWIR energy thereby adjusting the temperature span. 
Level control adjusts the center offset temperature to adjust the offset of the temperature span. 
Adapted from DRS Tamarisk® 320 Camera Control Software User Guide (2013). 

A DRS breakout board module (Breakout Box 1003785-001, DRS Technologies, Inc., 

Dallas, Texas) controlled CAM1 by adjusting the gain and level for the span and center 

temperature offset. Similarly, CAM2 was controlled via the FLIR® VNC module (FLIR® 

Systems, Inc., Boston, Massachusetts) (Figure 2.12).  
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Figure 2.12. Hardware used to control, capture, and process thermal images from the TIR camera 

cores 

Analog video from both uncooled TIR cameras was streamed at 9 Hz into an analog-to-

digital video converter (Dazzle DVD Recorder HD, Corel Corporation, USA) (Figure 2.12). This 

raw analog video signal was streamed into a host computer using LabVIEW™ (National 

Instruments Corporation, Austin, Texas) image acquisition and processing software that captured, 

processed, and stored each video frame using a developed virtual interface (VI). 

In order to reduce signal loss and noise introduced with analog video signal transmission, 

digital video feed from CAM1 was captured with an external digital frame grabber (iPORT CL-

U3, Pleora Technologies, Ontario, Canada). The frame grabber acquired digital images directly 

from the TIR camera, as shown in Figure 2.13.  

 
Figure 2.13. Hardware to capture digital and analog video outputs 

Controllability was studied using digital video feed from CAM1 in order to investigate 

added functionality (i.e., measurement accuracy, temperature span and resolution) of the digital 

output configuration. CAM1 was used because the DRS breakout board supported digital video 

feed while CAM2 required additional breakout boards beyond the FLIR® VNC module. 
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Using the developed RT and OT radiometric calibration methods described above, the 

resulting temperature span and offset temperature increment were investigated for each gain and 

level control setting. In order to determine the temperature span, the aluminum reference target 

was chilled to 0°C and attached to the heating element held at 65°C. Through convective heat 

transfer, the aluminum reference target rose from 0°C to 65°C in under 10 minutes. This rise in 

temperatures were used to determine the thermal detector sensitivity of each TIR camera core 

under a discrete range of low to high gain settings. In order to determine the level control 

characteristics, RT pixel intensity of a stable reference temperature was recorded as the camera 

level control was adjusted from lower to upper pixel saturation for each respective gain setting. 

With a stable target temperature, the change in the pixel intensity value for each level offset 

increment was used to characterize the controllability and determine the temperature difference 

for each level control increment. 

     2.3.2 Environmental Influence on Measurement Accuracy and Repeatability 

In addition to controlling the heating element, the BB enclosure regulates air exchange 

within the chamber to pull air from outside the cabinet until equilibrium is automatically or 

manually reached (Figure 2.14 b). The BB enclosure was operated within an environmental growth 

chamber (EGC15, Chagrin, Ohio) in order to investigate the repeatability of the TIR camera under 

changing environmental conditions (i.e., air temperature and relative humidity) typical in 

agricultural studies (Figure 2.14). 

    
      (a)    (b)     (c)   

Figure 2.14. (a) BB enclosure installed in the (b) environmental chamber for strictly controlled 
environmental conditions. (c) Air exchange through the BB enclosure controls internal air 
parameters 

Strict laboratory tests regulated air temperature and relative humidity, providing an 

evaluation of the measurement accuracy under diverse laboratory conditions (i.e., 15-45°C ±0.3°C, 

and 25-75%RH ±2.5%). The BB enclosure pulled outside air from the environmental chamber 
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until the set air condition parameters were reached (Figure 2.14). Eight air temperature namely 10, 

15, 20, 25, 30, 35, 40, and 45ºC were selected. For each test, the desired air temperature was set 

while humidity was set at 25% relative humidity. When the specific air conditions were achieved 

within the BB enclosure, an OT radiometric calibration was performed as the relative humidity on 

the environmental chamber was set to change from 25% to 75% which occurred over a period of 

10 minutes. The change in relative humidity was induced to observe radiant heat attenuation due 

to increased water vapor between the target and the TIR camera (Monteith & Unsworth, 2013). 

Environmental attenuation would be consistent between the two camera cores; therefore, only 

CAM1 was testing in the environmental chamber. An OT radiometric calibration was used because 

RT radiometric calibration was developed to compensate for changes in ambient conditions.  

2.4 RESULTS AND DISCUSSION 

     2.4.1 Lens Selection and Distortion 

The medium angle lens of CAM1 has less visible distortion than the wide angle lens of 

CAM2 (Figure 2.15). The wide angle lens (7.5 mm) and medium angle lens (11mm) distortion 

was 30% and 19%, respectively. However, both distortions were corrected with the resulting lens 

correction coefficients shown in Table 2.2. The distortion comparison is not meant to distinguish 

differences between TIR camera cores, but the difference between medium to wide angle lens focal 

length and resulting lens FOV degree angle. Distortion coefficients of both camera lenses had to 

be determined because they were not provided by the TIR camera manufacturer. The results reveal 

a significant distortion occurs within the germanium lens of each TIR camera core. This will have 

practical implications where spatial accuracy is critical especially in whole-field temperature 

mapping and site-specific crop health monitoring. In application, batch image processing would 

use the resulting lens distortion coefficients within an algorithm in order to undistort images for 

spatial accuracy for actual location using Equation 2.1 and 2.2, above. In addition, since each TIR 

camera and lens are factory calibrated, a TIR camera and lens combination may have subtle 

variations in distortion characteristics. As a result, identical camera-lens configurations may not 

be interchangeable; therefore, each individual TIR camera may need to be calibrated in order to 

determine specific lens distortion coefficients. 
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Figure 2.15. (a) CAM1 with 11 mm and (b) CAM2 with 7.5 mm lens distortion results from the point 

distortion (grid) model with grid pattern with know n point distances (left) point vector map (middle), 
and visual distortion map (right) 

Table 2.2 Lens distortion results including radial and tangential correction coefficients. 
(See Appendix A, Figure A.8 and A.9  for more details) 

TIR Camera Core % Distortion 
Radial  Tangential 

k1 k2 p1 p2 
CAM1 

11 mm lens 
19.1 -0.24992 -0.74306 -0.000177 0.002740 

CAM2 
7.5 mm lens 

30.4 -0.43814 0.20181 0.001486 -0.000493 

     2.4.2 Image Resolution and Measurement 

The increasing pixel-by-pixel-resolution ROI analysis provided necessary spatial 

resolution to limit false measurements. As shown in Figure 2.16 a, a 9 mm/pixel spatial resolution 

was necessary to measure 100% of the DV of the target when the ROI was directly centered on 

the target normal to the camera. In actual in-field applications, however, a target will seldom be 

normal to the camera and aligned to the fixed pixel array. Consequently, target orientation and 

location variation will inherently cause pixels to measure a mixture of background/target 

temperature (Figure 2.16 b).  
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(a)       (b) 

Figure 2.16. (a) Spatial resolution versus the digital value accuracy. (b) Generalized pixel orientations 
and spatial resolutions of 1 pixel, 2 pixel, and 4 pixels incident on a target. Black boxes represent the 
individual pixel’s FOV. Green objects represent an object that can be accurately measured with the 
pixel orientation and spatial resolution. Pink objects represent an object that is measured with error.  

The first response would be to increase the number of pixels incident on a target by 

positioning the camera closer. However, this reduces the overall image coverage area and requires 

a larger volume of images in order to cover the desired ground area at the specific level of detail. 

For example, 4 pixels on a target, as shown Figure 2.16 b, better capture a representative value but 

cannot entirely reduce the inaccuracy from extreme target orientation and shape irregularity 

(Figure 2.16 b). At the same time, 4 pixels versus 2 pixels present on a target reduces the overall 

image coverage area by 75% and requires 4 times the images in order to cover the same surface 

area. As a result, a tradeoff exists between the coverage area and level of measureable detail 

possible from a sensing platform. This will be especially important in the case of uncooled TIR 

camera when the image resolution (i.e., number of pixels in the fixed pixel array) are small 

compared to typical visible camera image resolutions. This relationship is critical when matching 

the camera’s fixed pixel resolution and lens combination to the necessary spatial resolution 

because of the volume of data generated in order to achieve the desired application ground 

coverage and specific level of detail.  

     2.4.3 Warm-up Time 

The warm-up time for each camera was determined as shown Figure 2.17. Results show 

warm-up times of 19 min and 7 min were necessary for CAM1 and CAM2, respectively, in order 

to reach within 5% of the stable pixel intensity measurement. Timely fluctuations in the first 

minutes are due to NUC triggered by the change in the thermal detector temperature and/or after 

the user-defined timed interval of 1 min. During the warmup period, multiple NUC were activated 
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from a temperature change of the microbolometer as shown by the drastic change in measured 

pixel intensity during the first 5 minutes. Once the camera housing temperature began to level off, 

less erratic pixel intensities were observed past 5 minutes which may suggest NUC is activated 

from the timed interval of 1 min rather than the temperature change. 

       
 (a)       (b) 

Figure 2.17. Raw image intensity and housing temperature versus camera ‘on-time’ of (a) CAM1 and 
(b) CAM2. The dotted vertical line indicates the time when measured pixel intensity was within 5% 
of the stable pixel intensity. 

Prior to the designated warm-up period, inaccuracy exists as the camera reached a stable 

operating temperature. Camera warm-up time will has implications on how quickly a system can 

be deployed and is important when considering a standard operating protocol. Furthermore, warm-

up time is dependent on the storage temperature prior to operation. In the scenario producing the 

results shown in Figure 2.17, the cameras were equal to ambient temperature prior to operation. 

As a result, warm-up time is dependent on ambient conditions; therefore, allowing TIR cameras 

to operate beyond the warm-up time will ensure the camera reach a stable operating temperature 

to limit inaccurate measurements. In application, starting the camera may be the first step in a 

standard operating procedure when taking data. 

     2.4.4 Radiometric Characterization and Measurement Accuracy 

The developed radiometric calibration methods yielded radiometric curves demonstrated 

in Figure 2.18. Linear regression analysis showed significant correlation between actual surface 

temperature and image pixel intensity (R2 = .99) for both TIR camera cores. The resulting linear 

transfer functions would be directly used to convert image pixel intensities into surface 

temperature measurements for each camera. Between the two TIR camera cores, the sensitivity to 

incoming LWIR is comparable. This sensitivity demonstrates uncooled thermal cameras’ ability 

to measure absolute temperatures with additional hardware and software, standard operating 

protocol for radiometric calibration, and strict camera configurations. 
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(a)                     (b) 

Figure 2.18. Radiometric calibration performed on the CAM1 (a) and CAM2 (b) at 25°C air 
temperature and 35% relative humidity after reaching a steady operating temperature.  

Because the OT and the RT radiometric calibration methods were developed for different 

applications, a comparison in Figure 2.19 shows the measurement accuracy of the two calibration 

methods. The absolute difference between the actual and measured temperature showed the 

measurement accuracy was ±0.38°C or 0.62°C (α=0.05) with RT and OT radiometric calibration, 

respectively. RT radiometric calibration had a higher measurement accuracy because of the fixed 

reference panels within the FOV for RT calibration, whereas the same OT radiometric calibration 

was used throughout the sensing period. As a result, the OT calibration has a diminishing 

measurement accuracy as the camera continuously conducts a NUC generating slight pixel-to-

pixel variation caused by the correction algorithm.  

 
Figure 2.19. CAM1 measurement accuracy (±ºC) of OT and RT radiometric calibration process over 

1 h. The absolute difference between the actual and measured temperature is shown. CAM1 operated 
at a stable temperature prior to comparison. 

In applications needing a high accuracy with a fixed sensing platform, the RT radiometric 

calibration would be most applicable. On the other hand, the OT radiometric calibration would be 

better suited for dynamic sensing platforms in field studies. Most importantly, when considering a 

TIR camera core and complementary hardware and software, choosing relative versus absolute 

temperature measurements may reduce the necessary hardware and software, but limit quantifiable 

temperature measurements. For consistency, the sensing distance was held constant throughout all 
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tests. However, in typical field applications, larger sensing distances beyond that of the BB 

enclosure may influence the measurement accuracy. As a result, future studies should be conducted 

that test multiple sensing distances to validate the developed radiometric calibration methods. 

     2.4.5 Automatic Recalibration 

Because NUC recalibrates the thermal sensor, measurement accuracy with and without 

NUC is summarized in Table 2.3.  

Table 2.3. Measurement accuracy (±°C) with OT and RT radiometric correction. 
(Accuracies shown represent an 95% confidence interval) 

  Video 
Output 

NUC 
Timed 

Interval 

OT Calibration RT Calibration 
15 min 30 min 60 min 15 min 30 min 60 min 

CAM2 Analog  
1 min - - 0.87 - - 0.63 
5 min - - 1.00 - - 0.72 
[a]W/O  0.67 0.80 0.92 0.47 0.53 0.74 

CAM1 
Analog  

1 min - - 0.82 - - 0.62 
5 min - - 1.15 - - 0.65 
[a]W/O  0.60 0.73 0.87 0.38 0.49 0.62 

Digital 
1 min - - 0.43 - - 0.29 
5 min - - 0.95 - - 0.54 
[a]W/O  0.30 0.35 0.64 0.29 0.30 0.35 

 
[a]

Subject to thermal detector sensor drift from internal and external temperature 
inaccuracy. Not recommended from TIR camera manufacturer 

Under operation with and without NUC, measurement accuracy decreased with increased 

sensing time which is most likely attributed to the slight pixel variation of the NUC. Results 

showed that a camera configured for a NUC at a user-defined time interval of 1 min yielded the 

highest measurement accuracy for both analog and digital video systems (Table 2.3). However, a 

RT calibration for a sensing time of 60 min with a 1 min NUC provided similar measurement 

accuracy as with no NUC with CAM1, thereby suggesting the use of no NUC. However, the strict 

environmental conditions that produced these results are impractical in agricultural applications. 

In addition, TIR camera manufacturers do not recommend camera operation without NUC due to 

potential temperature drift previously discussed in 2.4.3. Throughout tests, maximum sensing time 

used to evaluate the two TIR camera cores was set at 60 minutes. Extended sensing times may 

need to be investigated for high temporal studies and performance under constant operation.  

     2.4.6 Connection Ease, Software, and Controllability 

Required evaluation hardware for analog video capture was enabled with off-the-shelf 

(OTS) equipment with camera control software from TIR manufacturers for full evaluation of 

camera controls and features. As observed, manual control of the thermal detector through the 
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camera control software with radiometric calibrations revealed the characteristic linear transfer 

functions of gain and level controls, as shown in Figure 2.20 and Figure 2.21. This knowledge is 

important in order to set the cameras for a particular temperature span and offset the center 

temperature. As observed, a configured temperature span has a direct influence on the discrete 

temperature resolution measurable from the thermal detector. As a result, the ability to set a 

specific temperature span could result in the ability in order to better assess discrete spatial crop 

temperature differences.  

For application in crop sensing, a minimum temperature resolution of 0.5°C is suggested 

to measure the subtle temperature differences for crop health assessment (Sepulcre-Canto, et al., 

2007). As a result, a limitation of the 8-bit image data is the coarse temperature resolution with 

large temperature spans. As shown in Table 2.4, the minimum temperature resolution suggested 

by Sepulcre-Canto et al. (2007) of 0.5°C would result in a temperature span close to 120°C. In 

order to cover twice the suggested temperature resolution, a minimum temperature resolution of 

0.25°C was chosen to determine the maximum temperature span (60°C) in Figures 2.20 and 2.21 

by rearranging Equation 2.6.  

             
(a)       (b) 

Figure 2.20. CAM1 camera (a) gain for temperature span and (b) level setting characteristics for offset 
temperature bias. 

              
(a)        (b) 

Figure 2.21. CAM2 camera (a) gain for temperature span and (b) level setting characteristics for offset 
temperature bias. 
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With Equation 2.6, Table 2.4 demonstrates theoretical temperature resolution of selected 

temperature spans of the analog and digital output. By using Equation 2.6, digital output from 

CAM1 resulted in a fixed temperature span of 156°C with a fixed 0.01°C temperature resolution. 

Similarly, analog output from CAM1 resulted in a configurable temperature span from 5°C to 

156°C and resolution from 0.02°C to 0.61°C. Analog output from CAM2 yielded a controllable 

temperature span of 18°C to 206ºC and resolution of 0.07°C to 0.80ºC.  

Table 2.4. Temperature resolution (°C) of specific temperature span 

  Span (°C) 
Video Type 

(bits) [a]200 150 100 50 40 30 20 10 
Analog (256) 0.78 0.59 0.39 0.20 0.16 0.12 0.08 0.04 

Digital (16,384) - 0.01 [b]0.01 [b]0.01 [b]0.01 [b]0.01 [b]0.01 [b]0.01 
[a]

Only the FLIR® Tau 2 (324) is sensitive to a temperature span of 200°C 
[b]Based on fixed temperature span and resolution of the digital output 

Results in Table 2.4 will have implications on a sensing application that requires a large 

temperature span and high temperature resolution. Therefore, a digital output would provide the 

full temperature span and resolution of the thermal detectors. In addition, TIR cameras have a low 

signal-to-noise ratio that neither digital nor analog video equipment can reduce. However, digital 

video hardware eliminated noise introduced with analog video transmission (Figure 2.22) while 

streaming 14-bit video data.  

 
Figure 2.22. Accuracy comparison of analog and digital video output over a 1 h sensing time of CAM1. 

The absolute difference between actual and measured temperature is shown with a 1 min NUC. 
Results demonstrate the digital and analog measurement accuracy to be 0.43°C or 0.82°C (α=0.05), 
respectively. The TIR camera core operated at a stable temperature prior to the comparison. 

     2.4.7 Environment Influence 

Due to the unregulated temperature of the microbolometer, a change in thermal detector 

temperature during the warm-up period caused a decrease in measurement inaccuracy (Figure 

2.17, above). Similarly, evaluation within the environmental chamber revealed a change in 

ambient air temperature caused a proportional change in camera housing temperature, thereby 

causing similar measurement inaccuracy (Figure 2.23).  
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Figure 2.23. Measurement inaccuracy due to a change in camera housing temperature over a 10 min 

time span. OT radiometric calibration was performed when the TIR camera housing was at 20ºC. 
CAM1 was configured for 1 min NUC, analog video output and a temperature span of 20°C. Ambient 
air temperature was 10°C and relative humidity was 25%. CAM1 operated at a stable temperature 
prior to inducing a change in ambient air temperature. 

As camera housing temperature increased, the measured temperature was consistently 

higher than the actual temperature. This consistent temperature increase could be attributed to how 

the microbolometer quantifies a pixel intensity due to a change in resistance of an individual pixel 

detector. As the camera housing temperature increases, the heat transfer to the microbolometer 

would cause individual pixel resistances to increases resulting in a higher measured temperature. 

Results from an increased relative humidity was investigated and the resulting influence to 

measurement accuracy is shown in Figure 2.24.  As shown in Figure 2.24 a, a target with a stable 

temperature above air temperature resulted in a decreased measured temperature that appeared to 

attenuate towards ambient air temperature with increasing relative humidity. Similarly, a target 

with a stable temperature below air temperature (Figure 2.24 c) resulted in an increased measured 

temperature that appeared to attenuate towards ambient air temperature with increasing relative 

humidity. Lastly, a target with a stable temperature equal to air temperature (Figure 2.24 b) resulted 

in a measured temperature that remained closely centered to air temperature but with diminished 

accuracy. With stable targets not equal to air temperature, the apparent attenuation towards 

ambient air temperature is most likely due to ambient air particles in-between the target surface 

and camera. In the scenario with the stable target equal to air temperature, some inaccuracy may 

be contributed to air particles that are not in equilibrium with the ambient air, thereby causing the 

apparent decrease in measurement accuracy. 
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 (a)             (b)    (c) 

Figure 2.24. Influence of relative humidity changes to measurement accuracy between the TIR camera 
and the stable target whose temperature is (a) above (>5ºC) ambient air temperature, (b) equal to 
air temperature, and (c) below (>5ºC) air temperature. CAM1 was configured for 1 min NUC, analog 
video output, and a temperature span of 20°C. CAM1 operated at a stable temperature prior to the 
inducing a change in relative humidity. 

Results indicate air temperature and relative humidity can impact measurement accuracy 

of the TIR camera systems. The R2 values for plots in Figure 2.23 and 2.24 indicated that regression 

curves can be generated to compensate for temperature and humidity changes. However, further 

research needs to be conducted to understand these affects with the TIR camera system at different 

sensing distances especially aboard sUAS platforms.  

To account for changing environmental conditions, an OT radiometric calibration at a 

specific air temperature, relative humidity, and camera housing temperature produced an accurate 

surface temperature measurement (Figure 2.25). Similarly, a RT radiometric calibration 

maintained measurement accuracy from changing environmental conditions. Depending on the 

application, the OT radiometric calibration method may be appropriate if conditions such as air 

temperature, relative humidity, and camera thermal detector temperature go unchanged, while the 

RT calibration accounts for the instantaneous environmental conditions. 

 
Figure 2.25. RT versus OT radiometric calibration under changing relative humidity. OT radiometric 

calibration was conducted when chamber was at a relative humidity of 25%. CAM1 was configured 
for 1 min NUC, analog video output, and a temperature span of 20°C. CAM1 operated at a stable 
temperature prior to the inducing a change in relative humidity. 
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Further studies should be conducted with TIR camera cores within semi-regulated and 

unregulated environmental settings in order to fully investigate TIR camera core utility and the 

robustness of the developed calibration methods in dynamic field operations.  

2.5 CONCLUSION  

Uncooled TIR camera core evaluations were conducted to answer questions on use and 

standard operating protocol, system complexity, and measurement accuracy in changing 

environmental conditions, which has restricted previous use. More specifically, this study 

determined the necessary hardware and influences to measurement accuracy from physical 

properties and some environmental conditions present in agricultural applications. As studied, 

physical properties that reduce practical use of TIR cameras for temperature measurement include 

lens distortion, image pixel resolution, warm-up time, camera controllability, and repeatability. 

However, negative influences on measurement accuracy can be reduced with camera configuration 

settings, a camera-lens combination selected for sensing distance and target dimensions, post-

processing lens calibrations, and standard operating protocol. 

In this study, the wide angle lens (7.5 mm) and medium angle lens (11mm) distortion was 

30% and 19%, respectively, that image distortion correction resolved for precise spatial integrity. 

At least 4 pixels are recommended on the target in order to capture a representative value from the 

target and maximize the image coverage area while accounting for slight inconsistencies in target 

orientation and shape. Warm-up times of 7 and 19 min are necessary for a stable temperature 

measurement of CAM2 and CAM1, respectively.  

With a 1 min timed-interval NUC over a sensing period of 1 h, OT or RT radiometric 

calibration provided absolute surface temperatures with environmental compensation in which the 

TIR camera was calibrated. The CAM1 analog output yielded a configurable temperature span 

from 5°C to 156°C, resolution from 0.02°C to 0.61°C, and measurement accuracy of ±0.82°C or 

0.62ºC with OT or RT radiometric calibration, respectively. CAM 1 digital output yielded a fixed 

temperature span of 156°C, resolution of 0.01ºC and measurement accuracy of ±0.43 or 0.29ºC 

with OT or RT radiometric calibration, respectively. CAM2 yielded a controllable temperature 

span of 18°C to 206ºC, resolution of 0.07°C to 0.80ºC, and measurement accuracy of ±0.87 or 

0.63ºC with OT or RT radiometric calibration, respectively. Both TIR camera cores had a thermal 

detector that was sensitive and directly correlated to the temperature within the FOV (R2 = 0.99), 

thereby resulting in comparable measurement accuracies between the two TIR cameras.  
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Increased measurement temperature accuracy, resolution, and added control was achieved 

by integrating a digital frame grabber to reduce analog signal loss and noise introduced with analog 

video signal transmission. The DRS Breakout Box in conjunction with CAM1 was advantageous 

because it acts as the analog and digital module while doubling as the control interface. Both 

cameras were configurable for a span of temperatures, but CAM1 had more discrete settings in 

order to make fine adjustments to span and offset temperature.  

Findings of this research support future studies to capture spatial temperatures aboard 

ground and aerial-based sensing platforms to generate high-spatial thermal images for unique 

monitoring of crop health for new and advanced relationships.  
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Chapter 3 - Deploying a Thermal Infrared Imaging System for High 

Spatial and Temporal Resolution Crop Water Stress Monitoring of 

Corn within a Greenhouse 

3.1 ABSTRACT 

Inadequate water application often decreases yield and product quality. Existing methods 

using single, localized soil moisture or canopy temperature measurements that do not account for 

crop water stress on a high spatial basis to assist irrigation scheduling. This study was conducted 

to understand the feasibility of thermal cameras in order to quantity high spatial canopy 

temperatures in relation to soil moisture. Study objectives included the deployment of a thermal 

infrared imaging system (TIRIS) for high spatial and temporal monitoring to test camera durability 

and measurement accuracy during full-season crop development, remove background 

temperatures with image segmentation, and sample individual plants to investigate full-season 

crop water stress versus soil moisture content. A developed TIRIS using a lightweight uncooled 

thermal camera maintained measurement accuracy below ±0.62°C (α=0.05) while compensating 

for changing greenhouse conditions. Corn plants were segmented into well-watered and water-

stressed irrigation zones to observe stress from water deficits. Canopy temperatures were used to 

develop empirical canopy-to-air temperature deficit versus vapor pressure deficit linear 

regressions that revealed predicted canopy temperature are closely related to characteristic water 

use. Results of the 80-day study demonstrated that 82% of decreased soil moisture variation was 

explained when the CWSI increased above 0.6. Results support the use of the CWSI as an alternate 

irrigation scheduling method in order to quantify spatial soil moisture by remotely measuring 

canopy temperature. 

3.2 INTRODUCTION  

In the United States, agriculture annually uses approximately 80% of the consumptive 

ground and surface water use (USDA, 2014). The potential to conserve water relies heavily on 

decision support tools (Rodriguez, et al., 2005) to increase water use efficiency using precision 

irrigation technologies (Ballester, et al., 2013; Cohen, et al., 2005; Gontia & Tiwari, 2008). 

Quantity of irrigation water and application time are among critical decisions producers need to 

make to develop site-specific irrigation plans (Alves & Pereira, 2000; Cohen, et al., 2005; Wanjura, 
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et al., 1992). Precision irrigation technologies can be used to precisely apply desired water at a 

controllable increment for desired crop performance (Cohen, et al., 2005; Taghvaeian, et al., 2013). 

However, large variability may exist in commercial agricultural fields due to variability in soil 

type and depth, topography, climate, specific crop growth period and producer’s operation (Cohen, 

et al., 2005; Evett, et al., 2014). Therefore, techniques and technologies are needed to accurately 

classify spatial crop water need or crop water stress to gain economic and environment advantages 

(Herwitz, et al., 2004; Taghvaeian, et al., 2013). Of the many types of crop stress, water stress is 

the most common and restrictive factor impacting crop yield (Jackson, et al., 1981; Luvall & 

Holbo, 1991; Scherrer, et al., 2011; Zia, et al., 2013) where water stress severity depends on timing 

and duration.  

Several existing methods to monitor crop water stress rely on a combination of single-point 

soil, plant and atmospheric measurements (Alves & Pereira, 2000; Cohen, et al., 2005). Soil 

moisture sensors are one of the most common tools being utilized to make irrigation decisions. 

One soil moisture probe is typically installed for a whole field due to the installation cost and 

maintenance. Soil moisture probes, more recently, quantify moisture at multiple soil depths. Soil 

moisture probes, however, are subject to localized placement error and do not account for spatial 

crop variability that exists within a field (Moller, et al., 2007). Alternative methods for detecting 

crop water stress utilize pressure chambers and leaf diffusion porometers to measure individual 

leaf stomatal conductance and leaf and stem water potential, respectively (Ballester, et al., 2013; 

Berni, et al., 2009a; Grant, et al., 2007; Idso, et al., 1977). However, these techniques are 

destructive, labor intensive, localized, limited by small sample size and unsuitable for automation 

(Ballester, et al., 2013; Berni, et al., 2009a; Cohen, et al., 2005; Gontia & Tiwari, 2008; Jones, 

1999; Leinonen & Jones, 2004). Consequently, these drawbacks make invasive plant-based crop 

monitoring impractical in commercial applications, thereby limiting producer adoption for 

irrigation decision management (Ballester, et al., 2013).  

To address these concerns, thermal sensing approaches have been investigated because 

they are non-contact and less labor intensive, and offer non-destructive monitoring to assess crop 

stress from leaf canopy temperatures (Grant, et al., 2006; Leinonen & Jones, 2004). Since the 

1970s, crop canopy temperature has been accepted as a health indicator of crop water stress 

because plants close their leaf stomata, or leaf openings, when they experience water stress in order 

to retain water, thereby lowering stomatal conductance, reducing transpiration, and increasing leaf 
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temperatures (Ballester, et al., 2013; Grant, et al., 2006; Idso, et al., 1977; Jones, 1999; Leinonen 

& Jones, 2004; Rodriguez, et al., 2005). On the other hand, when leaf stomata are open, water in 

the leaf evaporates through transpiration which cools the leaf (Maes & Steppe, 2012). During 

transpiration, energy from the leaf is used to evaporate the water from liquid to vapor, inducing 

latent heat loss and cooling the leaf. In addition to transpiration, leaf temperature depends on 

ambient conditions such as relative humidity, wind speed, ambient temperature, and radiation 

incident on the leaf surface (Leinonen & Jones, 2004). As a result, canopy and leaf temperatures 

are controlled by a combination of thermal energy balances, vegetative genetics, and natural site-

specific elements (Luvall & Holbo, 1991). Although these environmental elements influence leaf 

temperature, they can be readily measured in real-time using commercially available sensors 

(Udompetaikul, et al., 2010).  

Current crop growth studies have primarily used ground-based thermometry to take canopy 

temperature measurements and develop thermal indices that account for canopy characteristics, 

soil temperature, and atmospheric conditions for site-specific irrigation management and breeding 

programs (Idso, et al., 1981; Jackson, et al., 1981; O'Toole & Real, 1986). According to Zia et al. 

(2013), crop growth stage does not significantly impact canopy leaf temperature, thereby 

supporting the use of leaf temperature as a viable indicator of full-season crop health characteristic. 

Highly integrated thermometric systems use an array of infrared thermometers (IRTs) mounted in 

fixed field locations and on dynamic center pivot irrigation systems to measure crop canopy 

temperatures and provide a means of irrigation scheduling (O'Shaughnessy, et al., 2012). 

However, crop temperature must be segmented from the measured temperature influence 

of soil background and shaded lower leaves (Ayeneh, et al., 2002; Luquet, et al., 2003; Maes & 

Steppe, 2012). Unfortunately, this segmentation is not possible with IRTs without additional 

sensor measurements potentially adding to measurement inaccuracies and automation complexity. 

In general, IRT inaccuracy from background temperatures limit their use until the crop reaches a 

particular growth stage because when plants are small, soil covers a majority of the measurable 

surface, thereby dominating the temperature measurement. Moreover, IRTs cannot measure spatial 

temperature difference between shaded and sunlit leaves where temperature differences can 

drastically differ. Due to the uniqueness of biological crop material, any two plants exhibit 

temperature differences as a result of physical variation in plant architecture, such as color, leaf 

size, relative orientation to the sun, and field variability (Ayeneh, et al., 2002; Luquet, et al., 2003). 
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In addition, IRTs are limited to ground-based systems because of their single-point measurement, 

small measurement area, time requirement for field mapping, and inability to segment crop from 

a soil background. Overall, IRT technology lack both spatial (ground sample distance (e.g., 1 

cm/pixel)) and temporal (revisit frequency) resolution to quantify crop variability (Colaizzi, et al., 

2012) critical for making weekly irrigation decisions. 

An alternate to IRTs are thermal infrared imaging systems (TIRIS). TIRIS are 

advantageous because they can spatially map temperatures via a thermal image to measure subtle, 

heterogeneous characteristics of leaf dynamics (Liu, et al., 2011). The spatial resolution and image 

processing functionality of low-resolution thermography increase the use of crop canopy 

temperature characteristics in agriculture (Luquet, et al., 2003) in order to provide qualitative and 

quantitative crop characteristics that support management decisions (Colaizzi, et al., 2012; Evans, 

et al., 2000). Crop stress monitoring with thermography allows producers to use thermal sensing 

for crop canopy temperature mapping (Alves & Pereira, 2000; Ayeneh, et al., 2002; Berni, et al., 

2009b; Taghvaeian, et al., 2013; Wang, et al., 2010), individual crop temperature profiling 

(Leinonen & Jones, 2004), variable rate irrigation scheduling (Cohen, et al., 2005; Colaizzi, et al., 

2012; Fitzgerald, et al., 2007), crop breeding (Grant, et al., 2006; Liu, et al., 2011; Zia, et al., 2013), 

fruit detection and quality assessing (Bulanon, et al., 2009; Sepulcre-Canto, et al., 2007; Zhao, et 

al., 2005), biomass estimation (Wooster, et al., 2013), yield prediction (Hackl, et al., 2012), and 

disease and nutrient deficiency detection (Chaerle, et al., 1999; Hashimoto, et al., 1984; Tilling, et 

al., 2007).   

Progressive agriculture management with on-demand thermal sensing relies on accurate 

measurements, rapid response times, inexpensive sensor platforms, and user-intuitive techniques 

in order to achieve well-informed decisions. Thermography has been utilized to further develop 

thermal indices and crop sensing techniques originally developed with IRTs. Temperature-based 

indices have shown significant correlations among crop canopy temperature, stomatal 

conductance, and leaf water potential. The correlations become more significant as stress intensity 

increased (Hackl, et al., 2012). Idso et al. (1981) investigated the hypothesis that non-water 

stressed crops transpire to a predictable leaf temperature dependent on ambient air conditions, such 

as wind speed, net radiation, and vapor pressure deficit (VPD). For example, a leaf temperature at 

or below the predicted leaf temperature indicates a non-stressed plant, whereas a leaf temperature 

above the non-water stress baseline (NWSB) indicates a level of water stress.  
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This aforementioned predictable leaf temperature relationship was used by Jackson et al. 

(1981) to indirectly measure soil moisture and apparent crop health through transpiration. The crop 

water stress index (CWSI) has been successfully developed and implemented using IRTs that 

measure canopy temperatures in order to determine variable rate irrigation needs (Taghvaeian, et 

al., 2013). The CWSI is the normalized difference of the measured air-to-leaf canopy temperature 

deficit between the lower base line (i.e., NWSB) and the upper base line, or water-stressed baseline 

(WSB), on a plot of air-to-leaf canopy temperature deficit vs. VPD. Therefore, the robustness of 

the CWSI is attributed to the scale at which it can be implemented. With the addition of upper and 

lower boundaries for predicted leaf temperature, the CWSI approach has been the most used index 

aboard all thermal sensing platforms in various climate regions because of the inclusion of VPD, 

solar radiation, and wind speed (Maes & Steppe, 2012; Rodriguez, et al., 2005). 

A limitation of thermal indices includes the need for measuring several environmental 

parameters. Measurements necessary for CWSI include crop canopy temperatures, wet/dry leaf 

reference temperatures, and environment conditions (Grant, et al., 2007; Luquet, et al., 2003). A 

robust technique relies on empirically determined NWSBs and water stress baselines (WSBs) that 

directly account for present net radiation, aerodynamic resistance, and the particular crop’s 

microclimate (Ballester, et al., 2013; Blonquist & Bugbee, n.d.; El-Shikha, et al., 2007; Erdem, et 

al., 2010; Fitzgerald, et al., 2007; Gontia & Tiwari, 2008; Grant, et al., 2007). In order to directly 

measure lower and upper reference temperature bounds, select leaves are wetted with water to 

represent a fully transpiring leaf while leaves are covered with petroleum jelly to reach a non-

transpiring stage. Temperatures of these leaves are measured to provide the lower and upper limits, 

respectively. However, preparation of wet/dry leaf surfaces for reference leaf temperatures is not 

practical and subject to repeatability errors. Many studies have investigated the use of standardized 

measurements without manually preparing reference temperatures achieving similar CWSI results 

(Berni, et al., 2009b; Cohen, et al., 2005; Grant, et al., 2006; Grant, et al., 2007; Jones, 1999). 

Standard dry reference temperature recommendations include the use of an upper temperature 

bound of 5°C above air temperature (Alves & Pereira, 2000; Cohen, et al., 2005; Erdem, et al., 

2010; Moller, et al., 2007; Moran, et al., 1994; Wanjura, et al., 2006). Standard wet reference 

temperature recommendations include measuring leaf temperature of well-watered plants 

(Ballester, et al., 2013; Blonquist & Bugbee, n.d.; El-Shikha, et al., 2007; Erdem, et al., 2010; 

Fitzgerald, et al., 2007; Gontia & Tiwari, 2008; Grant, et al., 2007; Maes & Steppe, 2012). CWSI 
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measurement strength is reduced in climates with high humidity in which the VPD approaches 

zero as differences between water-stressed and well-watered leaf temperatures diminish. Near zero 

VPDs, consequently, increase the chance of inaccurate CWSI assessment because of the 

requirements for high temperature measurement resolution and accuracy. Artificial dry/wet 

reference measurements have provided a repeatable standard for applications of a larger scale 

when used in conjunction with thermography (Moller, et al., 2007). The use of artificial reference 

surfaces requires a viewable reference within the camera’s field of view (FOV) mounted near the 

plant canopy to most accurately match the leaf’s microclimate. Thermography is an appealing 

sensing technology because consistent crop water stress can be accounted for by automatically 

measuring an artificial wet reference (Maes & Steppe, 2012) viewable from within the camera’s 

FOV (Wang, et al., 2010).  

Considering the limitations and drawbacks of IRT sensors, a TIRIS may provide high 

spatial and temporal resolutions for canopy temperature measurement that are needed for advanced 

crop health monitoring and CWSI-based irrigation scheduling. With single-point measurements, 

present and past studies used IRTs to derive CWSI values. However, limited studies have been 

conducted to measure crop temperature with high spatial and temporal resolutions. Canopy 

temperatures of corn obtained throughout the growth season, especially during periods of irrigation 

deficits and replenishment, could provide necessary knowledge on crop stress to assist in practical 

adoption of crop water stress for deciding irrigation management. Thermal imaging could show 

the spatial canopy temperatures from varying nighttime and daytime vapor pressure deficits. More 

specifically, thermal imaging can segment canopy vegetation from soil, lower leaves, and inner to 

outer canopy spatial temperatures to further correlate canopy temperatures with VPDs. With high 

spatial temperature resolution, upper and lower limits for the CWSI can be further investigated 

with real-time soil moisture at growth stages not previously studied. Diurnal conditions of the 

greenhouse and empirical NWSB can be used for an investigation of VPD-to-canopy temperature 

deficit transfer functions for a full growth season.  

Based on the limitations of current crop water stress monitoring methods, objectives for 

this study included: 

1. Develop and deploy a thermal imaging system for monitoring corn canopy at high spatial 

and temporal resolutions in a greenhouse, 
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2. Evaluate the accuracy of the thermal imaging system in measuring crop canopy 

temperatures during a full growth season of corn, and 

3. Investigate full-season air-to-canopy temperature deficit versus VPD transfer functions 

for direct relationships between crop water stress index (CWSI) values and soil 

moisture by automatically evaluating canopy temperature images. 

3.3 METHODS AND MATERIALS 

Laboratory experiments were conducted at the Department of Biological and Agricultural 

Engineering at Kansas State University, Manhattan, Kansas, to evaluate TIRIS accuracy and 

requirements for measuring corn canopy temperatures in precision agriculture applications. An 

uncooled Tamarisk® 320 thermal infrared (TIR) camera core (DRS Technologies, Inc., Dallas, 

Texas) was selected for this study. On 10 May 2014, corn (Zea mays) seeds were planted in pot 

containers with 20 cm diameter in 30 replications at the Throckmorton Greenhouses at Kansas 

State University, coordinates of 39.1917° N, 96.5917° W. For a full-season growth study (80 days), 

the plants were seperated into two irrigation regimes of well-watered (WW) and water-stressed 

(WS), as shown in Figure 3.1. 

                              
Figure 3.1. Water stressed plant orientation (left) and well-watered plants (right) 

Corn was selected as the crop of choice because it is a major irrigated crop in the Midwest 

and has demonstrated high yield potential with subsequent irrigation (Schlegel, et al., 2014). 

Compost material with high organic and plant nutrient content was used as potting media with a 

water-holding capacity of 3.4 ml per gram of soil, as determined in an oven drying method (Texas 

Department of Transportation, 2014). All corn seed was planted 4 cm deep, fertilized with slow-

release nitrogen pellets, and imposed with water treatments directly after emergence. Greenhouse 

temperature was set to 27°C during the day from 6:00 to 18:00 h and 20°C at night from 18:00 to 

6:00 h on the following day (Hoeft, et al., 2004).  
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As specified by Rogers (1998), a characteristic amount of water use (Figure 3.2) was used 

to irrigate the well-watered corn plants while inducing water stress in the water-stressed regime. 

Consequently, periods of analysis were split into growth periods of 1) germination and seedling 

stage, 2) rapid growth stage, 3) reproductive stage, and 4) maturity stage. 

 

Figure 3.2. Characteristic water use of corn.  Reproduced from Rogers and Alam ( 1998). 

Irrigation was applied according to recommended water needs as specified in Table 3.1. 

Based on the size of pot containers used in this study, Table 3.1 depicts the water amount applied 

to each corn plant during the respective growth stage based on findings of Rogers and Alam (1998). 

Table 3.1. Average recommended water-use rate for irrigated corn  

Time 
*Recommended Water 

Use Per Day 
[ml] 

Water Applied to Well-Watered  
Per Day 

[ml] 

Water Applied to Water-Stressed  
Per Day 

[ml] 
Germination and Seedling 453 500 225 

Rapid Growth 907 900 450 
Reproductive  1058 1100 550 

Maturity 605 625 300 
 *Does not account for evaporation or pot drainage 

     3.3.1 Irrigation Setup 

Water was applied via commercial drip-line irrigation under constant pressure from a 

regulating solenoid valve (Production Series Sprinkler Value, Orbit Irrigation Products, Inc., 

Bountiful, Utah) controlled by a zone irrigation controller (Zone Indoor/Outdoor Irrigation 

Controller, Orbit Irrigation Products, Inc., Bountiful, Utah) to maintain drip uniformity and 

repeatability. Precise and timely irrigation regimes were applied at increments of 25 ml at 6:00 h. 

Figure 3.3 shows the irrigation setup and plants under growth period 1. 



82 

  

(a)      (b)  

Figure 3.3. (a) Automated irrigation system and (b) corn during growth period 1. 

     3.3.2 Thermal Imaging and Environmental Monitoring 

An automated TIRIS was developed and deployed that featured components for remote 

control, camera control, environmental monitoring sensors, and computer for capturing, storing, 

and analyzing image and environmental data (Figure 3.4). For functionality, wireless control was 

enabled using a virtual private network (VPN) connection which provided remote monitoring and 

direct control of the TIRIS.  

  
Figure 3.4. Component diagram for TIRIS 

Thermal images were obtained with an uncooled Tamarisk® 320 thermal infrared (TIR) 

camera core (DRS Technologies, Inc., Dallas, Texas) with a focal length of 11 mm  and a 27°×20° 

FOV lens. The camera has a maximum frame rate of 60 Hz, sensitive the long wave infrared 
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(LWIR) electromagnetic radiation from 8 to 14 µm corresponding to a temperature span of -66 to 

90ºC, and an uncooled microbolometer sensor with a 320×280 fixed pixel array. The camera was 

mounted at a 4.5 m height nadir to the corn plants, thereby providing a spatial resolution of 7.7 

mm/pixel, limiting the FOV to 3 × 2 m. A critical aspect of any TIRIS is the amount of pixels on 

the target. As previously studied, at least four pixels are recommended on a target in order to limit 

inaccurate temperature measurement and maximize spatial image coverage while accounting for 

slight inconsistencies in target orientation. For example, the smallest object the TIRIS in this study 

was able to accurately measure was an object of 15.4 mm (7.7 mm × 4= 30.8 mm). The TIR camera 

core provided an 8-bit (256 discrete pixel intensity digital value (DV)) thermal video. The DRS 

Camera Control Software controlled each camera’s functions and features. Within the software’s 

graphical user interface (GUI), the TIR camera core was configured for video output and frame 

rate, and thermal detector sensitivity settings. In order to set the TIR camera core, a DRS breakout 

board module (Breakout Box 1003785-001, DRS Technologies, Inc., Dallas, Texas) adjusted the 

thermal detector gain sensitivity (i.e., detectable scene temperature span) and level control (i.e., 

shift offset of the center temperature within the temperature span), thereby improving detected 

thermal energy of the scene temperatures. Auto gain and level contrast were enabled via the DRS 

Camera Control Software (DRS Technologies, Dallas, Texas) to account for continuously 

changing operating camera housing temperatures within the greenhouse. Auto gain and contrast 

maintains distinguishable scene temperatures and high and low temperatures within saturation 

threshold limits (Kuenzer, 2014).  

Analog video output was streamed at 60 Hz into an analog-to-digital video converter 

(Dazzle DVD Recorder HD, Corel Corporation, USA). This raw analog video signal was streamed 

into a host computer using LabVIEW™ (National Instruments Corporation, Austin, TX) image 

acquisition and processing software. When sampled, the developed Greenhouse TIRIS virtual 

interface (VI) would grab the image, assign a timestamp, and store within the appropriate storage 

folder (Figure 3.5). 
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Figure 3.5 Greenhouse TIRIS VI front panel for controlling loop time and camera control while 

monitoring and saving soil moisture of irrigation regimes, air temperature, relative humidity, solar 
radiance, reference panels, camera temperature, sample number, and time stamp. 

Parrellel environmental conditions were captured ever 2.5 min with a single-board 

microcontroller (Single Board RIO 9633, National Instruments Corporation, Austin, Texas) and 

placed into a measurement file denoted with the corresponding image number. Relative humidity 

and air temperature were measured with an ambient air sensor (HX303AV, Omega Engineering 

Inc., Stamford, Connecticut) with an accuracy of ± 3% and ± 0.2°C, respectively. Solar radiance 

was measured with an pyranometer (SP115, Apogee Instruments, Logan, Utah) with an accuracy 

of ± 0.25 W m-2. To compensate for the influence of environmental conditions on the accuracy of 

the TIR camera, surface mount thermistors (ON-930-44004,Omega Engineering Inc., Stamford, 

Connecticut) with an accuracy of ± 0.2°C measured temperature of reference panels within the 

camera’s FOV.  

Reference panels used in the experiment were 10 x 10 cm wooden pads with an empirical 

emissivity of 0.9, whereas corn has an emissivity of about 0.95 (Idso, et al., 1981). Reference 

temperature panels were sized accordingly to the camera’s spatial resolution and constructed of 

materials with a low thermal inertia in order to resist temperature changes. A reference panel was 

placed on shaded concrete, well-watered soil, and water-stressed soil to generate temperature 

differentials. Thermistors were wired into a voltage divider to sense the change in voltage due to 

the temperature-based resistance (Figure 3.6 a). The resulting voltage (Vout) was used to determine 

temperature using a calibration curve provided by the manufacturer (Figure 3.6 b).  
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      (a)       (b)  

Figure 3.6. (a) Voltage divider wiring diagram used to measure changing voltage from the 
corresponding change in the thermistor resistance. (b) Thermistor calibration curve used to quantify 
temperature with a change in voltage. (See Appendix A, Figure A.4 for more details) 

In order to ensure the two irrigation regimes were imposed, soil moisture was monitored 

with fourcapacitance soil moisture probes (Waterscout SM 100, Spectrum Technologies, Aurora, 

Illinois)  with an accuracy of ± 3% soil moisture content (SMC) with two sensors in each irrigation 

regime. Soil moisture content of the WW and WS plants were monitored throughout the season to 

validate the extent of crop water stress. 

     3.3.3 Radiometric Calibration  

The uncooled TIR camera core measures LWIR energy that strikes the detector material, 

altering the electrical resistance from a temperature change, transforming LWIR radiation intensity 

into a raw DV, thereby generating a thermal image (Kuenzer, 2014). A limitation of uncooled TIR 

cameras, however, is their inability to quantify absolute temperatures. Therefore, a real-time (RT) 

radiometric calibration method was developed to quantify absolute surface temperature at 

environmental conditions in which the TIR camera was calibrated. A RT radiometric calibration 

uses RT image pixel intensities of a viewable reference panel within the camera’s FOV and the 

actual surface temperatures to characterize pixel-to-temperature intensity functions. This RT 

radiometric calibration is covered in more detail in Section 2.4.4. At any one sampling, the three 

reference panels would naturally produce a low, in-between, and high temperature. As a result, the 

low and high reference panel was used for the RT radiometric calibration, whereas the in-between 

reference panel acted as a crosscheck for assessing RT measurement accuracy. Static regions of 

interest (ROI), as specified in the automatic imaging program, averaged multiple image pixels to 

correlate to one surface temperature measurement.  

Raw pixel intensities (X1, X2) from the video feed were correlated to actual surface 

temperature (Y1, Y2) to determine the radiometric transfer function slope, as defined by Equation 

3.1: 

y = -23.51ln(x) + 208.17
R² = 0.9959
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 c = d? − d	e? − e	 (3.1) 

By using the slope found in Equation 3.1 and a raw pixel and coinciding surface 

temperature (X1, Y1), the y-intercept of the RT radiometric transfer function was determined using 

Equation 3.2: 

d − d	 = c(e − e	)  (3.2) 

Using results from Equation 3.2, instantaneous temperature span was defined by Equation 

3.3: 

�WcBW@[Vg@W	UB[h	(℃) = iFVX	jk	�WXjlgVFjh × �[mFjcWV@F%	UljBW`cb (3.3) 

Using the resulting y=mx+b radiometric calibration function from Equation 3.1 and 3.2, 

the TIR camera core was found to be directly sensitive (R2 = 0.9986) to the scene temperatures 

within the FOV (Figure 3.7).  

 
Figure 3.7. Real-time radiometric calibration performed on the DRS Tamarisk® 320 at a 25°C air 

temperature, 45% relative humidity, and steady-state operating temperature.  

The RT radiometric conversion was applied to each image to convert DV into temperature 

values as defined by Equation 3.4: 

�(�,D) = ���E + #(F, G)2H − 1����E (3.4) 

where: 
 T(i,j)  = Pixel temperature (oC) at row i and column j, 
 Tmin = Lowest temperature within the image (oC),  
 I(i,j) = Pixel intensity at row I and column j, 
 N = Number of bits for pixel intensity (e.g., N=8 for 8-bit images), and  
 Tspan = Span of temperature captured in the image. 

The developed radiometric calibration method enables the uncooled TIR camera core to 

use the sensitivity of the thermal detector,  as shown Figure 3.7, to quantify surface temperatures. 

To determine the TIR camera’s ability to measure temperatures, the absolute difference between 
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actual and measured temperature is shown in Figure 3.8. Results reveal the maximum measurment 

accuracy is  0.62°C (α=0.05). 

 
Figure 3.8. Absolute difference between actual minus measured temperature. 

As previously studied, the RT radiometric calibration’s ability to compensate for 

environment conditions while maintaining measurement accuracy is illustrated in Figure 3.9. See 

Section 2.4.7 for more details on environmental compensation. 

 
Figure 3.9. RT radiometric calibration under changing vapor pressure deficit (VPD) 

Figure 3.9 shows the TIR camera core’s measurement inaccuracy remains below 0.28°C 

under changing VPD within strict laboratory conditions as described in Section 2.3.2. However, 

the RT radiometric calibration method was investigated to determine the potential influence to the 

measurement accuracy from semi-controlled environmental conditions within a greenhouse.  

     3.3.4 Automated Thermal Imaging and Processing 

For subsequent analysis, an Image Processing VI was developed to process the image data 

and environmental data (Figure 3.10) using the process flow as shown in Figure 3.11. When 

started, the Image Processing VI would reference the greenhouse reference data for the specific 

image to process. The image would be pulled from the file storage and corrected for len distortion 

as described in Section 2.4.1 and would have a basic variance filter applied to reduce analog signal 

noise within the image. A variance filter was found to reduce visible noise in the image that would 

cause inconsistencies in the static ROIs. 
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Figure 3.10. Image Processing VI for analyzing greenhouse data controlling input data, output 

metadata filename, the number of processed images and monitoring output image RT radiometric 
calibration, image number, and timestamp. 

 
Figure 3.11. Flow chart of batch processing for image and environmental data flow  

Within a single image, plant vegetation was identified and isolated for analysis based on 

location within the image. ROI were designated on each plant to isolate crop vegetation, thereby 

segmenting crop vegetation from soil and concrete (Figure 3.12). Similarly, ROI were designated 

on each reference panels in order to extract reference panel pixel intensities.  
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Figure 3.12. Automated TIRIS segmented individual corn foliage, shown in green, from background 

soil, cement, and pot containers. Black pixels indicate a cold surface while white pixels indicate hot 
surface. ROIs, shown in green, captured the individual crop intensity and reference panel 
temperatures. 

Location was the only parameter used to isolate vegetation, but shape and texture could be 

utilized for image pixel segmentation. Location was similarly used to look at spatial temperatures 

differences from the stem and leaf. As a result, the correlation was compared between the predicted 

stem-to-air temperature deficit versus VPD and the predicted canopy-to-air temperature deficit 

versus VPD.  

     3.3.5 Crop Water Stress Monitoring 

Because previous studies have found crop stress to be highest at periods following solar 

noon, temperature measurements from 12:00 to 17:00 h were monitored for peak canopy 

temperatures (Idso, et al., 1977). Relative humidity, air temperature, solar radiance, and crop 

temperatures were combined to quantify instantaneous crop water stress. In all measurements, the 

VPD was calculated from the air temperatue and relative humidity as defined in Equation 3.5 

(Monteith & Unsworth, 2013): 

VPD = n1 − ��o100�q × �0.6108 × 10uv.w×xyz{ ?|v.|}xyz{
 ~� (3.5) 

where: 
 Tair = Measured air temperature (°C), 
 RH = Relative humidity (%), and 
 VPD= Vapor pressure deficit [kPa].  

Equation 3.5 was used to deduce a non-water stressed baseline (NWSB) leaf canopy-to-air 

temperature deficit from VPD for similar solar radiation as defined in Equation 3.6: 

T��	*+,-./ − T+29 = a − b × VPD (3.6) 

where: 
 T ww canopy = Well-watered canopy temperature (°C), 
 Tair = Measured air temperature (°C), 
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 a = Crop specific intercept for NWSB, 
 b = Crop specific slope for NWSB, and    
 VPD= Vapor pressure deficit [kPa].   

NWSB coefficients were empirically measured from RT canopy temperatures of the well-

watered irrigation regime (T ww canopy) over the full growing season starting with the germination 

and seedling stage (growth period 1), rapid growth stage (growth period 2), reproductive stage 

(growth period 3), and maturity stage (growth period 4). The RT CWSI was calculated as depicted 

in Equation 3.7 (Idso, et al., 1981; Jackson, et al., 1981; Jackson, 1982): 

KTU# = ∆���������� − ∆�		∆���������� − ∆���L	���� (3.7) 

where: 
 ΔTpredicted = (T ww canopy– Tair), 
 ΔTdry = (Tdry – Tair), and  
 ΔT1 = (Tactual – Tair). 

For example, water stressed leaf (Tdry) and non-water stress leaf (Tww canopy) boundary 

temperatures were 25°C and 20°C, respectively. Air temperature was 23°C and actual leaf 

temperature was 22°C. In this example, CWSI is 0.4. For comparison, daily CWSI values were 

measured for each plant. 

An instantaneous CWSI was derived from the air temperature, relative humidity, and solar 

radiance for each thermal image. Because wet and dry leaves are not practical within a prolonged 

monitoring study, wet reference temperatures were empirically found using well-watered plants in 

the WW regime. Similarly, standardized dry reference temperature of 5ºC above air temperature 

was utilized to respresent the WSBs (upper leaf temperature bounds). Empirical NWSBs (lower 

leaf temperatures) were determined using WW regime leaf temperatures in order to develop RT 

CWSI values. 

3.4 RESULTS AND DISCUSSION 

The TIRIS was designed to quantify absolute surface temperature with RT radiometric 

calibration, thereby maintaining measurement accuracy by compensating for environmental 

influences from air temperature, relative humidity, solar radiance, and temperature of the uncooled 

TIR camera. Thermography was used as a crop water stress monitoring tool with high spatial and 

temporal resolutions. The confidence in assessing crop water stress is directly related to inherent 

sensor accuracy and calibration protocol. By enabling auto gain and level, the uncooled TIR 

camera maintained upper and lower pixel saturation to maximize the detected thermal imagery for 
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temperature span throughout the study. RT environmental correction with temperature reference 

panels provided temperature measurement accuracy, as shown in Figure 3.13. 

  
Figure 3.13. Comparison between the measured and actual temperature of the in-between reference 

panel temperature in the greenhouse from 6:00 to 19:00 h.  

As shown in Figure 3.13, the measured-to-actual temperature comparison revealed a 95% 

confidence that the measurement accuracy is ±0.62°C in the semi-controlled greenhouse 

environment. Because RT temperature measurement accuracy was determined for each image, the 

RT confidence interval was calculated throughout the day of one well-watered corn plant sample, 

as shown in Figure 3.14. 

 
Figure 3.14. Real-time confidence interval of a well-watered corn plant from 12:00 to 18:00 h 

By quantifying surface temperatures, Figure 3.15 shows the empirically derived leaf 

canopy-to-air temperature deficit versus VPD during the four growth stages. Table 3.2 shows 

coefficients derived from the regression analysis; and, Figure 3.16 shows the simulated canopy-

to-air temperature deficit versus VPD regression curves. The R² values of the plots in Figure 3.15 

show that a correlation exists between the VPD and the predicted leaf canopy temperature. This 

fundamental relationship is important as the results are directly used to determine the normalized 

CWSI. Lower plot R² values during the last three growth stages could be contributed to the high 

humidity within the greenhouse which create a concentration of data samples from a VPD of 0 to 

2 kPa. In applications in the field, these concentrations may not be as prevalent. As a result, future 
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studies using high spatial and temporal resolution TIRIS should be investigated in order to observe 

the full-season leaf canopy-to-air temperature deficit versus VPDs of corn in actual field 

conditions. 

  
     (a)             (b)    

  
       (c)              (d) 

Figure 3.15. Empirical leaf canopy-to-air temperature deficit versus VPD during (a) germination and 
seedling stage, (b) rapid growth stage, (c) reproductive stage, and (d) maturity stage 

Table 3.2. Predicted canopy-to-air temperature deficit-to-VPD 
Growth Stage Slope [m] Intercept [b] 

1 -3.3865 2.9491 
2 -3.3981 3.5164 
3 -2.7815 4.2097 
4 -2.7367 4.2337 

 
Figure 3.16. Predicted canopy-to-air temperature deficit versus VPD through four growth stages 

Figure 3.16 demonstrates the canopy-to-air temperature deficit regression curve only 

slightly changed from the first growth period (GP1) to the second growth period (GP2). As 

observed in Figure 3.2, in Section 3.3.1, the recommended daily water use shows a peak followed 
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by a decline in water use during the third growth stage. Similarly, during the third growth period 

(GP3), predicted leaf temperatures were warmer, suggesting that corn uses less water for 

transpiration as the plant utilized energy to grow fruit during the reproductive growth stage. 

Finally, reduced water uptake resulted in warmer leaf canopy temperatures during the final growth 

stage (GP4) closely resembling characteristic water use specified in Figure 3.2. 

Aside from segmenting soil and background temperatures from vegetation, the stem and 

leaf temperatures were isolated from within the FOV using location based ROIs. The canopy-to-

air temperature deficit was compared to the stem-to-air temperature deficit versus VPD, as shown 

in Figure 3.17. These values were collected throughout the full-season and represent the WW plant 

sample average. The canopy-to-air temperature deficit versus VPD produced a stronger correlation 

(R²=0.7364) versus the stem-to-air temperature deficit versus VPD (R²=0.6592). This observation 

supports the use of the VPD to better predict the NWSB canopy temperature. This will have 

practical implications on what portion of the plant is a better indicator of the leaf transpiration. For 

practical adoption purposes, measuring the canopy temperature aboard different sensing platforms 

would be less of a challenge because the canopy typically has a large surface area and is the upmost 

point on the plant. At the same time, being the upmost portion of the plant, the canopy is more 

exposed to environmental conditions, thereby is more subject to larger diurnal temperature 

changes. As a result, high temporal ground truthing will be critical to limit error in crop based 

thermal sensing.  

         
  (a)        (b) 

Figure 3.17. Comparison of (a) non-water stressed stem-to-air temperature deficit to VPD and (b) non-
water stressed canopy-to-air temperature deficit versus VPD. 

The TIRIS measured daily peak CWSI and soil moisture of the WS and WW irrigation 

regimes in the critical time period between 12:00 and 18:00 h (Figure 3.18).  
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     (a)          (b)   

Figure 3.18. (a) Daily soil moisture content and peak daily CWSI throughout the experiment; (b) daily 
soil moisture content versus peak daily CWSI. A split plot shows the negative correction of the soil 
moisture versus CWSI from a CWSI value of 0.6 to 1.0 and no significant correlation from a CWSI 
value of 0 to 0.6. 

In Figure 3.18 a, daily soil moisture measurements revealed a soil moisture deficit occurred 

from day 15 through day 50 in the WS regime. On day 50, the WS plants were watered in order to 

preserve the specimens and to observe the WS plants’ response to irrigation following severe water 

stress. Peak CWSI of the WS corn did not, however, decrease until Day 52. This observation is 

important when interpreting and utilizing CWSI values for irrigation decisions because, 

immediately after watering, plants may have received an ample amount of water but did not have 

sufficient time to absorb water and transpire, thereby still reflecting a high CWSI. The level of 

crop water stress prior to irrigation seems to influence the amount of time required for the plants 

to absorb and transpire thus decreasing their CWSI. Further temporal studies should be considered 

in order to quantify this time response. 

High temporal resolution revealed that the daily peak crop water stress occurred between 

13:30 and 15:00 h. Daily peak CWSI closely followed solar noon when plants experienced 

maximum transpiration in order to adequately cool themselves. In actual field conditions, peak 

crop water stress could occur at different times depending on current environmental conditions; 

however, the most critical time to measure CWSI should closely coincide with the time of 

maximum transpiration.  

As shown in Figure 3.18 b, soil moisture content at or above 72% (y1 linear regression 

curve intercept) maintained a CWSI value below 0.6 whereas soil moisture content below 72% 

negatively correlated with CWSI values above 0.6. Results from the 80-day study revealed that 

82% (R²=0.8152 of the y2 linear regression curve) of soil moisture variation was explained by a 

CWSI above 0.6. This relationship demonstrates the use of non-contact thermal sensing to 
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indirectly measure soil moisture. This supports the use of CWSI values in order to quantify spatial 

soil moisture deficits as an alternative irrigation scheduling method instead of soil moisture probes.  

Thermography provides an unprecedented opportunity to study crop vegetation for new 

and advanced relationships. As observed from this study, thermal imaging systems could be 

considered for measuring crop water stress at scales required for large agricultural production 

systems. Simplification of image acquisition systems in order to capture full-season crop stress 

could allow producers, agricultural service providers, and researchers to have thermal sensing 

technology sensitive to crop water requirements for management decisions, leading to more 

efficient allocation of available resources for precision agriculture.   

3.5 CONCLUSION  

A TIRIS was developed for high spatial and temporal resolution monitoring of corn in 

order to observe crop stress from water deficits with concurrent soil moisture measurements in a 

greenhouse. The lightweight, low cost, and small size of the uncooled TIR camera used in this 

study maintained a measurement accuracy below ±0.62°C (α=0.05) within a greenhouse. In 

addition, thermography hardware and techniques were investigated to increase crop based thermal 

relationships of isolated crop vegetation against a soil background with image processing. As 

observed, a stronger relationship was found regarding the predicted canopy-to-air temperature 

deficit versus VPD (R²=0.7364) compared to the predicted stem-to-air temperature deficit versus 

VPD (R²=0.6592).  

Canopy temperatures were used to develop empirical canopy-to-air temperature deficits 

versus VPD regression curves for corn to in order to quantify RT CWSI. Empirical NWSBs 

revealed that crop canopy temperature changed slightly throughout growth stages. Results 

indicated that canopy water deficit regression curves closely follow the characteristic water use 

curve throughout corn growth stages. Results from the 80-day study revealed that a significant 

decrease in soil moisture was measured only when the CWSI value increased past 0.6 with 82% 

of soil moisture variation explained by the CWSI. As observed, the CWSI was negatively 

correlated to soil moisture supporting the use of the CWSI as an alternate irrigation scheduling 

method in order to quantify spatial soil moisture by remotely measuring canopy temperature.  
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Chapter 4 - Developing a Thermal Infrared Imaging System for 

High Spatial Temperature Mapping aboard a Multirotor sUAS 

4.1 ABSTRACT  

Inadequate water application often decreases yield and product quality. Existing irrigation 

scheduling uses single, localized measurements that do not account for high-spatial crop water 

stress. Although quick, single-point sensors are impractical when covering large areas and 

measuring discrete variations, whereas thermal infrared (TIR) imaging, or thermography, is a 

novel approach for measuring high-spatial crop temperatures to quantify crop water stress. A 

small, lightweight thermal infrared imaging system (TIRIS) was developed using uncooled 

thermal cameras for a multirotor small unmanned aerial system (sUAS) providing imagery 

sensitive to spatial crop temperature variability. Imaging hardware and software was designed to 

provide uniform analysis advancing the ease of image capture, correction, throughput and storage 

management for subsequent thermal mapping. As studied, the Tamarisk® 320 (11 mm lens) and 

Tamarisk® 640 (25 mm lens) had 19% and 18% lens distortion, respectively, that image 

processing corrected. Adhering to a critical spatial resolution maximized surface data integrity and 

area coverage. A relationship between image overlap and camera views was created in order to 

determine a flight campaign that is capable of representing a target measurement with a given 

confidence. An image variance filter increased mapping efficiency by aligning 99% of images 

instead of 69%. A one-time radiometric calibration and real-time ground reference data provided 

absolute surface temperatures with environmental compensation yielding a ±1.38°C measurement 

accuracy. This research supports using uncooled thermal cameras to capture spatial crop 

temperatures, thereby allowing users to measure subtle crop dynamics for water resource 

management. 

4.2 INTRODUCTION  

In the midst of recent droughts, increased water demand, and implementation of water 

allocations for conservative purposes, irrigated acreage throughout the United States has increased 

by nearly 1.3 million acres from 2002 to 2007 (USDA, 2014). The largest percentage of irrigated 

farms is located in the Midwest where competition for available water resources has escalated in 

the past two decades (Taghaeian, et al., 2013). As a result, diminishing irrigated water requires 

efficient management practices that utilize monitoring and control in order to achieve sustainable 
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water management (Adeuya, 2007) from decision support tools (Rodriguez, et al., 2005) in order 

to increase water use efficiency (Ballester, et al., 2013; Cohen, et al., 2005; Gontia & Tiwari, 

2008). Quantity of irrigated water and application time are among critical decisions producers need 

to make to develop site-specific irrigation plans (Alves & Pereira, 2000; Cohen, et al., 2005; 

Wanjura, et al., 1992) to precisely apply water to meet crop need at a controllable increment for 

desired crop performance (Cohen, et al., 2005; Taghvaeian, et al., 2013). Of the many types of 

crop stress, water stress is the most common and restrictive factor impacting crop yield (Colaizzi, 

et al., 2012; Jackson, et al., 1981; Scherrer, et al., 2011; Zia, et al., 2013) where water stress 

severity depends on timing and duration.  

As a result, water use efficiency studies compare irrigated water use-to-yield, thereby 

resulting in management decisions that decrease water use from aquifers and above-ground 

freshwater sources while investigating soil-improving strategies where drought-tolerant crop 

varieties have been chosen for a climate’s available water (Berton, 2006). Current irrigation 

schedules, however, are typically based on local, soil moisture sensors that do not account for the 

spatial moisture variability that may exist in commercial agricultural fields due to varying soil type 

and depth, topography, climate, specific crop growth period and a producer’s operation (Cohen, et 

al., 2005; Evett, et al., 2014). Although advances in precision irrigation technologies are available 

for utilization, research shows that crop growth and yield is directly associated with crop water 

stress, and only partially related to soil-water interaction (Sepulcre-Canto, et al., 2011). More 

specifically, crops are more susceptible to stress during certain development periods when 

actionable intervention can maintain yield potential (Taghaeian, et al., 2013). Typical methods 

used to detect crop water stress utilize pressure chambers and leaf diffusion porometers to measure 

individual leaf stomatal conductance and leaf and stem water potential, respectively (Ballester, et 

al., 2013; Berni, et al., 2009; Grant, et al., 2007; Colaizzi, et al., 2012). However, these techniques 

are destructive, labor intensive, subject to placement error, limited by small sample size and 

unsuitable for automation (Ballester, et al., 2013; Berni, et al., 2009; Cohen, et al., 2005; Gontia 

& Tiwari, 2008; Jones, 1999; Leinonen & Jones, 2004), thereby limiting producer adoption for 

irrigation decision management (Ballester, et al., 2013).  

To address these concerns, thermal sensing approaches have been investigated because 

they are non-contact and less labor intensive and offer non-destructive monitoring to assess crop 

stress from leaf canopy temperatures (Grant, et al., 2006; Leinonen & Jones, 2004). Crop water 
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stress is typically quantified by measuring canopy temperatures because plants close their leaf 

stomata during periods of water stress, thereby reducing transpiration and causing increased leaf 

temperatures (Evans, et al., 2000). Currently, static and/or dynamic arrays of infrared 

thermometers (IRTs) are used to measure canopy temperature (O'Shaughnessy, et al., 2012). 

Although single-point measurements are quick, IRT sensors are localized, whereas a thermal 

infrared imaging system (TIRIS), or thermography, monitors spatial crop temperatures via a 

thermal image. Thermography has only been investigated over the last decade (Hackl, et al., 2012) 

because the technology was only recently declassified by the military for civilian use (Schepers, 

2012;Maes & Steppe, 2012).  

Although once limited by slow processing speed, large memory requirements, and high 

hardware costs, imaging is being restudied for utility in precision agriculture (Wang, N., personal 

communication, November 1, 2013). With industrial applications using thermography for 

automation, TIRIS adoption has decreased the hardware cost while increasing sensing capabilities 

of thermal infrared (TIR) image sensors. Automatic image capture and analysis, however, are 

needed to account for error incurred with manual measurements such as setup and capture 

inconsistencies and latency that lead to small microclimate changes of the crop environment. 

Therefore, automatic imaging systems capture temperature information with high spatial (ground 

sample distance (e.g., 1 cm/pixel)) and temporal (repeat frequency) resolution essential for 

monitoring subtle crop dynamics (Kuenzer, 2014; Luquet, et al., 2003).  

Thermal imaging studies that assess spatial canopy temperature in relation to dynamic crop 

stress assessment have become increasingly available (Jones, 1999; Liu, et al., 2011).  Numerous 

studies prove thermography’s ability to distinguish between irrigated and water-limited stress of 

grapevines (Grant, et al., 2006; Grant, et al., 2007), cotton (Luquet, et al., 2003), citrus trees 

(Ballester, et al., 2013), olive orchards (Berni, et al., 2009), and sunflowers (Hashimoto, et al., 

1984) while supporting the development of greenhouse model comparisons (Grant, et al., 2006; 

Leinonen & Jones, 2004), genetic-based drought tolerance in maize (Liu, et al., 2011), leaf 

temperature association with biomass accumulation (Liu, et al., 2011), and spatial awareness of 

different leaf architecture (Ballester, et al., 2013; Grant, et al., 2007). This novel, less-studied 

technology has been discussed in limited publications that illustrate United States’ research 

conducted with TIR cameras to measure spatial crop temperatures, specifically crops that 

experienced significant yield increase with irrigation. In conducted studies, orchards with sparse 
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canopy made thermal measurements difficult (Maes & Steppe, 2012) without spatial resolutions 

below 2 m (Sepulcre-Canto, et al., 2007), whereas applications with homogeneous cropland typical 

in agricultural production reduced imaging complexity. Increased use of thermography in 

agriculture, however, depends on increased spatial and temporal resolution in order to increase 

effectiveness and aid actionable decisions for precise, timely crop health monitoring (Sobrino & 

Julien, 2013; Taghvaeian, et al., 2013).  

Current satellite and ground-based sensing platforms have limited the use of thermography 

in commercial agriculture because producers demand crop characteristics throughout entire fields 

with frequent revisit times. To meet this demand, TIRIS are flown aboard piloted aircrafts and 

small unmanned aerial systems (sUAS) with the advantage of high temporal and spatial resolution 

paired with on-demand analysis (Berni, et al., 2009; Zhang & Kovacs, 2012). Manned aerial 

imagery has shown potential in practical thermography because it solves previous platform 

limitations regarding the small coverage area of ground-based platforms and low spatial and 

temporal resolution of satellite-based platforms (Kuenzer, 2014). As a result, aerial imagery 

combines high measurable crop characteristics and increased ground coverage. In addition, aerial 

imagery can provide whole-field crop stress assessment with spatial resolutions up to 2 m (Berni, 

et al., 2009; Sepulcre-Canto, et al., 2007). In conducted studies, thermography aboard piloted 

aircrafts has been used to assess crop water stress (Scherrer, et al., 2011; Taghvaeian, et al., 2013; 

Tilling, et al., 2007; Wang, et al., 2010), screen phenotypes (Zhao, et al., 2005), and conduct 

irrigation maintenance (Schepers, 2012). 

However, a trade-off exists between ground coverage area and measurable crop 

characteristics. Even aboard piloted airplanes, the primary limitation is spatial resolution of TIR 

cameras. In addition, expense, fuel limitations, pilot fatigue, infrequent revisit times, and 

unfamiliar complexity of flying and hiring aerial imagery limit widespread commercial use (Berni, 

et al., 2009; Goel, et al., 2000; Herwitz, et al., 2004). As a result, advancements in technical 

capabilities and regulatory standpoints for sUAS have increased interest in aerial imagery 

(Herwitz, et al., 2004). As a result, the sUAS industry is evolving rapidly to expand its role as a 

complementary platform to satellites and piloted aerial imagery for tactical farm management (Zia, 

et al., 2013).  

Producers support sUAS adoption because sUAS platforms provide low-altitude imagery 

for high-definition images, on-demand response times, and low investment costs (Goel, et al., 
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2000; Laliberte, et al., 2011; Rango, et al., 2009) for crop health characterization for agronomic 

decision management not previously possible. Another advantage of sUAS is their ability to fly at 

low airspeeds (30 km h-1) under manual control or autopilot flight campaigns with predetermined 

flight routes for ease of operation and application mapping in order to sense areas not previously 

accessible because of distance, time, or terrain (Luvall & Holbo, 1991; Rango, et al., 2009). These 

advantages make sUAS the most promising sensing platform for spatial resolution crop assessment 

(Maes & Steppe, 2012; Rango, et al., 2009) at a fraction of the price of manned aerial platforms 

(Berni, et al., 2009). Currently, commercial autopilot control, cost-effective telemetry, and semi-

automated image geo-rectification systems promote the feasibility of sUAS in precision agriculture 

(Berni, et al., 2009; Herwitz, et al., 2004; Laliberte, et al., 2011; Rango, et al., 2009; Wooster, et 

al., 2013).  

Low-altitude image mapping captures a large series of images across a field over a quick 

timespan where manual or automatic image processing software stitches images together from 

common points within individual images, ground control points, or global position system (GPS) 

coordinates of the camera or sUAS flight controller (Berni, et al., 2009). With low flight speeds 

and high image capture, high spatial resolution imaging uses only the central portion, or nadir, of 

the image to improve composite image quality (Berni, et al., 2009; Vasterling & Meyer, 2013). As 

a result, an orthomosaic image is generated to form a whole-field composite image collected at a 

consistent altitude (Rango, et al., 2009).  

Several sUAS platform configurations are available for agricultural use. Each platform 

configuration has different flight dynamics useful for specific coverage applications. Furthermore, 

flight characteristics of multirotor sUAS make them best suited for high-definition site-specific 

monitoring because of their ability to hover and capture quality imagery from different altitudes.  

Due to the design and weight of multirotor sUAS, flight times are typically less than other sUAS 

platforms, consequently requiring different payload considerations (Rango, et al., 2009). 

Regardless of the sUAS platform, commercial sUAS employ automatic machine control to 

simplify flight operation and regulate flight altitude and path uniformity (Rango, et al., 2009).  

Although low flight altitudes increase thermography’s ability to measure crop health 

characteristics at scales more suitable for commercial applications, sUAS are subject to the same 

atmospheric effects as other sensing platforms (Berni, et al., 2009; Maes & Steppe, 2012). In 

addition, field scouting and manual processing is still needed if growers are to understand 



101 

measured crop health response and implement management zones (Goel, et al., 2000). As a result, 

quality control of data from in-field flight operations make real-time ground truthing (i.e., provide 

correction to a remote measurement with ground-based measurement data) possible increasing the 

repeatability of estimates and assessments (Rango, et al., 2009). With on-the-ground 

measurements, aerial and ground truthed measurements support direct interpretation of plot-based 

indicators in detection studies (Rango, et al., 2009). Validation during a time series relies on 

permanently installed non-contact or contact (ground or air) measurement devices with data 

loggers capable of simultaneous wind speed and direction, humidity measurements, air 

temperature, and solar radiance (Kuenzer, 2014). Artificial reference measurements have provided 

a repeatable standard for increased application scales when used in conjunction with thermal 

imaging (Moller, et al., 2007) where real-time environmental measurements allow for consistent 

crop water stress assessment (Maes & Steppe, 2012). 

Thermal cameras provide sub-meter spatial resolution aboard sUAS (< 2 m) (Berni, et al., 

2009) and have flexible revisit times for whole-field temperature mapping (Cohen, et al., 2005). 

This potential to meet the needs of agricultural use provides an incentive for thermal camera 

manufacturers to develop modified cameras for operation within agricultural field conditions. 

However, available knowledge regarding thermal sensing platform performance in field studies 

aboard sUAS is limited. Consequently, producers are skeptical towards a technology that has 

enabled site-specific water management in orchards, vineyards, and other specialty crop fields in 

areas outside of the United States (Sepulcre-Canto, et al., 2011). Lack of knowledge is due 

primarily to the high cost of cooled TIR cameras, which has made measurement of spatial crop 

temperature in commercial agriculture economically unfeasible. However, innovation of the 

uncooled thermal sensor has allowed new uncooled TIR cameras to be small and lightweight, 

consume less power, and require no cooling package, thereby providing extended operating life at 

a fraction of the cost of previous cooled TIR cameras. Uncooled TIR cameras aboard sUAS have 

been emphasized because they demonstrate a potential for increased ground coverage and crop 

stress assessments beyond the range of previous remote sensing platforms for tactical farm 

management (Herwitz, et al., 2004).  

With the aforementioned potential for high spatial and temporal temperature mapping from 

sUAS, studies using thermography have been limited due to camera expense, unfamiliar use and 

standard operating protocol, system complexity and calibration, and limited software for image 
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acquisition and high throughput processing for thermal imagery. Therefore, research objectives of 

this study were to (1) develop a small, lightweight TIRIS for temperature mapping aboard a 

multirotor sUAS, (2) develop a complementary hardware and software package to radiometrically 

calibrate TIRIS during infield setup while providing in-flight ground truthing, 3) develop a 

software program to upload and process imagery prior to image stitching, and 4) construct 

radiometric spatial temperature maps. 

4.3 METHODS AND MATERIALS  

A study was conducted to develop a small, lightweight TIRIS with an uncooled Tamarisk® 

320 and 640 TIR cameras (DRS Technologies, Inc., Dallas, Texas) offering a low and high spatial 

resolution configuration. The development of a TIRIS for thermal mapping aboard a multirotor 

sUAS has been supported with preliminary studies that investigated the physical properties and 

environmental conditions that restrict the practical use of TIR cameras’ in precision agriculture. 

During preliminary evaluations described in Chapter 2, hardware and software required to 

integrate an uncooled TIR camera core into an imaging system were identified and developed in 

order to measure surface temperatures. A TIRIS was built to include a sUAS thermal imaging 

acquisition system, in-field calibration system, and ground reference monitoring system for real-

time environmental parameters during flight campaign. SUAS flight campaigns were conducted 

to investigate control ease, standard operating protocol, radiometric calibration, and measurement 

accuracy, thereby completing system validation. Resulting aerial temperature mapping efficiency 

was investigated regarding image quality and processing prior to creating a temperature map.  

     4.3.1 Intrinsic Camera Properties 

TIR cameras contain physical parts and capabilities that influence their sensitivity to 

discrete temperature differences, increase their measurement error, and limit their use in 

agricultural environments. In preliminary studies, physical properties that restricted TIR camera 

use were identified and investigated as the following: 

1. Image resolution and measurement 

2. Lens distortion 

3. Warm-up time and automatic recalibration 

4. Radiometric characterization and measurement accuracy 

5. Connection ease, software, and controllability 
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These physical properties and their influence on accurate surface measurement were 

considered in order to minimize influence by configuring the camera and hardware for use aboard 

sUAS, designing image processing software specifically for thermal imagery, generating standard 

operating protocol, and selecting a camera-lens combination suited for the sensing platform. 

System expectations for validation included maintained temperature measurement accuracy, 

camera controllability, limited image noise, and spatial accuracy. 

          4.3.1.1 Image resolution and measurement 

The sensed target size and sensing distance determines a particular lens choice (Elfaki, et 

al., 2000). In addition, because of their particular role in preventative maintenance in non-

agricultural roles and limited research studies, TIR sensor technology typically cannot compare to 

spatial resolutions of visible cameras. Because of the germanium lens, TIR camera lens are factory-

installed and calibrated leaving no room for error when selecting the correct lens. For this study, 

two different TIR camera cores were chosen based on their small size, low weight, limited power 

consumption, capture framerate, and thermal detector, called a microbolometer, resolution. For 

coarse spatial resolution applications and lighter payload weight, a DRS Tamarisk® 320 TIR 

camera core with a 320×240 fixed pixel array microbolometer was chosen featuring an 11 mm 

lens with a 27º×20º field of view (FOV). For high spatial resolution applications, a DRS 

Tamarisk® 640 TIR camera core with a 640×480 fixed pixel array microbolometer was chosen 

featuring a 25 mm lens with a 24º×19º FOV. Table 4.1 illustrates the theoretical spatial resolutions 

and FOV with the chosen lens at select sensing distances. 

Table 4.1. Spatial resolution with selected lens at various distances. Adapted from DRS Technologies 
A Finmeccanica Company, (2013). 

Camera Core Distance (m) 20 40 60 80 100 120 
Tamarisk ® 320  

(11 mm lens) [a] mm/pixel  
[a][FOV m × m]  

31  
[10×8]  

62  
[20×15] 

93 
[30×22] 

124 
[40×30] 

155  
[50×37] 

186  
[61×45] 

Tamarisk ® 640  
(25 mm lens) 

14 
[9×7] 

27  
[18×13] 

41  
[27×20] 

54 
35×26] 

68  
[44×33] 

82  
[53×36] 

 
[a]

 Round to nearest integer 

Temperature mapping use the theoretical FOV, critical spatial resolution, and the desired 

level of detail specific to the sensing application in order to determine the sUAS autopilot flight 

program regarding altitude, flight speed, and flight orientation. These flight parameters have direct 

implications on the resulting orthomosaic from sufficient image overlap, camera stability, and the 

volume of images captured to sense the entire coverage area (Rango, et al., 2009). In addition, a 

sensing distance depicts the on ground coverage. For example, the Tamarisk® 640, flown at 40 m 
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with a nadir orientation, will have a spatial resolution of 27 mm/pixel and the resulting image will 

have an on-ground coverage of 18×13 m (Table 4.1).  

In application, measurement error can be introduced from bidirectional reflectance due to 

varying incident radiation (Jones, et al., 2009). Unlike visible imagery that is subject to incident 

visible light radiation, thermal imagery is subject to bidirectional effects of thermodynamic heat 

transfer. Time and changing viewing angle between images may cause subtle temperature 

differences between targets from changes in convective, conductive, and radiant heat transfer due 

to changing air temperature, relative humidity, air drawn across the target surface, and incoming 

solar radiation. To account for bidirectional influence, multiple camera viewing angles provide a 

more representative sampling mean of a target’s temperature (Jones, et al., 2009). In general, each 

pixel intensity within an orthomosaic image is calculated from multiple camera views to represent 

an average target intensity. As a result, image overlap improve this representative pixel intensity 

by providing multiple camera views defined by the lateral and forward overlap as defined by 

Equation (4.1: 

�j. jk	K[cW@[	^FW�X = u 	��	��<%	���������{�y{�~ × u 	��	��<%��������y��{y�~ (4.1) 

Using Equation (4.1, for example, a forward and lateral overlap of 75% and 75%, 

respectively, results in 16 camera views of a specific target surface. Uniform forward and lateral 

image overlap is an important criteria when planning the flight campaign in order to increase the 

confidence level that a measurement truly represents the target surface. In addition, increased 

overlap produces more measurement samples of a target thereby reducing the standard error of the 

mean pixel intensity within the orthomosaic image. 

          4.3.1.2 Lens Distortion 

Maintained lens focus over a wide span of temperatures is essential for quality 

thermography. Unlike autofocus of a typical visible camera, the lens focal length must be adjusted 

to focus on particular sensing distances (DRS Technologies A Finmeccanica Company, 2013). 

TIR camera lenses are constructed from an expensive material known as germanium, which is 

transparent to thermal radiation (Kuenzer, 2014). Germanium lenses are optimized for radiometric 

transmission, increasing the susceptibility to geometric distortion that causes spatial inaccuracy. 

A distorted image does not fully represent real spatial points but a distorted location dependent on 
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the position within the lens’ field of view (FOV) (x1, y2), as defined by Equations 4.2 and 4.3 (The 

Mathworks, Inc., 2015): 

>? = >	(1 + (	@? + (?@�) + 2B	>	C	 + B?(@? + 2>	?) (4.2) C? = C	(1 + (	@? + (?@�) + 2B?>	C	 + B	(@? + 2C	?) (4.3) 

Where: 
 x1, y1 = distorted pixel locations 
 x2, y2 = undistorted pixel locations 
 k1, k2 = radial distortion coefficients of the lens 
 p1, p2 = tangential distortion coefficients of the lens   

  @ = 	$(>	? + C	? 

Because the manufacturer does not provide lens distortion coefficients, lens distortion was 

investigated using a Grid Distortion Model calibration approach based on multiple grid calibration 

images and a heated grid pattern tool (Figure 4.1).  

      
Figure 4.1. Grid pattern tool (left) and thermal image (right) used for lens distortion. 

Thermal images were imported into the NI LabVIEW™ Vision Assistant (National 

Instruments Corporation, Austin, Texas) for lens distortion analysis. Resulting lens distortion 

coefficients were used in the image processing algorithm for batch processing in order to undistort 

images for precise location using Equation 4.2 and 4.3. See Section 2.4.1 for more details. 

          4.3.1.3 Warm-up Time and Camera Recalibration 

Because uncooled TIR cameras operate without heavy cooling jackets, uncooled TIR 

cameras regulate their thermal detectors with automatic temperature re-calibration to maintain 

sensor accuracy and limit sensor measurement drift caused by temperature fluctuations (DRS 

Technologies, Network and Imaging Systems Group, n.d.). A shutter recalibration technique is 

activated to conduct a non-uniformity correction (NUC) across the thermal detector at either a 

user-defined time interval and/or in the event of an internal temperature change of the thermal 

detector (DRS Technologies, Network and Imaging Systems Group, n.d.). During a NUC, the 

camera shutter closes to block incoming thermal energy, thereby providing a uniform thermal 

reference for the detector. At that time, a recalibration algorithm ensures a uniform pixel intensity 
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is measured across the entire microbolometer. As a result, each TIR camera core’s warm-up time 

was previously determined (Figure 4.2). Warm-up times of 19 and 18 min and a 1 minute timed-

interval NUC were necessary for stable temperature measurement of the Tamarisk® 320 and 640, 

respectively. Adherence to the required warm-up period during standard operating protocol 

reduces inaccuracy as the camera reaches a stable operating temperature. 

 

               
(a)       (b) 

Figure 4.2. Image Intensity and housing temperature versus thermal camera on-time of (a) DRS 
Tamarisk® 320 and (b) DRS Tamarisk® 640. Indicated warm-up time was determined when the 
TIR camera measured with 5% of the stable pixel intensity. See Section 2.3.1.4 for more details. 

          4.3.1.4 Radiometric Calibration 

Because uncooled TIR cameras have a low signal-to-noise ratio, their thermal detectors are 

less sensitive (±0.1°C) than other temperature sensors (Kuenzer, 2014). However, 

microbolometers are sensitive to subtle temperature differences (<0.5°C) necessary for accurate 

crop stress assessment (Blonquist & Bugbee, n.d.; Sepulcre-Canto, et al., 2007). In the context of 

agricultural sensing applications, the Tamarisk® 320 and 640 are sensitive to 8 to 14 µm longwave 

infrared (LWIR) radiation corresponding to a -66ºC to 90ºC temperature span. In operation, LWIR 

radiation strike the detector material, altering the electrical resistance from a temperature change, 

transforming LWIR radiation intensity into a raw digital value (DV), thereby generating a thermal 

image (Kuenzer, 2014).  

A limitation of uncooled TIR cameras, however, is their inability to quantify absolute 

temperatures. Therefore, an one-time (OT) radiometric calibration method was used to quantify 

absolute surface temperature at environmental conditions in which the uncooled TIR camera was 

calibrated, as described Section 4.3.3. An OT radiometric calibration uses one calibration image 

to characterize pixel-to-temperature relationships, as shown below in Figure 4.3. For full 

description of the OT radiometric calibration method, see Section 2.3.1.3. 



107 

          
(a)                     (b) 

Figure 4.3. Radiometric calibration performed on (a) DRS Tamarisk® 320 and (b)  DRS Tamarisk® 
640 at 25°C air temperature and 35% relative humidity when each uncooled thermal camera 
reached a steady operating temperature. 

Using the radiometric calibration transfer function, each uncooled TIR camera core was 

found to be directly sensitive (R2 = 0.99) to the temperature within the FOV (Figure 4.3). Results 

demonstrate uncooled thermal cameras’ ability to measure absolute temperatures with additional 

hardware and software, standard operating protocol for radiometric calibration, and strict camera 

configurations. 

As previously studied in Section 2.4.4, the OT radiometric calibration method was 

developed especially for quantifying temperatures aboard a dynamic sensing platform like a sUAS. 

To determine the TIR camera’s ability to measure temperatures, the absolute difference between 

actual and measured temperature is shown in Figure 4.4. Results reveal the maximum 

measurement accuracy is ±0.82°C and ±0.81°C (α=0.05) for the Tamarisk® 320 and 640, 

respectively (Table 4.2). For application, a sensing time of 60 minutes demonstrates the maintained 

measurement accuracy throughout the typical flight time of a multirotor sUAS (Rango, et al., 

2009). 

 
Figure 4.4. Measurement accuracy (±ºC) of the Tamarisk® 320 over 60 min. The absolute difference 

between the actual and measured temperature is shown. 

Table 4.2. 60 min measurement accuracy 
(±°C) with OT calibration. (α=0.05) 

Tamarisk ® 320 0.82 
Tamarisk® 640 0.81 
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          4.3.1.5 Connection Ease, Software, and Controllability 

Each TIR camera core provides an 8-bit (256 discrete pixel intensity DV) thermal video. 

Within the TIR camera control software, each camera was configured for video output and frame 

rate, and thermal detector sensitivity. In order to set the DRS Tamarisk® 320 and 640 camera 

cores, a DRS breakout board module (Breakout Box 1003785-001, DRS Technologies, Inc., 

Dallas, Texas) adjusts the thermal detector gain sensitivity (i.e., detectable scene temperature span) 

and level control (i.e., shift offset of the center temperature within the temperature span), thereby 

improving detected thermal energy of the scene temperatures (Figure 4.5).  

 
Figure 4.5. The gain control adjusts the thermal detector sensitivity to LWIR energy thereby 

adjusting the temperature span. Level control adjusts the center offset temperature to adjust the 
bias of the temperature span. Adapted from DRS Tamarisk® 320 Camera Control Software User 
Guide (2013). 

        
(a)       (b) 

Figure 4.6. DRS Tamarisk® 320 Camera (a) camera (a) gain for temperature span and (b) level setting 
characteristics for offset temperature bias. 
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(a)       (b) 

Figure 4.7. DRS Tamarisk® 640 camera (a) gain for temperature span and (b) level setting 
characteristics for offset temperature bias. 

As previously studied in Section 2.4.6, manual control of the DRS Tamarisk® 320 and 640 

thermal detector gain and level yielded a configurable temperature span from 5°C to 156°C and 

resolution from 0.02°C to 0.61°C. As shown in Figures 4.6 and 4.7, camera control software 

adjusted the limits of upper and lower pixel saturation while adjusting measurable temperature 

resolution on object targets. For example, a temperature span of 20°C is set by the camera gain 

control whereas a center temperature of 25°C is controlled by the level control. In this example, 

the lower and upper saturation temperatures would be at 15°C and 35°C, respectively. In addition, 

the temperature resolution of the resulting 8-bit image of a 20°C span would equal 0.08°C, as 

defined by Equation 4.4: 

���������E	(℃) = �f��E 	(℃)2E  
(4.4) 

where: 
 Tspan=Span of temperatures (°C) measureable by the thermal detector 
 N=bits of resolution (e.g., N=8 for 8-bit images), and 
 Tresolution=theoretical temperature resolution 

Combining temperature span and incremental offset level range reveal a significant 

relationship shown in Figure 4.8. Each level control increment offsets the temperature span by 

0.107 ºC, regardless of gain control. This was directly applicable for use in the field calibration 

software in order to provide suggested camera configurations for a particular temperature span and 

center temperature of interest as discussed below in the complementary TIR camera software 

detailed in Section 4.3.2. 
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Figure 4.8. Relationship between level control range (∆ level) and temperature span (ºC).  

     4.3.2 Hardware and Software Development 

Three distinct portions of the TIRIS are segmented into the sUAS TIRIS, OT calibration, 

and ground reference station. The system hardware and software was specifically developed to 

configure the TIR camera core within the sUAS TIRIS, provide OT radiometric calibration, and 

measure real-time environmental parameters for in-flight ground truthing in order to compensate 

for environmental conditions and maintain measurement accuracy (Figure 4.9). 

 
Figure 4.9. TIRIS component system diagram for camera calibration and ground reference data 

The sUAS TIRIS featured either the Tamarisk® 320 or 640 TIR camera core, depending 

on application and desired image resolution. The DRS breakout board module (Breakout 

Box 1003785-001, DRS Technologies, Inc., Dallas, Texas) functioned as the camera configuration 

board, video interface, and power input. Analog video was stored in video form using a miniature 

digital video recorder (RMRC FPV1000 DVR, ReadymadeRC, USA). The TIR camera cores and 

video recorder were set to record video at 30 frames per second. Power was supplied with an 11.1 

volt battery (RMRC 1100mAh 3S 35C, ReadymadeRC, USA). 

The ground reference station measured in-flight ground truthing reference data, such as air 

temperature and relative humidity, reference temperature panels, solar radiance, and global 

positioning from a GPS receiver. Air temperature and relative humidity were measured with an 
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Omega (HX303AV, Omega, Stamford, Connecticut) transmitter sensor with an accuracy of ±3% 

and ±0.3°C. Solar radiance was measured with a pyranometer (SP115, Apogee Instruments, 

Logan, Utah) with accuracy of ±0.25 W m-2. Three surface mounted thermistors (ON-930-44004, 

Omega Engineering, Stamford, Connecticut) capable of temperature measurements with an 

accuracy of ±0.1°C were used to measure temperature panels in order to create reference surface 

temperatures. Thermistors were wired into a voltage divider to monitor a change in voltage due to 

temperature-based resistance (Figure 4.10 a) where analog thermistor signal inputs were 

programed with LabVIEW™ sub-VIs using the factory supplied calibration curve, shown in 

Figure 4.10 b.  

            
      (a)       (b)  

Figure 4.10. (a) Voltage divider wiring diagram used to measure voltage due to thermistor resistance 
change. (b) Thermistor calibration curve to quantify temperature with change in resistance. (See 
Appendix B, Figure A.4 for more details) 

One of the three reference panels was fabricated from a 0.30×0.60 m piece of 1.52 mm 

thick (14 gauge) aluminum sheet metal and painted flat black. The second reference panel was 

fabricated from a 0.60×1 m piece of 6.35 mm thick wood that was painted flat black. The third 

reference panel was identified as a wet reference. To make the wet reference, a 0.30×0.60 m 

polystyrene foam pad was covered with a highly evaporative cloth (Chilly Padd, Arab, Alabama) 

that rapidly cooled when exposed to air. This foam piece was placed in a tub of water to allow 

continuous wicking and evaporation. In order to provide an emissivity correction, indirect 

background temperatures of the sky were measured from a viewable horizontal lambert radiator 

(i.e., crimped aluminum sheet metal). Differential temperatures provide visible reference 

temperatures within the TIR camera’s FOV from aboard the sUAS (Figure 4.11 a).  
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(a)      (b)    

Figure 4.11. (a) Ground reference panels for temperature reference and cross-calibration from sensing 
distance and environmental influence in radiant heat transmission with (b) the virtual interface for 
control and visual awareness.  

A commercial IRT (Fluke 62 MAX, Fluke Corporation, Everett, Washington) with an 

accuracy of ±1°C and emissivity adjustments from 0.1 to 1 found the emissivity (ε) of the lambert 

radiator, painted wood, aluminum, and wet reference surfaces to be 0.05, 0.82, 0.88, and 0.96, 

respectively (See Section 1.2.2 for more details on how this was performed). Reference 

temperature panels were sized to be viewable from aboard the sUAS and materials were 

constructed with a high surface emissivity in order to increase measurement accuracy (Figure 4.11 

a). Since the reference targets are not perfect emitters or absorbers, the total LWIR radiation from 

a surface is part emitted and reflected LWIR radiation as defined in Equation 4.5 (Maes & Steppe, 

2012): 

�T#��� = �T#�������� + �T#����������  (4.5) 

Where: 
 LWIRout = Outgoing radiant energy  
 LWIRemitted = Emitted radiant energy 
 LWIRreflected = Reflected radiant energy. 

In Equation 4.5, the measured temperature from the TIR camera corresponds to the 

outgoing radiant energy (LWIRout) which is measured as the apparent temperature (Tap). As 

suggested by Maes et al. (2012), apparent temperature is influenced by background temperature 

(Tbg), surface temperature (Ts), and surface emissivity (ɛ), defined by Equation 4.6: 

 �� = ����� − (1 − �)� !��
"

 (4.6) 

Where:  
 Ts = Surface temperature °C 
 Tap = Apparent temperature °C 
 ɛ = Emissivity 
 Tbg = Background temperature °C 
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After accounting for background temperatures (Tbg) and surface emissivity (ɛ), the TIR 

camera provides surface temperature (Ts) rather than apparent temperature (Tap).  

A data acquisition (DAQ) system was built using a NI myRIO (National Instruments 

Corporation, Austin, Texas) in order to capture thermistors, air temperature, relative humidity, 

solar radiance, and global position and time, as shown in Figure 4.12. Data was captured at 5 hz 

matching the frequency of the GPS reciever (Crius CN-06 V3 GPS Receiver Module, Swiss U-

Blox, Thalwil, Switzerland). The DAQ was programed to store all sensor data files in a 

measurement file into a flash storage device. Each data sample in the ground reference 

measurement file had a corresponding time stamp that was parsed from a GPS national marine 

electronics association (NMEA) message string provided by a GPS receiver. Each thermal video 

had a corresponding ground reference measurement file.  

 
(a)      (b)     

Figure 4.12. (b) Data acquisition system used to interface ground reference sensors with (a) plug-n-
play sensor inputs 

A lipo battery (RMRC 2200mAh 3S 35C, ReadymadeRC, USA) supplied power to a power 

supply in order to provide sensor excitation voltages and power to the microcontroller.  

For the OT calibration components, analog video from the sUAS TIRIS was streamed at 

30 Hz into an analog-to-digital video converter (Dazzle DVD Recorder HD, Corel Corporation, 

USA). This raw analog video signal was streamed into a host computer aboard sUAS using 

LabVIEW™ (National Instruments Corporation, Austin, TX) image acquisition and processing 

software in which each video frame was captured, processed, and stored using a developed virtual 

interface (VI) (Figure 4.14) to radiometrically calibrate the TIRIS and provide ground reference 

data. Ground reference data from the DAQ was wirelessly sent to the host computer using a 
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developed VI to perform on-ground OT radiometric calibration before flying the sUAS and 

monitor in-field data of the ground monitoring station.  

     4.3.3 Radiometric Calibration and Ground Reference Data 

For an on-ground OT radiometric calibration, direct surface temperature measurements 

(Figure 4.13) and camera pixel intensity from the analog video stream were monitored with a TIR 

Field Calibration (TFC) software program developed with NI LabVIEW™ (National Instruments 

Corporation, Austin, TX) (Figure 4.14). The on-ground OT radiometric calibration was conducted 

by holding the camera to include the cold and warm reference panels in the camera FOV (As 

shown in Figure 4.13 c). Raw pixel intensities from the video feed (X1, X2) were combined with 

actual surface temperature (Y1, Y2) to determine the radiometric transfer function slope, as defined 

by Equation 4.7. By using the slope found in Equation 4.7 and a raw pixel and coinciding 

temperature (X1, Y1), the y-intercept of the radiometric calibration curve was determined using 

Equation 4.8. When a radiometric transfer function was found, each digital image pixel was 

converted to a temperature value defined by Equation 4.9.  Using results from Equation 4.9, upper 

and lower saturation temperatures were found by creating a visual temperature legend for the 

image (Figure 4.14). Instantaneous temperature span and center level was found as defined by 

Equation 4.10 and 4.11, respectively. For ease of camera configuration, characteristic gain and 

level responses (Equations 4.10 and 4.11) were used to set the cameras for a user-defined span and 

center level temperature as defined by Equations 4.12 and 4.13. 

     
 (a)            (b)    (c)   

Figure 4.13. OT radiometric calibration use the cold and warm temperature differential created by (a) 
the wet reference panel and (b) the black aluminum panel measured with surface mount thermistors 
in the designated ROI shown in blue and red. (c) The corresponding TIR camera FOV is shown to 
demonstrate the temperature differential of the cold and warm reference. 
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Figure 4.14. TIR Field Calibration (TCP) VI to create OT radiometric calibrations while recording 

ground reference data. The visual indicator shows the VI monitored RT ground reference data, raw 
video feed, and file storage specifications while providing controls to conduct a OT Calibration.  

c = d? − d	e? − e	 (4.7 )

d − d	 = c(e − e	) (4.8 )

�(�,D) = ���E + #(F, G)2H − 1����E (4.9) 

where: 
 T(i,j)  = Pixel temperature (oC) at row i and column j, 
 Tmin = Lowest temperature within the image (oC),  
 I(i,j) = Pixel intensity at row I and column j, 
 N = Number of bits for pixel intensity (e.g., N=8 for 8-bit images), and  
 Tspan = Span of temperature captured in the image. 
 �WcBW@[Vg@W	UB[h	(℃) = iFVX	jk	�WXjlgVFjh × �[mFjcWV@F%	UljBW`cb (4.10) 

KWhVW@	�WcBW@[Vg@W(℃) = 128 × �[mFjcWV@F%	UljBW	`cb (4.11) 

K[cW@[	�[Fh	UWVVFhZ	(℃	�[hZW) = −9.5289	 × YWXF@Wm	�WcBW@[Vg@W	UB[h + 4109.34 (4.12) 

UgZZWXVWm	KjhV@jl	�W�Wl	 = Kg@@WhV	KWhVW@	�WcBW@[Vg@W	(℃) − YWXF@Wm	KWhVW@	�WcBW@[Vg@W	(℃) (4.13) 

     4.3.4 Camera Housing Design 

The multirotor sUAS contained a gimbal camera mount below the main airframe to 

maintain stable nadir camera orientation for improved aerial thermography. A small, lightweight 

camera case was developed to house all sUAS TIRIS components and provide protection while 

aboard the sUAS. Each component of the camera case was generated using computer aided design 

(CAD) modeling (Pro/Engineer, PTC Inc., USA) (Figure 4.15). A 3D printer (Makergear™ LLC, 

Beachwood, Ohio) was used to print a camera case out of polyactic acid (PLA) plastic because of 

printing ease and UV protection for use in the field.  

 



116 

 
(a)       (b) 

Figure 4.15. TIR camera case to hold sUAS TIRIS components in (a) the exploded view and (b) the 
collasped view. 

     4.3.5 Flight Campaigns 

The sUAS TIRIS was flown aboard a hexcopter multirotor sUAS (s800 Evo, DJI, China). 

The thermal camera was mounted on the gimbal for constant nadir orientation (Figure 4.16 b).  

         
(a)       (b)  

(a) 
Figure 4.16. (a) DJI s800 Evo used for flight campaigns with sUAS TIRIS shown on (b) gimbal mount  

Prior to a flight campaign, the standard operating procedures were as follows: 

1. Unpack equipment 

2. Power on the sUAS TIRIS to allow the TIR camera core to warm-up 

3. Setup the ground reference station 

4. Power on the ground monitoring station in order to achieve a GPS fix 

5. Start laptop to program the multirotor sUAS and control the TIRIS 

6. Conduct the pre-flight inspection for the multirotor sUAS and upload a flight program on the 
multirotor sUAS flight controller 

7. Connect the sUAS TIRIS to the on-ground OT radiometric calibration hardware (Figure 4.9, 
above) 

8. Configure the Tamarisk camera core using the TFC VI 

9. Conduct an on-ground OT Radiometric Calibration 

10. Start recording a simultaneous thermal video and ground measurement file 

11. Mount the sUAS TIRIS on the multirotor sUAS 
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12. Conduct and complete flight campaign as specified in the autopilot flight program of the 
sUAS Flight Controller 

13. Stop recording the measurement file and thermal video 

14. Validate data was recorded 

15. Finish testing and load equipment 
The system was flown in 12 flight campaigns at low and high altitudes to access differences 

in spatial resolution and temperature measurement accuracies. Two specific flight campaigns at 

40 and 80 m are described in detail below. For the flight campaign flown at 40 m, discussed in 

section 4.4.6, the TIRIS with the Tamarisk® 640 was flown over a golf course green to measure a 

fine resolution thermal map. For the 80 m flight campaign flown, the TIRIS with the Tamarisk® 

640 was flown over a corn plot to measure a coarse resolution thermal map. 

     4.3.6 Image Processing 

A batch processing procedure was developed to provide high-throughput thermal imagery, 

reduce manually subjective user control settings and provide uniform data handling. The standard 

operating procedure was used to parse thermal images and corresponding reference samples from 

raw data files, input processed images into image stitching software in order to generate a thermal 

map, and apply a radiometric transfer function to the resulting thermal map (Figure 4.17). 

 
Figure 4.17. Image process flow as the analog video file is converted to the final stitched thermal map.  

Two types of data was collected during a flight campaign. A raw thermal video was 

recorded on the mini-digital video recorder; and, a corresponding ground reference data file was 

recorded and stored on the MyRIO flash storage device. These two files would be downloaded for 

processing into a single folder on the processing computer.  

For batch processing, a Thermal Video Processing (TVP) VI was developed with 

LabVIEW™ (National Instruments Corporation, Austin, Texas) to automatically parse images 

from the thermal video, correct lens distortion, apply a variance image filter, and align individual 

images with the coinciding ground reference data sample (Figure 4.18). Because the digital video 

recorder stored analog thermal video at 30 frames per second (FPS), the TVP VI controlled the 

captured frame rate in order to parse only a selected number of images for processing. For example, 
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for every second of video recording, 30 frames were available for processing, but a user-defined 

capture frame rate of 1 FPS would grab 1 image every 30 frames. As a result, only the images 

captured at the user-defined capture frame rate were processed.  

At the beginning of the batch processing of the TVP VI, the user was prompted to select 

the raw video file (e.g., 0000155.avi) and the ground reference data file (i.e., 

corn_northfieldplot_flight_no1.csv). The TVP software would then pull the beginning time stamp 

from the ground reference data file to name the first image with the corresponding image number 

and time stamp. All subsequent images were then named based on the user-defined capture frame 

rate as controlled by the TVP VI and the time from that initial image. For example, the first image 

aligned with a ground reference data file started at ‘10.27.2014 10:30:00.000’ would be named as 

‘000001_10.27.2014.10.30.00.000.jpg’. In addition, if a user-defined capture frame rate was 1 

FPS, the second image would be denoted as ‘000002_10.27.2014.10.30.01.000.jpg’. The TVP 

would then amend each individual sample of the ground reference data with the corresponding 

image number for the ease of manual cross-checking the on-ground OT radiometric calibration.  

In the end, the TVP would output the filtered, undistorted images for subsequent image 

stitching and amended ground reference data in order to provide the ease of cross validating 

through ground truthing. 

 
Figure 4.18. The TVP VI converts the thermal video file to filtered images featuring selective controls 

of file path, camera selection for specific lens distortion, image output quality, capture frame rate, 
cropping dimensions, and progress indicators. 
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          4.3.6.1 Ground Truthing 

Ground truthing was used to validate the on-ground OT radiometric calibration with an in-

flight OT radiometric calibration from aboard the multirotor sUAS once flight altitude was 

reached. The in-flight OT radiometric calibration is manually conducted using RT surface 

temperatures from the ground monitoring station and image pixel intensity when the reference 

panels are present within the thermal images. This in-flight OT radiometric calibration correction 

would provide an environmental compensation to reduce LWIR energy attenuation from the 

influence of water vapor and aerosols present between the TIR camera and the reference panels as 

suggested by similar protocol conducted by Berni et al. (2009) and Monteith and Unsworth (2013).  

Thermal images obtained after batch processing (Figure 4.18) were used to verify that 

image pixel intensity of the images remained within upper and lower saturation points of the 

thermal detector. This acts as a validation that the TFC VI suggested the correct camera 

configuration settings for the user-defined temperature span and center temperature. For example, 

correct camera configuration would mean that no vegetation temperatures would correspond to a 

pixel intensity of 0 (black saturation pixel intensity) or 255 (white saturation pixel intensity). As a 

result, all vegetation (or desired target) must remain within the scene temperatures for quality 

thermography. 

          4.3.6.2 Spatial Resolution 

Temperature influences from a warm soil background and shaded lower leaves in partial 

canopy coverage can cause measurement error (Ayeneh, et al., 2002; Luquet, et al., 2003; Maes & 

Steppe, 2012). In order to investigate effects of spatial resolution on measured temperature, a series 

of increasing ROIs were designated within an image (Figure 4.19) by increasing offset spatial 

resolution by 1 pixel (i.e., 1×1, 3×3, 5×5,7×7,...) centered directly over a sensed target using the 

NI Vision Assistant™ (National Instruments Corporation, Austin, TX). 

 
Figure 4.19. ROI analysis with increasing spatial resolution. The green boxes indicate the ROIs of 

increasing size. 
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By increasing spatial resolution by 1 pixel (or 0.5 cm/pixel) around the outer perimeter for 

each subsequent ROI, average DVs were calculated to illustrate quantified temperature at the 

respective spatial resolution. For example, the target corn leaf had a width of 6 cm, providing a 

theoretical 12 pixels on the target in the center of the ROI.  

          4.3.6.3 Thermal Mapping 

Because the developed TVP software can capture images from the video stream at different 

capture rates, the capture frames per second (FPS) was investigated to determine necessary image 

overlap to improve mapping quality and efficiency. In order to reduce analog signal loss and noise 

introduced with analog video signal transmission, a basic variance image filter was applied to 

investigate its effect on mapping efficiency and quality.  

After the still images were filtered for signal noise and corrected for lens distortion, thermal 

images were imported into Agisoft™ PhotoScan Professional (Agisoft LLC, St. Petersburg, 

Russia) software to generate an orthomosaic image for the entire coverage area from images 

collected at the same altitude. A pixel averaging method in the Agisoft software computed average 

individual temperature values from all overlapping pixels in order to reduce the effects of 

bidirectional temperature influence present in low-altitude mapping. The corresponding on-ground 

and in-flight OT radiometric calibration transfer function developed in the field was then used to 

convert each raw pixel DV to temperature in the orthomosaic image using Equation 4.8.  

4.4 RESULTS AND DISCUSSION  

A small, lightweight TIRIS was developed for thermal mapping aboard a multirotor sUAS. 

The TIRIS capabilities include one of the two TIR camera cores, ground measurement system to 

record and transmit environmental parameters, and on-ground OT calibration equipment (Table 

4.3). An example of the sUAS TIRIS is shown in Figure 4.20. Between the low and high resolution 

TIRIS systems developed, the only substantial difference is the pixel resolution, video frame rate, 

resulting payload weight, and cost of the TIR camera core. When considering the application, the 

necessary spatial resolution, budget, and permissible payload determines which uncooled TIR 

camera core is appropriate. However, the sensitivity, controllability, measurement accuracy, and 

necessary hardware and software are identical for either systems.  
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Table 4.3.TIRIS Capabilities and Features 
sUAS TIRIS Power 

Detector Type Uncooled Vox Microbolometer Input Voltage 5-18 Volts 
Array Size 640 x 480 | 320 × 280 Power Usage 4 Watts 
Pixel Pitch 17 µm Battery Life 3 Hours 

Spectral Band 8-14 µm Battery Size 
11.1 Volt (1100 

mAh) 
Video Format Options Video Storage 

Frame Rates 9|30|60 fps Video File Format AVI @ 30 fps 
Analog Video NTSC (480p) PAL (576P) Recording Time 2.5 h/1Gb 

Image Resolution 8-Bit  Storage Memory 32 Gb 
Camera Recalibration Weight 

Video Record Time 1 Hour TIRIS 320 250 g 
Non-uniform Correction Shutter calibration (Time|Temp.) TIRIS 640 450 g 

Ground Monitoring Station Environmental  

Global Positioning Coordinates 1 Hz 
Operating Temp. 

Span 
0ºC to 65ºC 

Solar Radiance ±1 W m
-2

 or ±5% Humidity 
5 to 95%, non-

condensing 
Temperature Reference ±0.1°C Power 

Air Temperature ±2°C Input Voltage 9-24 Volts 
Relative Humidity ±3% Power Usage 6 Watts 

[a]
Thermal Camera Core Accuracy ±0.82°C (T320) | ±0.81°C (T640)  Battery Life 6 Hours 

        Battery Size 
11.1 Volt (3000 

mAh) 
[a] 

Measurement accuracy determined with a 1 min camera recalibration (NUC)  and OT radiometric calibration 

 

  
Figure 4.20. Resulting sUAS TIRIS featuring accessible control inputs and image acquisition ports. 

     4.4.1 Lens Distortion 

The Tamarisk 640 with the 25 mm lens had 18% lens distortion; and, the Tamarisk 320 

with the 11 mm lens had 19% lens distortion (Figure 4.21). Both lens distortion calibration results 

were used to correct lens distortion for spatial integrity, as shown in Table 4.4, within the TVP 

software.  
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Figure 4.21 (a) Tamarisk® 640 with 25 mm and (b) Tamarisk® 320 with 11 mm lens distortion results 

from the point distortion grid model with the origi nal image (left) point vector map (middle), and 
visual distortion map (right) 

Table 4.4 Lens distortion analysis including radial and tangential correction coefficients 
TIR Camera Core % Distortion Radial  Tangential 

k1 k2 p1 p2 
DRS Tamarisk® 320 

11 mm lens 19.1 -0.24992 -0.74306 -0.000177 0.002740 
DRS Tamarisk® 640 

25 mm lens 18.6 -0.41780 0.11154 -0.002273 -0.007275 
 

The percent lens distortion reveals significant distortion occurs within the germanium lens 

of each TIR camera core. This has implications in application where spatial integrity is critical 

especially in whole-field temperature mapping and site-specific crop health monitoring. In 

addition, since each TIR camera and lens are factory calibrated, a TIR camera and lens 

combination may have subtle variations in distortion characteristics. As a result, identical camera 

configurations may not be interchangeable; therefore, each individual TIR camera may need to be 

calibrated for its specific lens distortion coefficients. 

     4.4.2 Radiometric characterization and measurement accuracy 

Once the sUAS TIRIS was calibrated, the TFC software created a calibration file including 

coinciding ground reference data, critical camera settings like the OT radiometric slope and 

intercept, scene temperature span, center temperature, calibration time, and the suggested camera 

level and gain configuration, as shown in Table 4.5. 
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Table 4.5. Sample TIRIS camera calibration file for a flight campaign 

Time Latitude  Longitude Satellites Elevation (m) 

10/27/2014 12:42 39.194333 -96.597383 17 343.9 

Cold Pixel (DV) Warm Pixel (DV)) Cold Temp. (°C) Warm Temp. (°C) 
OT Rad. Slope 

(m) 
OT Rad.  

Intercept (b) 
76 166 10 48 0.422 -22.08 

Camera Gain Camera Level Center Temp. (°C) Span (°C) Low Temp. (°C) Hi Temp. (°C) 

3450 1434 32 65.86 -8.57 57.288 

For subsequent processing, the TFC program generated the calibration file name which 

was appended with the date and time coinciding with the ground reference data file described 

above in Section 4.3.6. As acquired from the calibration, the slope (m) and intercept (b) were used 

to apply a radiometric transfer function to the resulting thermal map, as described in Thermal 

Mapping section. The camera calibration naming conventions and file location is critical when 

managing the data generated with the TIRIS.  

     4.4.3 Ground Reference Data 

Ground reference data monitored during the flight campaign was used to conduct on-

ground and in-flight OT radiometric calibration. With a 5 Hz sample rate, subtle differences in 

reference temperature panels are shown in Figure 4.22. Results show the aluminum panel 

maintained the warmest temperature, whereas the wet reference panels had a temperature deficit 

of more than 10°C. 

  
(a)       (b) 

Figure 4.22. (a) Ground reference panel temperatures throughout flight campaign as recorded by the 
ground measurement station and (b) the ground reference panels viewable from the sUAS multirotor 
at an altitude of 40 m and a spatial resolution of 27 mm/pixel.  

By ground truthing the thermal imagery, the TIRIS measurement accuracy during a flight 

campaign (Figure 4.23) was found to be ±1.60ºC (α=0.05) using the on-ground OT radiometric 

calibration. However, with an in-flight OT radiometric calibration conducted at flight altitude, the 

TIRIS yielded a measurement accuracy of ±1.38ºC (α=0.05), as shown in Figure 4.23.  
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Figure 4.23. Measurement accuracy found from a flight campaign comparing the actual temperature 

versus the measured temperature as shown with a 95% confidence interval. Results reveal a TIRIS 
measurement accuracy of ±1.38°C. 

Because the reference temperature panels were unregulated and subject to the sensing 

environment, reference temperature deficits are a function of the sensing environment at the time 

of flight. This has implications on the temperature differential induced from a sensing 

environment. The temperature accuracy is increased with the use of the ground reference data 

correction. Even with ground reference correction, the measurement accuracy is diminished from 

laboratory accuracy measurements (±0.81°C). This could be contributed to environmental 

influence that cause temperature fluctuations of the reference panels reducing the accuracy of the 

radiometric transfer function. Further tests should consider testing reference materials of different 

thermal inertia in order to resist temperature fluctuations. With the image processing procedures 

discussed above, misalignment of images with the reference data time stamp may also introduce 

error due to incorrect reference data. Similarly, with every subsequent image, the time stamp was 

assigned based on the frame capture rate of the digital video recorder, which may fluctuate. 

Therefore, a future TIRIS should automatically assign each image with an instantaneous time 

stamp from a primary source.  

     4.4.4 Spatial Resolution and Measurement 

Pixel-by-pixel resolution ROI analysis provided necessary spatial resolution in order to 

limit false measurements. The spatial resolution was adjusted within the developed ROI analysis 

program, and the corresponding quantified temperature is shown in Figure 4.24. Results show 

measurement accuracy diminished from increasing ROIs of spatial resolutions from influence from 

warm background soil temperature. At a spatial resolution of 200 cm/pixel, the measured 

temperature was 3.2°C above the measured temperature at 6 cm/pixel. Results reveal a spatial 

resolution above that of the critical target spatial resolution (6 cm/pixel in this scenario) 

significantly impacts the measurement accuracy of the TIRIS aboard sUAS. 
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(a)      (b)   

Figure 4.24. ROI analysis with measured temperature (a) with respective spatial resolution centered 
on a corn plant target with a spatial resolution of  0.5 cm/pixel (b).  

The above influence could vary through crop development, where the largest influence 

may occur early in the growing season when soil dominates most of the measurement surface. 

Later in the growing season, a full canopy would reduce but may not eliminate this error. 

Therefore, future research needs to be conducted to develop advanced image analysis procedures; 

and, use a combination of visible and color infrared (CIR) cameras to accurately segment crop 

canopy from background soil. These additions could help accurately map canopy temperature at 

high spatial and temporal resolution throughout crop development.    

     4.4.5 Image Filtering 

Because of noise introduced with analog video signal transmission, a pixel variance filter 

was applied to each image during batch image processing. The same image set was processed 

without the filter to compare thermal mapping quality and efficiency (Table 4.6). The first metric 

for comparison was the amount of images the stitching software was able to align with common 

points between images. Filtering each image with a pixel variance filter increased the amount of 

aligned photos of the given image set from 69% to 99%. 

Table 4.6. Comparison of results from raw and filtered image stitching  regarding aligned 
images, processing time, and developed point clouds 

  Filtered Images Raw Images 
No. of aligned images 219/220= 99% 153/220= 69% 

Processing Time 15 min 36 sec 12 min 18 sec 
Initial Point Cloud  34,448 18,529 
Dense Point Cloud 1,720,823 1,180,905 

As expected, additional images resulted in increased processing time, but mapping 

efficiency improved by acquiring more data from filtered images, resulting in a higher quality 

orthomosaic image. Increased image data was reflected in the dense point cloud attained due to a 

greater number of aligned images. As the stitching software built initial and dense data point 

clouds, the filtered images almost doubled the data in the generated point clouds, thereby 
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increasing the resulting orthomosaic image data and overall quality displayed in the resulting 

thermal map (Figure 4.25).  

 
(a)        (b) 

Figure 4.25. (a) Comparison of thermal map of raw images and (b) filtered images prior to image 
stitching. In the resulting raw image mosaic, the outer edge and inner portion (black boxes) of the 
image lacks detail represented in the resulting mosaic image captured by the filtered images. 

As shown in the filtered images mosaic (Figure 4.25 b), points along the outer perimeter 

of the orthomosaic image increased the coverage of the image associated with more aligned 

images. More importantly, detail was lost in the thermal map of unfiltered images where subtle 

features are visible in the resulting thermal map of filtered images. This has implications on the 

quality of the resulting images. In addition, as images are processed with the stitching software, 

user defined software settings can alter mapping output from stitching algorithms producing 

potential error. Coarse settings and low quality parameters could result in faster mapping 

throughput but does not guarantee the resulting quality of the orthomosaic image. In addition, the 

stitching software may not be able to process low quality imagery. Similarly, low quality images 

may result in errors such as lost imagery coverage from limited point clouds and discrete data loss 

as the map is generated (Figure 4.25). As a result, quality of the resulting thermal map will 

inherently depend on the quality of individual images. Design considerations to improve and 

maintain captured image quality should be a deciding criteria for selecting system hardware and 

software.  
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     4.4.6 Thermal Mapping 

Five different capture rates were investigated and the resulting stitching parameters are 

shown in Table 4.7 and illustrated in Figure 4.26. With image stitching, the images with a denser 

point cloud resulted in a better thermal map featuring higher spatial accuracy. A capture frame rate 

of 1 FPS at the respective altitude and flight speed resulted in the highest quality thermal scan with 

an increased number of aligned images and the largest point cloud (Figure 4.26 c). 

Table 4.7. Results from various frame capture rates and image stitching results related to processing time, 
developed point cloud, and common point matches between consecutive images 

Capture frequency 3 frames s
-1

 2 frames s
-1

 [a] 1 frames s-1 1 frames 2 s
-1

 1 frames 3 s
-1

 

No. of aligned images 355/635 = 56% 307/445 = 69% 219/220= 99% 108/111= 97% 60/74= 81% 

Processing Time 35 min 18 sec 19 min 57 sec 15 min 36 sec 4 min 26 sec 2 min 15 sec 

Point Cloud 15,563 31,846 34,448 16,681 6,592 

Dense Point Cloud 225,270 1,031,577 1,720,823 1,228,590 539,457 

 [a] This capture frame rate provided the best mosaicked thermal map 

Typical perception would be that more images would produce a better orthomosaic image 

from more overlap as a result of more common points between images. However, additional 

thermal images resulted in a less-efficient thermal map from less common points between images. 

This occurrence may be contributed to the thermal detector’s integration time (time necessary for 

the microbolometer to measure incoming LWIR energy) which can create image blur in 

consecutive images from the resistance based temperature from the previous image frame 

(Vollmer & Mollmann, 2011).  

 
(a)               (b)        (c)          (d)       (e)   

Figure 4.26. Mosaicked image resulting from capture frame rates illustrated in Table 4.7 at (a) 3 frames 
s-1, (b) 2 frames s-1, (c) 1 frame s-1, (d) 1 frame 2 s-1, and (e) 1 frame 3 s-1. 

Agisoft™ PhotoScan software aligns images based on common points, with or without the 

use of GPS coordinates, from neighboring images to determine the image layout and camera 

orientation (Figure 4.27). Common points, alone, were used as the alignment technique.  



128 

 
Figure 4.27. Camera orientation (black line normal to image) and respective image altitude. 

Parameters were deduced from image overlap and common pixel intensities between neighboring 
images.  

From within the Agisoft™ PhotoScan software, a manual comparison between the forward 

and lateral images revealed the amount of overlap with a capture frame rate of 1 FPS. As shown 

in Figure 4.29, a low altitude thermal map of a golf course green had an overlap covering 81.4% 

of the forward image and 55.9% of the lateral image, as shown in Table 4.8. As a result, the average 

pixel intensity within the orthomosaic image is skewed from more camera views in the forward 

direction. In application, this skewed average could introduce mapping artifacts into the resulting 

orthomosaic image that closely follow the flight path orientation.  

 
Figure 4.28. Forward and lateral overlap of stitched images. The red and blue lines indicate the invalid 

and valid, respectively, common points between the images.  

Table 4.8 Image overlap percentage 
  Image Size Overlap Camera Views 

Original Image 610 × 441 -  
Forward Overlap 610 × 359 81.4% 5 
Lateral Overlap 341 × 441 55.9% 2 
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As calculated from Table 4.8, a specific target surface was viewed, theoretically, by 10 

different camera angles as found using Equation (4.1, above. However, the number of camera 

views could fluctuate due to sUAS platform’s flight path variability from telemetry inaccuracy and 

wind influence.  

As shown in Figure 4.29, the last step in image processing converted each image pixel into 

a quantified temperature intensity using the radiometric calibration transfer function generated by 

either the on-ground or in-flight OT radiometric calibration as defined by Equation 4.14: 

 ��� = �. ����	 × ���� + �. �� (4.14) 

Where: 
DVi j=  pixel brightness value at row i and column j 
Ti j = corresponding temperature related to the pixel at row i and column j. 

 
Figure 4.29. Thermal map of a golf course green at an altitude of 40 meters. This orthomosaic image 

is the result of 220 individual images taken at 1 FPS. After post-processing, measurement accuracy 
was ±1.38°C from an in-flight OT radiometric calibration with theoretical spatial resolution of 27 
mm/pixel. A temperature legend is generated from the upper and lower temperatures found with 
the TIR Field Calibration software. 

Similarly, a high altitude corn field thermal map was generated with a forward and lateral 

image overlap of 83.7% and 81.4%, respectively (Table 4.9). A specific target surface was viewed, 

theoretically, by 30 different camera angles as found using Equation (4.1, above. As a result, the 

average pixel intensity within the orthomosaic image represents a target from a more uniform 

distribution of camera views than the low altitude example, above. 
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Figure 4.30 Forward and lateral overlap of stitched images. The red and blue lines indicate the invalid 

and valid, respectively, common points between the images. 

Table 4.9. Image overlap percentage     

  Image Size Overlap 
Camera 
Views 

Original Image 610 × 441 - - 
Forward Overlap 575 × 387 87.8% 8 
Lateral Overlap 497 × 441 81.4% 5 

 

The corn field thermal map, as shown in Figure 4.31, was converted to temperature 

intensity using the radiometric transfer function generated by the TIR Field Calibration software 

as defined by Equation 4.15: 

��� = �. ���	 × ���� + �. �� (4.15) 

 
Figure 4.31. Thermal map of corn at an altitude of 80 meters. After post-processing, measurement 

accuracy was ±1.60°C from an on-ground OT radiometric calibration with theoretical spatial 
resolution of 54.4 mm/pixel. This orthomosaic image is the result of 180 individual images taken at 
1 frame rate per second. A colorized mask is used to provide visual isotherms. 

With environmental sensors utilized in this study, these micro-climates were assumed to 

be constant with RT measurement taken at the plant canopy level. Future studies should be 
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conducted to use the environmental sensors and temperature map in order to look at spatial crop 

water stress. Lastly, a feasibility study that investigates the use of a spatial crop water stress map 

for variable rate irrigation in order to provide a cost-benefit analysis need to be investigated in 

future studies.  

4.5 CONCLUSION  

A direct agricultural study using thermography was conducted to provide knowledge 

pertaining to specific operation and control, hardware configuration, and utility in precision 

agriculture in which limited studies have restricted thermography use to laboratories and controlled 

environments. A small, lightweight TIRIS was developed for a multirotor sUAS to provide high-

throughput imagery sensitive to spatial crop temperature variability for radiometric temperature 

mapping. A complementary TIRIS software package allowed automatic image processing in order 

to limit manually subjective parameters and advance the ease of image capture, correct image 

distortion, and increase throughput and storage management for direct use in subsequent image 

stitching. The TIRIS was designed to quantify temperatures in environmental conditions typically 

observed under field conditions using either an on-ground or an in-flight OT radiometric 

calibration and RT ground reference station. RT ground reference data provided a specific time 

stamp and air parameters associated with each image and provided temperature measurement 

accuracy. Physical properties that typically increase inaccuracy were minimized with the TIRIS 

design by selecting TIR camera cores for the desired spatial resolution, creating standard operating 

protocol, and specifically designed software. As a result, the developed TIRIS is intended to add 

utility to uncooled thermal camera for direct use aboard sensing platforms in precision agriculture. 

Results revealed adhering to critical spatial resolution maintains measurement accuracy 

while maximizing coverage area where critical spatial resolution depends on the current plant 

growth stage in order to limit background temperature exposure. The Tamarisk 320 with an 11 

mm lens had 19% lens distortion; and, the Tamarisk 640 with a 25 mm lens had 18% lens 

distortion. Both lens distortions were automatically corrected in batch processing. A relationship 

between image overlap and camera views was created in order to determine a flight campaign that 

is capable of representing a target measurement with a given confidence. Similarly, an applied 

pixel variance filter increased mapping efficiency by increasing the amount of aligned photos from 

69% to 99% of the given image set.  



132 

An OT radiometric calibration method was used to provide absolute surface temperature 

at calibrated environmental conditions. RT ground reference data provided the ability to make in-

flight OT radiometric calibration corrections to thermal imagery flown aboard a multirotor sUAS 

in order to achieve a temperature measurement accuracy of ±1.38°C, whereas an on-ground OT 

radiometric calibration yielded a measurement accuracy of ±1.60°C.  

Due to their low cost compared to cooled TIR cameras, minimal size and weight, and lack 

of moving parts, uncooled TIR cameras have been emphasized and utilized aboard sUAS platforms 

for coverage and spatial crop temperature assessments. Study results indicated that TIRIS could 

be further researched in order to produce temperature maps for spatial crop water stress at scales 

needed for large agricultural production systems. Producers, agricultural service providers, and 

researchers should consider TIRIS for crop water stress monitoring applications.  
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Appendix A - Supplemental Materials for Chapter 2 
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Figure A.1 Tamarisk® 320 Data Specifications 
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Figure A.2 FLIR® Tau 2 Data Specifications 



142 

 

Figure A.3 IPORT CL-U3 External Frame Grabber 
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Figure A.4 Surface mount thermistors produced by Omega Engineering. ON-930-44005-40 and ON-
930-44033 were used for research covered in Chapter 2, 3, and 4. 
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(a) 

 

 
(b) 

Figure A.5 Near-Perfect Black-Body Enclosure Monitoring VI front panel (a) and back panel (b) 
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(a) 

 
(b) 

 

(c) 

Figure A.6 The wiring of the Thermistor sub-VI (a), front panel (b), and block diagram (c) show the 
input from the logarithmic calibration curve in ord er to convert input voltage into temperature °C. 

 
Figure A.7 TIR Camera Evaluation VI front panel  
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Figure A.8 Tamarisk® 320 lens distortion calibration results  

 
Figure A.9 FLIR® Tau 2 (324) lens distortion calibration results 
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Appendix B - Supplemental Materials for Chapter 4 

 

 
Figure B.10 Tamarisk® 640 Data Specifications 
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Figure B.11 Tamarisk® 640 lens calibration results 

 
Figure B.12 OT Calibration VI front panel  
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Appendix C - Software CD 

 

1. Complete LabVIEW™ Projects 

a. VIs 

i. TIR Camera Evaluation 

ii.  TIR Field Calibration 

iii.  Automated Greenhouse Monitoring System 

iv. Auto Analyze Greenhouse Monitoring Data for Individual Crop Water 

Stress 

v. AVI Segmentation to Filtered Images 

b. Complete Sub-VIs 

i. Thermistor Sensor 

ii.  Air Temperature/Relative Humidity Transmitter Sensor 

iii.  Upload and Download to USB 

iv. GPS Read 

v. Tamarisk® 320 Lens Distortion Correction 

vi. Tamarisk® 640 Lens Distortion Correction 

vii.  FLIR® Tau 2 Lens Distortion Correction 

viii.  Save to CSV File 

ix. Upload from CSV File 

c. Remote Target VIs 

i. MyRIO TIR Field Calibration and Flight Reference Data 

ii.  MyRIO TIR Cabinet Monitoring 

iii.  SBRIO Greenhouse Monitoring 

2. Complete Agisoft™ Professional Image Bundles 

 


