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Abstract

Precise water application conserves resources,cesdeosts, and optimizes plant
performance and quality. Existing irrigation schigdy utilizes single, localized measurements
that do not account for spatial crop water needl; duick, single-point sensors are impractical for
measuring discrete variations across large coveasgges. Thermography is an alternate approach
for measuring spatial temperatures to quantify dreglth. However, agricultural studies using
thermography are limited due to previous cameraeg@, unfamiliar use and calibration, software
for image acquisition and high-throughput procegsipecifically designed for thermal imagery
mapping and monitoring spatial crop water need eReadvancements in thermal detectors and
sensing platforms have allowed uncooled thermahiefl (TIR) cameras to become suited for
crop sensing.

Therefore, a small, lightweight thermal infraredagimg system (TIRIS) was developed
capable of radiometric temperature measuremengs-tiore (OT) and real-time (RT) radiometric
calibrations methods were developed and validateddpeatable, temperature measurements
while compensating for strict environmental corafig within a climate chamber. The Tamarisk®
320 and 640 analog output yielded a measuremeatamcof £0.82°C or 0.62°C with OT and RT
radiometric calibration, respectively. The TamagisB20 digital output yielded a measurement
accuracy of £0.43 or 0.29°C with OT and RT radiometalibration, respectively. Similarly, the
FLIR® Tau 2 analog output yielded a measurementracy of £0.87 or 0.63°C with OT and RT
radiometric calibration, respectively.

A TIRIS was then built for high-throughput imagetiare, correction, and processing and
RT environmental compensation for monitoring croptev stress within a greenhouse and
temperature mapping aboard a small unmanned ags@ms (SUAS). The greenhouse TIRIS was
evaluated by extracting plant temperatures for mooimg full-season crop water stress index
(CWSI) measurements. Canopy temperatures dematstiet CWSI explained 82% of the soil
moisture variation. Similarly, validation aboard@dAS provided radiometric thermal maps with
a +1.38°C ¢=0.05) measurement accuracy. Due to the TIR camgea®rmance aboard sUAS
and greenhouse platforms, a TIRIS provides unpeall spatial coverage and measurement
accuracy capable of monitoring subtle crop stnedators. Further studies need to be conducted

to produce spatial crop water stress maps at spatessary for variable rate irrigation systems.
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Chapter 1 - Use of Thermography for Crop Stress Asssment: A

Review

1.1INTRODUCTION

Tactical agriculture management that uses on-demamadte sensing relies on accurate
measurements, rapid response times, inexpensigersplatforms, and user-intuitive techniques
to achieve well-informed decisions. By spatially mitoring crop stress, producers use thermal
remote sensing for crop canopy temperature magpings & Pereira, 2000; Ayeneh, et al., 2002;
Berni, et al., 2009; Taghvaeian, et al., 2013; Wangl., 2010), measuring individual crop profile
temperatures (Leinonen & Jones, 2004), schedulamable rate irrigation (Cohen, et al., 2005;
Colaizzi, et al., 2012; Fitzgerald, et al., 20@fhp breeding (Grant, et al., 2006; Liu, et al120
Zia, et al., 2013), assessing fruit detection amality (Bulanon, et al., 2009; Sepulcre-Canto, et
al., 2007;; Zhao, et al., 2005), estimating bion(&¢soster, et al., 2013), forecasting yield (Hackl,
et al.,, 2012), detecting disease, and determinutgemt deficiency (Hashimoto, et al., 1984;
Tilling, et al., 2007; Chaerle, et al., 1999). Csipess broadly describes a factor that limits crop
yield potential (Jackson, et al., 1981) in whiclvesé¢y depends on stress types, timing, and
duration. As producers strive for increased outfuim available land, economic and
environmental considerations will become more aaltifor knowledge-based management
techniques intended to increase farming efficiemnhance profitability, lessen environmental
impact, and promote precision technology advanceltearwitz, et al., 2004; Taghvaeian, et al.,
2013).

Of the many stress types placed on an agriculpwcaluction crop, water stress is the most
common and limiting factor impacting potential yigVZia, et al., 2013; Luvall & Holbo, 1991,
Scherrer, et al., 2011). In the United States,cagitire annually uses approximately 80% of the
consumptive ground and surface water use (USDA4R0Tonsequently, water conservation
potential relies heavily on precision technolodieswater decision support (Rodriguez, et al.,
2005) in order to increase water use efficiencyh@n et al., 2005; Ballester, et al., 2013; Gontia
& Tiwari, 2008). In addition, future municipal dendhfor clean water will restrict agricultural
water usage and create more governmental regutafiatentially leading to water shortages and
strict water allocations. Therefore, deficit irrigea is a scheduling technique to reduce irrigation

application and improve water use efficiency (Bstie, et al., 2013; Evett, et al., 2014; Scherrer,



et al., 2011) while tolerating an acceptable reidadn yield (Moller, et al., 2007; Sepulcre-Canto,
et al., 2007). The decision to irrigate is critjdalit accurate determination of irrigation amount
and location is as equally important for site-spedirigation (Alves & Pereira, 2000; Cohen, et
al., 2005; Wanjura, et al., 1992) that matcheptkeise crop water need at manageable increments
to achieve desired crop performance (Cohen, e2@05; Taghvaeian, et al., 2013). However,
extensive variability exists within commercial agdiural fields, including soil type and depth,
topography, climate, crop growth stage, and vaaangroducer operation (Cohen, et al., 2005;
Evett, et al., 2014).

The aim of this review is to demonstrate the wytiit thermography in agriculture. Because
crop canopy temperature can indicate crop striesanbgraphy is essential in agricultural studies
in order to acquire qualitative and quantitativepccharacteristics for supporting management
decisions (Colaizzi, et al., 2012; Evans, et &0®. In addition, the spatial resolution (ground
sample distance (e.g., lcm/pixel)) and image psiegs functionality of low-resolution
thermography help increase the use of crop canempérature characteristics in agriculture
(Luquet, et al., 2003). Because arable land iseatlly unable to meet the increased demand for
food, fuel, and fiber for future generations, aablé land and resources must be managed more
efficiently in order to increase productivity. Tlea:ianagement practices will be enabled with the
use of precision agriculture technology such agntbgraphy. In addition, crops sensing
capabilities can increase land productivity, effidly apply inputs (Brown, et al., 1994; Goel, et

al., 2000), and sustain production growth.

Thermal infrared (TIR) sensors are categorized hesntometry and thermography.
Thermometrics utilize infrared thermometers (IR@ ptovide a single-point measurement of the
average temperature of all objects within the fiefdview (FOV) (Hackl, et al., 2012), with
practical use limited to ground and laboratory agpions. In thermography, a TIR camera uses a
thermal image sensor to generate a thermal imagehioh each pixel represents the average
temperature of all objects in the specific pixalisa of interest (AOI) (Grant, et al., 2006).

The use of thermography in agriculture is attridutethe fundamentals of thermal sensing
and the recent advancements in thermal sensordlegyand sensing platforms that will be
reviewed in four sections. First, the thermal domai the electromagnetic spectrum; laws of
Stefan-Boltzmann, Wien, Kirchhoff, and Planck; Kineand radiance temperatures; emissivity

and atmospheric correction; and thermal inertiadeseussed. Physical limitations and constraints



impacting thermal sensing accuracy are also discli§hermometry is briefly discussed because
basic physical fundamentals of surface temperatheasurements are identical for both types of
thermal sensors. Second, techniques to increasadhsensitivity are briefly discussed in relation
to intrinsic properties of thermal cameras and ienagalysis, as well as future needs regarding
thermographic development. Third, thermal sensidgtfggms for production crops are
summarized with an emphasis on low-altitude imagaafyieved with small Unmanned Aerial
Systems (SUAS) because of the ground coverage eral bf sensing detail not previously
possible. Lastly, thermal sensing for crop stresdiscussed with regards to early crop sensing,

alternative crop sensing methods, crop stressatmlis, thermal indices, and cost versus benefit.

1.2FUNDAMENTALS OF THERMAL SENSING

Thermal domain of the electromagnetic spectrum,slaf Stefan-Boltzmann, Wien,
Kirchhoff, and Planck; kinetic and radiance tempaes; emissivity and correction; thermal
inertia; and physical limitations and constrairtiattimpact thermal camera measure accuracy

(closeness to the true value) are discussed ifotosving sections.

1.2.1Basics of Thermal Radiation

Temperature plays a fundamental and often limitolg in many biological processes that
control the rate of chemical reactions betweentpland surrounding microclimates (Luvall &
Holbo, 1991). Physical plant mechanisms assessdcvwdp sensing are often regarded as cause
and effect in order to simplify and describe a eysi{Monteith & Unsworth, 2013). In natural
sciences, such as agriculture, long-wave infrat®dIR) of the electromagnetic spectrum (7 to 14
Km) ranges in surface temperature from -66.2°GA@°C (Kuenzer, 2014), as shown in Figure
1.1. The LWIR region of the electromagnetic speutrdemonstrates a longer wavelength
compared to the visible (VIS) and near infraredRNkegions. Compared to VIS and NIR
detectors, TIR detectors measure emitted radiatistead of reflected radiation (Kuenzer, 2014).



Atmospheric Thermal Windows

7

400 500 600 700 nm 1100 3,000 5,000 2,000 14,000 nm
1 VRN e PATATATACA P A A A AT AT AT AT AT ATATATATATASASA
Blue Green  Red Near Infrared
Mid-Wave Thermal Long-Wave Thermal
(MWIR 3-5um) (LWIR §-14um)

Figure 1.1. Electromagnetic Spectrum. Reproduced éim Schepers (2012).

All objects with internal temperature greater tBak emit radiant electromagnetic energy
with respective wavelengths (Maes & Steppe, 20Ex5t&fling & Meyer, 2013). As suggested by
the Wien Displacement Theory, the emitted energgselength from an object is a reciprocal of
the object’s temperature, as shown in Figure 1.8hérter electromagnetic energy wavelength
yields a higher absolute kinetic temperature. Mdalles within an object vibrate, creating a
vibrating motion that emit energy at a specific el@ngth directly related to internal kinetic
temperature (Hecker, et al., 2013). Because ttosation is related to physical and chemical
material compositions, distinctive features in théR electromagnetic spectrum can be
undetectable in the VIS and NIR electromagnetigeafiHecker, et al., 2013).
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Figure 1.2. Absolute kinetic temperature of a blackody’s emitted radiation
According to Planck’s Fundamental Blackbody Radiatiaw, a blackbody emits radiant
energy at a given wavelength dependent on the atlesieimperature (Kuenzer, 2014). At a given
wavelength, shown in Figure 1.3, the radiated grigrgavelength can be calculated from surface
temperature in Equation 1.1 which is rearrangddrm Equation 1.2 in order to directly measure

surface temperature.



1.1
R=eoT* (1.1)

T = (5)1/“ (1.2)

EO
Where:

R=Radiant energy flux of blackbody [W m-2])
e=emissivity (i.e.g=1 for blackbody object)
o=Stefan-Boltzmann constant [5.6697 x 10-8 W m-2]K-4
T=Kinetic Temperature [K].

The radiant energy-to-internal temperature relatgmshown in Figure 1.3 can be used to
measure the temperature of a blackbody surfaceawitfiR sensor (Kuenzer, 2014). A blackbody
object is idealized as a perfect absorber and emwith a blackbody temperature corresponding

to the object’s radiant energy (Maes & Steppe, 2042 defined by Stefan-Boltzmann’s Law of
radiant energy, Equation 1.2.
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Figure 1.3. Measured temperature from a blackbody bject’'s emitted radiant energy
However, natural objects are not perfect emittaratmsorbers because they reflect an
amount of background temperature, resulting in Enampire estimation errors. Maes et al. (2012)
asserted that the Stefan-Boltzmann Law define$ ltmtg-wave radiation (k) from a system, as
shown in Equation 1.3.

Lout = Lemittea + Lreflectecl (1.3)
Where:
Lout = Outgoing radiant energy
Lemitea= Emitted radiant energy
Lrefiected= Reflected radiant energy.

In Equation 1.3, outgoing radiant energygl corresponds to the apparent temperature
(Tap) comprised of emitted radiant energyked and reflected radiant energyrdfscted from the
object’'s surface. According to Maes et al. (201&pparent temperature is influenced by

background temperature ugJ, surface temperature {JT and surface emissivity) defined by
Equation 1.4:



I Ll L) (1.4)
s €
Where:

Ts = Surface temperature
Tap = Apparent temperature
€ = Emissivity
Twg = Background temperature
For the two types of thermal sensors, IRTs measaueeage apparent temperaturep(T

within the FOV, resulting in temperature estimatierrors. However, after accounting for
background temperatures gl and surface emissivitye), thermal cameras provide surface
temperature (J rather than apparent temperaturgy).Tin application, background temperatures
can be accounted for directly or indirectly with I®T sensitive to the same LWIR region as the
thermal sensor (Maes & Steppe, 2012). Direct batkagt temperatures of the sky are measured,

while indirect background temperature can be meaisiiom a horizontal lambert radiator, blotted
aluminum foil.

1.2.2Emissivity (€)

Emissivity must be identified in order to accurgtguantify kinetic temperature from
emitted radiant temperature (Hecker, et al., 20IBgrmal sensing accounts for emissivity using
empirical laboratory and/or field measurements @decet al., 2013). Surface emissivity reduces
emitted radiant energy, as shown in Figure 1.4.
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Figure 1.4. Simulated temperature from emitted radant energy based on varying surface emissivity
Emissivity correction is crucial when analyzing rin@l imagery because objects with
identical kinetic temperature and different emiggiwill emit and reflect different levels of
radiant temperature (Kuenzer, 2014). Because [@ames consist primarily of water, plant leaves
closely emit and absorb thermal radiation as néekbodies with a general emissivity of 0.95
(Berni, et al., 2009; Hecker, et al., 2013). Actealissivity of vegetation should be validated

because of complex chemical interactions within ba&f and varying leaf structures that



consequently produce subtle differences in emigsbetween vegetation species types (Hecker,
et al.,, 2013; Jones, 1999; Vasterling & Meyer, 2018 surface temperature {T apparent

temperature (4), and background temperature,d)Tare known, emissivity can be estimated, as
defined by Equation 1.5:

Th — T
g=-2_ b9 (1.5)
T4 — Ty,
In addition to empirical emissivity measurementscusate background and surface

temperature can reduce measurement error (Maeg@&t2012). Idso et al. (1969) empirically

determined crop leaf emissivity for a range of gggas shown in Table 1.1.

Table 1.1. Emissivity ¢ + standard deviation) of determined crops leaves. Adapted fro

Idso, Jackson, Ehrler, and Mitchell (1969).

Species Infrared Emittance
Aralia - Aralia seboldi 0.968 + 0.006
Avocado - Persea drymifolia 0.979 +0.009
Beavertail Cactus - Opuntia basilaris 0.978 + 0.002
Blind Prickly pear - Opuntia rufida 0.977 + 0.002
Cactus Pear - Opuntia ficus indica 0.957 + 0.002
Chili Pepper - Capsicum frutescens cv. Long Green .979+ 0.005
Common Bean - Phaseolous vulgaris cv. Bountifuhi@eleaflet) 0.938 +0.008
Common Bean - Phaseolus vulgaris cv. Bountifub(kltleaflet) 0.964 + 0.005
Cordyline - Cordyline terminalis 0.967 + 0.003
Cotton - Gossypium hirsutum cv. Deltapine 0.964600
Cottonwood - Populus Fremontii 0.977 £ 0.004
Crested Cactus - Lophocereus schottii 0.973 +0.004
Geranium - Pelargonium domesticum var. Martha Wagbn 0.992 + 0.002
Ivy - Hedera helix var. Algerian 0.969 + 0.005
Lacy Tree Philondendron - Philodendron selloum 0.99.010
Long Cotton - Gossypium barbadense cv. Pima S-4 790£9.008
Maize - Zea mays cv. Mexican June 0.944 + 0.004
Orange - Citrus aurantium 0.972 + 0.008
Papaya - Carica papaya 0.982 + 0.004
Prickle pear - Opuntia engelmannii 0.961 + 0.004
Purple Prickly pear - Opuntia orbicular 0.971 + 0.006
Rose - Rosa 0.993 +0.006
Rough Lemon - Citrus jambhiri 0.975 + 0.008
San Pedro Cactus - Cereus bridgesii 0.973 +0.001
San Rita Prickly pear - Opuntia santa rita 0.969002
Snailseed - Cocculus laurifolius 0.973 + 0.003
Sugarcane - Saccharum officinarum 0.995 + 0.004
Tobacco - Nicotiana tabacum 0.972 £ 0.006
Tomato - Lycopersicon esculentum cv. Pearson Ingatov 0.982 + 0.004
Tongue Prickly pear - Opuntia linguiformis 0.965.601
Upland Cotton - Gossypium hirsutum cv. Hopicala 60.9 0.011
Water Lily - Nymphaea odorata 0.957 + 0.006
White Mulberry - Morus alba 0.976 + 0.008
Wild Privet - Ligustrum vulgare cv. Japanese 0.961003

Based on Table 1.1 and empirical tests, ldso €t1869) found no apparent correlation
between species and corresponding emissivity, blyesaggesting necessary measurements are

required for emissivity correction. Detailed sudaamissivity correction is recommended when



attempting to retrieve exact surface temperaturaedi& Steppe, 2012). This can complicate
thermography because each image pixel could be satpof multiple surfaces of varying

emissivity. However, emissivity correction can efprmed with image processing techniques.
1.2.3Natural Physics in Crop Sensing

Land surface objects, vegetation, soil, and wdtéraae diurnal (i.e., day and night cycle)
temperature characteristics throughout a 24 h g@erithis dynamic temperature change is
dependent on the object’s material properties (ckgg thermal inertia), season (strength of
illumination), atmospheric conditions, and orier@atto the sun (aspect, slope) (Kuenzer, 2014).
In addition, the microclimate surrounding an objedtighly dependent on the incident radiation,
as shown in Figure 1.5.
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Figure 1.5. Diurnal temperature variation of desertsand depending on aspect ratio to the sun. Adapted
from Kuenzer ( 2014).

Solar illumination time, intensity, and orientationust be accounted for in order to
compare vegetative temperature for real-time deass(Evans, et al., 2000). Therefore, vegetative
characteristic data sets depicting leaf surfacepésaiure should only be compared with
comparable circumstances (i.e., day of year, attmqungime, sensor configuration, and calibration
methods) (Kuenzer, 2014). In addition, site-spec#itributes contribute to dynamic leaf and
canopy energy balance based on leaf orientatioeri{ger, 2014), water requirement for the crop
species, and current water status. This fundamsuggjests that air temperature is not an accurate
predictor of leaf temperature when typical air tengpure measurements are remote and cannot
account for field and crop variability (Luvall & Hmo, 1991). The following sections include brief
discussion of aspects of natural physics in crowisg including thermal inertia (TI), artifacts of

wind, and atmospheric corrections.



1.2.4Thermal Inertia
Materials heat up at varying rates based on maf@oaerties primarily determined by TI.
Tl is the material’s ability to store and condueth(Kuenzer, 2014; Notarnicola, et al., 2013), as

expressed in Equation 1.6.
TI =\ cxpxk (1.6)
Where:

Tl = thermal inertia [J m-2 K-1 s-0.5]
¢ = heat capacity [J kg-1 K-1]
p = density [kg m-3]
k = thermal conductivity [W m-1 K-1].
Variations in Tl result in changes in maximum anghimum temperatureAT) during a

diurnal solar cycle (Kuenzer, 2014). Low TI resutisa high fluctuation temperaturerl (e.qg.,
rocks); whereas, a high Tl resists temperature gdarnth a lowAT (e.g. water) (Kuenzer, 2014;

Wooster, et al., 2013). Figure 1.6 illustratesatéihces between TI.
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Figure 1.6. Diurnal temperatures of natural objectsdetermined by thermal inertia. Adapted from
Kuenzer (2014)

Spatial and temporal resolution provide opportesifor moisture content variability, such
as soil moisture estimation, watershed managenreggtion scheduling for precision farming,
environmental health monitoring, and climate analfotarnicola, et al., 2013). Idso et al. (1975)

used diurnalAT to derive soil moisture in the first 0-2 cm ofsail profile with temporal



measurements and the Tl concept. Soil moistureysisahas been proven in studies of bare and

vegetative cover based only on surface Tl (Kuerz&t4).

The strongest correlation between water stresandpy temperature occurs after solar
noon, a period from 12:00 to 16:00 h, when cropoparto-air temperature deficit is highest,
regardless of crop growth stage (Ayeneh, et al0D2R0As suggested by Ayeneh et al. (2002),
measuring crop leaf temperatures at solar noom &dmor in assessing crop water status. Extensive
research has been conducted to create models atbdsethat utilize a more flexible time
schedule (Alves & Pereira, 2000; Zia, et al., 20M)dels created to prove a flexible sensing time

period have been suggested by Alves et al. (2@303hown in the Figure 1.7.
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Figure 1.7. Graphical representation of baselinescgounting for wind and solar intensity with fixed
temperature depression (Ts-Tw). Adapted from Alvesind Pereira (2000).

O’Shaughnessy et al. (2012) investigated a teclenigincrease the time window for crop
stress characteristic assessment based on diwgngletature measurements to estimate a

temperature-scale algorithm, as shown in Equatién 1

_ (Tremote,time - Tdawn canopy) (Treal—time reference — Tdawn canopy) 1.7
Tcanopy,time - Tdawn + T T ( ' )
reference,time ~ ‘dawn canopy

The temperature scaling algorithm was implemenbediad a center pivot system in which
one fixed reference canopy temperature was scabedpared to the canopy temperature
measurement from the sprinkler section in a rerfamation within the field (O'Shaughnessy, et
al., 2012). In similar research by Peters et 8004, linear correlation among diurnal canopy

temperature scaling provided significant suppartfiicnimal canopy temperatures throughout the
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day for crop stress assessment (Peters & Evetd)2Bigure 1.8 illustrates the ability of the sogli
method to measure remote crop canopy temperatures.
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Figure 1.8. Temperature scaling algorithm’s predicion of canopy temperature at remote locations
with one daily measurement. Reproduced from Peterand Evett (2004).

1.2.5Wind Artifacts

When considering heat loss from convection, the matwhich heat is lost from or to an
object depends on the surface geometry, air saetithe temperature gradient between the air
temperature and leaf surface (Monteith & Unswoll 3). Regardless of the sensing platform,
wind create artifacts within thermal imagery ofgneegetation to varying degrees based on wind

speed, direction, and flow characteristics, asitated in Figure 1.9. Wind influences thermal
imagery with wind smear and streaks.

L —

Figure 1.9. Wind artifacts within a thermal image.Reproduced from Schepers (2012).
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For objects with a small surface area, such aafaleating from radiation is dramatically
overshadowed with convective heat transfer, thensaking temperature fluctuations more

dependent on air conditions than incident radiaMaonteith & Unsworth, 2013).

1.2.6Atmospheric Correction

In addition to surface emissivity, diurnal temparat change, and wind artifacts,
environmental conditions such as water vapor amdisg distance can influence temperature
measurement of thermographic systems for path medgbetween the target surface and sensor
detector, as shown in Table 1.2.

Table 1.2. Atmospheric conditions that influence tBrmographic systems.
Adapted from Kuenzer (2014).

Factors Influencing Time Series Observations
Water Vapor Disturbance Skews actual temperature
Aerosols Skews actual temperature
Clouds Cannot Measure Through
Cloud Shadows Crop within shadow will be cooler
Topography Uneven solar heating
Emissivity Actual measurements

Clouds artifact satellite imagery and create shadthat can impact ground and aerial-
based thermal imagery. Atmospheric correctionsbased on sensing elevation. To account for
varying absorption characteristics of atmosphemtewvapor, the use of MODTRAN, an online
application, provides atmospheric corrections tingbrove calculations of solar and thermal

scattering from clouds and aerosols (Berk, etl@98), as shown in Figure 1.10.
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Figure 1.10. Diagram for atmospheric correction forsensing platforms. Recreated from Berk et al.
(1998)

The MODRAN atmospheric radiation technique improvascuracy of radiance

measurements with influence from clouds and thatosols.
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1.3THERMOGRAPHY

Thermography has been an advantageous thermahgeeshnique because a thermal
image provides spatial temperature to measureeschdracteristics of a sensing target. The spatial
resolution and image processing functionality efi@solution thermography increase the use of
crop canopy temperature characteristics in aguogl{Luquet, et al., 2003) in order to provide
qualitative and quantitative crop characteristieat support management decisions (Colaizzi, et
al., 2012; Evans, et al., 2000). The following s®tincludes a brief discussion of techniques to
increase thermographic sensitivity related to msiié properties of thermal cameras and image

analysis, as well as future development needsaeimtbgraphy.

1.3.1Intrinsic Properties of Thermal Cameras

Due to the fractional cost compared to previoudemd IR cameras, minimal size and
weight, and lack of moving parts, uncooled TIR ceas@are emphasized because of their potential
use aboard sUAS, thereby increasing coverage awka@rap stress assessments not previously
possible in agricultural remote sensing. Thermiahned (TIR) cameras have physical components
and capabilities that influence temperature sersitiincrease measurement error, and limit
camera use in agricultural environments. Fundaneemf uncooled TIR cameras, including

intrinsic properties, are briefly discussed in thiéowing sections.

1.3.2Thermal Image Sensor and Sensitivity

Uncooled TIR cameras use a thermal detector, orotmidtometer, in order to generate an
image with the change of electrical properties.(eagistance) due to temperature change within
the thermal detector pixel (Kuenzer, 2014). A siilermal detector, also referred to as a pixel,
measures temperature intensity that is transformméal a raw digital number (DN). For
thermography, the thermal image sensor measurgsetatare intensity at each pixel in order to

generate a digital image, as shown in Figure 1.11.

FlE

Medium Thermal Detector Large Thermal Detector
320x280 640x480
(76,800 pixels=0.07-megapixel) (307,200 pixels=0.3-megapixel)

Figure 1.11. Comparison between medium and large x&l arrays for a microbolometer. Reproduced
from Schepers (2012)
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Because uncooled TIR cameras have a low signabigematio, their thermal detectors are
less sensitive (x 0.1°C) than other temperaturs@snKuenzer, 2014); however, this accuracy
make microbolometers sensitive to the subtle teatpes differences (<0.5°C) necessary for
accurate crop stress assessment (Blonquist & Bugbde Sepulcre-Canto, et al., 2007). For
utility in agricultural sensing applications, TIRroeras are sensitive to the 7 to 14 um longwave
infrared (LWIR) which is the temperature range frdd8°C to 150°C. Microbolometer pixel arrays
are sensitive to LWIR radiation that strike theed#dr material, changing its electrical resistance
from a temperature change, and transforming a teatype intensity into a raw digital value (DV)
(Kuenzer, 2014).

1.3.3Microbolometer Temperature Drift and Warm-Up Time

Since uncooled TIR cameras do not have heavy apgdickets, uncooled TIR cameras
regulate their microbolometer thermal detectordvaitomatic re-calibration to maintain sensor
accuracy while limiting measurement drift causedtéyperature fluctuations of the thermal
detector from internal circuit and external envirmntal temperatures (DRS Technologies,
Network and Imaging Systems Group, n.d.). As altesshutter is used to recalibrate the thermal
detector at a user defined time interval or basedrointernal temperature change of the thermal
detector (DRS Technologies, Network and Imaginge&ys Group, n.d.). When the shutter closes,
it blocks thermal energy to create a uniform thdrmedierence for the thermal detector. A
recalibration algorithm is performed to ensure ganm pixel intensity is measured across the
whole sensor with the uniform shutter temperat&u@ch techniques are required for uncooled
thermal cameras to maintain accurate temperatuesumement due to their inability to regulate
their internal temperatures (DRS Technologies, étvand Imaging Systems Group, n.d.).

Limited literature test uncooled TIR camera meas@m® accuracies, provide standard
operating protocol, and give general guidelinespi@rctical sensing scenarios. Internal circuitry
and ambient temperature conditions cause TIR carterhave necessary warm-up periods in

order to reach a steady-state operating temperatsighown in Figure 1.12.
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Figure 1.12. Radiometric temperature changes meased by a TIR camera during warm-up period.
Adapted from Berni et al. (2009).

The TIR camera studied by Berni et al. (2009) haetammended warm-up period of 2 h
before the measured temperature converged todysstate black body temperature, as illustrated
in Figure 1.12. Therefore, adhering to the warmtdope would reduce inaccuracy as the TIR

camera reaching operating temperature.

1.3.4Lens Distortion

Maintained lens focus over a wide range of tempeeatis essential for sensing platform
utility and image quality. An athermalized lens mains performance using optical passivity
through ranging scene temperatures. Compared itdevimmagery, TIR camera lenses are subject
to the same physical calibration parameters faadce, focal point, and radial image distortion
(Kuenzer, 2014). Because thermal radiation doegransfer through glass, TIR camera lenses are
made from germanium, a material that is transpatenthermal radiation (Kuenzer, 2014).
Germanium lenses in TIR cameras have intrinsic gntags identical to glass lenses in regards to
geometric precision. These lenses are optimizedaftiometric resolution, thereby are subject to
varied degrees of lens distortion (Berni, et ai02 from short focal lengths and radial and
tangential distortion (Laguela, et al., 2013). WhernR camera captures an image, the image does
not fully represent real spatial points but a dist pixel location that is a function of the pasit
within the lens’ field of view (FOV) (x y1), as defined by Equations 1.8 and 1.9 (The Matksjor
Inc., 2015):
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Xy = %, (1 4+ kyr? + kor®) + 2p1xyy; + 0, (P2 + 2x,2) (1.8)
Y2 = Y1 (L + kyr? + kor®) + 2ppx1y1 + i (r? + 2y1%) (1.9)
Where:
X1, y1 = distorted pixel locations
X2, Y2 = undistorted pixel locations
ki, ko = radial distortion coefficients of the lens
p1, P2 = tangential distortion coefficients of the lens

r= (% +y?

Resulting lens distortion coefficients act as aid&sr an image processing algorithm.
Imaging processing automate batch processing ierdaundistort images for spatial accuracy
for precise location of actual points using Equadid.8 and 1.9 for respective lens. Figure 1.13
shows radial distortion of a germanium camera lens.

Prior Correction Post Correction

Figure 1.13. Lens distortion prior to correction (eft) and with correction (right). Adapted from
Laguela et al. (2013).

A comparison of handheld TIR cameras revealed a legel of geometric distortion for

all TIR cameras, thereby requiring correction forttier image processing (Taghvaeian, et al.,
2013).

1.3.5Image Processing

Thermography has demonstrated advantages overdheetrics and other crop sensors
because it provides spatial temperatures, therdbywiag image processing not previously
possible. Unlike thermometrics, thermography owgpuiages with the combination of spatial and
temperature data. Techniques to capture, analyrk,rderpret images also apply to thermal
imagery, giving thermography an advantage over eotional thermal sensing techniques and
crop stress assessment techniques. Manual imaggeamnd processing can be labor intensive
and are subject to user-based processing thresiBdtisster et al. (2013) asserted that automatic
imaging and analysis of individual trees has sguextessing time with more uniformity and

confidence in results due to automatic imaging l@ér, et al., 2013). Image processing has been
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widely used in remote sensing but has been ramsdyg in small research studies (Leinonen &
Jones, 2004).

Although slow processing speed, large memory requénts, and a high cost of hardware
once limited imaging, it is being restudied fodityiin precision agriculture (Wang, N., personal
communication, November 1, 2013). Industrial agglan of thermography for automation and
adoption have decreased hardware costs and indreassing capabilities of image sensors.
However, automatic image capture and analysis eegled to account for error incurred with
manual measurements such as setup and capturesistenicies and latency between images,
leading to small microclimate changes. Therefoutomatic thermography captures temperature
information with high spatial (ground distant me&snent) and temporal (repeat frequency)
coverage crucial for monitoring dynamics of cropepbmena (Kuenzer, 2014; Luquet, et al.,
2003). A thermal image allows plant vegetationeéadentified and isolated for analysis based on

the following types of segmentation:

Temperature —Individual crop vegetation pixels within the FO¥ircbe extracted based
primarily on temperature emitted onto the TIR imagasor. Crop leaf temperature
typically vary from that of soil within the FOV. Ifact, the soil itself can greatly
influence temperature measurement at partial carsgwerage (Luvall & Holbo,
1991). In addition, TIR imaging is independent ofidumination source, such as the
sun, so TIR data can be measured during the mghtithen VIS and NIR imagery is
not possible (Kuenzer, 2014).

Shape -Differences in leaf and stem shape can be usatkmtify plant species (Zhang,
et al., 2006). Zhang et al. (2006) explained thet type of segmentation is based on
physical leaf traits such as “elongation, sizeyature, center moment of inertia, and
principal-axis moment of inertia.”

Location — Location segmentation uses spatial knowledge wfgpacing and population
rates to identify where crop vegetation shoulddoaied. Application of this principle
can segment soil from crop by identifying soil nietiebetween rows.

Numerous physical characteristics of crop sensimg thermometry adoption due to crop
surface parameters that cannot be easily measuitbdulv extensive hardware, setup, and
extensive thermal indices. According to Luquetl ef2903) and Grant et al. (2007), thermography

can identify the following crop characteristics:
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1) Partial crop cover from exposed bare soil
2) Plant variability due to growth stage and seeese
3) Subtle difference across plant leaf

New thermal imaging technologies advance integnatioto data loggers and
microcomputer equipment, increasing ease of dalieation and timely response of results
(Evans, et al., 2000; Leinonen & Jones, 2004). Bnagcessing is briefly discussed in this section
in order to increase understanding of analysiscamdiderations necessary to ensure that thermal
imagery data is accurate for well-informed decigiwaking. Correction methods discussed in the
following sections pertain to radiometric conversicatmospheric corrections, and ground

truthing.

1.3.5.Radiometric Conversion

Radiometric conversion functions are linear tranfifactions applied to images in order
to convert digital values into temperature valuEdR camera calibration is necessary when
saturation occurs with high and low temperaturegpbé the temperature threshold of applied
settings (Kuenzer, 2014). Accurate measurementsaiyyp modify transfer function coefficients
for thermal camera settings and calibrations (Keen2014). With radiometric conversion, each

digital image pixel converts to a temperature vaaigedefined in Equation 1.10:

Ttijy = Toin + %Tsz}an (1.10)
where:
Ty = Pixel temperaturéC) at row i and column j,
Tmin = Lowest temperature within the imag€y,
I = Pixel intensity at row | and column |,
N = Number of bits for pixel intensity (e.g., N¥& 8-bit images), and

Tspan = Span of temperature captured in the image.
1.3.5.Atmospheric Correction
Physical atmospheric conditions apply accurateoradiric correction (Kuenzer, 2014).
One method typically used for atmospheric corredtiis derived from the MORTRAN radiative
transfer model using inputs of air temperature, iditgy and barometric pressure (Berni, et al.,
2009). Figure 1.14 shows simulated atmospheriaemnite.

18



2,00 -
4.50
4.00 -
3.50
3.00

2.50 1

2.00 -
1.50 -
1.00 -

—— 207 30%% RH

—B— 20°C/ B0% RH

—&— 30°CJ 30% RH

—a— 30°C | B0%% HR

0.00 £ . . . . .

0 100 200 300 400 500
Height (m)

Tsup - Teensor (K}

0.50 4

Figure 1.14. Simulated atmospheric conditions andi§ht altitude. Reproduced from Berni et al. (2009)
Simulations shown in Figure 1.14 illustrate tempaeadifferences between actual surface
temperature measurements and measured surfacersmmpdor atmospheric corrections with
sensing elevation. Environmental correction techeggallow ground referenced land surface

temperature at measurement accuracies less thaiBérki, et al., 2009).

1.3.5.3mage Management

Image management is an important fundamental ieraa process the data influx from
imagery, thereby increasing image throughput fastefia interpretation and quality. Image
management aboard a SUAS consists of either ordistarage or wireless data-link to a ground
station for storage. Zen et al. (2008) found thabatinuous high-speed storage device on an
aircraft can store images at 150 MB s-1 on a 280d{SB for high resolution aerial photography
surveying. On the other hand, Jones et al. (19984 tan on-board microprocessor to send
compressed images and commands to the sUAS vialdigita-link at a speed of 10.71 MB s-1
to the ground station at altitudes up to 7,500madery data size and permissible sSUAS payload
determines the necessary image management soliticonsidering the weight of the storage
device compared to the digital data-link hardwasgght. Digital data-link communication is
subject to signal noise or line-of-sight obstructioterference; however, increased sUAS platform
flight duration and range advances wireless dataster technology for extended range and signal
guality. In addition, digital data-link allows ohd-go sensor and/or SUAS control changes based
on the data-link feedback.
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1.3.5.4mage Fusion

Image manipulation using image fusion combines itwages from the same or different
sources to create one image that typically enhaagtsnatic detection (Bulanon, et al., 2009),
thereby supporting utility aboard satellite, aereaid ground-based remote sensing. Pixel-level
(two or more image pixels fused into one), featere! (combination of specific shape, extent,
and neighborhood pixels), and decision-level (ssefy analyzed images for extraction followed
by a decision-based, weighted combination) techesgombine two or more images (Pohl & Van
Genderen, 1998). Image information, such as tomtyaglobal positing system (GPS) location,
and time, are also combined into the resulting enag application, pixel-level image fusion is
more commonly used (Bulanon, et al., 2009). Imaggoh has been used in medicine, military
surveillance, and human identification and onlyergly investigated for agricultural use
(Leinonen & Jones, 2004).

Because VIS cameras typically have higher imagsmersolutions than thermal cameras,
a critical aspect of image fusion is overlappingUsOA FOV within images must initially be
defined before images can be fused in order ta lpixiel combination errors. Physical control
points typically are placed in the FOV of each ceangeinonen & Jones, 2004). However, the
assumption that a VIS camera and TIR camera ima&g@\é directly overlap and align for image
processing commonly leads to error (Wang, et &102 One effective, consistent approach
compares the mean canopy temperature and the thienage exclusively and the mean canopy

temperature of the fused image (Wang, et al., 2010)

One source of error using image fusion is the siviely manual user inputs. To address
these concerns, features within an image can batesbor discovered using practices such as
standard deviation, wavelet transform, entropy geaand pixel variance changes. Nevertheless,
robust image software requires a level of logic@runput to set thresholds, input functions, and
weight importance in order to reduce misidentifedgects or features (Bulanon, et al., 2009),
thereby requiring complex combinations of crop aond elements in the sensors’ FOV for crop
sensing (Wanjura, et al., 1992). From early grostiges until full canopy coverage, crop health
characteristics require high spatial resolutiom@ask soil temperature influence in the thermal
image (Hackl, et al., 2012; Rodriguez, et al., 2005

An advantage of image fusion is related to the myyef the two image sources. Thermal
imaging is able to detect LWIR radiant energy esdittrom an object regardless of illumination,
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whereas VIS imaging is able to detect differenceseflected visible radiant light (Pohl & Van

Genderen, 1998) as shown in Figure 1.15.

Figure 1.15. Visible color ad thermal image compason. Adapted rm Taghvaeian et al. (2013).

Image fusion demonstrates that together these isgatiorms can create automatic
imaging tools to isolate objects of interest (ifruit, leaves, stems) and exclude unwanted feature
(i.e., soil, shaded leaves, background featuragpf®®n, et al., 2009). In addition, together the tw
imaging sources isolate and detect objects at@eased confidence rate (Bulanon, et al., 2009;
Leinonen & Jones, 2004). Image fusion has beenesgbdly used to compensate for soil
temperature influence (Leinonen & Jones, 2004;ingll et al., 2007; Wang, et al., 2010).
Application of image fusion allows identificatiofileaves in the VIS image to discriminate pixels
in order to extract TIR image pixels by overlayimgages with corresponding spatial location
within an image (Luquet, et al., 2003).

Wang et al. (2010) used VIS images to identifyaheount of leaf area distributed in the
AOI. Based on this leaf area, canopy temperature associated with leaf area to calculate

statistical analysis. Figure 1.16 shows temperatyteaction with leaf color.

(a) (b) (©)
Figure 1.16. Typical plant canopy temperature extration (b) demonstrating color from the (a) visible
color image and the resulting temperature associain (c). Reproduced from Wang et al. (2010).

Wang et al. (2010) used image processing to exgattmaterial by color; yet, color alone
can cause non-vegetation to be classified as leaheseby creating error with associated

temperature. Typical image fusion discriminateslisamd shaded bare soil and leaves while
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allowing leaf canopy coverage percentage to betdieahfor temperature analysis (Luquet, et al.,
2003; Zia, et al., 2013).

A similar approach is the combination of normaliziifierence vegetative index (NDVI)
values with TIR imagery. However, TIR and NDVI messments are both subject to
measurement error when used in partial canopy agee(Moran, et al., 1994). Temperature
relationships based on the partial canopy covenage been investigated to reduce the influence
from background temperatures. Figure 1.17 showsrdifces in the measured temperature of the

actual canopy temperature and the FOV average tamope based on the partial canopy coverage.
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Figure 1.17. Difference between the characterizedegetation temperature of the actual crop canopy
temperature (Tc) and the averaged FOV temperatureTi) versus crop canopy coverage (a), and
measured vegetation temperature of the actual cropanopy temperature (Tc) and the averaged FOV
temperature (Ti) versus crop canopy coverage (b).éproduced from Rodriguez et al. (2005).

In Figure 1.17, the actual temperature of the ieahown (F) compared to the average
temperature of the camera FOV;)(Tegression curve versus the partial canopy cgeer@his
illustration demonstrates the inaccuracy of temjpeea measurement when vegetation
temperatures cannot be extracted from the backdroemperatures. By using Equation 1.11
derived by Rodriquez et al. (2005), the differe(®¥®C) in terms of inaccuracy can be solved.

T, = T; — A(°C) (1.11)

Partial canopy coverage measurement is criticabansing applications to limit the
temperature influence from a warm soil backgroumtighaded lower leaves (Ayeneh, et al., 2002;
Luquet, et al., 2003; Maes & Steppe, 2012). Becaidegical crop material is unique, physical
differences in plant architecture, such as cokxf kize, relative orientation to the sun, andlfiel

variability, cause temperature differences betwaantwo plants (Ayeneh, et al., 2002; Luquet,
et al., 2003), as shown in Figure 1.18.
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Figure 1.18. Macro image of visible color and therral image comparing leaf temperatures under sunlit
and shaded regions. Adapted from Taghvaeian et &013.

As demonstrated in Figure 1.18, whole canopy teatpes averages can differ from single
leaf temperatures (Grant, et al., 2007). At hightigh resolutions and plant-by-plant analysis,
inherent variability between each plant complicatexp health assessments. Subtle differences
exist from plant to plant and at locations withachk leaf (Cohen, et al., 2005; Grant, et al., 2007)
When a high spatial resolution image is maintaim@@dge processing can segment and exclude
pixel intensities corresponding to a certain terapge range or object of interest. Figure 1.19

illustrates soil at a warmer temperature than exgetation (peach orchard).
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Figure 1.19. Thermal orthomosaic image (left) froma SUAS over a peach orchard where vegetation is
extracted from soil (lower right). Reproduced fromBerni et al. (2009).
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As shown in Figure 1.19, image segmentation issltie crop foliage temperature (low

pixel intensity) of the peach orchard.

With the aforementioned capabilities of image cambion, image fusion requires a TIR,
visible camera, accurate algorithms, and a compwiir imaging software and processors to
efficiently perform the task of automating imagetcae, analysis, and interpretation for tactical

irrigation.

1.3.5.55round Truthing

Ground truthing ensures accuracy of measured tatperfrom the sensing platform.
Temperature ground truthing involves measuringanatdand kinetic temperatures of an object in
order to determine emissivity and environmentalrexion factors. Typical ground truthing
consists of handheld thermometers that use nontdnfeared readings and contact readings with
thermistors (Ayeneh, et al., 2002; Berni, et @0%2). Comparisons between sensing platforms are
subject to measurement error from accuracy caltratcalibration errors, and time between
measurements (Berni, et al., 2009). Automated tbgraphy supports the inclusion of wet and
dry temperature references for real-time thermdices (discussed in Section 5.4.1). Reference
temperatures can be automatically detected folyaisalvith treated leaves or artificial reference

surfaces viewable within the AOI.

Validation during a time series relies on permalyeintstalled noncontact or contact
(ground or air) measurement devices with data leggapable of simultaneous measurements of
wind speed and direction, humidity (Kuenzer, 2054)temperature, and solar radiance. Optimal
surfaces for ground truthing are high thermal iaestibstances that resist temporal temperature
changes. Items used for ground truthing shouldie&able and recognizable from the sensing
platform. Thermography ground truthing helps touea the influence from partial canopy
coverage as soil dominates temperature measurdyeére a crop achieves full canopy cover
(Rodriguez, et al., 2005). As provided from thermagdpy, unprecedented measurements of bare
soil and shaded and sunlit conditions aid in anafyanage view and orientation (Colaizzi, et al.,
2012 ; EI-Shikha, et al., 2007 ; Luquet, et alQ20

1.3.5.8Vhole-field Coverage and Image Mapping

Providing an accurate whole-field crop canopy terapge map has been a challenge in

the past for each thermal sensing platforms becafigbe tradeoff between coverage area,
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measurable crop characteristics, and sensing fnregquéd IR cameras are inherently limited by
their spatial resolution, therefore a compromisevben resolution and efficiency exist dictating
sensing distance and platform. Sensing distanceasimbard sensor FOV must be considered in
order to overlap neighboring pictures in orderitaitl environmental correction error from wide
angle and bidirectional effects from lens distartand incident radiant energy. Dynamic camera
platforms capture a volume of images across the éevering more vegetation area in order to
create high definition temperature maps using ¢iméycentral image portion, nadir, in order to
improve overall image quality (Berni, et al., 2080@&sterling & Meyer, 2013).

For whole-field coverage, individual images aretchied together to generate an
orthomosaic image of the entire coverage area. Blamuautomatic image processing software
stitches images together while automatically gedg@eg images from common points within
individual pictures, ground control points or bylising camera or platform GPS coordinates
(Berni, et al., 2009). In images taken in a forwand lateral direction, common graphical features
can be traced over several images in which neighdgpamages can be referenced (Vasterling &
Meyer, 2013), therefore, an orthomosaic imagemegeed to form a whole-field composite image

collected at a similar sensing distance.

1.3.6Development Opportunities

Thermography has been emphasized in crop senspligatpns because of development
opportunities over thermometry due to visible padeevealed with image processing techniques
(Grant, et al., 2007; Rodriguez, et al., 2005)., fetrmography has only become widespread and
investigated over the last decade (Hackl, et @122 as a result of being declassified from the
United States Military for civilian use (Maes & $pee, 2012; Schepers, 2012). As a result,
technical and physical barriers still limit thermemote sensing, including image sensor
resolution, image data capture and transmissioagtioal agricultural operating experience,
thermal sensor cost, image processing softwaregmedi specifically for thermography, and
complex image composition dominated by soil, laeéfeences, and environmental temperature
influence (Colaizzi, et al., 2012; Evett, et alQ12; Rodriguez, et al., 2005). In addition,
thermography should be a complementary crop chenaation technology due to complex leaf
dynamics “strongly influenced by morphological, plojogical, and biochemical traits as well as
environmental factors and their interactions” (Let, al., 2011). Agricultural studies that use
thermographic systems have been limited becausigeoéxpense, unfamiliar use and operating
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guidelines, system integration and complexity, dck of proven durability in agricultural
conditions, thereby restricting their use to laborias, greenhouses, and intermittent use in
prolonged field studies. Listed below are oppotiasifor thermography development:

Influence from Soil - Directional influence from soil significantly impisccurrent thermal
indices. Medium resolution thermal images causelpiwithin the image to inevitably
capture mixed soil-foliage pixels (Hackl, et aD12). Opportunity exists for advanced
indices that are less impacted by background teamtyer influence from partially
covering crops.

Advancements in Weight, Cost Reduction, Durability,and System Hardware -
Thermography research has been limited because@f weight, and cost of TIR
cameras. However, uncooled thermal imaging showisyuh agriculture because of
their fractional cost to that of cooled thermal gess, integration into automatic
imaging systems, small envelope size and weiglat,adnility to collect data in sunny,
cloudy, and slightly windy conditions. As a resuifjcooled thermal cameras have
increased thermography’s adoptability for largeuguab coverage (Kuenzer, 2014) and
monitoring time studies (Sobrino & Julien, 2013).

Thermal Camera Control Software - A limitation of TIR cameras is the accompanying
software required to perform image analysis. Wimieage combination with VIS
images is conducted, automatic image conversigadmmetric images with
temperature-based pixel intensities would improest{processing ease (Taghvaeian,
et al.,, 2013). Increased confidence in thermograjgichniques and hardware will
ensure accurate crop health during all measuren@ef$ectively assess plant growth
parameters.

TIR cameras’ cost, size, and weight and their ibilo quickly assess crop stress
characteristics potentially offset limitations. Té#re, proliferation of thermography and its
capabilities provides opportunity for technologiealvancements to assist agricultural producers
(Taghvaeian, et al., 2013). Although thermography been implemented in laboratory research,
practical research with thermal imaging in agrigrdt fields has been limited (Grant, et al., 2007).
However, TIR cameras include features to meet tbhaitoring needs of non-agricultural uses,
thereby providing incentive for TIR camera manufiaets to develop modified cameras intended

for operation within agricultural fields and condits (Taghvaeian, et al., 2013).
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1.4ATHERMAL SENSING PLATFORMS

Thermal imaging sensors can be ground, aerial, atellge-based (Kuenzer, 2014).
Ground-based observations are statically or dynaigiperformed with handheld or rigidly
mounted TIR cameras in order to detect, study, madage high definition crop phenomena;
airborne and satellite thermography assess wheleé-femperature fluctuations. This range of
capabilities relates crop temperature and waténsta various scales in order to measure water
supply (Jackson, et al., 1981; Moran, et al., 1994) a result, large crop coverage areas and
throughput need seamless monitoring from automaticsemi-automatic sensing platforms
(Ballester, et al., 2013; Evett, et al., 2014; Romaet al., 2011). In addition, the amount of
measurable data has a practical threshold levedragmt on physical processing means of the
equipment used (i.e., data storage space, intrggisor capability, sampling frequency, sensor
sensitivity, data processing speed, sensing platflamitations, etc.). TIRIS measure a large
volume of data within each image (e.g., 1 megapixealge = 1,000,000 samples), but imaging
systems typically have a slow sampling frequency.(e<30 Hertz). On the other hand,
thermometric systems capture less data in one saatph very high sampling rate (e.g.,>100
Hertz). However, equipment limitations can only ttae an influx threshold of data. In other
words, a distinct trade-off between the level ofaswable crop characteristics and desired
coverage area exist when selecting a sensing ptatfor the amount of data desired from the
producer. As a result, increased use of thermalisgrin precision agriculture has been dependent
on increased spatial and temporal resolution iemial increase effectiveness in aiding actionable
decisions for precisely monitoring crop health (Gwd & Julien, 2013) for the right agricultural
input at the right time (Taghvaeian, et al., 2013).

With ground-based thermal imagery, crop stress ureagents are achieved on a plant-by-
plant basis with dynamic or stationary platformsitiUrecently, TIR cameras have been used in
preventative maintenance and when operating comditare more regulated, unlike agricultural
studies. In typical agricultural studies, grounddxh systems assess crop stress variability for
variable rate irrigation (Colaizzi, et al., 2012:Fhikha, et al., 2007; Erdem, et al., 2010), water
stress (Cohen, et al., 2005; Fitzgerald, et alQ72@rant, et al., 2007; Moller, et al., 2007;
O'Shaughnessy, et al., 2011; Wang, et al., 2@i0mass estimation Hackl, et al., 2012; Liu, et
al., 2011), indirect stomatal conductance (Grangl.e 2006; Hashimoto, et al., 1984, Zia, et al.,

2013), phenotype screening for water stress amd/air stress (Merlot, et al., 2002; Prashar, et al.,

27



2013; Romano, et al., 2011; Zia, et al., 201 3pmatic leaf geometry and extraction (Luquet, et
al., 2003), nutrient influence on leaf temperatiif¢zgerald, et al., 2007), and disease detection
(Chaerle, et al., 1999; Hashimoto, et al., 1984)stthermographic applications have been used
manually to complement thermometric systems; batjumal measurements increase sensing time,
inconsistent setup errors, and latency betweeneas)abereby leading to small leaf microclimate

changes.

Satellite-based platforms, the first applicationr@inote sensing, carry multiple imaging
sensors capable of multispectral or hyperspeatnalying of objects in the VIS, NIR, and TIR
electromagnetic spectrum (Luvall & Holbo, 1991; Aba& Kovacs, 2012). Satellite remote
sensing uses high spectral cameras that capturgplaulandwidths measuring coarse thermal
imagery to monitor crop health, soil charactersstiGoel, et al., 2000; Zhang & Kovacs, 2012),
and agricultural market forecasting (Luvall & Holb#991). However, accounting for low
resolution of thermal imaging systems poses chagdlenCurrent satellite imagery is limited to
moderate resolution imaging spectroradiometer (M&Dbr advanced very high resolution
radiometer (AVHRR) with spatial resolutions of 1 k@olaizzi, et al., 2012), whereas the Landsat
Thematic Mapper (TM) and advanced space borne tdeemission and reflection radiometer
(ASTER) thermal scanners provide 120 m and 90 speively (Berni, et al., 2009).

Radio detection and ranging (RADAR), multi-spectrabger (MSI), MODIS, AVHRR,
and Landsat TM satellite platforms are limited iagiical use due to low sensing frequency
incapable of producer demand and resolution (Brostral., 1994; Colaizzi, et al., 2012). As
previously discussed, ground truthing and enviramiaecorrection for satellites imagery reduces
the influence from obstructions such as cloud cawet atmospheric conditions (Notarnicola, et
al., 2013), which require extensive attention idesrto interpret crop characteristics. Although
satellite-based remote sensing cover a broad graueal it is expensive, has high operational
complexity, and operates at unfavorably low spatiati temporal resolutions for precision
agriculture applications (Berni, et al., 2009; Zpaet al., 2006).

Current satellite-based and ground-based produetge Himited thermography in
commercial agriculture because of producer demamdafcombination of measurable crop
characteristics and coverage area. In order to theetlemand, TIRIS are flown aboard piloted
aircrafts and sUAS. Recent advancements in unco®l&d camera sensor technology have

emphasized remote sensing and expanded its raéetical farm management (Herwitz, et al.,
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2004) because thermography provide high spatialugsn (< 2 m) (Berni, et al., 2009) and has
flexible revisit times for whole-field temperatureapping (Berni, et al., 2009; Cohen, et al., 2005;
Zhang & Kovacs, 2012). In addition, aerial imagezgolves several ground-based and satellite-
based platform limitations because it exceeds twerage area of ground-based platforms and
low resolution of satellite-based platforms (Kuem£Z914), thereby providing whole-field crop
stress assessment with spatial resolutions upno(Berni, et al., 2009; Sepulcre-Canto, et al.,
2007). In conducted studies, thermography abododepl aircrafts has been used to assess crop
water stress ( Scherrer, et al., 2011; Taghvaeiaal., 2013; Tilling, et al., 2007; Wang, et al.,
2010), phenotype screening (Zhao, et al., 2005), cganpaction monitoring, and irrigation
maintenance (Schepers, 2012). Even aboard pilifgldr@es, the primary limitation is the spatial
resolution of TIR cameras. In addition, the aircrakpense, fuel limitations, pilot fatigue,
infrequent revisit times, and unfamiliar complexd¥ flying and hiring manned aerial imagery
limit extensive commercial use (Berni, et al., 20G@el, et al., 2000; Herwitz, et al., 2004). In
response, advancements in SUAS has increasediieein aerial imagery (Herwitz, et al., 2004).
The sUAS industry is evolving rapidly to expandaasomplementary platform to satellites and
manned aerial imagery for tactical farm manager(&at et al., 2013). Producers have supported
adoption of this type of aerial imagery because Supatforms provide low-altitude imagery for

high-definition images, on-demand response timed Jaw investment costs (Goel, et al., 2000).

SUAS are capable of on-demand sensing and havgsaatsponse times more suitable
for commercial agricultural applications with ressutomparable, if not better, than applications
using manned airborne missions (Berni, et al., 2089ASs can fly at low airspeeds (30 km h-1)
under manual control or autopilot flight campaigvith predetermined flight routes for operation
ease (Laliberte, et al., 2011; Rango, et al., 2009yder to sense area not previously accessible
based on distance, time, or terrain (Luvall & HQlh®91). These sensing platforms also fly at
altitudes that provide spatial resolution necesstmy characterizing pertinent features in

agronomic decision management (Figure 1.20)
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Figure 1.20. Thermal satellite imagery with overlayof sUAS imagery demonstrating the spatial
resolution of satellite (90 m) to sUAS (<2m) aeridmagery. Adapted from Kuenzer (2014).

Because of technological advancements focused @mecedented performance and
endurance (Hecker, et al., 2013), sUAS platforme&lwnducted long-duration flight campaigns
that provide valuable contribution to tactical agliure management. Herwitz et al. (2004)
demonstrated advanced sUAS technology with NAS@larspowered Pathfinder-Plus by proving
prolonged flight times (12 h) loitering over coffpeoduction in Hawaii. The slow-flying aircraft
was designed to be flown under pilot and air tcaffontrol supervision while up-linking mission

commands and down-linking on-demand imagery (Herwvet al., 2004).

Currently, commercial autopilot control, cost-etfee telemetry, and semi-automated
image georectification systems promote the feasibof SUAS in precision agriculture (Berni,
et al., 2009; Wooster, et al., 2013). Commercidligd AS systems, seamless imaging integration,
GPS, and autopilot systems provide ready-to-flyfR3ystems for operator ease at an inexpensive
price compared to manned imagery that provide ailskenlow-cost platform for high resolution
imagery at sub-meter increments (Berni, et al. 226erwitz, et al., 2004). As demonstrated with
automated machine control, advances in technolodly replace the human capacity for
observation and decision making. Similarly, comrnaUAS will continue to employ automatic
machine control to simplify the operation, regulagglication uniformity and imaging quality,
and increase the size of managed machinery. Nalest field scouting and manual processing
is still needed if growers are to understand argléement management zones (Goel, et al., 2000).
However, sUAS are controlled from a remote contiperator present in the field, thereby
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allowing direct crop health characteristics to beasured for unprecedented ground truthing of

the remote imagery prior to or after the flight qegn.

Although low flight altitudes (40 to 200 m) increathermography’s ability to measure

crop health characteristics at scales more adaptaplagricultural production, SUAS are still

subject to the same atmospheric effects of othenntbgraphy sensing platforms (Berni, et al.,

2009; Maes & Steppe, 2012). Thermography is proneatying extents of artifacts related to

varying degrees of wind, shadows, and clouds (Keer2014). Table 1.3 compares the sensing

platforms capabilities while Table 1.4 summarizéé thermographic research conducted in

agriculture.

Table 1.3. Platform comparison between satellite,ilpted aircraft, SUAS, and ground thermography.

Platform Satellite Piloted Aircraft sUAS Ground
Survey . .
Area/Coverage Very Large Area Whole Field(s) Whole-Field / Sma]l Small
Resolution Coarse Medium Medium-to-Fine Fine
Revisit Time Weekly / Daily Pilot Availability On-Bmand On-Demand
Sensing Time Very High Fast/Medium Fast/Medium/Sloyv Very Slow
Georeference Image Mosaic Image Mosaic
S Georeference L
Orthorectification I Georeference Emissivity
. . Orthorectification P :
Data Processing Atmospheric A . Orthorectification Correction
. tmospheric ; . .
Correction Correction Atmospheric Correctiop Interpolation

Emissivity Correctior]

Emissivity Correctio

Emissivity Correction

Table 1.4 Summary of thermography use, thermal camera, seimgy platform, imagery software, temperature sensitiity,

and source.
Image Pixels
Use Camera P'a”OTm (Spatial . . (LWIR) Range .
(Crop) (Manufacturer) Sensing Resolution/pixel) Imaging Processing (FOV) Citation
P distance/altitude onp Emissivity
Sensitivity
. ) FLIR IR E30 ) ArcGIS 10.0 7.5t0 13 um
Field CWS.' mapping (FLIR Systems, USA| Ae”?" o Convert image to NA (Taghvaeian, et al., 2013)
(Maize) (Nadir) 0.2°C ; :
Uncooled radiometric NA
Field Mapping Nitrogen & . 7.5t0 13 pm
Water Stress (F[PF? rgqasfem Pdg A (ﬁgéeilrl) 1 rrjeter MI’Z?nn g;TSrF:ey NA (Tilling, et al., 2007)
(Wheat) yStems, P NA
Correlate canopy ) I
temperature to soil wate VarioCAM Ae”?" 3.5 meters Qompare W'th Visiblg NA
: (Nadir) o imagery to isolate trep NA (Scherrer, et al., 2011)
potential (Infra Tech, Germany) 100 meters 0.1°C canopy NA
(Mixed Forrest)
ThermaCAM Resear
Automate CWSI ) NA
Measurements FLIR PM570 Aerial / g’.m“”d 3201240 | Prof NA (Wang, et al., 2010)
(Grapevines) (Nadir) - Isolate reference NA
temperatures for CW$I
) . SC2000 Thermal Airborne
ESt'T\?}ﬁeﬁ;ly ET Camera Nadir 0'? m NA NA (French, et al., 2005)
(FLIR Systems) 760 meters
ENVI remote sensin
Automaed Ieaf_temperatu SnapShot 225 Greenhouse 0.63 to 25.2 mm| (Research Systems) 8to lzopm )
extraction (Infrared Solutions) P NA Automatically Segme 17.2 (Leinonen & Jones, 2004)
(Broad Bean) 0.25 to 10 meters Ieavgs 9 0.95
influence from soil, sunlif 760 IR Imagin Ground Matlab™ software 81012 um
versus shaded leaves, and ) ging (11 viewing angles 10 mm transform digital imag o H
. : Radiometer ) 70 (Luquet, et al., 2003)
sun/sensor orientation (FLIR) 2 meters radius over NA to temperature scalg Na

(Cotton)

canopy

and geo-reference pi
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IR Thermal Cameral

Mean Canopy Temperatuye Ground ArcGIS 9.3 8to 14 um
and Variability THngO WR (Frontal) 51 mm Average temperatur 42° (Ballester, et al., 2013)
(Citrus Tree Crops) (NEC Avio Infrared 1-3 meters NA and variability 98
Tech. Co., Ltd., Japah) ’
ThermaCAM Explore
- Matlab™ 7.5t013 pm
Water Status Estimation] ThermaCAM PM545 Ground 5 mm . . .
(Cotton) (FLIR systems) (Nadir) 0.1°C Apply Radiometric 24 (Cohen, et al., 2005)
temperature scale t NA
image pixel
ThermaCAM Reportg
Compare Nitrogen conteft Ground ) Pro7 7.5t0 13 um
to water stress T(Eﬂgangdepﬁ)o (nadir) NA Extract full 24° (Fitzgerald, et al., 2007)
(Wheat) ! 2.5 meters temperature of canop NA
soil, and foliage
Distinguish water stress IR Snapshot 525 Ground Tess? {;p;/tiiz\ivczrgera 8t0 12 um
Stomatal Conductance (InfraredpSqutions (Horizontal) 2.5 mm %rift NA H (Grant, et al., 2007)
(Grapel\_/lljneirs;,S)Beans, & Minneapolis, USA) 01°C Segment backgrounfl  0.96, 0.95 (Grant, et al., 2006)
P temperature
Biomass Estimation T335 Thermal Camefa Ground ) FLIR QuickReport 1. 7.5t0 13 um
(Wheat) (FLIR Systems, (Nadir) 0.05°C Segment soil and nof- 34° (Hackl, et al., 2012)
Wilsonville, USA) 0.5-0.8 meters ’ plant material 0.96
' . ThermaCAM
oo rermacam scaoop S| camn | Resemaner | S9SN
g 9 Y (FLIR Systems) .002°C Measure overall lea ' "
stage 1.8 meters 0.95
temperature
Matlab
(Mathworks)
Water Stress ThermaCAM SC200 ?h;gglr;;j 17 mm Combine thermal angl 75 t§4%,3 Hm (Moller, et al., 2007)
(Grapevine) (FLIR Systems) NA digital images ! "
15 meters ; NA
Segment soil and
shaded leaves
Correlate CWSI to Leaf Ground 7.5t0 13 um ,
Water Potential The(;:rzﬁg éMsti r(;z)oo (Nadir) N_A ThermaCAM Softwarg 24° © Shauzg(?fj(-a)ssy, etal,
(Cotton/Soybeans) Y 7 meters NA
’ ThermalCAM
ngfr:;':gfugi;gput ThermaCAM P25 (Off(tBCJr%L::edside) 820-240 Research Pro e tl(\)lAlE; H (Prashar, et al., 2013)
yping (FLIR Systems) NA Estimate mean plot ! N
(Potato) 8 meters NA
canopy temperaturg
High Throughput Midas 320L Ground 320%240 Extract canopy leavels NA
Phenotyping for water strdss (Dias Infrared, (Nadir) for average canopy NA (Romano, et al., 2011)
h NA
(Maize) Germany) 8 meters temperature 0.94
ThermaCAM
Ground Researcher NA
. I q "
Fruit Identification ThermaCAM P65HY (Horizontal) 320*240 (Mathw_orks, L_JSA) NA (Bulanon, et al., 2009)
(Orange Orchard) (FLIR Systems) NA Radiometric
2 meters ; 0.90
Conversion
Image Fusion
Drough Tolerant Genotyp IRBIS-Professional
Screening ) Ground ) Object emissivity,
Relate stomatal closure & VarioCAM (Nadir) distance, and - NA (Zia, et al., 2013)
) (Infra Tech, Germany) NA Wide Angle
yield >5 meters temperature. Merge
(Maize) VIS with TIR
Localized Stomatal JTG-MD Thermal Laborator <3 mm Image distribution fo NA
Conductance and Diseage Camera (Macro) Y 0.05°C measuring localized| NA (Hashimoto, et al., 1984)
(Sunflowers) (JTG-MD, Japan) ’ photosynthesis NA
Spatial and temporal Thermovision 900 81012 um
stomatal conductance LW/ST L:(:I'\ljlc;z;artoc;ry O.ZSoog;Z:mm IRWinRes 10° (Jones, 1999)
(French Bean Leaves) (NEED) ’ 0.93
. Laboratory " Image Analysis 3.4to5um
Crop Breeding for DrougfftThermaCAM PM25Q (Nadir) 820 0240 Relative temperaturg 16° (Merlot, et al., 2002)
Tolerance (FLIR Systems, USA| 0.1°C .
0.4 meters differences 1
. . Observe temporal 81012 um
Disease Detection Agerna THV900LW Laboratory - change in tobacco NA (Chaerle, et al., 1999)
(Tobacco) (FSI, USA) (Macro) NA . et &
leaves after infectionp NA
SnapShot Manned Aerial Detect the tree crow 81014 um
Difg;éi?gﬁ\g graéﬁ;rs(;;ass(lnfrared Solutions, (Nadir) iern temperature within NA (Sepulcrzeo—(():%nto, etal,
USA) 1000 meters irrigation regimes NA
Map spatial CWSI with ’
site-specific environmen{ Thermovision A40 M SUA.S 40 cm Segment soil and 7510 %,3 Hm (Berni, et al., 2009);
parameters (FLIR, USA) (Nadir) 0.08°C detect mean canop 40 (Berni, et al., 2009)
’ 150-200 meters ’ temperatures 0.98 ’ v

(Olive Orchards)
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1.5THERMAL SENSING FOR CROP STRESS
The following sections include descriptions of that sensing for crop stress with regards
to early crop sensing, alternative crop sensingp @tress indicators, thermal indices, ground

truthing, and cost versus benefit.

1.5.1Early Crop Sensing

As producers strive for increased output from add land, techniques and technologies
are needed to accurately classify spatial cropmwegted or crop water stress to gain economic and
environment advantages (Herwitz, et al., 2004; Vaglan, et al.,, 2013). Several crop health
monitoring methods that rely on a combination afe-point soil and atmospheric measurements
are available to monitor crop water stress (AlveBe&eira, 2000; Cohen, et al., 2005). In addition,
current methods require multiple sensors that alogest to localized, placement error and do not
account for spatial crop variability that exist it a field (Moller, et al., 2007). As a resultesi
specific techniques that utilize input parametessnfthe plant instead of the soil to assess spatial

crop water stress have been investigated (Jacksah, 1986).

Established methods exist for detecting crop wstieiss which utilize pressure chambers
and leaf diffusion porometers to measure individeaf stomatal conductance and leaf and stem
water potential, respectively (Ballester, et 8012; Berni, et al., 2009; Grant, et al., 2007; |d=o
al., 1977). However, these techniques are destrjdabor intensive, subject to placement error,
limited by small sample size and unsuitable foomation (Ballester, et al., 2013; Berni, et al.,
2009; Cohen, et al., 2005; Gontia & Tiwari, 2008nds, 1999; Leinonen & Jones, 2004).
Consequently, these drawbacks make invasive pksdeb crop monitoring impractical in
commercial applications, thereby limiting produeeioption for irrigation decision management
(Ballester, et al., 2013).

To address these concerns, thermal sensing apeo&eve been investigated because
they are non-contact, less labor intensive, andraibn-destructive monitoring to assess crop
stress from leaf canopy temperatures (Grant, ¢2806; Leinonen & Jones, 2004). Since the
1970s, crop canopy temperature has been acceptadnhaalth indicator of crop water stress
because plants close their leaf stomata, or leafiogs, when they experience water stress in order
to retain water, thereby lowering stomatal conducéareducing transpiration, and increasing leaf
temperatures (Ballester, et al., 2013; Grant,.e2806; Idso, et al., 1977; Jones, 1999; Leinonen
& Jones, 2004; Rodriguez, et al., 2005). On themotiand, when leaf stomata are open, water in
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the leaf evaporates through transpiration whichlsctioe leaf (Maes & Steppe, 2012). During
transpiration, energy from the leaf is used to evaie the water from a liquid to a vapor, inducing
latent heat loss and cooling the leaf. In additiortranspiration, leaf temperature depends on
ambient conditions such as relative humidity, wepked, ambient temperature, and radiation
incident on the leaf surface (Leinonen & Jones4208s a result, canopy and leaf temperatures
are controlled by a combination of thermal energhabces, vegetative genetics, and natural site-
specific elements (Luvall & Holbo, 1991). Althougtese environmental elements influence leaf
temperature, they can be readily measured in meal-tising commercially available sensors
(Udompetaikul, et al., 2010).

Current growth studies have primarily used grouadda thermometry to take canopy
temperature measurements and develop thermal sthet account for canopy characteristics,
soil temperature, and atmospheric conditions terspecific irrigation management and breeding
programs (Idso, et al., 1981; Jackson, et al., 1@8loole & Real, 1986). According to Zia et al.
(2013), growth stage does not significantly impeaopy leaf temperature, thereby promoting
leaf temperature as a viable crop characteristiggnowth performance. Highly integrated
thermometric systems use an array of infrared tberaters (IRTs) mounted in fixed positions
within the field and on center pivot irrigation 1S to measure crop canopy temperatures and
provide a means of irrigation scheduling (O'Shaagly, et al., 2012). However, because of their
single-point measurement, IRTs are limited to gibbased systems because they lack the ability
of measuring subtle heterogeneity characterisfitsad dynamics which are readily enabled with

thermography (Liu, et al., 2011).

Because thermal sensing is primarily used to detegtwater stress, several robust indices
have been proposed to aid irrigation schedulinghss Stress Degree Day (SDD) (Idso, et al.,
1981), CWSI (Jackson, et al.,, 1981), Water Deficyeindex (WDI) (Moran, et al., 1994),
Temperature-Time Threshold (TTT) (Wanjura, et H092), and more recently, the Crop Stress
Index (CSI) (Rodriguez, et al., 2005). Thermal-lobswlices have shown significant correlation
between crop canopy temperature and stomatal ctantiecand leaf water potential with stronger
correlations with increased stress intensity (Haekél., 2012). Increasing availability of sengti
TIRIS support high definition studies that assemsopy temperature in relation to dynamic leaf
stomatal conductance and crop stress assessmeas$,(1999; Liu, et al., 2011). Numerous studies

prove thermography’s ability to distinguish betwegrigated and water-limited stress of
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grapevines (Grant, et al., 2006; Grant, et al.,72000tton (Luquet, et al., 2003), citrus trees
(Ballester, et al., 2013), olive orchards (Bertiigk, 2009), and sunflowers (Hashimoto, et al.,
1984) while supporting the development of greenbausdel comparisons (Grant, et al., 2006;
Leinonen & Jones, 2004), genetic-based droughtaote in maize (Liu, et al., 2011), leaf
temperature association with biomass accumulation, et al., 2011), spatial awareness of
different leaf architecture (Ballester, et al., 30&rant, et al., 2007). In addition, laboratonydses
using TIRIS show an increase of understandingarpthysiological utility while studying localized
stomatal conductance of leaf material at the macete (Hashimoto, et al., 1984; Jones, 1999).
Localized infections and damage demonstrate theresels areas of warm or cold spots due to
change in transpiration rate at the localized &amata (Chaerle, et al., 1999; Maes & Steppe,
2012), as shown in Figure 1.21.
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Figure 1.21. Infected tobacco interaction Chaerletel. (1999).

Thermography has shown utility in correlating sttahaonductance and leaf temperatures
in monitoring crop performance for genetic scregr(lerlot, et al., 2002). As a form of high
spatial sensing, a leaf’s response to temperahaege can be used as an indicator while screening
crop varieties for differences in stomatal resporBecause it is non-invasive and easily
automated, leaf stomatal function is not inhibitdagreby enabling analysis for undisturbed
relationships between photosynthesis and stomatatiuctance (Jones, 1999). Crop variety
screening methods highly favor commercial traitscimp yield (Prashar, et al., 2013; Zia, et al.,
2013). However, expressed traits are a complex gwtibn of genetics and chemical and physical
reactions, and for advancing technologies in pi@tisagriculture, phenotyping has been a
bottleneck in breeding programs (Prashar, et 832 A desire of any breeding program is to

carry out breeding experiments under natural candit outside of a greenhouse and
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environmental chamber (Zia, et al., 2013). Howefreld trials place different constraints on crop
sensing equipment due to large population sampée(Birashar, et al., 2013).

Stomatal conductance is one trait directly linkeaitop performance and photosynthesis
while maintaining water use efficiency. Thermognapdifers the ability to screen for mutant
populations at a higher throughput and scale tkiaibé optimal stomatal response to water stress

(Prashar, et al., 2013), as shown in Figure 1.22.
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Figure 1.22. Canopy temperature differences betweeranopy (Tc) and ambient air (Tair) of 61 maize
genotypes in water stress and well-watered plantRomano et al. (2011).

As demonstrated in Figure 1.22, implementationudbaated thermography in screening
programs capable of sensing individual leaf diffees can be a rapid and responsive tool for
screening phenotypes and disease (Chaerle, 498B). Similarly, Rodriguez et al. (2005) and
Tilling et al. (2007) compared crop canopy temparatvith respect to nitrogen treatments. Table
1.5 illustrates the CSI from specific nitrogen apgiions to wheat.

Table 1.5. Aplied nitrogen rate versus crop stress index of wla samples. Adapted fron
Rodriguez et al. (2005).

Normalized Difference Vegetative Ind Crop Stress Index (CSI)
(NDVI) (°C kPa-1)
hé:gg?g;git)e Rain fed Irrigated Rain fed Irrigated
0 0.32 0.43 3.43 1.67
16 0.29 0.51 4.57 2.07
39 0.47 0.63 3.50 1.60
163 0.44 0.78 3.10 1.10

As shown in Table 1.5, canopy temperature is mensiive to water stress than nitrogen

deficiencies, thereby supporting the use of cartepyperature as an indicator of a plant’s ability

to utilize inputs such as nitrogen fertilizers (Rgdez, et al., 2005; Tilling, et al., 2007).

36



1.5.2Alternatives to Thermal Crop Sensing

Plant crop characteristics have been widely studgadg multispectral and hyperspectral
sensors for qualitative and quantitative analysithe VIS and NIR light spectrum (400 to 2500
nm spectral range) (Berni, et al., 2009). VIS senstetect chemical differences of the plant
material that interact with light between molecudesl atoms on a micron scale within the plant
material (Miller, n.d.). Based on this light intet@n, monitoring select wavelengths can provide
insight as to chemical compounds present in theplamspecimen. This evidence has been
repeatedly used to monitor plant phenology (Zialet2013) and crop vigor and yield (Berni, et
al., 2009) and estimate biomass (El-Shikha, et28l07), fractional ground cover, chlorophyll
content (Fitzgerald, et al., 2007), crop evapotpaation (El-Shikha, et al., 2007), and nutrients
(Fitzgerald, et al., 2007; Tilling, et al., 200A)though VIS sensors quantify relative variation in
crop growth performance, crop characteristics siscvater stress limit their utility (EI-Shikha, et
al., 2007) because the first signs of measureabtengtress assessments with VIS and NIR light
sensors are due to the change in detected lead &ogh wilting when potential yields have most
likely already been affected (Fitzgerald, et a00?2).

1.5.3Crop Stress Characteristics

Precise crop stress characterization for tacticahagement conserves resources and
reduces expensive growing costs while optimizingnplperformance and quality growth
parameters (Jackson, et al., 1986). Research cestito show that crop growth and yield is
directly affected by crop water stress and onlyirgatly and partially affected by soil-water
interaction (Sepulcre-Canto, et al., 2011; Zhang@&vacs, 2012). For most crops, quality and
guantity of production is directly related to efint crop water use. More specifically, heat stress
induced from lack of water is a abiotic stress dad¢hat influences crop growth performance
(Ayeneh, et al., 2002) hindering complex biologicgystems that impact transpiration,
photosynthesis, leaf senescence, and grain develdpeonsequently reducing economic return
(Ballester, et al., 2013). For example, grain proie largely dependent on the utilization of plant
nitrogen accumulation and concentration in thergdairing the filling stage (Zhao, et al., 2005).
In addition, water stress during the filling stagiuences the resulting grain protein content. As
discussed, leaf temperatures are dependent ontsiariwasure in order to provide nutrient delivery

through water transport during critical periodsidgrthe growing season (Zhao, et al., 2005). As
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a result, crops have periods during developmewhiich they become more susceptible to stress;
hence, tactical management can intervene to maigieid potential (Taghaeian, et al., 2013).

With the aforementioned potential for measuringisparop stress, thermography applied
to the homogeneous nature of cropland reducedaimplexity experienced in studies conducted
in orchards with sparse canopy (Maes & Steppe, R@dithout spatial resolutions below 2 m
(Sepulcre-Canto, et al., 2007). As previously noerdd, plants close the leaf stomata, thereby
lowering stomatal conductance and reducing traaspir (Liu, et al., 2011) in response to ambient
conditions, as defined by Equation 1.12:

(Tpredicted canopy ~ Tair) =Ta (Rnet)/pcp (1.12)

wet
Where:

Toredicted canopy= EStimated temperature of the non-stressed leaf

Tar = Temperature of the air (°C)

ra = Aerodynamic resistance ambient temperature

p = Air density

C, = Heat capacity of air

<= Net radiation incident on the leaf surface.

By applying a fundamental energy budget, microclesdi.e., interactions between other
vegetation and bare soil) can account for envirartaiénputs for crop characteristic comparisons
between species and varying climates (Luvall & lol091), as shown in Figure 1.23.

i Solar
Sky radiation radiation Required
measurements:

Air Temperature
Canopy Temperature
Relative Humidity
Net Radiation

Wind Speed

Crop Height

Figure 1.23. Generalized energy balance of vegetati. Adapted from Blonquist and Bugbee (n.d.).

1.5.4Thermal Indices and Techniques

Thermography has been utilized to develop therndices and crop sensing techniques.
The most commonly used thermal index, the CWSlissussed because of its utility by all sensing
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platforms while the stress degree day (SDD), teatpeg time threshold (TTT), and canopy stress
index (CSI) are also briefly discussed in the feilog sections.

1.5.4.Crop Water Stress Index

Idso et al. (1981) found a direct relationship kew ambient air conditions and the
influenced transpiration rate of non-water stresps. For example, a leaf temperature at or below
predicted leaf temperature indicates a non-strgsised, whereas leaf temperature above the non-
water stress baseline (NWSB) indicates a gradiemtllof water stress (Figure 1.24). Idso
investigated the correlation between non-watersse@ leaf temperatures under the same net
radiation, similar vapor pressure deficit (VPD)damind speed.
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Figure 1.24. (Tc-Ta) versus Vapor Pressure Deficicomparison. Reproduced from Blonquist and
Bugbee (n.d.).

Shown in Figure 1.24, the non-water stressed k@abgy-to-air temperature deficit can be
found versus specific VPD for the same net radmatiod wind speed, as defined by Equation 1.13:

Teanopy — Tair =@ — b X VPD (1.13)
Where:
Tcanopy= Canopy Temperature (°C)
Tair = Measured air temperature (°C)
a = Crop specific intercept for NWSB
b = Crop specific coefficient
VPD= Vapor pressure deficit [pKa]

The NWSB coefficients are empirically measured widlaily leaf temperature
measurements over a full growing season or withndileaf temperature measurements over the
course of several days. The relationship betwe@omatemperature and transpiration rate is

defined as the normalized difference of the measwaie-to-leaf canopy temperature deficit
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between the lower base line (i.e., NWSB) and thpeuppase line, or water-stressed baseline
(WSB), on a plot of air-to-leaf canopy temperatdedicit vs. VPD as depicted in Equation 1.14
(Idso, et al., 1981; Jackson, et al., 1981; Jacksa8?2):

ATy reaqi — AT,
CWSI = 4 Pf‘f‘““e_‘iAT ! (1.14)
predicted dry leaf

Where:
ATpredicted: (Tpredicted' Tair)
ATdry = (Tdry - Tair)
AT = (Tactual— Tair)
For example, stressed leafif) and non-stress leaf (dicte) boundary temperatures for a

leaf are 25°C and 20°C, respectively. Air tempearais 23°C and actual temperature of the leaf is
22°C. In this example, the CWSI is 0.4.

This aforementioned crop-based relationship wad bgelackson et al. 1981 to indirectly
measure soil moisture and apparent crop healtlugtréranspiration. As a result, the CWSI has
been successfully developed and implemented uBiiig in order to base variable rate irrigation
needs (Taghvaeian, et al., 2013). An advantagdefQWSI is the scale at which it can be
implemented. With the addition of upper and loweutdaries for predicted leaf temperature, the
CWSI approach has been the most used index abfatteamal sensing platforms in various
climate regions because of the inclusion of VPDars@diation, and wind speed (Maes & Steppe,
2012; Rodriguez, et al., 2005). Figure 1.25 shawsikated relationships between solar radiation
(Rney), wind speed (U), and VPD.
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Figure 1.25. Simulated relationships of non-water teess baselines from varied environmental
conditions compared to theoretical baselines. Repduced from Berni et al. (2009).

Various approaches have been suggested to com& for a particular crop species in
actual environment parameters. In all platform $yptheoretical CWSI relies on baseline

temperature deficits, assuming that environmerdgatitions remain constant, thereby requiring
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measurements of crop canopy temperatures, wetédeyence temperatures, and environment
conditions (Grant, et al., 2007; Luquet, et alQ20 A robust technique relies on empirical NWSB
during a particular research study that directiyoants for net radiation, aerodynamic resistance,
and the particular crop’s microclimate (Ballestet,al., 2013; Blonquist & Bugbee, n.d.; El-
Shikha, et al., 2007; Erdem, et al., 2010; Fitzigerat al., 2007; Gontia & Tiwari, 2008; Grant, et
al., 2007; Maes & Steppe, 2012). In order to diyecheasure upper and lower reference
temperature bounds, leaves are wetted with watea flully transpiring leaf (lower limit) and
covered with petroleum jelly to indicate a non-spiming leaf (upper limit). However, preparation
of wet/dry leaf surfaces for reference leaf tempees is not practical and subject to repeatability

errors.

Many studies have investigated the use of stanzddineasurements without manually
preparing reference temperatures achieving sirG\&SI results (Berni, et al., 2009b; Cohen, et
al., 2005; Grant, et al., 2006; Grant, et al., 2Q@hes, 1999). Standard dry reference temperature
recommendations include the use of an upper teryveraound of 5°C above air temperature
(Alves & Pereira, 2000; Cohen, et al., 2005; Erdetral., 2010; Moller, et al., 2007; Moran, et
al., 1994; Wanijura, et al., 2006). Standard wetrezfce temperature recommendations include
measuring leaf temperature of well-watered plaBtléster, et al., 2013; Blonquist & Bugbee,
n.d.; EI-Shikha, et al., 2007; Erdem, et al., 2(Hi@zgerald, et al., 2007; Gontia & Tiwari, 2008;
Grant, et al., 2007; Maes & Steppe, 2012). Thasdies support crop water stress monitoring at
any time of day regardless of incoming solar radimtand aerodynamic resistance, thereby
increasing the ease of use for site-specific farmagement (Alves & Pereira, 2000; Berni, et al.,
2009) where changing weather conditions may coratdiacquisition of comparative sensing data
(Luvall & Holbo, 1991). Blonquist and Bugbee (nmpnitored crop water stress to allow for
increased practical knowledge regarding sensitivityessary to measure crop stress under various
environmental conditions. Table 1.6 shows recomradrggnsor sensitivity to monitor CWSI to
an accuracy of = 0.05.

Table 1.6 Recommended sensor accuracies to limit CWSI measment error
(Blonquist & Bugbee, n.d.).

Parameter Sunny, Warm, Dry Cloudy, Cool, Humid
Net Radiation +100 W m-2 +15W m-2
Relative Humidity +9% +4 %
Tair +2°C +0.2°C
Tcanopy +1°C +0.2°C
Wind +0.6 ms-1 +0.3ms-1
Canopy Height +0.06 m +0.03 m
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Automated measurements with image processing iseré@ermography’s appeal as a
sensing tool because instantaneous measuremertis caed to account for consistent crop water
stress (Maes & Steppe, 2012). Artificial measureséave provided a repeatable standard for
applications of a higher scale when used in conjanavith thermal imaging (Moller, et al., 2007).
Artificial wet reference surface targets are vielgabithin a FOV for significant pixel coverage
and mounting height within the plant canopy to mgtlly capture leaf microclimate (Wang, et al.,

2010). However, no artificial dry reference existsneasure dry leaf (Prashar, et al., 2013).

In order to overcome soil influence in thermomes#mnsor readings, Moran et al. (1994)
developed the water deficit index (WDI) that apgleetwo-dimensional CWSI theory to partially
covered canopies. This index relies on soil surfaogerature measurements in order to evaluate
crop water stress from partial to full crop cangpimaking reference temperatures difficult to

maintain and reducing index adoptability.

In comparison studies between thermography andanibr@etry, thermometry inherently
creates baseline temperature data over sunlightshaded leaves as well as soil background.
However, thermography can extract leaf vegetataveating more accurate baselines for leaf
canopy-to-air temperature deficit versus VPD (Taghan, et al., 2013). Future studies must
investigate thermal indices analyzed with thermplgya For example, sunflower vegetative
indices analyzed with thermography demonstratgthji different slopes and intercepts (Nielsen,
1994). A main contributor to limited commercial @tion of CWSI as a stress indicator is because
the current sensing platforms (i.e., ground-basedal, and satellite) lack necessary temporal and
spatial resolution for accurate and timely sepamatf sunlit and shaded soil and lower leaf
backgrounds. In addition, CWSI values cannot acttmuiffering net radiation and aerodynamic
resistance without repeated empirical calibratienthout non-water stressed plant samples
(Berni, et al., 2009; Colaizzi, et al., 2012; Coheinal., 2005; EI-Shikha, et al., 2007; Jackson, e
al., 1986; Jones, 1999).

1.5.4.5tress Degree Day

Irrigation scheduling based on canopy temperateggeassion (Janopy Tair) is @ method
widely used as an indicator of crop health in rdgao heat stress and drought stress in crops
between irrigation regimes (Ehrler, 1973). Withaapy-to-air temperature deficits, automated

irrigation occurs in accordance to the SSD wherp ccanopy temperatures rise above air
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temperatures at 1 to 2 h following solar noon dyarduration of days (n), as defined by Equation
1.15 (Idso, et al., 1977):

n
Stress Degree Day = Z(Tcanopy - Tair)i (1.15)

i=1

When SDD = 0, irrigation was automated. Becaus&@mwmental conditions change, the
CWSI has been widely adopted, thereby replacing 8Dmost irrigation scheduling. However,
SDD stills acts as a significant correlation tonstébal conductance as an estimator of yield and
water use (Maes & Steppe, 2012).

1.5.4.Femperature-Time Threshold

Similar to SDD proposed by Idso et al. (1977),TAd concept is based on the correlation
between crop performance and the amount of timerthpcanopy surpasses a harrow temperature
range. Temperature threshold concepts are also rkramsvthe biological identified optimal
temperature interactive console (BIOTIC) protodbdlafjura, et al., 2006). In practice, when the
crop exceeds the threshold temperature for a oepariod of time, irrigation is signaled
(O'Shaughnessy, et al., 2012). Thermometric systditize an array of IRTs integrated onto a
center pivot irrigation system for crops such asiceoybeans, (Evett, et al., 2014), and cotton
(Wanjura, et al., 2006). Ongoing irrigation studsegjgest that the TTT approach is more robust
than the more commonly known CWSI for assessingmaitess and estimating yield (Wanjura,
et al., 2006). Limitations of the TTT, however,lumbe continuously monitoring crop temperatures

and soil water potential to assess crop waterstied water deficit, respectively.

1.5.4.4Canopy Stress Index

With the availability of thermography, Rodriquez @t (2005) introduced the CSI to
normalize the leaf-to-air temperature deficit (Tapy+Tair) under a specific VPD, as defined by
Equation 1.16:

(Tcanopy - Tair)
VPD

Approaches such as CSI attempt to reduce necessasprs for instantaneous canopy

CSI = [°C kPa™] (1.16)

stress assessment in precision agriculture. Asrtegbdy Rodriquez, CSI accounts for 80% of
yield variation over that of the 46% correlatiofNDVI values. As a result, most variation in crop

performance was more correlated to water stresdeAiom this example, thermography provides
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a unique opportunity to measure only canopy leaedacing background temperature influence,

allowing for new and advances relationships tonvestigated not previously possible.

1.5.5Precision Agriculture Cost/Benefit

The importance of performance, cost/benefit, andemsed yield potential for a particular
actionable decision is only briefly discussed iis thaper. Actionable decisions in precision
agriculture rely on useful thermal sensing softwanel hardware with the capacity to use on-
demand imagery for actionable decisions while évell of incremental knowledge complements
the practical management zone permitted by mechhmntervention (e.g., sprayer nozzle
coverage, seeding row control, irrigation zone®h€h, et al., 2005; Herwitz, et al., 2004). Before

implementing precision technology, the producer tfitst answer these questions:

1. What is my goal? (i.e., | will change irrigation scheduling withishcrop water

assessment.)
2. What type of data do | need to capture?i.e., | need whole-field canopy temperature.)

3. What is the best technique to achieve that informan? (i.e., remote sensing
platforms)

4. Will it be useful, quick, and accurate?(i.e., actionable irrigation prescription, on-
demand, and based on crop need)

5. What is my minimal management zone | can change?i.e., individual

nozzle/section/boom)

6. How will I know | made a difference?(i.e., yield production data, resample)

For precision agriculture, the more specific thplaation, the better a technology can be
configured for the producers’ operation (Pohl & \@anderen, 1998). In addition, the type of data
the customer needs will suggest the type of seasdr platform necessary. The return on
investment (ROI) of a tactical site-specific managat must reduce (1) input costs, (2) machinery
wear, and (3) loss in yield potential. Increaseazpatress awareness for tactical management will
rely on new technologies to capture on-demand imébion to support intervention within minimal
management zones permitted by practical hardwadeardcing imaging platforms for SUAS
increase crop characteristics assessment andamitintie to evolve in capabilities regarding 1)
high resolution images of entire fields, 2) autamatnalysis from acquired images, and 3)

practical needs or adjustment at a high spatid¢sca
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1.6 CONCLUSION

Producers know their land and its productivity atigerefore require on-demand
information to increase actionable management.mbgraphy is well-suited for agriculture crop
sensing because of its ability to provide imagdrwhbole-field assessment, automated analysis,
and tactical decisions at a high level of precisi¢towever, agricultural studies using
thermography have been limited due to expense siftharmal camera systems, unfamiliar use
and operation, system complexity, and unknown perémce in agricultural conditions that

restrict their use to laboratories, greenhousesjreiermittent use in prolonged field studies.

TIR cameras, however, contain features that cuyremtly meet the needs of non-
agricultural uses, thereby providing an incentiee TIR camera manufacturers to develop
modified cameras intended for operation within agtural fields and conditions. Due to their low
cost compared to cooled TIR camera, minimal sizevegight, and lack of moving parts, uncooled
TIR cameras have been emphasized and utilized@BsblS platforms for unprecedented ground
coverage and high spatial crop stress assessments.

Crop temperature plays a fundamental and ofterihighrole in many biological processes
that control the rate of chemical reactions betweéants and surrounding microclimates.
Therefore, most variation in crop performance igto be related to water stress. The decision
to irrigate is critical, but accurate determinatiminirrigation amount and location is as equally
important for site-specific irrigation, or irrigat that matches precise crop need at manageable
increments to achieve desired crop performance. édew extensive variability exists within
commercial agricultural fields, including soil typed depth, topography, climate, crop growth
stage, and variance in operation methods. Effeaesgessment of plant growth parameters requires
confidence in thermography techniques and hardwagder to accurately assess crop stress

during all measurements.
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Chapter 2 - Selection and Utility of Uncooled Therral Cameras for
Spatial Crop Temperature Measurement within Precison

Agriculture

2.1ABSTRACT

Since previous research used local, single-poiatsmements to indicate crop water stress,
thermography is presented as a technique capableasuring spatial temperatures supporting its
use for monitoring crop water stress. This studegtigated measurement accuracy of uncooled
thermal cameras under strict environmental conutiadeveloped hardware and software to
implement uncooled thermal cameras and quantifigthsic properties that impact measurement
accuracy and repeatability. A DRS Tamarisk® 320 A and FLIR® Tau 2 (CAM2) were
selected for this study. Results indicated thaevedd medium angle lens distortion was 19% for
CAM1 and 30% for CAM2. A minimum of four pixels weerecommended to maintain surface
temperature integrity and maximize image coveraga.a 19 and 7 min warm-up was necessary
for CAM1 and CAM2 respectively. A real-time (RT)done-time (OT) radiometric calibration
provided absolute surface temperatures with enmertal compensation. CAM1 analog output
yielded a configurable temperature span from 5°62C5 resolution from 0.02°C-0.61°C, and
measurement accuracy of £0.82°C or 0.62°C with ORoradiometric calibration, respectively,
whereas digital output yielded a fixed temperatsipan of 156°C, resolution of 0.01°C and
measurement accuracy of £0.43 or 0.29°C with ORBrradiometric calibration, respectively.
CAM2 yielded a controllable temperature span ofG206°C, resolution of 0.07°C-0.80°C, and
measurement accuracy of £0.87 or 0.63°C with ORBrradiometric calibration, respectively.
Both cameras were sensitive to surface temperai@fe.99); but, CAM1 was more controllable.
Results highlight that uncooled thermal cameras weasure spatial temperatures, thereby

measuring subtle crop dynamics for water resouraeagement.

2.2INTRODUCTION

In the midst of recent droughts, increased wateratel, and the implementation of water
allocations for conservation, irrigated acreageulghout the United States increased by nearly
1.3 million acres from 2002 to 2007 (USDA, 2014heTlargest percentage of irrigated farms is

located in the western United States where conipetitor irrigation water availability has
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escalated in the past two decades (Taghaeian, 204B). In the Midwest, for example, average
irrigated corn yield has increased approximatebishels per acre per year since the early 1970s.
Diminishing irrigation water requires efficient veatmanagement practices using monitoring and
control for sustainable water management (Adeu§@7® Other water conservation projects have
developed smart-water systems that use less water dquifers and above-ground freshwater
sources while investigating soil-improving stratsgin which drought-tolerant crop varieties are
chosen according to a climate’s available watertg 2006). Although these and other advances
in precision irrigation technologies are becomingikable to producers, adoption of these systems
for commercial applications requires producers tmior crop water stress at increased spatial

(ground sample distance (e.g., 1 cm/pixel)) andotwmad (revisit frequency) resolution.

Research shows that crop growth and yield are ttiraffected by water stress but only
partially affected by soil-water interaction (Zha&govacs, 2012). Current irrigation schedules
are typically based on soil moisture deficits; heere localized soil moisture sensors are not
representative of spatial moisture variability thety exist throughout the field. As a result, direc
measurement of canopy temperatures with manualoomtad infrared thermometers (IRTS) on
pivot systems have been used to quantify crop vetitess because plants close their leaf stomata
under periods of water stress, thereby reducingspigation and causing proportionally increased
leaf temperatures (Evans, et al., 2000).

Although irrigation scheduling has used canopy terajure and soil moisture monitoring,
these tedious and time-consuming methods yielddursamples at less resolution than is required
to perform precision irrigation, consequently praythe methods to be impractical for commercial
applications (Jones, 2004). While an IRT can takekgmeasurements, a thermal infrared imaging
system (TIRIS) can monitor multiple crop profilesr )mage. This novice, less studied technology
can monitor spatial crop temperatures in irrigatiqplications and in periods of drought, weed
infestation, heat tolerant phenotype trait expassand herbicide and nutrient applications.
Limited publications describe United States studiésthermal infrared (TIR) cameras for
measuring crop temperature profiles, specificatyps whose yield significantly increases with

irrigation in the water-stressed Midwest.

Increased interest among United States agriculpinaducers regarding small unmanned
aerial systems (SUAS) allows possibility for a TSRdesigned for lightweight, high-throughput
sensing that could measure crop temperature vhiyaBnd assess spatial crop water stress in
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agricultural production. However, available knowgedregarding thermal sensing platform
performance in agricultural field studies is lingifend producers are skeptical of technology that
has demonstrated potential for measuring crop temyoe profiles and enabling site-specific
water management in orchards, vineyards, and sffemialty crops in areas outside of the United
States (Sepulcre-Canto, et al., 2011). Lack of kadge can be attributed to the expense of cooled
TIR cameras which has made crop temperature memsunts in commercial agriculture
economically unfeasible. However, innovation of thecooled thermal sensor has led to
development of new, lightweight TIR cameras thatehao moving parts and require no cooling
package, thereby providing extended operatingalife fraction of the cost of previous cooled TIR

cameras.

Because microbolometer thermal detectors are uadptiey have a low signal-to-noise
ratio, the amount of usable signal compared toensignal. Consequently, uncooled TIR detectors
are less accurate (£0.1°C) than other temperatunsoss (Kuenzer, 2014); however, this accuracy,
also known as sensor measurement confidence, mak®bwmlometers’ sensitive to subtle
temperature differences (<0.5°C) necessary forratewcrop health stress assessment (Blonquist
& Bugbee, n.d.; Sepulcre-Canto, et al., 2007).dgncaltural and environmental studies, natural
objects have been found to emit long wave infrgtaf/IR) radiation, a region of 7 to 14 pm
wavelength bandwidth (-66.2°C to 140.0°C). Micrabukter image sensors are sensitive to LWIR
radiation that strikes the detector material, cl@anghe detectors’ electrical resistance from a
change in temperature, thereby transforming tentyperantensity into a raw digital value (DV)
generating a thermal image (Kuenzer, 2014).

Internal circuitry heat and external temperatungosxire require uncooled TIR cameras to
regulate their microbolometer sensors with autoen@mperature recalibration. Consequently,
TIR camera warm-up time can alter measurement acguj.e., closeness to the true value) by
microbolometer recalibration thereby requiring warmperiods in order to reach a steady-state
operating temperature (Figure 2.1).
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Figure 2.1 Changes of radiometric temperature meased by TIR camera during warm-up period.
Adapted from Berni et al. (2009).

As shown in Figure 2.1, Berni et al. (2009) studgedIR camera with a recommended
warm-up period of 2 h before the measured temperatonverged to a steady-state blackbody
(i.e., object or system that absorbs and emitgreleagnetic radiation equal to its internal kinetic
temperature (Kuenzer, 2014)) temperature. As dtrdsnited literature exists testing uncooled

TIR cameras in order to create standard operatioip@ols under practical scenarios.

For a camera, the sensed object and desired satistagce determines the choice of lens
(Elfaki, et al., 2000). Maintained focus over a &icnge of temperatures is essential for system
performance, stability, and imaging quality. Anathalized lens maintains performance using
optical passivity over the sensitive temperaturanspJnlike typical visible cameras, the TIR
camera lens focal length may need to be adjustéactes on particular sensing distances (DRS
Technologies A Finmeccanica Company, 2013). Howelt camera lenses are subject to the
same geometric calibration parameters as visiblagery including focal distance, point
coordinates, and radial distortion (Berni, et 2009: Kuenzer, 2014). Because thermal radiation
does not transfer through glass, TIR camera leagesnade from germanium that allows the
transmission of TIR radiation (Kuenzer, 2014). Ganmm lenses are optimized for radiant heat
transmission, consequently making them more suftepo geometric distortion. According to
Laguela et al. (2013), increased lens distortiomese common for TIR cameras compared to
glass lenses because of their short focal lengllgarmanium material.

Expectations associated with TIRIS rely on accutateperature measurement, high

imaging speed, limited image noise, and optimizedage of raw images. This research will
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support future studies to develop a full systemkpge for capturing accurate spatial canopy
temperatures aboard sUAS and ground-based seraifigrms in order to create high definition
canopy temperature maps and aid variable rateatroly decision management. As stated,
increased irrigated acres in the Midwest depenthanily on declining fresh water reserves.
Significant studies have indicated that a very Higrel of management is required in order to
maintain or improve irrigation water productivityjéh economic return with decreasing water
resources. Researchers, TIR and sUAS manufactuagrscultural service providers, and
producers in the Midwest are eager to adopt therachihologies in precision agriculture, such as
a TIRIS aboard sUAS and ground-based platformsstistiwith efficient and accurate water
utilization. Therefore, this study investigated ustty-leading TIR camera cores under strict
laboratory conditions (i.e., air temperature, fe@humidity, incident radiant heat) to determine
measurement accuracy under anticipated field comdit In addition to thermography potential,
coreobjectives of this research were(tb quantifymeasurement accuracy and intrinsic properties
of two commercially available uncooled TIR cameaes, (2) investigate impact of physical
properties and environmental conditions on measen¢raccuracy, and (3) determine necessary
equipment and considerations when integrating aoaled TIR camera core into a TIRIS for

accurate crop temperature measurement.

2.3METHODS AND MATERIALS

Strict laboratory experiments were conducted at Drepartment of Biological and
Agricultural Engineering at Kansas State Univerdiianhattan, Kansas. A DRS Tamarisk® 320
(DRS Technologies, Inc., Dallas, Texas) and FLIR& R-324 (FLIR® Systems, Inc., Boston,
Massachusetts), hereafter referred as CAM1 and CAPe studied to benchmark their utility
in precision agriculture. These cameras were ssldoecause of their minimal size, lightweight
design, and limited power consumption. Utility wiavestigated with regards to integration
hardware and software, camera controllability fdramging applications, and radiometric
measurement accuracies. CAM1 was further invesiibad determine environmental conditions

that impact temperature measurement.

2.3.1Determining Physical Properties of TIR Camera

Cameras have physical parts and capabilities miflaence their sensitivity to temperature
differences, increase their measurement errorliauitctheir use in agricultural environments. Due

to their relatively low cost compared to cooledrthal cameras, minimal size and weight, and no
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moving parts, uncooled TIR cameras provide incr@éas®erage area and crop stress assessments
aboard different sensing platforms not possibléwdoled TIR cameras and IRTs. The identified

physical properties that restrict practical us&Iiét cameras include:

1. Lens selection and distortion

2. Image resolution and measurement

3. Radiometric characterization and measurement acgura
4. Warm-up time and automatic recalibration
5

. Connection ease, software, and controllability

Considering these physical properties and thelu@mice on accurate measurement may
allow for their influence to be reduced or elimedtith proper camera configuration, hardware,
standard operating protocol, and sensing platfdimerefore, intrinsic fundamentals of uncooled

TIR cameras were investigated using the methodsissed in the following sections.

2.3.1.1 ens Selection and Distortion

Lens selection was investigated because specifigettasize and sensing distance
determines the lens and resulting image size fapecific application. TIR cameras have
germanium lenses that are factory-installed antdbredéd, consequently increasing the cost of
additional lenses and requiring expensive equiprfeenecalibration. Due to the small lens focal
length, both TIR camera lens distortions were itigaged in order to correct lens distortion for
spatial integrity. A distorted image does not fulBpresent real spatial points but a distorted
location dependent on the position within the Ieiedd of view (FOV) (%, y2), as defined by
Equations 2.1 and 2.2 (The Mathworks, Inc., 2015):

x; = % (1 + kyr? + kor®) + 2p1 30y, + 0o (r? + 2x,2) (2.1)
Yo = 1L+ kyr? + kor®) 4 2p,x0y1 + 01 (7% + 2y,2) (2.2)
Where:
X1, y1 = distorted pixel locations
X2, Y2 = undistorted pixel locations

ki, ko = radial distortion coefficients of the lens
p1, P2 = tangential distortion coefficients of the lens

r= (% +y?

CAM1 features an 11 mm, medium angle lens with &2@° degree angle FOV and
CAM2 features a 7.5 mm, wide angle lens with a 68°degree angle FOV. Using a distortion

model (grid) calibration approach (Sun, et al., 20leach TIR camera lens distortion was
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corrected based on multiple calibration grid imagsisg a heated grid pattern tool, as shown in

Figure 2.2.

Figure 2.2. Grid pattern tI (left) and tf;lefrr;f;\l‘irﬁélge (right) used for lens distortion
A wooden pegboard was warmed and placed on a dabls@rface to produce a
distinguishable temperature difference (Figure.Z-B¢ grid distortion model required at least five
images from different orientations in order to bedie radial and tangential distortion coefficients
Thermal images were imported into the NI LabVIEW &ign Assistant (National Instruments
Corporation, Austin, Texas) for lens distortion lgses.

2.3.1.2mage Resolution and Measurement

Since TIR cameras typically have lower resolutimage sensors than visible cameras, the
target size and sensing distance is more crititenadetermining the lens focal length (distance
from the lens to the thermal detector) and resylE®@V degree angle. Critical pixel resolution
was investigated by using a known target size atdrohining the necessary number of incident
pixels in order to limit inaccuracies. A target rmeang 16 mm in diameter was heated and placed
on a flat surface at a stable temperature for HReara visibility (Figure 2.3).

Image Processing Flow

Target Thermal Binary Increasing
(16 mm Q) Image Image ROI Analysis

Figure 2.3. Investigation of necessary spatial rekdion for temperature accuracy
As shown in Figure 2.3, the thermal image was edténto a binary image (i.e., white=1 |
black=0) in order to maximize the contrast betwienaccurate and inaccurate measured value of

1 and 0, respectively. As the last image processiag, a series of increasing regions of interest

52



(ROI) were designated by increasing the offset Ipi@eolution by 1 pixel (i.e., 1x1, 3x3, 5x5,
7x7,..., 333x333 pixel resolution) centered dineotter the target. Increasing the spatial resatutio
by 1 pixel (or 0.33 mm/pixel) around the outer peier for each subsequent ROI allowed the
average DV to be calculated with the LabVIEW™ Visissistant™.

2.3.1.Radiometric Characterization and Measurement Accur&y

Uncooled TIR cameras measure LWIR energy intergigsent on the image sensor,
thereby generating a thermal image of radiatecasarfemperatures. CAML1 is sensitive to 8 to 14
um LWIR, or a theoretical temperature span fronP@6 90°C (A156°C), while CAM2 is
sensitive to 7 to 14 um LWIR, or a theoretical tengpure span from -66°C to 140°Q\206°C).
However, the uncooled TIR camera cores only mearelegive temperature values, leaving
temperature measurements unquantified. Thereforealiaration method was developed to
characterize pixel intensity-to-actual temperatuseng reference temperature panels viewable
within a camera’s FOV in order to create a radigioetlibration transfer function. A near-perfect
blackbody enclosure, hereafter termed as “BB enciiswas built from wood and painted flat
black to isolate the camera and target surfaces fyatside influences while investigating this

radiometric calibration method (Figure 2.4).

Three reference surfaces were used to provide textype differentials necessary for the
radiometric calibration (Figure 2.4 c). An isolat@d0x0.10 m piece of 8 mm thick wood, painted
flat black, was used as a box reference that fatetliwith ambient air temperature. A 0.30x0.60
m piece of 1.52 mm thick (14 gauge) aluminum sheetal was fabricated for use as the heated
target surface. An electric heating element in B enclosure was capable of heating the
aluminum panel up to 65°C at a manual or automatedetermined by the BB enclosure heating
element and air exchange vent controller, as showkigure 2.5. The third reference panel is
identified as the wet reference. To make the wieteace, a highly evaporative cloth (Chilly Padd,
Arab, Alabama) was placed around a solid woodeneti@nd placed in a bottle of water for
continuous wicking and evaporation, thereby cregdirstable, cool reference temperature.

For apparent temperature correction, a commerdidl KFluke 62 MAX, Fluke
Corporation, Everett, Washington) with a measurdnaturacy of +1°C and an adjustable
emissivity correction from 0.1 to 1 was used taed®sine the emissivity of the reference targets.
To determine emissivity, surface temperatures nredswith the IRT were corrected to match

actual surface temperatures measured with the tsiems. Emissivities of 0.82, 0.88, and 0.96
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were found for the flat-black painted wooden boxd aluminum panel and wet reference,

respectively.

Heating Element

[Top]

Reference Panel Wet
Reference
Heating Element
[Center]

Reference Panel

Box
Reference

Heating Element
[Bottom]
Reference Panel

(b) (©)

Figure 2.4. (a) BB enclosure constructed to limit wtside influence. (b) Surface mount thermistors
measured actual target surface temperatures withiran ROI (shown in red) to characterize pixel
intensities. (c) Heating element, box reference eglto air temperature and a cool, wet reference.

In addition to controlling the heating element, 8B enclosure regulates air exchange
within the chamber until set air conditions areoaugtically or manually reached by using the vent
controller (Figure 2.5). This function is directiged to determine the environmental influence as

described in Section 2.3.2, below.

Master  Heating Master Vent Controller Vent
Outlet  Qutlet On| Off Switch  On| Off Switch  Controller

Auxiliary  Air Exchange Auxiliary —Heating Element Heating
Outlet Outlet On | Off Controller Element
Switch On| Off Switch ~ Controller

Figure 2.5. BB enclosure heating element and air ekange vent controller user interface.

Actual surface temperatures were measured withdivéace-mounted thermistors (ON-
930-44033, OMEGA, Stamford, Connecticut) with a sweament accuracy of +0.1°C (See
Appendix A, Figure A.4 for more details). In addit a surface-mount thermistor was attached to
the camera housing, shown in Figure 2.6, to morofgerating camera housing temperatures

during TIR camera evaluations.

Figure 2.6. Thermistor mounted to camera housing taperature for subsequent testing
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Thermistors were wired into a voltage divider tosethe change in voltage due to the
temperature-based resistance (Figure 2.7 a). Thatireg voltage (Mu) was used to determine
temperature using a calibration curve providedhgyrhanufacturer (Figure 2.7 b).

75 A

60 - y =-23.51In(x) + 208.17

Vlﬂ
R2=0.9959

Thermistor
2.252 kKQ

Vout

0 . T, 1

Measured
Temperature ( °C)

10 kQ -
0 5000 10000 15000
= Thermistor Resistance ( Q)
() (b)
Figure 2.7. (a) Voltage divider wiring diagram usedto measure changing voltage from the
corresponding change in the thermistor resistancéb) Thermistor calibration curve used to quantify
temperature with a change in voltage. (See AppendiX, Figure A.4 for more details)

Relative humidity and air temperature within the BBclosure were measured with a
combination sensor (Omega Engineering Inc., Stainf©Gonnecticut) with an accuracy of £3%
and +0.2°C, respectively. A data acquisition systeas built using a NI myRIO (National
Instruments Corporation, Austin, Texas) to monit@ surface mount thermistors, air temperature,

and relative humidity inputs from sensors withie 8B enclosure (Figure 2.8).

Air Temperature (°C) &
Relative Humidity (%)
Transmitter

Box Reference
Thermistor

Wet Reference
Thermistor

Heating Element [Bottom]
Thermistor

Heating Element [Top]
Thermistor

Heating Element [Center]
Thermistor

) §
1
2
=y
VZ '

Camera Housing
Thermistor

(a) (b)
Figure 2.8. (b) Data acquisition (DAQ) system usetb monitor BB enclosure sensors with (a) stereo
plug connectors.

A TIR Camera Evaluation Software program (Figur®) 2vas developed using NI

LabVIEW™ (National Instruments Corporation, Austirexas) to acquire real-time image data,

camera housing temperature, actual reference sutéagperatures, air temperature, and relative
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humidity while controlling test length and file sjfecations (Figure 2.10). Raw data was
monitored at a sampling frequency of 9 Hz to mahehframe rate of the TIR camera cores.

Camera Control Cabinet Monitoring
Controller
4. | ©-
Air Temperature
Analog Frame Digital Frame Hum|d|ty
Grabber Grabber
Camera Setting ,'\,: + Calibration File Heat / Cool Element
- Sensor Input

—==!+ Ground Truth Flight Data

Camera

Thermal Core Temperature

Figure 2.9. TIR Camera Evaluation system diagram sed to control cameras, monitor BB enclosure
conditions, and output test data.

Foser Name.
Dropbon\3 THIS fabwew') Ground S2aton ™~
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Figure 2.10. TIR Camera Evaluation Software VI usedto conduct radiometric calibrations while
recording raw data. (See Appendix A, Figure A.7 fomore details)

The TIR Camera Evaluation Software program averagattiple image pixels within
static ROIs within the TIR camera FOV to correlpbeel intensity-to-actual surface temperature

(Figure 2.10, above). Raw pixel intensities,(X2) were combined with actual surface temperature

(Y1, Y2) to determine the radiometric transfer functiarpsl, as defined by Equation 2.3:
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By using the slope found in Equation 2.3 and a m@ixel and coinciding surface

m

(2.3)

temperature (X Y1), the y-intercept of the radiometric transfer fuoc was determined using
Equation 2.4:

Y-Y, =mX-X,) (2.4)
When a radiometric transfer function was foundhedigital image pixel was converted to
a temperature value defined by Equation 2.5:

1(i,))
Tty = Tmin + 55— 7 Tspan (2.5)

where:
Ty = Pixel temperatureC) at row i and column j,
Tmin = Lowest temperature within the imag€y,
I = Pixel intensity at row | and column |,
N = Number of bits for pixel intensity (e.g., Nf& 8-bit images), and
Tspan = Span of temperature captured in the image.

The radiometric calibration method developed absas segmented into two methods in
order to compare temperature measurement accurddiesfirst method was referred to as the
real-time (RT) radiometric calibration, in which Rmage pixels are correlated to RT surface
temperatures defined with Equations 2.3, 2.4, abd2milarly, the second method was termed
the one-time (OT) radiometric calibration that iaed one calibration image to determine the
radiometric transfer function. The RT radiometrailoration method was developed to test the
measurement accuracy of the uncooled TIR camerasewteference temperature panels are
consistently viewable within the camera FOV likéxad platform. On the other hand, the OT
radiometric calibration method was developed tb ttes measurement accuracy of the uncooled

TIR camera when reference panels cannot be contstyi@iewed for practical reasons such as a
dynamic sensing platform.

2.3.1.4Narm-up Time and Automatic Recalibration

Uncooled TIR cameras account for microbolometerpenature fluctuations without
heavy cooling systems with automatic recalibratdishutter recalibration technique is activated
to conduct a non-uniformity correction (NUC) acrtiss thermal detector at either a user-defined
time interval and/or in the event of an internahperature change of the thermal detector (DRS
Technologies, Network and Imaging Systems Groug.,).nDuring a NUC, the camera shutter

closes to block incoming thermal energy, therelyvigling a uniform thermal reference for the
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detector. At that time, a recalibration algorithmseres a uniform pixel intensity is measured
across the entire microbolometer. Once poweredonyncooled TIR camera begins to reach a
steady state operating temperature as a resulitt@fmal circuitry temperature and ambient air

conditions.

To determine the amount of time needed to reaclstéedy state operating temperature
from ambient conditions, the TIR cameras were dpdran the BB enclosure with steady target
temperature for 45 minutes while the video pixéémsities, target surface temperatures, camera
housing temperature, and ambient air conditiongwesnitored. The resulting warm-up time was

determined when the measured pixel intensity wasinvb% of the stable target pixel intensity.

Because automatic NUC is recommended during regylaration, additional tests were
conducted to investigate the influence on tempesaneasurement accuracy from a 1 min, 5 min,
and no NUC. Each test was run for 60 minutes becayscal thermography applications occur
in a short time span in order to limit time betwesamples (Maes & Steppe, 2012). Images for
these tests were monitored using the DAQ systemwritbesl above in Section 2.3.1.3 to determine
the temperature measurement accuracy under th#isgeenarios listed in Table 2.1.

Table 2.1. Non-uniformity correction influence on neasurement accuracy (+°C) with OT
and RT radiometric correction

Correction Time
Video Output No C.orrec.tion 5-min.ute NUC 1-min.ute NUC
(Sensing Time) (Sensing Time) (Sensing Time)
Analog 60 minutes 60 minutes 60 minutes
Analog 30 minutes -
Analog 15 minutes -
Digital 60 minutes 60 minutes 60 minutes
Digital 30 minutes -
Digital 15 minutes -

2.3.1.%onnection Ease, Software, and Controllability

The TIR camera cores provide analog and digitat@idutputs. Analog output provides
an 8-bit (256 discrete pixel intensity DV) thernvadeo, whereas digital output is 8-bit or 14-bit
(256 or 16,384 discrete pixel intensity DV) videbhese two modes of video output were
investigated in regards to measurement accuratydrture resolution (i.e., smallest measurable
temperature difference), and ease of image capéaga&rding necessary hardware and software
functionality. Each TIR camera control softwaretagghical user interface (GUI) configured the
camera for video output and frame rate, user-ddfiN&JC, and thermal detector sensitivity.
Although both camera control softwares have dislisigng features, they are not discussed in
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detail. However, both softwares adjust the therdedéctor gain sensitivity (i.e., detectable scene
temperature span) and level control (i.e., shifisaif of the center temperature within the
temperature span), thereby adjusting the slopeafrd)level offset (b), respectively, defining a
y=(m)x+(b) format (Figure 2.11). More specificalthe thermal detector gain sensitivity adjusts
the upper and lower pixel saturation and tempeeatugasurement resolution, thereby improving
the visibility of desired scene temperatures. anaple, a temperature span of 20°C is set by the
camera gain control whereas a center temperat@®°@f is controlled by the level control. In this
example, the lower and upper saturation tempermatuoglld be at 15°C and 35°C, respectively. In
addition, the temperature resolution of the resglt8-bit image of a 20°C span would equal
0.08°C, as defined by Equation 2.6:

T an OC 2.6
Tresowution (°C) = sz—n() (26
where:

Tspa=Span of temperatures (°C) measureable by the gielatector
N=Dbits of resolution (e.g., N=8 for 8-bit imageahd

Tresoluiormtheoretical temperature resolution

Thermal Histogram
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& : : 12-bit Setting
N
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Control : RN
0 Saturation
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76800 8-bit output image
P ) ;
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0
0 255

Figure 2.11. Camera settings from level and gain atrol for a thermal detector. The gain control
adjusts the thermal detector sensitivity to LWIR erergy thereby adjusting the temperature span.
Level control adjusts the center offset temperaturego adjust the offset of the temperature span.
Adapted from DRS Tamarisk® 320 Camera Control Softvare User Guide (2013).

A DRS breakout board module (Breakout Box 1003785-MRS Technologies, Inc.,
Dallas, Texas) controlled CAM1 by adjusting thengand level for the span and center
temperature offset. Similarly, CAM2 was controlleth the FLIR® VNC module (FLIR®

Systems, Inc., Boston, Massachusetts) (Figure 2.12)
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Figure 2.12. Hardware used to control, capture, angbrocess thermal images from the TIR camera
cores

Analog video from both uncooled TIR cameras wasasired at 9 Hz into an analog-to-
digital video converter (Dazzle DVD Recorder HD,r€lcCorporation, USA) (Figure 2.12). This
raw analog video signal was streamed into a hostpater using LabVIEW™ (National
Instruments Corporation, Austin, Texas) image aitjan and processing software that captured,
processed, and stored each video frame using dogpecevirtual interface (VI).

In order to reduce signal loss and noise introdweigldl analog video signal transmission,
digital video feed from CAM1 was captured with atieznal digital frame grabber (iPORT CL-
U3, Pleora Technologies, Ontario, Canada). The drgnabber acquired digital images directly

from the TIR camera, as shown in Figure 2.13.

Camera Image Capture and Control

Controller

Digital Frame
Grabber

~\

DRS Tamarisk® 320 DRS Control Module

Analog Frame
Grabber

Figure 2.13. Hardware to capture digital and analog/ideo outputs
Controllability was studied using digital video feom CAML1 in order to investigate
added functionality (i.e., measurement accuraagyptrature span and resolution) of the digital
output configuration. CAM1 was used because the DRSkout board supported digital video
feed while CAM2 required additional breakout boardgond the FLIR® VNC module.
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Using the developed RT and OT radiometric calibratmethods described above, the
resulting temperature span and offset temperatharement were investigated for each gain and
level control setting. In order to determine thenperature span, the aluminum reference target
was chilled to 0°C and attached to the heating ef¢rheld at 65°C. Through convective heat
transfer, the aluminum reference target rose fré@ 1 65°C in under 10 minutes. This rise in
temperatures were used to determine the thermattdetsensitivity of each TIR camera core
under a discrete range of low to high gain settingsorder to determine the level control
characteristics, RT pixel intensity of a stableesrehce temperature was recorded as the camera
level control was adjusted from lower to upper psaturation for each respective gain setting.
With a stable target temperature, the change inptkel intensity value for each level offset
increment was used to characterize the controlfgl@hd determine the temperature difference

for each level control increment.

2.3.2Environmental Influence on Measurement Accuracy anRepeatability

In addition to controlling the heating element, BB enclosure regulates air exchange
within the chamber to pull air from outside the io&b until equilibrium is automatically or
manually reached (Figure 2.14 b). The BB enclosw@® operated within an environmental growth
chamber (EGC15, Chagrin, Ohio) in order to inveggghe repeatability of the TIR camera under
changing environmental conditions (i.e., air terapgnre and relative humidity) typical in

agricultural studies (Figure 2.14).

Enclosure
Controller

@ (b)

Figure 2.14. (a) BB enclosure installed in the (bgnvironmental chamber for strictly controlled

environmental conditions. (c) Air exchange throughthe BB enclosure controls internal air
parameters

Strict laboratory tests regulated air temperatund eelative humidity, providing an
evaluation of the measurement accuracy under divab®ratory conditions (i.e., 15-45°C £0.3°C,

and 25-75%RH +2.5%). The BB enclosure pulled oetsigd from the environmental chamber
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until the set air condition parameters were reachregure 2.14). Eight air temperature namely 10,
15, 20, 25, 30, 35, 40, and 45°C were selectede&ain test, the desired air temperature was set
while humidity was set at 25% relative humidity. ¥vithe specific air conditions were achieved
within the BB enclosure, an OT radiometric calibmatwas performed as the relative humidity on
the environmental chamber was set to change fro¥ 8575% which occurred over a period of
10 minutes. The change in relative humidity wasioedl to observe radiant heat attenuation due
to increased water vapor between the target andlRecamera (Monteith & Unsworth, 2013).
Environmental attenuation would be consistent betwhe two camera cores; therefore, only
CAM1 was testing in the environmental chamber. Anr@diometric calibration was used because

RT radiometric calibration was developed to compemn$or changes in ambient conditions.
2.4RESULTS AND DISCUSSION

2.4.1Lens Selection and Distortion

The medium angle lens of CAM1 has less visibleadigin than the wide angle lens of
CAM2 (Figure 2.15). The wide angle lens (7.5 mmdl amedium angle lens (11mm) distortion
was 30% and 19%, respectively. However, both disiws were corrected with the resulting lens
correction coefficients shown in Table 2.2. Thedal$on comparison is not meant to distinguish
differences between TIR camera cores, but therdifige between medium to wide angle lens focal
length and resulting lens FOV degree angle. Distortoefficients of both camera lenses had to
be determined because they were not provided bylReamera manufacturer. The results reveal
a significant distortion occurs within the germanilens of each TIR camera core. This will have
practical implications where spatial accuracy igical especially in whole-field temperature
mapping and site-specific crop health monitorimgapplication, batch image processing would
use the resulting lens distortion coefficients witan algorithm in order to undistort images for
spatial accuracy for actual location using EquaBidnand 2.2, above. In addition, since each TIR
camera and lens are factory calibrated, a TIR camaed lens combination may have subtle
variations in distortion characteristics. As a tggdentical camera-lens configurations may not
be interchangeable; therefore, each individual ddgera may need to be calibrated in order to

determine specific lens distortion coefficients.
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Figure 2.15. (a) CAM1 with 11 mm and (b) CAM2 with7.5 mm lens distortion results from the point
distortion (grid) model with grid pattern with know n point distances (left) point vector map (middle),
and visual distortion map (right)

Table 2.2 Lens distortion results including radialand tangential correction coefficients
(See Appendix A, Figure A.8 and A.9 for more dets)

TIR Camera Core % Distortignr Radial Tangential
ki1 k2 P1 p2
CAM1 19.1 -0.24992 -0.74306 -0.000177 0.002740
11 mm lens
CAM2 304 | -043814 0.20181 | 0.001486  -0.000493
7.5 mm lens

2.4.2lmage Resolution and Measurement

The increasing pixel-by-pixel-resolution ROI anaysprovided necessary spatial
resolution to limit false measurements. As showhigure 2.16 a, a 9 mm/pixel spatial resolution
was necessary to measure 100% of the DV of thettavgen the ROI was directly centered on
the target normal to the camera. In actual in-fegighlications, however, a target will seldom be
normal to the camera and aligned to the fixed parehy. Consequently, target orientation and
location variation will inherently cause pixels toeasure a mixture of background/target

temperature (Figure 2.16 b).
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Figure 2.16. (a) Spatial resolution versus the ditil value accuracy. (b) Generalized pixel orientatins
and spatial resolutions of 1 pixel, 2 pixel, and gixels incident on a target. Black boxes represettihe
individual pixel's FOV. Green objects represent arbbject that can be accurately measured with the
pixel orientation and spatial resolution. Pink objests represent an object that is measured with error

The first response would be to increase the nunobgrixels incident on a target by
positioning the camera closer. However, this redilse overall image coverage area and requires
a larger volume of images in order to cover thaerddgground area at the specific level of detail.
For example, 4 pixels on a target, as shown Figué b, better capture a representative value but
cannot entirely reduce the inaccuracy from extréarget orientation and shape irregularity
(Figure 2.16 b). At the same time, 4 pixels verdysxels present on a target reduces the overall
image coverage area by 75% and requires 4 timesnidnges in order to cover the same surface
area. As a result, a tradeoff exists between thverage area and level of measureable detail
possible from a sensing platform. This will be esaky important in the case of uncooled TIR
camera when the image resolution (i.e., numberixélp in the fixed pixel array) are small
compared to typical visible camera image resoltidrnis relationship is critical when matching
the camera’s fixed pixel resolution and lens coraban to the necessary spatial resolution
because of the volume of data generated in ordexckoeve the desired application ground

coverage and specific level of detail.

2.4.3Warm-up Time
The warm-up time for each camera was determinesha®n Figure 2.17. Results show
warm-up times of 19 min and 7 min were necessargCfiM1 and CAM2, respectively, in order
to reach within 5% of the stable pixel intensityaserement. Timely fluctuations in the first
minutes are due to NUC triggered by the changaerthiermal detector temperature and/or after

the user-defined timed interval of 1 min. During tharmup period, multiple NUC were activated
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from a temperature change of the microbolometeshasvn by the drastic change in measured
pixel intensity during the first 5 minutes. Once ttamera housing temperature began to level off,
less erratic pixel intensities were observed pastiriutes which may suggest NUC is activated
from the timed interval of 1 min rather than thenperature change.

9255 CAM1 40 5 255 CAM2 35 G
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Figure 2.17. Raw image intensity and housing tempature versus camera ‘on-time’ of (a) CAM1 and
(b) CAM2. The dotted vertical line indicates the time when measured pixel intensity was within 5%
of the stable pixel intensity.

Prior to the designated warm-up period, inaccuaagts as the camera reached a stable
operating temperature. Camera warm-up time willihgdications on how quickly a system can
be deployed and is important when consideringradstal operating protocol. Furthermore, warm-
up time is dependent on the storage temperatuoe farioperation. In the scenario producing the
results shown in Figure 2.17, the cameras werel @quambient temperature prior to operation.
As a result, warm-up time is dependent on ambienditions; therefore, allowing TIR cameras
to operate beyond the warm-up time will ensureclrera reach a stable operating temperature
to limit inaccurate measurements. In applicatidartgsig the camera may be the first step in a
standard operating procedure when taking data.

2.4.4Radiometric Characterization and Measurement Accuray

The developed radiometric calibration methods wéldadiometric curves demonstrated
in Figure 2.18. Linear regression analysis showeudifscant correlation between actual surface
temperature and image pixel intensityf (R.99) for both TIR camera cores. The resultimgdir
transfer functions would be directly used to cobvienage pixel intensities into surface
temperature measurements for each camera. Betivedwa TIR camera cores, the sensitivity to
incoming LWIR is comparable. This sensitivity deratsates uncooled thermal cameras’ ability
to measure absolute temperatures with additionedwere and software, standard operating

protocol for radiometric calibration, and striche@ra configurations.
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Figure 2.18. Radiometric calibration performed on he CAM1 (a) and CAM2 (b) at 25°C air
temperature and 35% relative humidity after reaching a steady operating temperature.

Because the OT and the RT radiometric calibratiethaods were developed for different
applications, a comparison in Figure 2.19 showsrtkasurement accuracy of the two calibration
methods. The absolute difference between the aetodl measured temperature showed the
measurement accuracy was +0.38°C or 0.62%D.05) with RT and OT radiometric calibration,
respectively. RT radiometric calibration had a leiglneasurement accuracy because of the fixed
reference panels within the FOV for RT calibratiamereas the same OT radiometric calibration
was used throughout the sensing period. As a rethdt OT calibration has a diminishing
measurement accuracy as the camera continuoustjucsna NUC generating slight pixel-to-
pixel variation caused by the correction algorithm.
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Figure 2.19. CAM1 measurement accuracy (x°C) of O&nd RT radiometric calibration process over
1 h. The absolute difference between the actual amdeasured temperature is shown. CAM1 operated
at a stable temperature prior to comparison.
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In applications needing a high accuracy with adisensing platform, the RT radiometric
calibration would be most applicable. On the otiend, the OT radiometric calibration would be
better suited for dynamic sensing platforms indfigiudies. Most importantly, when considering a
TIR camera core and complementary hardware and/aaf choosing relative versus absolute
temperature measurements may reduce the necessdwedne and software, but limit quantifiable

temperature measurements. For consistency, thengeafistance was held constant throughout all
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tests. However, in typical field applications, largsensing distances beyond that of the BB
enclosure may influence the measurement accuracg résult, future studies should be conducted

that test multiple sensing distances to validaged#veloped radiometric calibration methods.

2.4.5Automatic Recalibration

Because NUC recalibrates the thermal sensor, me&asmt accuracy with and without
NUC is summarized in Table 2.3.

Table 2.3. Measurement accuracy (+°C) with OT and R radiometric correction.
(Accuracies shown represent an 95% confidence inteal)

. NUC OT Calibration RT Calibration
Video Timed . . . . . .
Output Interval 15min i 30 min ; 60 min i 15 min . 30 min { 60 min
1 min - - 0.87 - - 0.63
CAM2 | Analog: 5min - - 1.00 - - 0.72
Bw/o 067 @ 080 @ 092 047 053 074
1 min - - 0.82 - - 0.62
Analog | 5 min - - 1.15 - - 0.65
[al
CAM1 W{O 0.60 0.73 0.87 0.38 0.49 0.62
1 min - - 0.43 - - 0.29
Digital | 5 min - - 0.95 - - 0.54
B\wo @ 030 | 035 | 0.64 029 | 030 i 0.35

[a]Subject to thermal detector sensor drift from intdrand external temperature
inaccuracy. Not recommended from TIR camera matwriec

Under operation with and without NUC, measurementieacy decreased with increased
sensing time which is most likely attributed to tsleght pixel variation of the NUC. Results
showed that a camera configured for a NUC at a-dsined time interval of 1 min yielded the
highest measurement accuracy for both analog ajihldvideo systems (Table 2.3). However, a
RT calibration for a sensing time of 60 min witi.anin NUC provided similar measurement
accuracy as with no NUC with CAM1, thereby suggesthe use of no NUC. However, the strict
environmental conditions that produced these result impractical in agricultural applications.
In addition, TIR camera manufacturers do not recemincamera operation without NUC due to
potential temperature drift previously discussed.h3. Throughout tests, maximum sensing time
used to evaluate the two TIR camera cores wast € minutes. Extended sensing times may

need to be investigated for high temporal studiesgerformance under constant operation.

2.4.6Connection Ease, Software, and Controllability

Required evaluation hardware for analog video gaptwas enabled with off-the-shelf
(OTS) equipment with camera control software frof® Tanufacturers for full evaluation of

camera controls and features. As observed, mamumiat of the thermal detector through the
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camera control software with radiometric calibraicevealed the characteristic linear transfer
functions of gain and level controls, as showniguFe 2.20 and Figure 2.21. This knowledge is
important in order to set the cameras for a pddictemperature span and offset the center
temperature. As observed, a configured temperafp@e has a direct influence on the discrete
temperature resolution measurable from the thedwe&tctor. As a result, the ability to set a
specific temperature span could result in the tghiti order to better assess discrete spatial crop

temperature differences.

For application in crop sensing, a minimum tempgratesolution of 0.5°C is suggested
to measure the subtle temperature differencesrfgr leealth assessment (Sepulcre-Canto, et al.,
2007). As a result, a limitation of the 8-bit imad@ta is the coarse temperature resolution with
large temperature spans. As shown in Table 2.4minemum temperature resolution suggested
by Sepulcre-Canto et al. (2007) of 0.5°C would ltesua temperature span close to 120°C. In
order to cover twice the suggested temperaturdutso, a minimum temperature resolution of
0.25°C was chosen to determine the maximum temyperapan (60°C) in Figures 2.20 and 2.21

by rearranging Equation 2.6.
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Figure 2.20. CAM1 camera (a) gain for temperaturegan and (b) level setting characteristics for offge
temperature bias.
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Figure 2.21. CAM2 camera (@) gain for temperaturegan and (b) level setting characteristics for offge
temperature bias.
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With Equation 2.6, Table 2.4 demonstrates theaktemperature resolution of selected
temperature spans of the analog and digital outpytusing Equation 2.6, digital output from
CAML1 resulted in a fixed temperature span of 156ith a fixed 0.01°C temperature resolution.
Similarly, analog output from CAML1 resulted in anfigurable temperature span from 5°C to
156°C and resolution from 0.02°C to 0.61°C. Anatagput from CAM2 yielded a controllable
temperature span of 18°C to 206°C and resolutidhG°C to 0.80°C.

Table 2.4. Temperature resolution (°C) of specifitemperature span

Span (°C)
Video Type
(bits) Bl2oo 150 100 50 40 30 20 10
Analog (256)  0.78 0.59  0.39 0.20 0.16 0.12 0.08 0.04
Digital (16,384) - 0.01 Mool Mol Mool M0.01 b.o1  [©0.01

[a]OnIy the FLIR® Tau 2 (324) is sensitive to a tenapere span of 200°C
IBased on fixed temperature span and resolutioheofligital output

Results in Table 2.4 will have implications on aseg application that requires a large
temperature span and high temperature resolutioeretore, a digital output would provide the
full temperature span and resolution of the themhes¢ctors. In addition, TIR cameras have a low
signal-to-noise ratio that neither digital nor agal/ideo equipment can reduce. However, digital
video hardware eliminated noise introduced withl@gaideo transmission (Figure 2.22) while

streaming 14-bit video data.
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Figure 2.22. Accuracy comparison of analog and ditsl video output over a 1 h sensing time of CAM1.
The absolute difference between actual and measur@gdmperature is shown with a 1 min NUC.
Results demonstrate the digital and analog measuresnt accuracy to be 0.43°C or 0.82°Gu€0.05),
respectively. The TIR camera core operated at a dtde temperature prior to the comparison.

2.4.7Environment Influence
Due to the unregulated temperature of the micraheter, a change in thermal detector
temperature during the warm-up period caused aedserin measurement inaccuracy (Figure
2.17, above). Similarly, evaluation within the exvimental chamber revealed a change in
ambient air temperature caused a proportional aghamgamera housing temperature, thereby

causing similar measurement inaccuracy (Figure)2.23
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Figure 2.23. Measurement inaccuracy due to a change camera housing temperature over a 10 min
time span. OT radiometric calibration was performedwhen the TIR camera housing was at 20°C.
CAM1 was configured for 1 min NUC, analog video oyiut and a temperature span of 20°C. Ambient
air temperature was 10°C and relative humidity wa25%. CAM1 operated at a stable temperature
prior to inducing a change in ambient air temperatue.

As camera housing temperature increased, the neshsemperature was consistently
higher than the actual temperature. This consiséemperature increase could be attributed to how
the microbolometer quantifies a pixel intensity doi@ change in resistance of an individual pixel
detector. As the camera housing temperature inesedise heat transfer to the microbolometer
would cause individual pixel resistances to incesa®sulting in a higher measured temperature.
Results from an increased relative humidity wasestigated and the resulting influence to
measurement accuracy is shown in Figure 2.24.haws in Figure 2.24 a, a target with a stable
temperature above air temperature resulted in @edsed measured temperature that appeared to
attenuate towards ambient air temperature withesming relative humidity. Similarly, a target
with a stable temperature below air temperaturgufféi 2.24 c) resulted in an increased measured
temperature that appeared to attenuate towardseaimdir temperature with increasing relative
humidity. Lastly, a target with a stable temperatequal to air temperature (Figure 2.24 b) resulted
in a measured temperature that remained closelgm@ehto air temperature but with diminished
accuracy. With stable targets not equal to air xampre, the apparent attenuation towards
ambient air temperature is most likely due to amibar particles in-between the target surface
and camera. In the scenario with the stable tageal to air temperature, some inaccuracy may
be contributed to air particles that are not inildgium with the ambient air, thereby causing the

apparent decrease in measurement accuracy.
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Figure 2.24. Influence of relative humidity change$o measurement accuracy between the TIR camera
and the stable target whose temperature is (a) abe>5°C) ambient air temperature, (b) equal to
air temperature, and (c) below (>5°C) air temperatue. CAM1 was configured for 1 min NUC, analog
video output, and a temperature span of 20°C. CAMbperated at a stable temperature prior to the
inducing a change in relative humidity.

Results indicate air temperature and relative hitgn@hn impact measurement accuracy
of the TIR camera systems. Th&wRlues for plots in Figure 2.23 and 2.24 indicdbed regression
curves can be generated to compensate for tempeatd humidity changes. However, further
research needs to be conducted to understanddfiests with the TIR camera system at different

sensing distances especially aboard sUAS platforms.

To account for changing environmental conditions,Gil' radiometric calibration at a
specific air temperature, relative humidity, ancheaa housing temperature produced an accurate
surface temperature measurement (Figure 2.25).1&8lwmi a RT radiometric calibration
maintained measurement accuracy from changing amwviental conditions. Depending on the
application, the OT radiometric calibration methady be appropriate if conditions such as air
temperature, relative humidity, and camera thee&tctor temperature go unchanged, while the

RT calibration accounts for the instantaneous emvitental conditions.
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Figure 2.25. RT versus OT radiometric calibration inder changing relative humidity. OT radiometric
calibration was conducted when chamber was at a ralive humidity of 25%. CAM1 was configured
for 1 min NUC, analog video output, and a temperatre span of 20°C. CAM1 operated at a stable
temperature prior to the inducing a change in relaive humidity.

71



Further studies should be conducted with TIR canceras within semi-regulated and
unregulated environmental settings in order toyfulvestigate TIR camera core utility and the

robustness of the developed calibration methodlymamic field operations.

2.5CONCLUSION

Uncooled TIR camera core evaluations were conduictexhswer questions on use and
standard operating protocol, system complexity, aneasurement accuracy in changing
environmental conditions, which has restricted [mes use. More specifically, this study
determined the necessary hardware and influencame@surement accuracy from physical
properties and some environmental conditions pteseagricultural applications. As studied,
physical properties that reduce practical use & ddmeras for temperature measurement include
lens distortion, image pixel resolution, warm-umei camera controllability, and repeatability.
However, negative influences on measurement acgoeathbe reduced with camera configuration
settings, a camera-lens combination selected fosisg distance and target dimensions, post-

processing lens calibrations, and standard opegratiotocol.

In this study, the wide angle lens (7.5 mm) and ioracangle lens (11mm) distortion was
30% and 19%, respectively, that image distortiomemtion resolved for precise spatial integrity.
At least 4 pixels are recommended on the targetder to capture a representative value from the
target and maximize the image coverage area wbdeusnting for slight inconsistencies in target
orientation and shape. Warm-up times of 7 and 19 ané necessary for a stable temperature

measurement of CAM2 and CAM1, respectively.

With a 1 min timed-interval NUC over a sensing pdrof 1 h, OT or RT radiometric
calibration provided absolute surface temperatwmitsenvironmental compensation in which the
TIR camera was calibrated. The CAM1 analog outpeldgd a configurable temperature span
from 5°C to 156°C, resolution from 0.02°C to 0.61&0d measurement accuracy of +0.82°C or
0.62°C with OT or RT radiometric calibration, resipeely. CAM 1 digital output yielded a fixed
temperature span of 156°C, resolution of 0.01°C raedsurement accuracy of £0.43 or 0.29°C
with OT or RT radiometric calibration, respective(yAM2 yielded a controllable temperature
span of 18°C to 206°C, resolution of 0.07°C to @380and measurement accuracy of +0.87 or
0.63°C with OT or RT radiometric calibration, resipeely. Both TIR camera cores had a thermal
detector that was sensitive and directly correléteithe temperature within the FOVA{R0.99),

thereby resulting in comparable measurement acesraetween the two TIR cameras.
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Increased measurement temperature accuracy, liesoland added control was achieved
by integrating a digital frame grabber to reducal@g signal loss and noise introduced with analog
video signal transmission. The DRS Breakout Boganjunction with CAM1 was advantageous
because it acts as the analog and digital modui&e wloubling as the control interface. Both
cameras were configurable for a span of temperstimg CAM1 had more discrete settings in

order to make fine adjustments to span and oféseperature.

Findings of this research support future studiesdpture spatial temperatures aboard
ground and aerial-based sensing platforms to gendigh-spatial thermal images for unique

monitoring of crop health for new and advancedti@ships.
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Chapter 3 - Deploying a Thermal Infrared Imaging System for High
Spatial and Temporal Resolution Crop Water Stress Mnitoring of

Corn within a Greenhouse

3.1ABSTRACT

Inadequate water application often decreases gieddproduct quality. Existing methods
using single, localized soil moisture or canopypenature measurements that do not account for
crop water stress on a high spatial basis to assgdtion scheduling. This study was conducted
to understand the feasibility of thermal camerasoider to quantity high spatial canopy
temperatures in relation to soil moisture. Studjedtives included the deployment of a thermal
infrared imaging system (TIRIS) for high spatiatldamporal monitoring to test camera durability
and measurement accuracy during full-season cropelaj@ment, remove background
temperatures with image segmentation, and samgigidlial plants to investigate full-season
crop water stress versus soil moisture contenteyelbped TIRIS using a lightweight uncooled
thermal camera maintained measurement accuracwB€l®2°C ¢=0.05) while compensating
for changing greenhouse conditions. Corn plantewsegmented into well-watered and water-
stressed irrigation zones to observe stress frotarvdgficits. Canopy temperatures were used to
develop empirical canopy-to-air temperature defiedrsus vapor pressure deficit linear
regressions that revealed predicted canopy temperate closely related to characteristic water
use. Results of the 80-day study demonstratedB&f4t of decreased soil moisture variation was
explained when the CWSI increased above 0.6. Resutiport the use of the CWSI as an alternate
irrigation scheduling method in order to quantifyagal soil moisture by remotely measuring

canopy temperature.

3.2INTRODUCTION

In the United States, agriculture annually uses@pmately 80% of the consumptive
ground and surface water use (USDA, 2014). Thenpialeto conserve water relies heavily on
decision support tools (Rodriguez, et al., 2005)ntyease water use efficiency using precision
irrigation technologies (Ballester, et al., 2013h€n, et al., 2005; Gontia & Tiwari, 2008).
Quantity of irrigation water and application time2among critical decisions producers need to

make to develop site-specific irrigation plans (@& Pereira, 2000; Cohen, et al., 2005; Wanjura,
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et al., 1992). Precision irrigation technologies & used to precisely apply desired water at a
controllable increment for desired crop performai@ehen, et al., 2005; Taghvaeian, et al., 2013).
However, large variability may exist in commercagricultural fields due to variability in soil
type and depth, topography, climate, specific gnawth period and producer’s operation (Cohen,
et al., 2005; Evett, et al., 2014). Therefore, teghes and technologies are needed to accurately
classify spatial crop water need or crop wateisstte gain economic and environment advantages
(Herwitz, et al., 2004; Taghvaeian, et al., 20T¥)the many types of crop stress, water stress is
the most common and restrictive factor impactingpcyield (Jackson, et al., 1981; Luvall &
Holbo, 1991, Scherrer, et al., 2011; Zia, et #1132 where water stress severity depends on timing

and duration.

Several existing methods to monitor crop watersstrely on a combination of single-point
soil, plant and atmospheric measurements (AlvesegeiPa, 2000; Cohen, et al., 2005). Soil
moisture sensors are one of the most common t@otgy kutilized to make irrigation decisions.
One soil moisture probe is typically installed Bowhole field due to the installation cost and
maintenance. Soil moisture probes, more recentigntfy moisture at multiple soil depths. Soill
moisture probes, however, are subject to localpdadement error and do not account for spatial
crop variability that exists within a field (Mollget al., 2007). Alternative methods for detecting
crop water stress utilize pressure chambers aridliffasion porometers to measure individual
leaf stomatal conductance and leaf and stem watenpal, respectively (Ballester, et al., 2013;
Berni, et al., 2009a; Grant, et al., 2007; Idso,akt 1977). However, these techniques are
destructive, labor intensive, localized, limiteddmgall sample size and unsuitable for automation
(Ballester, et al., 2013; Berni, et al., 2009a; €ughet al., 2005; Gontia & Tiwari, 2008; Jones,
1999; Leinonen & Jones, 2004). Consequently, tdesebacks make invasive plant-based crop
monitoring impractical in commercial applicationthereby limiting producer adoption for
irrigation decision management (Ballester, et2413).

To address these concerns, thermal sensing ape&eve been investigated because
they are non-contact and less labor intensive odiied non-destructive monitoring to assess crop
stress from leaf canopy temperatures (Grant, ¢2806; Leinonen & Jones, 2004). Since the
1970s, crop canopy temperature has been acceptadnhaalth indicator of crop water stress
because plants close their leaf stomata, or leafiogs, when they experience water stress in order

to retain water, thereby lowering stomatal conducéareducing transpiration, and increasing leaf
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temperatures (Ballester, et al., 2013; Grant,.e2806; Idso, et al., 1977; Jones, 1999; Leinonen
& Jones, 2004; Rodriguez, et al., 2005). On themtiand, when leaf stomata are open, water in
the leaf evaporates through transpiration whichlsctioe leaf (Maes & Steppe, 2012). During
transpiration, energy from the leaf is used to evafe the water from liquid to vapor, inducing
latent heat loss and cooling the leaf. In additiortranspiration, leaf temperature depends on
ambient conditions such as relative humidity, wapked, ambient temperature, and radiation
incident on the leaf surface (Leinonen & Jones4208s a result, canopy and leaf temperatures
are controlled by a combination of thermal energhabces, vegetative genetics, and natural site-
specific elements (Luvall & Holbo, 1991). Althoutifese environmental elements influence leaf
temperature, they can be readily measured in meal-tising commercially available sensors
(Udompetaikul, et al., 2010).

Current crop growth studies have primarily usedigcbbased thermometry to take canopy
temperature measurements and develop thermal sthet account for canopy characteristics,
soil temperature, and atmospheric conditions ferspecific irrigation management and breeding
programs (Idso, et al., 1981; Jackson, et al., 19@8loole & Real, 1986). According to Zia et al.
(2013), crop growth stage does not significantlyp@att canopy leaf temperature, thereby
supporting the use of leaf temperature as a viatleator of full-season crop health characteristic
Highly integrated thermometric systems use an asfayfrared thermometers (IRTs) mounted in
fixed field locations and on dynamic center pivoigation systems to measure crop canopy

temperatures and provide a means of irrigationduditeg (O'Shaughnessy, et al., 2012).

However, crop temperature must be segmented frenmémasured temperature influence
of soil background and shaded lower leaves (Ayeath]., 2002; Luquet, et al., 2003; Maes &
Steppe, 2012). Unfortunately, this segmentatiomds possible with IRTs without additional
sensor measurements potentially adding to measuatenaecuracies and automation complexity.
In general, IRT inaccuracy from background tempees limit their use until the crop reaches a
particular growth stage because when plants ardl,s3od covers a majority of the measurable
surface, thereby dominating the temperature meammne Moreover, IRTs cannot measure spatial
temperature difference between shaded and sumhltete where temperature differences can
drastically differ. Due to the uniqueness of biabad) crop material, any two plants exhibit
temperature differences as a result of physicahtian in plant architecture, such as color, leaf
size, relative orientation to the sun, and fieldafaility (Ayeneh, et al., 2002; Luquet, et al. 0).
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In addition, IRTs are limited to ground-based sysdecause of their single-point measurement,
small measurement area, time requirement for fisdgbping, and inability to segment crop from
a soil background. Overall, IRT technology lackepatial (ground sample distance (e.g., 1
cm/pixel)) and temporal (revisit frequency) resmntto quantify crop variability (Colaizzi, et al.,

2012) critical for making weekly irrigation decigi.

An alternate to IRTs are thermal infrared imagingstems (TIRIS). TIRIS are
advantageous because they can spatially map tetappraia a thermal image to measure subtle,
heterogeneous characteristics of leaf dynamics @tial., 2011). The spatial resolution and image
processing functionality of low-resolution thermaghy increase the use of crop canopy
temperature characteristics in agriculture (Lugeegl., 2003) in order to provide qualitative and
guantitative crop characteristics that support rganmeent decisions (Colaizzi, et al., 2012; Evans,
et al., 2000). Crop stress monitoring with thernapiny allows producers to use thermal sensing
for crop canopy temperature mapping (Alves & Pare2000; Ayeneh, et al., 2002; Berni, et al.,
2009b; Taghvaeian, et al., 2013; Wang, et al., 20i@lividual crop temperature profiling
(Leinonen & Jones, 2004), variable rate irrigascheduling (Cohen, et al., 2005; Colaizzi, et al.,
2012; Fitzgerald, et al., 2007), crop breeding (@ret al., 2006; Liu, et al., 2011; Zia, et a013),
fruit detection and quality assessing (Bulanoralet2009; Sepulcre-Canto, et al., 2007; Zhao, et
al., 2005), biomass estimation (Wooster, et all,330yield prediction (Hackl, et al., 2012), and
disease and nutrient deficiency detection (Chaetlal., 1999; Hashimoto, et al., 1984; Tilling, et
al., 2007).

Progressive agriculture management with on-demhednal sensing relies on accurate
measurements, rapid response times, inexpensigersplatforms, and user-intuitive techniques
in order to achieve well-informed decisions. Thegnaphy has been utilized to further develop
thermal indices and crop sensing techniques ofligidaveloped with IRTs. Temperature-based
indices have shown significant correlations amongpccanopy temperature, stomatal
conductance, and leaf water potential. The coroglatbecome more significant as stress intensity
increased (Hackl, et al., 2012). Idso et al. (198{/estigated the hypothesis that non-water
stressed crops transpire to a predictable leaféesmypre dependent on ambient air conditions, such
as wind speed, net radiation, and vapor pressti@td¥PD). For example, a leaf temperature at
or below the predicted leaf temperature indicatesrastressed plant, whereas a leaf temperature

above the non-water stress baseline (NWSB) indscatevel of water stress.
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This aforementioned predictable leaf temperatulaiomnship was used by Jackson et al.
(1981) to indirectly measure soil moisture and appcrop health through transpiration. The crop
water stress index (CWSI) has been successfullgldped and implemented using IRTs that
measure canopy temperatures in order to deternainable rate irrigation needs (Taghvaeian, et
al., 2013). The CWSI is the normalized differentéhe measured air-to-leaf canopy temperature
deficit between the lower base line (i.e., NWSB] #re upper base line, or water-stressed baseline
(WSB), on a plot of air-to-leaf canopy temperatdedicit vs. VPD. Therefore, the robustness of
the CWSI is attributed to the scale at which it banmplemented. With the addition of upper and
lower boundaries for predicted leaf temperature GlVSI approach has been the most used index
aboard all thermal sensing platforms in varioushate regions because of the inclusion of VPD,

solar radiation, and wind speed (Maes & Steppe22Bbdriguez, et al., 2005).

A limitation of thermal indices includes the need fneasuring several environmental
parameters. Measurements necessary for CWSI inciuge canopy temperatures, wet/dry leaf
reference temperatures, and environment condi{@nant, et al., 2007; Luquet, et al., 2003). A
robust technique relies on empirically determind!$Bs and water stress baselines (WSBs) that
directly account for present net radiation, aer@ayit resistance, and the particular crop’s
microclimate (Ballester, et al., 2013; BlonquisB&gbee, n.d.; EI-Shikha, et al., 2007; Erdem, et
al., 2010; Fitzgerald, et al., 2007; Gontia & Tiw&008; Grant, et al., 2007). In order to directly
measure lower and upper reference temperature bpgetkct leaves are wetted with water to
represent a fully transpiring leaf while leaves eoered with petroleum jelly to reach a non-
transpiring stage. Temperatures of these leaves@asured to provide the lower and upper limits,
respectively. However, preparation of wet/dry Isaffaces for reference leaf temperatures is not
practical and subject to repeatability errors. Matwdies have investigated the use of standardized
measurements without manually preparing referezmg@ératures achieving similar CWSI results
(Berni, et al., 2009b; Cohen, et al., 2005; Grantal., 2006; Grant, et al., 2007; Jones, 1999).
Standard dry reference temperature recommendaitichsde the use of an upper temperature
bound of 5°C above air temperature (Alves & Peredf®0; Cohen, et al., 2005; Erdem, et al.,
2010; Moller, et al., 2007; Moran, et al., 1994; Mma, et al., 2006). Standard wet reference
temperature recommendations include measuring teafperature of well-watered plants
(Ballester, et al., 2013; Blonquist & Bugbee, nHl-Shikha, et al., 2007; Erdem, et al., 2010;
Fitzgerald, et al., 2007; Gontia & Tiwari, 2008;a@t, et al., 2007; Maes & Steppe, 2012). CWSI
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measurement strength is reduced in climates wigh humidity in which the VPD approaches
zero as differences between water-stressed anduaedred leaf temperatures diminish. Near zero
VPDs, consequently, increase the chance of inacuCAVSI assessment because of the
requirements for high temperature measurement uttsol and accuracy. Artificial dry/wet
reference measurements have provided a repeatalléasd for applications of a larger scale
when used in conjunction with thermography (Molkgral., 2007). The use of artificial reference
surfaces requires a viewable reference within #meara’s field of view (FOV) mounted near the
plant canopy to most accurately match the leaf'srotiimate. Thermography is an appealing
sensing technology because consistent crop watssstan be accounted for by automatically
measuring an artificial wet reference (Maes & Seg#012) viewable from within the camera’s
FOV (Wang, et al., 2010).

Considering the limitations and drawbacks of IRTisses, a TIRIS may provide high
spatial and temporal resolutions for canopy tentpezaneasurement that are needed for advanced
crop health monitoring and CWSlI-based irrigatiohestuling. With single-point measurements,
present and past studies used IRTs to derive C\WI8kes However, limited studies have been
conducted to measure crop temperature with highiadpand temporal resolutions. Canopy
temperatures of corn obtained throughout the gree#son, especially during periods of irrigation
deficits and replenishment, could provide neceskaoyvledge on crop stress to assist in practical
adoption of crop water stress for deciding irrigatmanagement. Thermal imaging could show
the spatial canopy temperatures from varying niigigttand daytime vapor pressure deficits. More
specifically, thermal imaging can segment canometation from soil, lower leaves, and inner to
outer canopy spatial temperatures to further cateatanopy temperatures with VPDs. With high
spatial temperature resolution, upper and loweitdifor the CWSI can be further investigated
with real-time soil moisture at growth stages nmvjpusly studied. Diurnal conditions of the
greenhouse and empirical NWSB can be used fonaasiigation of VPD-to-canopy temperature

deficit transfer functions for a full growth season
Based on the limitations of current crop waterssreonitoring methods, objectives for

this study included:

1. Develop and deploy a thermal imaging systenmionitoring corn canopy at high spatial

and temporal resolutions in a greenhouse,
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2. Evaluate the accuracy of the thermal imagingesysin measuring crop canopy
temperatures during a full growth season of cond, a

3. Investigate full-season air-to-canopy tempegatleficit versus VPD transfer functions
for direct relationships between crop water striegex (CWSI) values and soil

moisture by automatically evaluating canopy temjpgesimages.

3.3METHODS AND MATERIALS
Laboratory experiments were conducted at the Deyaant of Biological and Agricultural

Engineering at Kansas State University, Manhatkamsas, to evaluate TIRIS accuracy and
requirements for measuring corn canopy temperatar@secision agriculture applications. An
uncooled Tamarisk® 320 thermal infrared (TIR) caaneore (DRS Technologies, Inc., Dallas,
Texas) was selected for this study. On 10 May 20d# Zea maypsseeds were planted in pot
containers with 20 cm diameter in 30 replicatiohshe Throckmorton Greenhouses at Kansas
State University, coordinates of 39.1917° N, 96 59 . For a full-season growth study (80 days),
the plants were seperated into two irrigation rexgrof well-watered (WW) and water-stressed

(WS), as shown in Figure 3.1.

N/ /@@ N\

Figure 3.1. Water stressed plant orientation (lefthnd well-watered plants (right)

Corn was selected as the crop of choice becaissa inajor irrigated crop in the Midwest
and has demonstrated high yield potential with eqbent irrigation (Schlegel, et al., 2014).
Compost material with high organic and plant nutrieontent was used as potting media with a
water-holding capacity of 3.4 ml per gram of sa#l,determined in an oven drying method (Texas
Department of Transportation, 2014). All corn sees planted 4 cm deep, fertilized with slow-
release nitrogen pellets, and imposed with wagatitnents directly after emergence. Greenhouse
temperature was set to 27°C during the day frorh €0L8:00 h and 20°C at night from 18:00 to
6:00 h on the following day (Hoeft, et al., 2004).
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As specified by Rogers (1998), a characteristiclarhof water use (Figure 3.2) was used
to irrigate the well-watered corn plants while isthg water stress in the water-stressed regime.
Consequently, periods of analysis were split imtmagh periods of 1) germination and seedling
stage, 2) rapid growth stage, 3) reproductive stage 4) maturity stage.

o
~

o
w

GR:)&?', Maturity
Stage Stage
Germination .
and seedling Reproductive
stage Stage

0 T T T T T T
Aprill  May June July Aug ' Sept ' Oct

o
N

o
=

Water Use Rate—inches per day

Figure 3.2. Characteristic water use of corn. Remduced from Rogers and Alam ( 1998).
Irrigation was applied according to recommendedewaeeds as specified in Table 3.1.
Based on the size of pot containers used in thdysiTable 3.1 depicts the water amount applied
to each corn plant during the respective growthestemased on findings of Rogers and Alam (1998).

Table 3.1. Average recommended water-use rate farigated corn

*Recommended WateWater Applied to Well-Watered Water Applied to Water-Stressed

Time Use Per Day Per Day Per Day
[ml] [ml] [ml]
Germination and Seedli 453 500 225
Rapid Growth 907 900 450
Reproductive 1058 1100 550
Maturity 605 625 300

*Does not account for evaporation or pot drainage

3.3.1lrrigation Setup

Water was applied via commercial drip-line irrigettiunder constant pressure from a
regulating solenoid valve (Production Series Speink/alue, Orbit Irrigation Products, Inc.,
Bountiful, Utah) controlled by a zone irrigation rcmller (Zone Indoor/Outdoor Irrigation
Controller, Orbit Irrigation Products, Inc., Boumti Utah) to maintain drip uniformity and
repeatability. Precise and timely irrigation reggweere applied at increments of 25 ml at 6:00 h.

Figure 3.3 shows the irrigation setup and plantteuigrowth period 1.
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(b)

Figure 3.3. (a) Automated irrigation system and (bxorn during growth period 1.

3.3.2Thermal Imaging and Environmental Monitoring

An automated TIRIS was developed and deployedfdatired components for remote
control, camera control, environmental monitoriegsors, and computer for capturing, storing,
and analyzing image and environmental data (Fi§ute For functionality, wireless control was
enabled using a virtual private network (VPN) castie which provided remote monitoring and
direct control of the TIRIS.

Remote Controller Environmental Monitoring

_Camera Control

£

Analog Frame
Grabber

.V.
"
Capture, Store, Analyze

TR Coreot

Camera Setting

|
'

(x= * Image Data
—== « Environmental Conditions

Thermal Core

Figure 3.4. Component diagram for TIRIS

& |

Camera
Temperature

Sensor Input

Water Stressed

WS Soil Moisture

Dar.)

Air Temperature
Humidity

-~ Reference Panels

\\"

\Solar Radiance
Well-Watered

WW Soil Moisture

Thermal images were obtained with an uncooled Tesk@&r320 thermal infrared (TIR)
camera core (DRS Technologies, Inc., Dallas, Tewéh)a focal length of 11 mm and a 27°x20°

FOV lens. The camera has a maximum frame rate dfifi0sensitive the long wave infrared
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(LWIR) electromagnetic radiation from 8 to 14 pumresponding to a temperature span of -66 to
90°C, and an uncooled microbolometer sensor wab0x280 fixed pixel array. The camera was
mounted at a 4.5 m height nadir to the corn plaheseby providing a spatial resolution of 7.7
mm/pixel, limiting the FOV to 3 x 2 m. A criticabpect of any TIRIS is the amount of pixels on
the target. As previously studied, at least foue|s are recommended on a target in order to limit
inaccurate temperature measurement and maximizialsipgage coverage while accounting for
slight inconsistencies in target orientation. Earaple, the smallest object the TIRIS in this study
was able to accurately measure was an object 46 (7.7 mm x 4= 30.8 mm). The TIR camera
core provided an 8-bit (256 discrete pixel intgnsiigital value (DV)) thermal video. The DRS
Camera Control Software controlled each cameraistions and features. Within the software’s
graphical user interface (GUI), the TIR camera awas configured for video output and frame
rate, and thermal detector sensitivity settingsrtter to set the TIR camera core, a DRS breakout
board module (Breakout Box 1003785-001, DRS Tedgies, Inc., Dallas, Texas) adjusted the
thermal detector gain sensitivity (i.e., detectadidene temperature span) and level control (i.e.,
shift offset of the center temperature within teenperature span), thereby improving detected
thermal energy of the scene temperatures. Autoagyadrevel contrast were enabled via the DRS
Camera Control Software (DRS Technologies, DallBsxas) to account for continuously
changing operating camera housing temperaturesnvittie greenhouse. Auto gain and contrast
maintains distinguishable scene temperatures agiu dmd low temperatures within saturation
threshold limits (Kuenzer, 2014).

Analog video output was streamed at 60 Hz into aalag-to-digital video converter
(Dazzle DVD Recorder HD, Corel Corporation, USAhidraw analog video signal was streamed
into a host computer using LabVIEW™ (National Instients Corporation, Austin, TX) image
acquisition and processing software. When samilezl developed Greenhouse TIRIS virtual
interface (VI) would grab the image, assign a titaegp, and store within the appropriate storage
folder (Figure 3.5).
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Time of Loop (seconds)

" 150 Camera Feed Air Temp. (C) 31.6
g

. = Relative Humidity (%) 78

Camera Location
% camb Solar Radiance (W/m sq.) 355.
Saving File Soil Moisture No. 1 (WW) 75.5
Sample Soil Moisture No. 2 (WW) 73.7
21002 Soil Moisture No. 3 (WS) 46.5
Soil Moisture No. 4 (WS) 52 2
N Cement Shade Ref.Temp. (C) 28.5
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WW Soil Ref. Temp. (C) 34.2
Camera Temperature (C) Dry Soil Ref. Temp. (C) 44.5
35.4

STOP Time
[06/22/2014 14:15:02.365

Figure 3.5 Greenhouse TIRIS VI front panel for contolling loop time and camera control while
monitoring and saving soil moisture of irrigation regimes, air temperature, relative humidity, solar
radiance, reference panels, camera temperature, sgue number, and time stamp.

Parrellel environmental conditions were capture@re2.5 min with a single-board
microcontroller (Single Board RIO 9633, Nationastuments Corporation, Austin, Texas) and
placed into a measurement file denoted with theesponding image number. Relative humidity
and air temperature were measured with an ambieseasor (HX303AV, Omega Engineering
Inc., Stamford, Connecticut) with an accuracy &% and + 0.2°C, respectively. Solar radiance
was measured with an pyranometer (SP115, Apogémiiments, Logan, Utah) with an accuracy
of + 0.25 W . To compensate for the influence of environmeotalditions on the accuracy of
the TIR camera, surface mount thermistors (ON-98004,0mega Engineering Inc., Stamford,
Connecticut) with an accuracy of + 0.2°C measuezdperature of reference panels within the

camera’s FOV.

Reference panels used in the experiment were IDomlwooden pads with an empirical
emissivity of 0.9, whereas corn has an emissivitalmout 0.95 (ldso, et al., 1981). Reference
temperature panels were sized accordingly to theecas spatial resolution and constructed of
materials with a low thermal inertia in order tgist temperature changes. A reference panel was
placed on shaded concrete, well-watered soil, aatkrstressed soil to generate temperature
differentials. Thermistors were wired into a vokagjvider to sense the change in voltage due to
the temperature-based resistance (Figure 3.6 a)teBulting voltage (3) was used to determine

temperature using a calibration curve providedhgyrhanufacturer (Figure 3.6 b).
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Figure 3.6. (a) Voltage divider wiring diagram usedto measure changing voltage from the

corresponding change in the thermistor resistancéb) Thermistor calibration curve used to quantify
temperature with a change in voltage. (See Appendik, Figure A.4 for more details)

In order to ensure the two irrigation regimes wienposed, soil moisture was monitored
with fourcapacitance soil moisture probes (Wateus&M 100, Spectrum Technologies, Aurora,
lllinois) with an accuracy of + 3% soil moisturertent (SMC) with two sensors in each irrigation
regime. Soil moisture content of the WW and WS tdavere monitored throughout the season to

validate the extent of crop water stress.

3.3.3Radiometric Calibration

The uncooled TIR camera core measures LWIR enéaystrikes the detector material,
altering the electrical resistance from a tempeeathange, transforming LWIR radiation intensity
into a raw DV, thereby generating a thermal imagesfizer, 2014). A limitation of uncooled TIR
cameras, however, is their inability to quantifgalute temperatures. Therefore, a real-time (RT)
radiometric calibration method was developed tontjiia absolute surface temperature at
environmental conditions in which the TIR camerawalibrated. A RT radiometric calibration
uses RT image pixel intensities of a viewable eiee panel within the camera’s FOV and the
actual surface temperatures to characterize pix@sperature intensity functions. This RT
radiometric calibration is covered in more detaiSection 2.4.4. At any one sampling, the three
reference panels would naturally produce a lovhetween, and high temperature. As a result, the
low and high reference panel was used for the Kibnaetric calibration, whereas the in-between
reference panel acted as a crosscheck for assd®§imgeasurement accuracy. Static regions of
interest (ROI), as specified in the automatic imggerogram, averaged multiple image pixels to
correlate to one surface temperature measurement.

Raw pixel intensities (X X2) from the video feed were correlated to actuafeser
temperature (¥, Y2) to determine the radiometric transfer functioops!, as defined by Equation
3.1:
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m=u (3.1)
XZ_XI '

By using the slope found in Equation 3.1 and a mxel and coinciding surface

temperature (X Y1), the y-intercept of the RT radiometric transiemdtion was determined using
Equation 3.2:

Y-Y, =mX-X,) (3.2)
Using results from Equation 3.2, instantaneous &ratpre span was defined by Equation
3.3:

Temperature Span (°C) = Bits of Resolution X Radiometric Slope[m] (3.3)
Using the resultingg=mx+b radiometric calibration function from Equation Zfd 3.2,
the TIR camera core was found to be directly simes{R? = 0.9986) to the scene temperatures
within the FOV (Figure 3.7).

[#5]
w
|

) -~

= .‘A\W«?“' -

230 S

E o

o I~

g 25 - ™

5 s

- 2

@20

g y =0.0636x + 18.417

= R? = 0.9986

® 15 T T T T 1
0 51 102 153 204 255

Pixel Intensity (DV)

Figure 3.7. Real-time radiometric calibration perfamed on the DRS Tamarisk® 320 at a 25°C air
temperature, 45% relative humidity, and steady-stag¢ operating temperature.

The RT radiometric conversion was applied to eawdige to convert DV into temperature

values as defined by Equation 3.4:
Tti,jy = Tmin + %Tspan (3.4)
where:
Ty = Pixel temperaturéC) at row i and column j,
Tmin = Lowest temperature within the imag€y,
I = Pixel intensity at row | and column |,

N = Number of bits for pixel intensity (e.g., N¥& 8-bit images), and
Tspan = Span of temperature captured in the image.

The developed radiometric calibration method ersabie uncooled TIR camera core to
use the sensitivity of the thermal detector, aswhFigure 3.7, to quantify surface temperatures.

To determine the TIR camera’s ability to measunepteratures, the absolute difference between
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actual and measured temperature is shown in Fgj8rdResults reveal the maximum measurment
accuracy is 0.62°Gu€0.05).
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Figure 3.8. Absolute difference between actual mirmumeasured temperature.
As previously studied, the RT radiometric calibvats ability to compensate for
environment conditions while maintaining measurehagcuracy is illustrated in Figure 3.9. See

Section 2.4.7 for more details on environmental gensation.
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Figure 3.9. RT radiometric calibration under changng vapor pressure deficit (VPD)

Figure 3.9 shows the TIR camera core’s measuremaoturacy remains below 0.28°C
under changing VPD within strict laboratory conalits as described in Section 2.3.2. However,
the RT radiometric calibration method was inveggddo determine the potential influence to the

measurement accuracy from semi-controlled envireniahie€onditions within a greenhouse.
3.3.4Automated Thermal Imaging and Processing

For subsequent analysis, an Image Processing Vtlexasoped to process the image data
and environmental data (Figure 3.10) using the ggedlow as shown in Figure 3.11. When
started, the Image Processing VI would refereneegtieenhouse reference data for the specific
image to process. The image would be pulled frogrfite storage and corrected for len distortion
as described in Section 2.4.1 and would have & basiance filter applied to reduce analog signal
noise within the image. A variance filter was foundeduce visible noise in the image that would
cause inconsistencies in the static ROIs.
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Input Greenhouse Data (.csv) % F:\1 LabVIEW Data\1 Project\1 Movie Folder\Corn Study\Greenhouse Image data.csv

EE

Output Filename (.csv) % C:\Users\Greenhouselimage_metadata.csv
Input Filepath (.csv) 8 F:\1 LabVIEW Data\1 Project\1 Movie Folder\Com Study\Greenhouse Image data.csv
Output Image with Metadata % F:\1 LabVIEW Data\1 Project\1 Movie Folder\Corn Study\complete videos\run6'6965 jpg

Number of Pictures :; 30000 FINAL IMAGE
Radiometric Calibration
I 0¥
g
%30
- ==RESSSS=Re=2
0 50 100 150 200 255
Pixel Intensity
Loop Number 0
Image/Row 965

dateftime string 06/28/2014 01:24 PM

Progress.
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Figure 3.10. Image Processing VI for analyzing gre¥ouse data controlling input data, output
metadata filename, the number of processed imagesdmonitoring output image RT radiometric
calibration, image number, and timestamp.
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L 3) Solar Radiance 2) Ref. Tempera_ture Radiometric Calibration 1) Calculate CWSI of_Each Plant
4) Ref. Panel Temperatures Par_u_al Detection 2) Convert Pixels to 2) C:jllcu_late Pea_sk Daily CWSI of each
2 3) Individual Plant Temperature Irrigation Regime
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cxxxd - 2) Filter Pixel Variance Noise ] T
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ox - 3) Correct Lens Distortion i
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B pcme—)
Figure 3.11. Flow chart of batch processing for imge and environmental data flow

Within a single image, plant vegetation was idesdifand isolated for analysis based on
location within the image. ROI were designated acheplant to isolate crop vegetation, thereby
segmenting crop vegetation from soil and concrieiigufe 3.12). Similarly, ROI were designated

on each reference panels in order to extract neéerpanel pixel intensities.
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Figure 3.12. Automated TIRIS segmented individual arn foliage, shown in green, from background
soil, cement, and pot containers. Black pixels indate a cold surface while white pixels indicate hot
surface. ROIs, shown in green, captured the individal crop intensity and reference panel
temperatures.

Location was the only parameter used to isolatetaipn, but shape and texture could be
utilized for image pixel segmentation. Location vgasilarly used to look at spatial temperatures
differences from the stem and leaf. As a resudtctirrelation was compared between the predicted
stem-to-air temperature deficit versus VPD andpghrezlicted canopy-to-air temperature deficit

versus VPD.

3.3.5Crop Water Stress Monitoring

Because previous studies have found crop strelss toghest at periods following solar
noon, temperature measurements from 12:00 to 1F:Q@ere monitored for peak canopy
temperatures (ldso, et al., 1977). Relative humidair temperature, solar radiance, and crop
temperatures were combined to quantify instantasmieonp water stress. In all measurements, the
VPD was calculated from the air temperatue andiveldhumidity as defined in Equation 3.5

(Monteith & Unsworth, 2013):

RH (7-5XTair/ )
VPD =(1- (W) x (0.6108 x 10 237.3+Tqir ) (3.5)

where:
T.r = Measured air temperature (°C),
RH = Relative humidity (%), and
VPD= Vapor pressure deficit [kPa].
Equation 3.5 was used to deduce a non-water strésseline (NWSB) leaf canopy-to-air

temperature deficit from VPD for similar solar ration as defined in Equation 3.6:

Tww canopy — Tar =a— b x VPD (3.6)

where:
T ww canopy = Well-watered canopy temperature (°C),
Tar = Measured air temperature (°C),
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a = Crop specific intercept for NWSB,
b = Crop specific slope for NWSB, and
VPD= Vapor pressure deficit [kPa].

NWSB coefficients were empirically measured from é&hopy temperatures of the well-
watered irrigation regime (dw canopy OVer the full growing season starting with thengmation
and seedling stage (growth period 1), rapid grostdge (growth period 2), reproductive stage
(growth period 3), and maturity stage (growth pgdd. The RT CWSI was calculated as depicted
in Equation 3.7 (Idso, et al., 1981; Jackson, etl&81; Jackson, 1982):

ATpredicted - ATl

ATpredicted - ATdry leaf

CWSI = (3.7)

where:
ATpredicted = (Twwcanopy- Tair),
ATary = (Tary — Tair), @and
AT, = (Tactual— Tair)-
For example, water stressed leaf.) and non-water stress leaf.{ canopy) boOundary

temperatures were 25°C and 20°C, respectively. témperature was 23°C and actual leaf
temperature was 22°C. In this example, CWSI is Bot.comparison, daily CWSI values were

measured for each plant.

An instantaneous CWSI was derived from the air emaqoire, relative humidity, and solar
radiance for each thermal image. Because wet ankbaves are not practical within a prolonged
monitoring study, wet reference temperatures wamgically found using well-watered plants in
the WW regime. Similarly, standardized dry refeeetemperature of 5°C above air temperature
was utilized to respresent the WSBs (upper leaptature bounds). Empirical NWSBs (lower
leaf temperatures) were determined using WW red@aktemperatures in order to develop RT
CWSI values.

3.4RESULTS AND DISCUSSION
The TIRIS was designed to quantify absolute surtaceperature with RT radiometric

calibration, thereby maintaining measurement aayufday compensating for environmental
influences from air temperature, relative humidstglar radiance, and temperature of the uncooled
TIR camera. Thermography was used as a crop wia¢sssnonitoring tool with high spatial and
temporal resolutions. The confidence in assessiog water stress is directly related to inherent
sensor accuracy and calibration protocol. By engbfuto gain and level, the uncooled TIR

camera maintained upper and lower pixel saturadonaximize the detected thermal imagery for
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temperature span throughout the study. RT enviromsheorrection with temperature reference

panels provided temperature measurement accurasioavn in Figure 3.13.
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Figure 3.13. Comparison between the measured andtael temperature of the in-between reference
panel temperature in the greenhouse from 6:00 to 180 h.

As shown in Figure 3.13, the measured-to-actuap&ature comparison revealed a 95%
confidence that the measurement accuracy is =0.62°Ghe semi-controlled greenhouse
environment. Because RT temperature measuremamtagyovas determined for each image, the
RT confidence interval was calculated throughoatdhy of one well-watered corn plant sample,
as shown in Figure 3.14.

30.0

Well-Watered Leaf Surface

205 | e Upper Conf. Interval
............. Lower Conf. Interval

290 |
285 it
280 [
275 |
27.0

265
12:00 13:12 14:24 15:36 16:48 18:00
Time of Day

Figure 3.14. Real-time confidence interval of a wklvatered corn plant from 12:00 to 18:00 h

Temperature (°C)

By quantifying surface temperatures, Figure 3.16wshthe empirically derived leaf
canopy-to-air temperature deficit versus VPD duriihg four growth stages. Table 3.2 shows
coefficients derived from the regression analyaig], Figure 3.16 shows the simulated canopy-
to-air temperature deficit versus VPD regressiavest The R2 values of the plots in Figure 3.15
show that a correlation exists between the VPDthrdredicted leaf canopy temperature. This
fundamental relationship is important as the resaifé directly used to determine the normalized
CWSI. Lower plot R? values during the last threevgh stages could be contributed to the high
humidity within the greenhouse which create a cotre¢ion of data samples from a VPD of 0 to

2 kPa. In applications in the field, these conaiins may not be as prevalent. As a result, future
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studies using high spatial and temporal resoluliétiS should be investigated in order to observe

the full-season leaf canopy-to-air temperature citefrersus VPDs of corn in actual field

conditions.
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Figure 3.15. Empirical leaf canopy-to-air temperatue deficit versus VPD during (a) germination and
seedling stage, (b) rapid growth stage, (c) reprodtive stage, and (d) maturity stage

Table 3.2. Predicted canopy-to-air temperature deit-to-VPD

Growth Stage Slope [m] Intercept [b]
1 -3.3865 2.9491
2 -3.3981 3.5164
3 -2.7815 4.2097
4 -2.7367 4.2337
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Figure 3.16. Predicted canopy-to-air temperature diit versus VPD through four growth stages
Figure 3.16 demonstrates the canopy-to-air temerateficit regression curve only
slightly changed from the first growth period (GRb)the second growth period (GP2). As
observed in Figure 3.2, in Section 3.3.1, the recemded daily water use shows a peak followed
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by a decline in water use during the third growtige. Similarly, during the third growth period
(GP3), predicted leaf temperatures were warmergesting that corn uses less water for
transpiration as the plant utilized energy to griowt during the reproductive growth stage.
Finally, reduced water uptake resulted in warmaf ¢@anopy temperatures during the final growth

stage (GP4) closely resembling characteristic waderspecified in Figure 3.2.

Aside from segmenting soil and background tempegatérom vegetation, the stem and
leaf temperatures were isolated from within the R@\hg location based ROIs. The canopy-to-
air temperature deficit was compared to the stemirttemperature deficit versus VPD, as shown
in Figure 3.17. These values were collected througthe full-season and represent the WW plant
sample average. The canopy-to-air temperatureithedicsus VPD produced a stronger correlation
(R2=0.7364) versus the stem-to-air temperaturedersus VPD (R2=0.6592). This observation
supports the use of the VPD to better predict tNéSB canopy temperature. This will have
practical implications on what portion of the pl@a better indicator of the leaf transpiratioar F
practical adoption purposes, measuring the caremppérature aboard different sensing platforms
would be less of a challenge because the canopatiyphas a large surface area and is the upmost
point on the plant. At the same time, being the oginportion of the plant, the canopy is more
exposed to environmental conditions, thereby isems&uwbject to larger diurnal temperature
changes. As a result, high temporal ground truthwrigbe critical to limit error in crop based
thermal sensing.
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Figure 3.17. Comparison of (a) non-water stressedesn-to-air temperature deficit to VPD and (b) non-
water stressed canopy-to-air temperature deficit vesus VPD.

The TIRIS measured daily peak CWSI and soil mogstfrthe WS and WW irrigation
regimes in the critical time period between 12:00 &8:00 h (Figure 3.18).
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Figure 3.18. (a) Daily soil moisture content and ek daily CWSI throughout the experiment; (b) daily
soil moisture content versus peak daily CWSI. A sjil plot shows the negative correction of the soil
moisture versus CWSI from a CWSI value of 0.6 to D.and no significant correlation from a CWSI
value of 0 to 0.6.

In Figure 3.18 a, daily soil moisture measuremestealed a soil moisture deficit occurred
from day 15 through day 50 in the WS regime. Onsldythe WS plants were watered in order to
preserve the specimens and to observe the WS plaspense to irrigation following severe water
stress. Peak CWSI of the WS corn did not, howedeerease until Day 52. This observation is
important when interpreting and utilizing CWSI vedu for irrigation decisions because,
immediately after watering, plants may have reatiae ample amount of water but did not have
sufficient time to absorb water and transpire, ébgrstill reflecting a high CWSI. The level of
crop water stress prior to irrigation seems touiafice the amount of time required for the plants
to absorb and transpire thus decreasing their CA(8ther temporal studies should be considered
in order to quantify this time response.

High temporal resolution revealed that the dailgkperop water stress occurred between
13:30 and 15:00 h. Daily peak CWSI closely followsalar noon when plants experienced
maximum transpiration in order to adequately cbemselves. In actual field conditions, peak
crop water stress could occur at different timgsedeing on current environmental conditions;
however, the most critical time to measure CWSlusthalosely coincide with the time of
maximum transpiration.

As shown in Figure 3.18 b, soil moisture contenbratbove 72% (ylinear regression
curve intercept) maintained a CWSI value belowwtfreas soil moisture content below 72%
negatively correlated with CWSI values above 0.6sis from the 80-day study revealed that
82% (R?=0.8152 of thexylinear regression curve) of soil moisture variatiwas explained by a

CWSI above 0.6. This relationship demonstrates ube of non-contact thermal sensing to
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indirectly measure soil moisture. This supportsube of CWSI values in order to quantify spatial

soil moisture deficits as an alternative irrigatsmmeduling method instead of soil moisture probes.

Thermography provides an unprecedented opporttmistudy crop vegetation for new
and advanced relationships. As observed from thidys thermal imaging systems could be
considered for measuring crop water stress at scatpuired for large agricultural production
systems. Simplification of image acquisition systeim order to capture full-season crop stress
could allow producers, agricultural service provgjeand researchers to have thermal sensing
technology sensitive to crop water requirements Mf@magement decisions, leading to more

efficient allocation of available resources forgseon agriculture.

3.5CONCLUSION

A TIRIS was developed for high spatial and tempoeglution monitoring of corn in
order to observe crop stress from water deficith woncurrent soil moisture measurements in a
greenhouse. The lightweight, low cost, and smak sif the uncooled TIR camera used in this
study maintained a measurement accuracy below %0.&2=0.05) within a greenhouse. In
addition, thermography hardware and techniques imgsstigated to increase crop based thermal
relationships of isolated crop vegetation againsbih background with image processing. As
observed, a stronger relationship was found reggrthe predicted canopy-to-air temperature
deficit versus VPD (R?=0.7364) compared to the joted stem-to-air temperature deficit versus
VPD (R%=0.6592).

Canopy temperatures were used to develop empoarabpy-to-air temperature deficits
versus VPD regression curves for corn to in ordeguantify RT CWSI. Empirical NWSBs
revealed that crop canopy temperature changedtlglighroughout growth stages. Results
indicated that canopy water deficit regression esrglosely follow the characteristic water use
curve throughout corn growth stages. Results froen80-day study revealed that a significant
decrease in soil moisture was measured only whelCWSI value increased past 0.6 with 82%
of soil moisture variation explained by the CWSIs Abserved, the CWSI was negatively
correlated to soil moisture supporting the usehef CWSI as an alternate irrigation scheduling

method in order to quantify spatial soil moistuyeremotely measuring canopy temperature.
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Chapter 4 - Developing a Thermal Infrared Imaging §stem for

High Spatial Temperature Mapping aboard a Multirotor SUAS

4.1 ABSTRACT

Inadequate water application often decreases suaidproduct quality. Existing irrigation
scheduling uses single, localized measurementsdthaiot account for high-spatial crop water
stress. Although quick, single-point sensors arerattical when covering large areas and
measuring discrete variations, whereas thermaiedt (TIR) imaging, or thermography, is a
novel approach for measuring high-spatial crop tenaores to quantify crop water stress. A
small, lightweight thermal infrared imaging systdMRIS) was developed using uncooled
thermal cameras for a multirotor small unmannedabeystem (SUAS) providing imagery
sensitive to spatial crop temperature variabilityaging hardware and software was designed to
provide uniform analysis advancing the ease of en@pture, correction, throughput and storage
management for subsequent thermal mapping. Asestuthie Tamarisk® 320 (11 mm lens) and
Tamarisk® 640 (25 mm lens) had 19% and 18% lensordien, respectively, that image
processing corrected. Adhering to a critical spatisolution maximized surface data integrity and
area coverage. A relationship between image ovenabcamera views was created in order to
determine a flight campaign that is capable of esenting a target measurement with a given
confidence. An image variance filter increased nragfficiency by aligning 99% of images
instead of 69%. A one-time radiometric calibratéord real-time ground reference data provided
absolute surface temperatures with environmentapemsation yielding a +1.38°C measurement
accuracy. This research supports using uncooledntlecameras to capture spatial crop
temperatures, thereby allowing users to measurdélesabop dynamics for water resource

management.

4.2INTRODUCTION

In the midst of recent droughts, increased watenat®l, and implementation of water
allocations for conservative purposes, irrigatagage throughout the United States has increased
by nearly 1.3 million acres from 2002 to 2007 (US2A14). The largest percentage of irrigated
farms is located in the Midwest where competitiondvailable water resources has escalated in
the past two decades (Taghaeian, et al., 2013a &sult, diminishing irrigated water requires

efficient management practices that utilize mommigand control in order to achieve sustainable
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water management (Adeuya, 2007) from decision suppols (Rodriguez, et al., 2005) in order
to increase water use efficiency (Ballester, et2013; Cohen, et al., 2005; Gontia & Tiwari,
2008). Quantity of irrigated water and applicafiiome are among critical decisions producers need
to make to develop site-specific irrigation pladveés & Pereira, 2000; Cohen, et al., 2005;
Wanjura, et al., 1992) to precisely apply watemteet crop need at a controllable increment for
desired crop performance (Cohen, et al., 2005; Vagan, et al., 2013). Of the many types of
crop stress, water stress is the most common atwkcteve factor impacting crop yield (Colaizzi,
et al., 2012; Jackson, et al., 1981; Scherrer)].e@11; Zia, et al.,, 2013) where water stress

severity depends on timing and duration.

As a result, water use efficiency studies compaigaited water use-to-yield, thereby
resulting in management decisions that decreaserwete from aquifers and above-ground
freshwater sources while investigating soil-imprayistrategies where drought-tolerant crop
varieties have been chosen for a climate’s avalatdter (Berton, 2006). Current irrigation
schedules, however, are typically based on locdlnsoisture sensors that do not account for the
spatial moisture variability that may exist in coeneial agricultural fields due to varying soil type
and depth, topography, climate, specific crop ghopdriod and a producer’s operation (Cohen, et
al., 2005; Evett, et al., 2014). Although advanogsrecision irrigation technologies are available
for utilization, research shows that crop growtll greld is directly associated with crop water
stress, and only partially related to soil-watetetaction (Sepulcre-Canto, et al., 2011). More
specifically, crops are more susceptible to stréissng certain development periods when
actionable intervention can maintain yield potdnfiaaghaeian, et al., 2013). Typical methods
used to detect crop water stress utilize preshambers and leaf diffusion porometers to measure
individual leaf stomatal conductance and leaf aethsvater potential, respectively (Ballester, et
al., 2013; Berni, et al., 2009; Grant, et al., 200@laizzi, et al., 2012). However, these technique
are destructive, labor intensive, subject to plametrerror, limited by small sample size and
unsuitable for automation (Ballester, et al., 20B8¢ni, et al., 2009; Cohen, et al., 2005; Gontia
& Tiwari, 2008; Jones, 1999; Leinonen & Jones, J0@ereby limiting producer adoption for

irrigation decision management (Ballester, et2413).

To address these concerns, thermal sensing ape&eve been investigated because
they are non-contact and less labor intensive &ied won-destructive monitoring to assess crop

stress from leaf canopy temperatures (Grant, e2@06; Leinonen & Jones, 2004). Crop water
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stress is typically quantified by measuring cantgyperatures because plants close their leaf
stomata during periods of water stress, therebyaied transpiration and causing increased leaf
temperatures (Evans, et al., 2000). Currently,icstand/or dynamic arrays of infrared
thermometers (IRTs) are used to measure canopyeratope (O'Shaughnessy, et al., 2012).
Although single-point measurements are quick, IRMssrs are localized, whereas a thermal
infrared imaging system (TIRIS), or thermographyonitors spatial crop temperatures via a
thermal image. Thermography has only been invesiigaver the last decade (Hackl, et al., 2012)
because the technology was only recently declasgsify the military for civilian use (Schepers,
2012;Maes & Steppe, 2012).

Although once limited by slow processing speedydamemory requirements, and high
hardware costs, imaging is being restudied foityiih precision agriculture (Wang, N., personal
communication, November 1, 2013). With industrigdplcations using thermography for
automation, TIRIS adoption has decreased the haedeast while increasing sensing capabilities
of thermal infrared (TIR) image sensors. Automatnage capture and analysis, however, are
needed to account for error incurred with manuahsneements such as setup and capture
inconsistencies and latency that lead to small solonate changes of the crop environment.
Therefore, automatic imaging systems capture teatypes information with high spatial (ground
sample distance (e.g., 1 cm/pixel)) and temporapdat frequency) resolution essential for
monitoring subtle crop dynamics (Kuenzer, 2014;uetget al., 2003).

Thermal imaging studies that assess spatial cat@omyerature in relation to dynamic crop
stress assessment have become increasingly aegilinles, 1999; Liu, et al., 2011). Numerous
studies prove thermography’s ability to distingusttween irrigated and water-limited stress of
grapevines (Grant, et al., 2006; Grant, et al.,72000tton (Luquet, et al., 2003), citrus trees
(Ballester, et al., 2013), olive orchards (Bertiigk, 2009), and sunflowers (Hashimoto, et al.,
1984) while supporting the development of greenhausdel comparisons (Grant, et al., 2006;
Leinonen & Jones, 2004), genetic-based droughtaote in maize (Liu, et al., 2011), leaf
temperature association with biomass accumulatian ét al., 2011), and spatial awareness of
different leaf architecture (Ballester, et al., 20Grant, et al., 2007). This novel, less-studied
technology has been discussed in limited publioatithat illustrate United States’ research
conducted with TIR cameras to measure spatial ¢cempperatures, specifically crops that

experienced significant yield increase with irrigat In conducted studies, orchards with sparse
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canopy made thermal measurements difficult (Maest&pe, 2012) without spatial resolutions
below 2 m (Sepulcre-Canto, et al., 2007), wherpasiations with homogeneous cropland typical
in agricultural production reduced imaging compiexilncreased use of thermography in
agriculture, however, depends on increased spatidltemporal resolution in order to increase
effectiveness and aid actionable decisions foripee¢imely crop health monitoring (Sobrino &

Julien, 2013; Taghvaeian, et al., 2013).

Current satellite and ground-based sensing platfdrave limited the use of thermography
in commercial agriculture because producers demseoplcharacteristics throughout entire fields
with frequent revisit times. To meet this demantRI% are flown aboard piloted aircrafts and
small unmanned aerial systems (SUAS) with the adggnof high temporal and spatial resolution
paired with on-demand analysis (Berni, et al., 200®ang & Kovacs, 2012). Manned aerial
imagery has shown potential in practical thermolgyapecause it solves previous platform
limitations regarding the small coverage area alugd-based platforms and low spatial and
temporal resolution of satellite-based platformaudizer, 2014). As a result, aerial imagery
combines high measurable crop characteristicsrasrdased ground coverage. In addition, aerial
imagery can provide whole-field crop stress asseasmuith spatial resolutions up to 2 m (Berni,
et al., 2009; Sepulcre-Canto, et al., 2007). Indoated studies, thermography aboard piloted
aircrafts has been used to assess crop water Edssrrer, et al., 2011; Taghvaeian, et al., 2013;
Tilling, et al., 2007; Wang, et al., 2010), scrgdrenotypes (Zhao, et al., 2005), and conduct

irrigation maintenance (Schepers, 2012).

However, a trade-off exists between ground coveragea and measurable crop
characteristics. Even aboard piloted airplanesptimeary limitation is spatial resolution of TIR
cameras. In addition, expense, fuel limitationdptpfatigue, infrequent revisit times, and
unfamiliar complexity of flying and hiring aeriahiagery limit widespread commercial use (Berni,
et al., 2009; Goel, et al., 2000; Herwitz, et aD04). As a result, advancements in technical
capabilities and regulatory standpoints for sUASehancreased interest in aerial imagery
(Herwitz, et al., 2004). As a result, the sUAS isitly is evolving rapidly to expand its role as a
complementary platform to satellites and pilotedeh@nagery for tactical farm management (Zia,
et al., 2013).

Producers support sSUAS adoption because sUAS piadfprovide low-altitude imagery
for high-definition images, on-demand response sinad low investment costs (Goel, et al.,
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2000; Laliberte, et al., 2011; Rango, et al., 20@9)crop health characterization for agronomic
decision management not previously possible. Anallgantage of SUAS is their ability to fly at
low airspeeds (30 km under manual control or autopilot flight campaguith predetermined
flight routes for ease of operation and applicatimapping in order to sense areas not previously
accessible because of distance, time, or terraimglL& Holbo, 1991; Rango, et al., 2009). These
advantages make sUAS the most promising sensitfgiptafor spatial resolution crop assessment
(Maes & Steppe, 2012; Rango, et al., 2009) at &ifna of the price of manned aerial platforms
(Berni, et al., 2009). Currently, commercial autopcontrol, cost-effective telemetry, and semi-
automated image geo-rectification systems pronn&édasibility of SUAS in precision agriculture
(Berni, et al., 2009; Herwitz, et al., 2004; Lalitee et al., 2011; Rango, et al., 2009; Wooster, et
al., 2013).

Low-altitude image mapping captures a large seiesiages across a field over a quick
timespan where manual or automatic image processiftgzare stitches images together from
common points within individual images, ground e¢ohpoints, or global position system (GPS)
coordinates of the camera or sUAS flight contro{Rerni, et al., 2009). With low flight speeds
and high image capture, high spatial resolutiongimg uses only the central portion, or nadir, of
the image to improve composite image quality (Bezhal., 2009; Vasterling & Meyer, 2013). As
a result, an orthomosaic image is generated to fomhole-field composite image collected at a
consistent altitude (Rango, et al., 2009).

Several SUAS platform configurations are availdioleagricultural use. Each platform
configuration has different flight dynamics usdful specific coverage applications. Furthermore,
flight characteristics of multirotor SUAS make thdrest suited for high-definition site-specific
monitoring because of their ability to hover an@toae quality imagery from different altitudes.
Due to the design and weight of multirotor SUAgjHt times are typically less than other SUAS
platforms, consequently requiring different payloadnsiderations (Rango, et al., 2009).
Regardless of the sSUAS platform, commercial sUASplesn automatic machine control to
simplify flight operation and regulate flight alide and path uniformity (Rango, et al., 2009).

Although low flight altitudes increase thermograjshgbility to measure crop health
characteristics at scales more suitable for comialeaipplications, SUAS are subject to the same
atmospheric effects as other sensing platformsniBet al., 2009; Maes & Steppe, 2012). In
addition, field scouting and manual processingtié seeded if growers are to understand
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measured crop health response and implement maeageones (Goel, et al., 2000). As a result,
quality control of data from in-field flight operahs make real-time ground truthing (i.e., provide
correction to a remote measurement with groundébasmasurement data) possible increasing the
repeatability of estimates and assessments (Ramegoal., 2009). With on-the-ground
measurements, aerial and ground truthed measurssgoport direct interpretation of plot-based
indicators in detection studies (Rango, et al.,930®alidation during a time series relies on
permanently installed non-contact or contact (gtown air) measurement devices with data
loggers capable of simultaneous wind speed andctdire humidity measurements, air
temperature, and solar radiance (Kuenzer, 2014ifickal reference measurements have provided
a repeatable standard for increased applicatioleseghen used in conjunction with thermal
imaging (Moller, et al., 2007) where real-time eonimental measurements allow for consistent
crop water stress assessment (Maes & Steppe, 2012).

Thermal cameras provide sub-meter spatial resolatimard sUAS (< 2 m) (Berni, et al.,
2009) and have flexible revisit times for wholeldieemperature mapping (Cohen, et al., 2005).
This potential to meet the needs of agricultura psovides an incentive for thermal camera
manufacturers to develop modified cameras for dmerawithin agricultural field conditions.
However, available knowledge regarding thermal isgnplatform performance in field studies
aboard sUAS is limited. Consequently, producersskeptical towards a technology that has
enabled site-specific water management in orchardsyards, and other specialty crop fields in
areas outside of the United States (Sepulcre-Cattal)., 2011). Lack of knowledge is due
primarily to the high cost of cooled TIR camerasich has made measurement of spatial crop
temperature in commercial agriculture economicalhfeasible. However, innovation of the
uncooled thermal sensor has allowed new uncool&l cBimeras to be small and lightweight,
consume less power, and require no cooling packhgesby providing extended operating life at
a fraction of the cost of previous cooled TIR caasetncooled TIR cameras aboard sUAS have
been emphasized because they demonstrate a pbteniiacreased ground coverage and crop
stress assessments beyond the range of previousteresansing platforms for tactical farm
management (Herwitz, et al., 2004).

With the aforementioned potential for high spadiadl temporal temperature mapping from
SUAS, studies using thermography have been lindtezlto camera expense, unfamiliar use and

standard operating protocol, system complexity ealibration, and limited software for image
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acquisition and high throughput processing forrtrerimagery. Therefore, research objectives of
this study were to (1develop a small, lightweight TIRIS for temperatunapping aboard a
multirotor SUAS, (2) develop a complementary hansmand software package to radiometrically
calibrate TIRIS during infield setup while providinn-flight ground truthing, 3) develop a
software program to upload and process imageryr gaoimage stitching, and 4) construct

radiometric spatial temperature maps.

4. 3METHODS AND MATERIALS

A study was conducted to develop a small, lightwelgRIS with an uncooled Tamarisk®
320 and 640 TIR cameras (DRS Technologies, Indlagdl exas) offering a low and high spatial
resolution configuration. The development of a BRor thermal mapping aboard a multirotor
SUAS has been supported with preliminary studies ithvestigated the physical properties and
environmental conditions that restrict the pradticse of TIR cameras’ in precision agriculture.
During preliminary evaluations described in Chap2erhardware and software required to
integrate an uncooled TIR camera core into an ingagystem were identified and developed in
order to measure surface temperatures. A TIRIS bwds to include a sUAS thermal imaging
acquisition system, in-field calibration systemdaground reference monitoring system for real-
time environmental parameters during flight campagUAS flight campaigns were conducted
to investigate control ease, standard operatingppod, radiometric calibration, and measurement
accuracy, thereby completing system validation.uRieg) aerial temperature mapping efficiency
was investigated regarding image quality and pisiogsprior to creating a temperature map.

4.3.1Intrinsic Camera Properties

TIR cameras contain physical parts and capabilitied influence their sensitivity to
discrete temperature differences, increase theiasorement error, and limit their use in
agricultural environments. In preliminary studipbysical properties that restricted TIR camera
use were identified and investigated as the folhwi
Image resolution and measurement
Lens distortion
Warm-up time and automatic recalibration

Radiometric characterization and measurement acgura
Connection ease, software, and controllability

o~ wnNPRE
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These physical properties and their influence otuite surface measurement were
considered in order to minimize influence by couafigg the camera and hardware for use aboard
SUAS, designing image processing software spedifit@a thermal imagery, generating standard
operating protocol, and selecting a camera-lensbawation suited for the sensing platform.
System expectations for validation included maivgdi temperature measurement accuracy,

camera controllability, limited image noise, anatig accuracy.

4.3.1.1mage resolution and measurement

The sensed target size and sensing distance deesrmiparticular lens choice (Elfaki, et
al., 2000). In addition, because of their particulale in preventative maintenance in non-
agricultural roles and limited research studie® $énsor technology typically cannot compare to
spatial resolutions of visible cameras. Becauskefermanium lens, TIR camera lens are factory-
installed and calibrated leaving no room for emtren selecting the correct lens. For this study,
two different TIR camera cores were chosen basat&nsmall size, low weight, limited power
consumption, capture framerate, and thermal detectdied a microbolometer, resolution. For
coarse spatial resolution applications and ligip@yload weight, a DRS Tamarisk® 320 TIR
camera core with a 320x240 fixed pixel array miotometer was chosen featuring an 11 mm
lens with a 27°%x20° field of view (FOV). For higlpatial resolution applications, a DRS
Tamarisk® 640 TIR camera core with a 640x480 fipecel array microbolometer was chosen
featuring a 25 mm lens with a 24°x19° FOV. Tableillistrates the theoretical spatial resolutions
and FOV with the chosen lens at select sensingruist.

Table 4.1. Spatial resolution with selected lens atirious distances. Adapted from DRS Technolags
A Finmeccanica Company, (2013).

Camera Core Distance (m) 20 40 60 80 100 120
Tamarisk ® 320 31 62 93 124 155 186

(11 mm lens) @ mmipixel | [10x8] [20x15] [30x22] [40x30] [50x37] [61x45]
Tamarisk ® 640 PFoymxm] 14 27 41 54 68 82

(25 mm lens) [9x7] [18x13] [27x20] 35x26] [44x33] [53x36]

[ Round to nearest integer
Temperature mapping use the theoretical FOV, aligpatial resolution, and the desired

level of detail specific to the sensing applicatiororder to determine the sUAS autopilot flight
program regarding altitude, flight speed, and tlighentation. These flight parameters have direct
implications on the resulting orthomosaic from gt image overlap, camera stability, and the
volume of images captured to sense the entire ageearea (Rango, et al., 2009). In addition, a
sensing distance depicts the on ground coveragexample, the Tamarisk® 640, flown at 40 m
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with a nadir orientation, will have a spatial regan of 27 mm/pixel and the resulting image will

have an on-ground coverage of 18x13 m (Table 4.1).

In application, measurement error can be introddaed bidirectional reflectance due to
varying incident radiation (Jones, et al., 2009)liké visible imagery that is subject to incident
visible light radiation, thermal imagery is subjéatbidirectional effects of thermodynamic heat
transfer. Time and changing viewing angle betwemages may cause subtle temperature
differences between targets from changes in comeeaonductive, and radiant heat transfer due
to changing air temperature, relative humidity,camwn across the target surface, and incoming
solar radiation. To account for bidirectional irdhce, multiple camera viewing angles provide a
more representative sampling mean of a target'péeature (Jones, et al., 2009). In general, each
pixel intensity within an orthomosaic image is cééted from multiple camera views to represent
an average target intensity. As a result, imagelapemprove this representative pixel intensity
by providing multiple camera views defined by tla¢etal and forward overlap as defined by

Equation (4.1:

No.of CameraViews = ( 100 ) X ( 199 ) (4.1)

100-% Overlaprorward 100-%O0verlapateral

Using Equation (4.1, for example, a forward ancerat overlap of 75% and 75%,
respectively, results in 16 camera views of a gjetarget surface. Uniform forward and lateral
image overlap is an important criteria when plagrtime flight campaign in order to increase the
confidence level that a measurement truly represt target surface. In addition, increased
overlap produces more measurement samples ofet taggeby reducing the standard error of the

mean pixel intensity within the orthomosaic image.

4.3.1.2 ens Distortion

Maintained lens focus over a wide span of tempegatus essential for quality
thermography. Unlike autofocus of a typical visibéamera, the lens focal length must be adjusted
to focus on particular sensing distances (DRS Tedges A Finmeccanica Company, 2013).
TIR camera lenses are constructed from an expemnsaterial known as germanium, which is
transparent to thermal radiation (Kuenzer, 2014yn@&nium lenses are optimized for radiometric
transmission, increasing the susceptibility to getim distortion that causes spatial inaccuracy.

A distorted image does not fully represent reatiappoints but a distorted location dependent on
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the position within the lens’ field of view (FOV¥{ y2), as defined by Equations 4.2 and 4.3 (The
Mathworks, Inc., 2015):

Xy = %, (1 4+ kyr? + kor®) + 2p1xyy; + 0, (P2 + 2x,2) (4.2)
Y2 = Y1 (1 + kyr? + kor®) + 2p, %091 + pi (0 + 2y1%) (4.3)
Where:
X1, y1 = distorted pixel locations
X2, Y2 = undistorted pixel locations
ki, ko = radial distortion coefficients of the lens
p1, P2 = tangential distortion coefficients of the lens

r= (X% +y,?

Because the manufacturer does not provide lenartiest coefficients, lens distortion was
investigated using a Grid Distortion Model calilwatapproach based on multiple grid calibration

images and a heated grid pattern tool (Figure 4.1).

Figure 4.1. Grid pattern tool (If;) .c;;ln.d. thefma.\l‘irﬁ;;lge (right) used for lens distortion.
Thermal images were imported into the NI LabVIEW™sign Assistant (National
Instruments Corporation, Austin, Texas) for lenstatition analysis. Resulting lens distortion
coefficients were used in the image processingrilgo for batch processing in order to undistort

images for precise location using Equation 4.248dSee Section 2.4.1 for more details.

4.3.1.3Varm-up Time and Camera Recalibration

Because uncooled TIR cameras operate without heawling jackets, uncooled TIR
cameras regulate their thermal detectors with aat@memperature re-calibration to maintain
sensor accuracy and limit sensor measurement ahifsed by temperature fluctuations (DRS
Technologies, Network and Imaging Systems Groug.,).nA shutter recalibration technique is
activated to conduct a non-uniformity correctionJ@) across the thermal detector at either a
user-defined time interval and/or in the event ofisternal temperature change of the thermal
detector (DRS Technologies, Network and Imagingt&ys Group, n.d.). During a NUC, the
camera shutter closes to block incoming thermatgnehereby providing a uniform thermal

reference for the detector. At that time, a recatibn algorithm ensures a uniform pixel intensity
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is measured across the entire microbolometer. éswt, each TIR camera core’s warm-up time
was previously determined (Figure 4.2). Warm-upesrof 19 and 18 min and a 1 minute timed-
interval NUC were necessary for stable temperangasurement of the Tamarisk® 320 and 640,
respectively. Adherence to the required warm-upopeduring standard operating protocol

reduces inaccuracy as the camera reaches a spavbing temperature.

<255 "DRS Tamarisk®320 - 40 255 "DRS Tamarisk®640 | 5, o=
< Soos - <
%204 PR 1 8 204 5
E P 5 Z E
2153 " 34 & s 153 318
£ g 2120, 3
c ’ . .
= 102 *19 Minutes 31 E £ K :18 Minutes 28 s
X : Ll M 51 : L
a 51 28 ® & s
i £ 0 : 25 £
0 : 25 E :
0 15 30 45 O 0 20 40 60 O
Time (min) Time (min)
———— Image Pixel Intensity Target Pixel Intensity
Camera Housing Temperature Camera Temperature
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Figure 4.2. Image Intensity and housing temperatureversus thermal camera on-time of (a) DRS
Tamarisk® 320 and (b) DRS Tamarisk® 640. Indicatedvarm-up time was determined when the
TIR camera measured with 5% of the stable pixel intnsity. See Section 2.3.1.4 for more details.

4.3.1.RKRadiometric Calibration

Because uncooled TIR cameras have a low signabigematio, their thermal detectors are
less sensitive (x0.1°C) than other temperature @ens(Kuenzer, 2014). However,
microbolometers are sensitive to subtle temperatifferences (<0.5°C) necessary for accurate
crop stress assessment (Blonquist & Bugbee, negylSre-Canto, et al., 2007). In the context of
agricultural sensing applications, the Tamarisk® 88d 640 are sensitive to 8 to 14 um longwave
infrared (LWIR) radiation corresponding to a -686®0°C temperature span. In operation, LWIR
radiation strike the detector material, altering #hectrical resistance from a temperature change,
transforming LWIR radiation intensity into a rawgdal value (DV), thereby generating a thermal
image (Kuenzer, 2014).

A limitation of uncooled TIR cameras, however, ieit inability to quantify absolute
temperatures. Therefore, an one-time (OT) radidmeslibration method was used to quantify
absolute surface temperature at environmental tondiin which the uncooled TIR camera was
calibrated, as described Section 4.3.3. An OT radiac calibration uses one calibration image
to characterize pixel-to-temperature relationshigs, shown below in Figure 4.3. For full

description of the OT radiometric calibration metheee Section 2.3.1.3.
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Figure 4.3. Radiometric calibration performed on (3 DRS Tamarisk® 320 and (b) DRS Tamarisk®
640 at 25°C air temperature and 35% relative humidiy when each uncooled thermal camera
reached a steady operating temperature.

Using the radiometric calibration transfer functi@ach uncooled TIR camera core was
found to be directly sensitive fR 0.99) to the temperature within the FOV (Figur@)4Results
demonstrate uncooled thermal cameras’ ability tasuee absolute temperatures with additional

hardware and software, standard operating profocobhdiometric calibration, and strict camera
configurations.

As previously studied in Section 2.4.4, the OT oauktric calibration method was
developed especially for quantifying temperatutessad a dynamic sensing platform like a SUAS.
To determine the TIR camera’s ability to measuneperatures, the absolute difference between
actual and measured temperature is shown in Figude Results reveal the maximum
measurement accuracy is +0.82°C and +0.819€0.05) for the Tamarisk® 320 and 640,
respectively (Table 4.2). For application, a segsime of 60 minutes demonstrates the maintained

measurement accuracy throughout the typical flighe of a multirotor SUAS (Rango, et al.,
2009).

1.00

o o
a ~
o a

Measurement Accuracy
(*°C)
o
N
6]

0.00

0 10 20 30 40 50 60
Sensing Time (min)
Figure 4.4. Measurement accuracy (x°C) of the Tam#&k® 320 over 60 min. The absolute difference
between the actual and measured temperature is show

Table 4.2. 60 min measurement accuracy
(x°C) with OT calibration. (¢=0.05)
Tamarisk ® 320 0.82
Tamarisk® 640 0.81
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4.3.1.8Connection Ease, Software, and Controllability
Each TIR camera core provides an 8-bit (256 disgoetel intensity DV) thermal video.

Within the TIR camera control software, each cameaa configured for video output and frame
rate, and thermal detector sensitivity. In ordes¢d the DRS Tamarisk® 320 and 640 camera
cores, a DRS breakout board module (Breakout Bd¥37185-001, DRS Technologies, Inc.,
Dallas, Texas) adjusts the thermal detector gaisieity (i.e., detectable scene temperature span)
and level control (i.e., shift offset of the centtemperature within the temperature span), thereby

improving detected thermal energy of the scene &eatpres (Figure 4.5).
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Figure 4.5. The gain control adjusts the thermal dictor sensitivity to LWIR energy thereby
adjusting the temperature span. Level control adjuts the center offset temperature to adjust the
bias of the temperature span. Adapted from DRS Tamiésk® 320 Camera Control Software User
Guide (2013).
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Figure 4.6. DRS Tamarisk® 320 Camera (a) camera (ggin for temperature span and (b) level setting
characteristics for offset temperature bias.
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Figure 4.7. DRS Tamarisk® 640 camera (a) gain foremperature span and (b) level setting
characteristics for offset temperature bias.

As previously studied in Section 2.4.6, manual cdrdf the DRS Tamarisk® 320 and 640
thermal detector gain and level yielded a configleaemperature span from 5°C to 156°C and
resolution from 0.02°C to 0.61°C. As shown in Fem®.6 and 4.7, camera control software
adjusted the limits of upper and lower pixel saiorawhile adjusting measurable temperature
resolution on object targets. For example, a teatpeg span of 20°C is set by the camera gain
control whereas a center temperature of 25°C isralbed by the level control. In this example,
the lower and upper saturation temperatures woellat15°C and 35°C, respectively. In addition,
the temperature resolution of the resulting 8-bmage of a 20°C span would equal 0.08°C, as
defined by Equation 4.4:

Tspan (°C) (4.4)

Tresotution 0= on

where:
Tspa=Span of temperatures (°C) measureable by the #ielatector

N=Dbits of resolution (e.g., N=8 for 8-bit imagead
Tresoluior=theoretical temperature resolution
Combining temperature span and incremental offeeellrange reveal a significant

relationship shown in Figure 4.8. Each level cdnitnorement offsets the temperature span by
0.107 °C, regardless of gain control. This wasctlyeapplicable for use in the field calibration

software in order to provide suggested camera gordtions for a particular temperature span and
center temperature of interest as discussed bealothe complementary TIR camera software

detailed in Section 4.3.2.
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Figure 4.8. Relationship between level control rargy(A level) and temperature span (°C).

4.3.2Hardware and Software Development

Three distinct portions of the TIRIS are segmemt¢al the SUAS TIRIS, OT calibration,
and ground reference station. The system hardwaiesaftware was specifically developed to
configure the TIR camera core within the SUAS TIRpgvide OT radiometric calibration, and
measure real-time environmental parameters folightfground truthing in order to compensate

for environmental conditions and maintain measurdgraecuracy (Figure 4.9).

sUAS TIRIS Ground Reference Station

| ®-

Analog OT Calibration Capture, Calibrate, & Brocess, Air Temperature /’/'P

Video Storage - Humldrty
f Temperature Panels
o _. —e| B ( /
11.1 Volt  DRS Control Analog Frame e < “
Battery Module Grabber > —
l Ground Station Solar Radiance
o * ~ &
{x= * Calbration File /Q\ @
DRS Tamarisk® ===/« Ground Truth Flight Data

11.1 Volt 6PS

320 Battery

Figure 4.9. TIRIS component system diagram for cama calibration and ground reference data

The sUAS TIRIS featured either the Tamarisk® 32@40 TIR camera core, depending
on application and desired image resolution. TheSDiiteakout board module (Breakout
Box 1003785-001, DRS Technologies, Inc., Dallagabg functioned as the camera configuration
board, video interface, and power input. Analogewidvas stored in video form using a miniature
digital video recorder (RMRC FPV1000 DVR, Readynfa@e USA). The TIR camera cores and
video recorder were set to record video at 30 feape second. Power was supplied with an 11.1
volt battery (RMRC 1100mAh 3S 35C, ReadymadeRC, JSA

The ground reference station measured in-flightigdatruthing reference data, such as air
temperature and relative humidity, reference teatpee panels, solar radiance, and global

positioning from a GPS receiver. Air temperaturd aglative humidity were measured with an
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Omega (HX303AV, Omega, Stamford, Connecticut) tnaitter sensor with an accuracy of +3%
and +0.3°C. Solar radiance was measured with anpymater (SP115, Apogee Instruments,
Logan, Utah) with accuracy of +0.25 WaxiThree surface mounted thermistors (ON-930-44004,
Omega Engineering, Stamford, Connecticut) capalbléemperature measurements with an
accuracy of £0.1°C were used to measure temperpaurels in order to create reference surface
temperatures. Thermistors were wired into a voldigEler to monitor a change in voltage due to
temperature-based resistance (Figure 4.10 a) wheedog thermistor signal inputs were
programed with LabVIEW™ sub-VIs using the factorypplied calibration curve, shown in
Figure 4.10 b.

Y 75 7 y = -23.51In(x) + 208.17
in G 60 - R2 = 0.9959
Thermistor D
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2.252 kQ g
22 30
Qs
Vout 28 15
5
= O
10kQ X
-15 4
0 5000 10000 15000

- Thermistor Resistance ( Q)

@) (b)
Figure 4.10. (a) Voltage divider wiring diagram usd to measure voltage due to thermistor resistance
change. (b) Thermistor calibration curve to quantify temperature with change in resistance. (See
Appendix B, Figure A.4 for more details)

One of the three reference panels was fabricated & 0.30x0.60 m piece of 1.52 mm
thick (14 gauge) aluminum sheet metal and paintedbfack. The second reference panel was
fabricated from a 0.60x1 m piece of 6.35 mm thiaod that was painted flat black. The third
reference panel was identified as a wet referehoemake the wet reference, a 0.30x0.60 m
polystyrene foam pad was covered with a highly evaipve cloth (Chilly Padd, Arab, Alabama)
that rapidly cooled when exposed to air. This fqaiete was placed in a tub of water to allow
continuous wicking and evaporation. In order tove an emissivity correction, indirect
background temperatures of the sky were measuoad d& viewable horizontal lambert radiator
(i.e., crimped aluminum sheet metal). Differenti@mperatures provide visible reference

temperatures within the TIR camera’s FOV from alldhe sUAS (Figure 4.11 a).
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Figure 4.11. (a) Ground reference panels for tempeture reference and cross-calibration from sensing

distance and environmental influence in radiant hetransmission with (b) the virtual interface for
control and visual awareness.

A commercial IRT (Fluke 62 MAX, Fluke Corporatiokyerett, Washington) with an
accuracy of +1°C and emissivity adjustments frofint.1 found the emissivityg) of the lambert
radiator, painted wood, aluminum, and wet referesudaces to be 0.05, 0.82, 0.88, and 0.96,
respectively (See Section 1.2.2 for more details homv this was performed). Reference
temperature panels were sized to be viewable frbiwara the sUAS and materials were
constructed with a high surface emissivity in ordeincrease measurement accuracy (Figure 4.11
a). Since the reference targets are not perfedtambor absorbers, the total LWIR radiation from
a surface is part emitted and reflected LWIR raoliefs defined in Equation 4.5 (Maes & Steppe,
2012):

LWIR,ye = LWIRgmitrea + LWIR efioctea (4.5)
Where:
LWIR.y = Outgoing radiant energy

LWIRemitea= Emitted radiant energy
LWIRrerected= Reflected radiant energy.

In Equation 4.5, the measured temperature fromTidfe camera corresponds to the
outgoing radiant energy (LWHR) which is measured as the apparent temperatug. As
suggested by Maes et al. (2012), apparent temperatinfluenced by background temperature

(Tog), surface temperatured)Tand surface emissivity); defined by Equation 4.6:

I el L) (4.6)
s €
Where:

Ts = Surface temperature °C

Tap = Apparent temperature °C

€ = Emissivity

Twg = Background temperature °C
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After accounting for background temperaturegg(Bnd surface emissivity), the TIR
camera provides surface temperaturg (d@her than apparent temperaturg).T

A data acquisition (DAQ) system was built using arilyRIO (National Instruments
Corporation, Austin, Texas) in order to capturerrfistors, air temperature, relative humidity,
solar radiance, and global position and time, @asvehin Figure 4.12. Data was captured at 5 hz
matching the frequency of the GPS reciever (Cribs06 V3 GPS Receiver Module, Swiss U-
Blox, Thalwil, Switzerland). The DAQ was programéa store all sensor data files in a
measurement file into a flash storage device. Edata sample in the ground reference
measurement file had a corresponding time stanmpwha parsed from a GPS national marine
electronics association (NMEA) message string plediby a GPS receiver. Each thermal video

had a corresponding ground reference measurentent fi
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Figure 4.12. (b) Data acquisition system used toterface ground reference sensors with (a) plug-n-
play sensor inputs

A lipo battery (RMRC 2200mAh 3S 35C, ReadymadeREAVsupplied power to a power
supply in order to provide sensor excitation vadmgnd power to the microcontroller.

For the OT calibration components, analog videmnftbe sUAS TIRIS was streamed at
30 Hz into an analog-to-digital video converter £Bl@ DVD Recorder HD, Corel Corporation,
USA). This raw analog video signal was streamed mthost computer aboard sUAS using
LabVIEW™ (National Instruments Corporation, AustiiX) image acquisition and processing
software in which each video frame was capturengssed, and stored using a developed virtual
interface (VI) (Figure 4.14) to radiometrically iahkte the TIRIS and provide ground reference

data. Ground reference data from the DAQ was wasijesent to the host computer using a
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developed VI to perform on-ground OT radiometridibration before flying the sUAS and

monitor in-field data of the ground monitoring sbat

4 .3.3Radiometric Calibration and Ground Reference Data

For an on-ground OT radiometric calibration, dirsatface temperature measurements
(Figure 4.13) and camera pixel intensity from thalag video stream were monitored with a TIR
Field Calibration (TFC) software program developeth NI LabVIEW™ (National Instruments
Corporation, Austin, TX) (Figure 4.14). The on-gnouOT radiometric calibration was conducted
by holding the camera to include the cold and weeference panels in the camera FOV (As
shown in Figure 4.13 c). Raw pixel intensities fridme video feed (X X2) were combined with
actual surface temperaturei(¥>) to determine the radiometric transfer functiaypsl, as defined
by Equation 4.7. By using the slope found in Equatd.7 and a raw pixel and coinciding
temperature (X Y1), the y-intercept of the radiometric calibratiamrve was determined using
Equation 4.8. When a radiometric transfer functwems found, each digital image pixel was
converted to a temperature value defined by Equati®. Using results from Equation 4.9, upper
and lower saturation temperatures were found bgticrg a visual temperature legend for the
image (Figure 4.14). Instantaneous temperature apdncenter level was found as defined by
Equation 4.10 and 4.11, respectively. For easeanfeta configuration, characteristic gain and
level responses (Equations 4.10 and 4.11) weretossat the cameras for a user-defined span and

center level temperature as defined by Equatiobi® d@nd 4.13.

Cold Warm [
Reference Reference

PK-STATE |

(©)

Figure 4.13. OT radiometric calibration use the cal and warm temperature differential created by (a)
the wet reference panel and (b) the black aluminurpanel measured with surface mount thermistors
in the designated ROI shown in blue and red. (c) Técorresponding TIR camera FOV is shown to
demonstrate the temperature differential of the cal and warm reference.
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Figure 4.14. TIR Field Calibration (TCP) VI to create OT radiometric calibrations while recording
ground reference data. The visual indicator showshe VI monitored RT ground reference data, raw
video feed, and file storage specifications whiler@viding controls to conduct a OT Calibration.

me27h 4.7)
Xy =Xy
Y-V, =mX —X,) 438)
Tti,jy = Tmin + —ZI,Slf)l span (4.9)
where:
Ty = Pixel temperatureC) at row i and column j,
Tmin = LOwest temperature within the imag€y,
I = Pixel intensity at row | and column j,
N = Number of bits for pixel intensity (e.g., Nf& 8-bit images), and
Tspan = Span of temperature captured in the image.
Temperature Span (°C) = Bits of Resolution X Radiometric Slope[m] (4.10)
Center Temperature(°C) = 128 x Radiometric Slope [m] (4.11)
Camera Gain Setting (°C Range) = —9.5289 x Desired Temperature Span + 4109.34 (4.12)
Suggested Control Level = Current Center Temperature (°C) — Desired Center Temperature (°C) (4.13)

4.3.4Camera Housing Design

The multirotor SUAS contained a gimbal camera modogibw the main airframe to
maintain stable nadir camera orientation for impbaerial thermography. A small, lightweight
camera case was developed to house all SUAS TI&i$onents and provide protection while
aboard the sSUAS. Each component of the cameranasgenerated using computer aided design
(CAD) modeling (Pro/Engineer, PTC Inc., USA) (Figut.15). A 3D printer (Makergear™ LLC,
Beachwood, Ohio) was used to print a camera casef golyactic acid (PLA) plastic because of
printing ease and UV protection for use in thedfiel
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Figure 4.15. TIR camera case to hold sUAS TIRIS coponents in (a) the exploded view and (b) the
collasped view.

4.3.5Flight Campaigns
The sUAS TIRIS was flown aboard a hexcopter muiraUAS (s800 Evo, DJI, China).

The thermal camera was mounted on the gimbal festemt nadir orientation (Figure 4.16 b).

o gk wbdE

8.
9.

@ G
Figure 4.16. (a) DJI s800 Evo used for flight campagns with SUAS TIRIS shown on (b) gimbal mount

Prior to a flight campaign, the standard operagiracedures were as follows:

Unpack equipment

Power on the SUAS TIRIS to allow the TIR cameraedorwarm-up
Setup the ground reference station

Power on the ground monitoring station in ordea¢bieve a GPS fix
Start laptop to program the multirotor SUAS andtoalrthe TIRIS

Conduct the pre-flight inspection for the multiros®J AS and upload a flight program on the
multirotor sUAS flight controller

Connect the sUAS TIRIS to the on-ground OT radigimetlibration hardware (Figure 4.9,
above)

Configure the Tamarisk camera core using the TFC VI
Conduct an on-ground OT Radiometric Calibration

10. Start recording a simultaneous thermal video andmt measurement file
11.Mount the sUAS TIRIS on the multirotor SUAS
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12.Conduct and complete flight campaign as specifiethe autopilot flight program of the
SUAS Flight Controller

13. Stop recording the measurement file and thermadovid
14.Validate data was recorded

15. Finish testing and load equipment
The system was flown in 12 flight campaigns at &owd high altitudes to access differences

in spatial resolution and temperature measurenaniracies. Two specific flight campaigns at
40 and 80 m are described in detail below. Forfligbet campaign flown at 40 m, discussed in
section 4.4.6, the TIRIS with the Tamarisk® 640 fawn over a golf course green to measure a
fine resolution thermal map. For the 80 m flighingeign flown, the TIRIS with the Tamarisk®

640 was flown over a corn plot to measure a comsaution thermal map.

4.3.6lmage Processing
A batch processing procedure was developed to gedvigh-throughput thermal imagery,
reduce manually subjective user control settings@nvide uniform data handling. The standard
operating procedure was used to parse thermal sreage corresponding reference samples from
raw data files, input processed images into imaigehs1g software in order to generate a thermal
map, and apply a radiometric transfer functiommresulting thermal map (Figure 4.17).
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| e
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Flgure 4.17. Image process flow as the analog vidéle is converted to the final stitched thermal ma.

Two types of data was collected during a flight paign. A raw thermal video was
recorded on the mini-digital video recorder; andparesponding ground reference data file was
recorded and stored on the MyRIO flash storageceeVihese two files would be downloaded for
processing into a single folder on the processorgputer.

For batch processing, a Thermal Video ProcessingP{TVI was developed with
LabVIEW™ (National Instruments Corporation, Austifexas) to automatically parse images
from the thermal video, correct lens distortionplg@a variance image filter, and align individual
images with the coinciding ground reference datapda (Figure 4.18). Because the digital video
recorder stored analog thermal video at 30 franeessecond (FPS), the TVP VI controlled the

captured frame rate in order to parse only a saflaoimber of images for processing. For example,
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for every second of video recording, 30 frames vesalable for processing, but a user-defined
capture frame rate of 1 FPS would grab 1 imageye8@rframes. As a result, only the images

captured at the user-defined capture frame rate m&rcessed.

At the beginning of the batch processing of the TWIPthe user was prompted to select
the raw video file (e.g., 0000155.avi) and the gureference data file (i.e.,
corn_northfieldplot_flight_nol.csv). The TVP softwavould then pull the beginning time stamp
from the ground reference data file to name the fimage with the corresponding image number
and time stamp. All subsequent images were thereddrased on the user-defined capture frame
rate as controlled by the TVP VI and the time fribvat initial image. For example, the first image
aligned with a ground reference data file startdd@27.2014 10:30:00.000’ would be named as
‘000001_10.27.2014.10.30.00.000.jpg’. In additidna user-defined capture frame rate was 1
FPS, the second image would be denoted as ‘0000027.2014.10.30.01.000.jpg’. The TVP
would then amend each individual sample of the igdoreference data with the corresponding

image number for the ease of manual cross-chet¢kimgn-ground OT radiometric calibration.

In the end, the TVP would output the filtered, wtdited images for subsequent image
stitching and amended ground reference data inr dod@rovide the ease of cross validating
through ground truthing.

Convert AVI to Processed Thermal Images -
Progress...

-

AVI Path -, ¢\10.27.1014.avi

Camera  Tamarisk 320 (11 mm) Processed Image ™ amandion

JPEG Quality (0-100) .| 100 ||| ~ N & 650
Capture Rate (fps) 1 rF 3 4 3 ) Y1 Dimension
" _J; ¥
© Stop s4
YO Dimension

150 |X1 Dimension

Figure 4.18. The TVP VI converts the thermal videdile to filtered images featuring selective contra
of file path, camera selection for specific lens sliortion, image output quality, capture frame rate,
cropping dimensions, and progress indicators.
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4.3.6.X5round Truthing

Ground truthing was used to validate the on-graDidadiometric calibration with an in-
flight OT radiometric calibration from aboard theulirotor SUAS once flight altitude was
reached. The in-flight OT radiometric calibratiom manually conducted using RT surface
temperatures from the ground monitoring station amage pixel intensity when the reference
panels are present within the thermal images. ifkikght OT radiometric calibration correction
would provide an environmental compensation to ceduWIR energy attenuation from the
influence of water vapor and aerosols present letvilee TIR camera and the reference panels as

suggested by similar protocol conducted by Beral.§2009) and Monteith and Unsworth (2013).

Thermal images obtained after batch processingu(€ig.18) were used to verify that
image pixel intensity of the images remained witbpper and lower saturation points of the
thermal detector. This acts as a validation tha T#%C VI suggested the correct camera
configuration settings for the user-defined tempeespan and center temperature. For example,
correct camera configuration would mean that nceteggon temperatures would correspond to a
pixel intensity of O (black saturation pixel intéy¥ or 255 (white saturation pixel intensity). As
result, all vegetation (or desired target) mustaenwithin the scene temperatures for quality

thermography.

4.3.6.5patial Resolution

Temperature influences from a warm soil backgroand shaded lower leaves in partial
canopy coverage can cause measurement error (Ayetrah 2002; Luquet, et al., 2003; Maes &
Steppe, 2012). In order to investigate effectpatial resolution on measured temperature, a series
of increasing ROIs were designated within an im@ggure 4.19) by increasing offset spatial
resolution by 1 pixel (i.e., 1x1, 3x3, 5x5,7x7,centered directly over a sensed target using the

NI Vision Assistant™ (National Instruments Corparat Austin, TX).

o8 | F 4 [
Figure 4.19. ROI analysis with increasing spatial @solution. The green boxes indicate the ROls of
increasing size.

AN
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By increasing spatial resolution by 1 pixel (or 6rb/pixel) around the outer perimeter for
each subsequent ROI, average DVs were calculatdtustrate quantified temperature at the
respective spatial resolution. For example, thgetacorn leaf had a width of 6 cm, providing a
theoretical 12 pixels on the target in the centéhe ROI.

4.3.6.3hermal Mapping

Because the developed TVP software can captureasifagm the video stream at different
capture rates, the capture frames per second (F&Shvestigated to determine necessary image
overlap to improve mapping quality and efficienkyorder to reduce analog signal loss and noise
introduced with analog video signal transmissionagic variance image filter was applied to

investigate its effect on mapping efficiency analgy.

After the still images were filtered for signal seiand corrected for lens distortion, thermal
images were imported into Agisoft™ PhotoScan Psfeml (Agisoft LLC, St. Petersburg,
Russia) software to generate an orthomosaic image¢he entire coverage area from images
collected at the same altitude. A pixel averagirgghad in the Agisoft software computed average
individual temperature values from all overlappipxels in order to reduce the effects of
bidirectional temperature influence present in ltitude mapping. The corresponding on-ground
and in-flight OT radiometric calibration transfemiction developed in the field was then used to
convert each raw pixel DV to temperature in thé@mosaic image using Equation 4.8.

4.4RESULTS AND DISCUSSION

A small, lightweight TIRIS was developed for thetmmaapping aboard a multirotor sUAS.
The TIRIS capabilities include one of the two Tl&era cores, ground measurement system to
record and transmit environmental parameters, aaground OT calibration equipment (Table
4.3). An example of the SUAS TIRIS is shown in Feyd.20. Between the low and high resolution
TIRIS systems developed, the only substantial ffee is the pixel resolution, video frame rate,
resulting payload weight, and cost of the TIR caareare. When considering the application, the
necessary spatial resolution, budget, and pernespidyload determines which uncooled TIR
camera core is appropriate. However, the sensitigdntrollability, measurement accuracy, and

necessary hardware and software are identicaitfogresystems.
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Table 4.3.TIRIS Capabilities and Features

SUAS TIRIS Power
Detector Type Uncooled Vox Microbolometer Inputt&fpd 5-18 Volts
Array Size 640 x 480 | 320 x 280 Power Usage 4 §Vatt
Pixel Pitch 17 pm Battery Life 3 Hours
Spectral Band 8-14 um Battery Size 11.1 Volt (1100
mAh)
Video Format Options Video Storage
Frame Rates 9|30|60 fps Video File FormatAVI @ 30 fps
Analog Video NTSC (480p) PAL (576P) Recording Time 2.5 h/1Gb
Image Resolution 8-Bit Storage Memory 32Gb
Camera Recalibration Weight
Video Record Time 1 Hour TIRIS 320 250 ¢
Non-uniform Correction Shutter calibration (Timefiig.) TIRIS 640 450 g
Ground Monitoring Station Environmental
Global Positioning Coordinates 1Hz OperastgagnTemp. 0°C to 65°C
0,
Solar Radiance +1 W m? or 455% Humidity Sé(c))r?c?e/;’si?]%n-
Temperature Reference #).1°C Power
Air Temperature 2°C Input Voltage 9-24 Volts
Relative Humidity 3% Power Usage 6 Watts
@ Thermal Camera Core Accuracy #0.82°C (T320) | #0.81°C (T640) Battery Life 6 Hsu
. 11.1 Volt (3000
Battery Size mAh)(

[ Measurement accuracy determined with a 1 min camegalibration (NUC) and OT radiometric calibratio

Analog Video Outlet for
Calibration

Mini USB

Configuration Port

Power Switch

DVR
Power Switch

Record Switch

Mini USB
Storage Port

Figure 4.20. Resulting sUAS TIRIS featuring accedsie control inputs and image acquisition ports.
4.4.1Lens Distortion
The Tamarisk 640 with the 25 mm lens had 18% les®dion; and, the Tamarisk 320
with the 11 mm lens had 19% lens distortion (Figul). Both lens distortion calibration results
were used to correct lens distortion for spatiégnty, as shown in Table 4.4, within the TVP

software.
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(a)

(®)

PP (O o Sy IO

Figure 4.21 (a) Tamarisk® 640 with 25 mm and (b) Taarisk® 320 with 11 mm lens distortion results
from the point distortion grid model with the original image (left) point vector map (middle), and
visual distortion map (right)

Table 4.4 Lens distortion analysis including radialand tangential correction coefficients

. . Radial Tangential
TIR Camera Core |% Distortion
kg k Py p2
DRS Tamarisk® 320 44 4 -0.24992 ¢ -0.74306 | -0.000177 0.002740
11 mm lens
DRS Tamarisk® 640 155 | 9417801 0.11154 | -0.002273} -0.007275
25 mm lens

The percent lens distortion reveals significantadtgon occurs within the germanium lens
of each TIR camera core. This has implicationsppliaation where spatial integrity is critical
especially in whole-field temperature mapping aitg-specific crop health monitoring. In
addition, since each TIR camera and lens are factafibrated, a TIR camera and lens
combination may have subtle variations in distoreharacteristics. As a result, identical camera
configurations may not be interchangeable; theegfeach individual TIR camera may need to be
calibrated for its specific lens distortion coeiffiats.

4.4.2Radiometric characterization and measurement accurey

Once the sUAS TIRIS was calibrated, the TFC softveaeated a calibration file including

coinciding ground reference data, critical camestirgys like the OT radiometric slope and

intercept, scene temperature span, center temperatlibration time, and the suggested camera

level and gain configuration, as shown in Table 4.5
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Table 4.5. Sample TIRIS camera calibration file fora flight campaign

Time Latitude Longitude Satellites Elevation (m)
10/27/2014 12:42 39.194333 -96.597383 17 343.9
Cold Pixel (DV) : Warm Pixel (DV)) Cold Temp. (°C) Warm Temp. (°C) ot R(an(]i). Slope Ingll’-c}:;td(-b)
76 166 10 48 0.422 -22.08
Camera Gain Camera Leve Center Temp. {°C) Span (°C) Low Temp. (°C)Hi Temp. (°C)
3450 1434 32 65.86 -8.57 57.288

For subsequent processing, the TFC program gedetiagecalibration file name which
was appended with the date and time coinciding withground reference data file described
above in Section 4.3.6. As acquired from the catibn, the slope (m) and intercept (b) were used
to apply a radiometric transfer function to theutesg thermal map, as described in Thermal
Mapping section. The camera calibration naming eatiens and file location is critical when
managing the data generated with the TIRIS.

4.4.3Ground Reference Data

Ground reference data monitored during the fliglnpaign was used to conduct on-
ground and in-flight OT radiometric calibration. Wia 5 Hz sample rate, subtle differences in
reference temperature panels are shown in Figu22. Results show the aluminum panel

maintained the warmest temperature, whereas theefeeence panels had a temperature deficit
of more than 10°C.

Alum

.4:5."" Alum. Panel Wood Panel === = Vet Panel Panel
L T T
~ e ettt T el Wood
© 35 et L o~ Ref. Panel
S et et T (feeeee,,
I
[
o 25 ~~ P -~ —
5 - - Wet Ref
= Panel

15 T T T T T

12:30 12:32 12:35 12:37 12:39 12:42
Time of Day
(a) (b)

Figure 4.22. (a) Ground reference panel temperatusethroughout flight campaign as recorded by the
ground measurement station and (b) the ground refeance panels viewable from the SUAS multirotor
at an altitude of 40 m and a spatial resolution 027 mm/pixel.

By ground truthing the thermal imagery, the TIRI8asurement accuracy during a flight
campaign (Figure 4.23) was found to be £1.60260(05) using the on-ground OT radiometric
calibration. However, with an in-flight OT radiomietcalibration conducted at flight altitude, the
TIRIS yielded a measurement accuracy of £1.3820.05), as shown in Figure 4.23.
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y = 0.966x + 0.9937
R2=0.966

Measured Temperature (°C)

20 23 26 29 32 35
Actual Temperature (°C)

Figure 4.23. Measurement accuracy found from a fligt campaign comparing the actual temperature
versus the measured temperature as shown with a 95%enfidence interval. Results reveal a TIRIS
measurement accuracy of +1.38°C.

Because the reference temperature panels were ulated) and subject to the sensing
environment, reference temperature deficits ateation of the sensing environment at the time
of flight. This has implications on the temperatwldferential induced from a sensing
environment. The temperature accuracy is increastdthe use of the ground reference data
correction. Even with ground reference correctibe, measurement accuracy is diminished from
laboratory accuracy measurements (x0.81°C). Thigldcde contributed to environmental
influence that cause temperature fluctuations efrélierence panels reducing the accuracy of the
radiometric transfer function. Further tests shaddsider testing reference materials of different
thermal inertia in order to resist temperaturetfiations. With the image processing procedures
discussed above, misalignment of images with tfereace data time stamp may also introduce
error due to incorrect reference data. Similarlighvevery subsequent image, the time stamp was
assigned based on the frame capture rate of th&aldigdeo recorder, which may fluctuate.
Therefore, a future TIRIS should automatically gsseach image with an instantaneous time

stamp from a primary source.

4.4.4Spatial Resolution and Measurement

Pixel-by-pixel resolution ROI analysis provided essary spatial resolution in order to
limit false measurements. The spatial resolutios adjusted within the developed ROI analysis
program, and the corresponding quantified tempegagishown in Figure 4.24. Results show
measurement accuracy diminished from increasingREdpatial resolutions from influence from
warm background soil temperature. At a spatial ltggm of 200 cm/pixel, the measured
temperature was 3.2°C above the measured temperatd cm/pixel. Results reveal a spatial
resolution above that of the critical target spatesolution (6 cm/pixel in this scenario)

significantly impacts the measurement accurachefltiRIS aboard sUAS.
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Figure 4.24. ROI analysis with measured temperaturéa) with respective spatial resolution centered
on a corn plant target with a spatial resolution of 0.5 cm/pixel (b).

The above influence could vary through crop devalept, where the largest influence
may occur early in the growing season when soil idates most of the measurement surface.
Later in the growing season, a full canopy woulduee but may not eliminate this error.
Therefore, future research needs to be conductéeMelop advanced image analysis procedures;
and, use a combination of visible and color infda(€IR) cameras to accurately segment crop

canopy from background soil. These additions ctwligh accurately map canopy temperature at
high spatial and temporal resolution throughoupatevelopment.
4.4.5Image Filtering
Because of noise introduced with analog video sigaasmission, a pixel variance filter
was applied to each image during batch image psougsThe same image set was processed

without the filter to compare thermal mapping quyaéind efficiency (Table 4.6). The first metric
for comparison was the amount of images the stigcBbftware was able to align with common

points between images. Filtering each image witixal variance filter increased the amount of

aligned photos of the given image set from 69%9% 9

Table 4.6. Comparison ofresults from raw and filtered image stitching regading aligned

images, processing time, and developed point clouds
Filtered Images Raw Images
No. of aligned images 219/220=99% 153/220= 69%
Processing Time 15 min 36 sec 12 min 18 sec
Initial Point Cloud 34,448 18,529
Dense Point Cloud 1,720,823 1,180,905

As expected, additional images resulted in incréaggecessing time, but mapping
efficiency improved by acquiring more data fronmtefied images, resulting in a higher quality
orthomosaic image. Increased image data was reflectthe dense point cloud attained due to a

greater number of aligned images. As the stitclsofjware built initial and dense data point
clouds, the filtered images almost doubled the datdéhe generated point clouds, thereby
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increasing the resulting orthomosaic image data @aredall quality displayed in the resulting
thermal map (Figure 4.25).

lost outer edge lost point cloud

() (b)
Figure 4.25. (a) Comparison of thermal map of rawmages and (b) filtered images prior to image
stitching. In the resulting raw image mosaic, the ater edge and inner portion (black boxes) of the
image lacks detail represented in the resulting masc image captured by the filtered images.

As shown in the filtered images mosaic (Figure h25oints along the outer perimeter
of the orthomosaic image increased the coveragieofimage associated with more aligned
images. More importantly, detail was lost in therthal map of unfiltered images where subtle
features are visible in the resulting thermal mafiliered images. This has implications on the
quality of the resulting images. In addition, asagas are processed with the stitching software,
user defined software settings can alter mappinguburom stitching algorithms producing
potential error. Coarse settings and low qualityapeeters could result in faster mapping
throughput but does not guarantee the resultingityud the orthomosaic image. In addition, the
stitching software may not be able to process laality imagery. Similarly, low quality images
may result in errors such as lost imagery covefiage limited point clouds and discrete data loss
as the map is generated (Figure 4.25). As a regudlity of the resulting thermal map will
inherently depend on the quality of individual inreag Design considerations to improve and
maintain captured image quality should be a degidniteria for selecting system hardware and
software.
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4.4.6Thermal Mapping

Five different capture rates were investigated gnedresulting stitching parameters are
shown in Table 4.7 and illustrated in Figure 4\&6th image stitching, the images with a denser
point cloud resulted in a better thermal map featunigher spatial accuracy. A capture frame rate
of 1 FPS at the respective altitude and flight dpesulted in the highest quality thermal scan with
an increased number of aligned images and thesepgent cloud (Figure 4.26 c).

Table 4.7. Results from various frame capture ratesind image stitching results related tgrocessing time
developed point cloud, and common point matches hgeen consecutive images

Capture frequency 3 frames & 2 frames 3§ @ 1 frames & 1frames2d 1 frames 3%
No. of aligned images 355/635 = 56%07/445 = 69% 219/220=99% 108/111=97%  60/74=81%
Processing Time 35 min 18 sec 19 min 57 set5 min 36 sec 4 min 26 sec 2 min 15 sec
Point Cloud 15,563 31,846 34,448 16,681 6,592
Dense Point Cloud 225,270 1,031,577 1,720,823 1,228,590 539,457

[a] This capture frame rate provided the best mockied thermal map
Typical perception would be that more images wqutttluce a better orthomosaic image

from more overlap as a result of more common pdi@sveen images. However, additional
thermal images resulted in a less-efficient thenmap from less common points between images.
This occurrence may be contributed to the therratdaor’s integration time (time necessary for
the microbolometer to measure incoming LWIR energyich can create image blur in
consecutive images from the resistance based tatoperfrom the previous image frame
(Vollmer & Mollmann, 2011).

@) (b) (©) (d) (e)

Figure 4.26. Mosaicked image resulting from capturérame rates illustrated in Table 4.7 at (a) 3 franes
s?, (b) 2 frames &, (c) 1 frame &, (d) 1 frame 2 &, and (e) 1 frame 3 3.

Agisoft™ PhotoScan software aligns images basetbarmon points, with or without the
use of GPS coordinates, from neighboring imagedetermine the image layout and camera

orientation (Figure 4.27). Common points, alonesenesed as the alignment technique.

127



Camera Altitude and
Orientation Indicators

Mosaicked
Thermal Image

Figure 4.27. Camera orientation (black line normalto image) and respective image altitude.
Parameters were deduced from image overlap and conon pixel intensities between neighboring
images.

From within the Agisoft™ PhotoScan software, a namwomparison between the forward
and lateral images revealed the amount of overi#ip avcapture frame rate of 1 FPS. As shown
in Figure 4.29, a low altitude thermal map of af golurse green had an overlap covering 81.4%
of the forward image and 55.9% of the lateral imageshown in Table 4.8. As a result, the average
pixel intensity within the orthomosaic image is kel from more camera views in the forward
direction. In application, this skewed average dantroduce mapping artifacts into the resulting
orthomosaic image that closely follow the flighttparientation.

Figure 4.28. Forward and lateral overlap of stitchd images. The red and blue lines indicate the invial
and valid, respectively, common points between thenages.

Forward Overlap

Lateral Overlap

Table 4.8 Image overlap percentage

Image Size Overlap  Camera Views
Original Image 610 x 441 -
Forward Overlap 610 x 359 81.4% 5
Lateral Overlap 341 x 441 55.9% 2
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As calculated from Table 4.8, a specific targefaie was viewed, theoretically, by 10
different camera angles as found using Equatioh, @ove. However, the number of camera
views could fluctuate due to SUAS platform’s fligigth variability from telemetry inaccuracy and
wind influence.

As shown in Figure 4.29, the last step in image@ssing converted each image pixel into
a quantified temperature intensity using the radiio calibration transfer function generated by
either the on-ground or in-flight OT radiometridibeation as defined by Equation 4.14:

Where:
DVij= pixel brightness value at rovand column j
Ti; = corresponding temperature related to the pikedwai and column j.

Figure 4.29. Thermal map of a golf course green an altitude of 40 meters. This orthomosaic image
is the result of 220 individual images taken at 1 FS. After post-processing, measurement accuracy
was +1.38°C from an in-flight OT radiometric calibration with theoretical spatial resolution of 27
mm/pixel. A temperature legend is generated from th upper and lower temperatures found with
the TIR Field Calibration software.

Similarly, a high altitude corn field thermal mapsvgenerated with a forward and lateral
image overlap of 83.7% and 81.4%, respectively [@4l®9). A specific target surface was viewed,
theoretically, by 30 different camera angles asitbusing Equation (4.1, above. As a result, the
average pixel intensity within the orthomosaic imagpresents a target from a more uniform

distribution of camera views than the low altitleeample, above.
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Forward Overlap

Figure 4.30 Forward and lateral overlap of stitthedmages. The red and blue lines indicate the invali
and valid, respectively, common points between thenages.

Table 4.9. Image overlap percentage

. Camer:
Image Size OverIaQ/iews
Original Image 610 x 441 - -
Forward Overlap 575 x 387 87.8% 8
Lateral Overlap 497 x 441 81.4% 5

The corn field thermal map, as shown in Figure 4\8&s converted to temperature
intensity using the radiometric transfer functiengrated by the TIR Field Calibration software
as defined by Equation 4.15:

.336 x DV; +7.23 (4.15)

8

Tll=0

Sk

Figure 4.31. Thermal map of corn at an altitude of80 meters. After post-processing, measurement
accuracy was +1.60°C from an on-ground OT radiomeic calibration with theoretical spatial
resolution of 54.4 mm/pixel. This orthomosaic imagés the result of 180 individual images taken at
1 frame rate per second. A colorized mask is used provide visual isotherms.

With environmental sensors utilized in this stuthese micro-climates were assumed to
be constant with RT measurement taken at the manbpy level. Future studies should be
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conducted to use the environmental sensors andetatope map in order to look at spatial crop
water stress. Lastly, a feasibility study that stigates the use of a spatial crop water stress map
for variable rate irrigation in order to providecast-benefit analysis need to be investigated in

future studies.

4.5 CONCLUSION

A direct agricultural study using thermography wamducted to provide knowledge
pertaining to specific operation and control, haadsvconfiguration, and utility in precision
agriculture in which limited studies have restritteermography use to laboratories and controlled
environments. A small, lightweight TIRIS was deysd for a multirotor SUAS to provide high-
throughput imagery sensitive to spatial crop terapee variability for radiometric temperature
mapping. A complementary TIRIS software packaganadld automatic image processing in order
to limit manually subjective parameters and advahesease of image capture, correct image
distortion, and increase throughput and storageagement for direct use in subsequent image
stitching. The TIRIS was designed to quantify terapges in environmental conditions typically
observed under field conditions using either angmund or an in-flight OT radiometric
calibration and RT ground reference station. RTugtbreference data provided a specific time
stamp and air parameters associated with each imageprovided temperature measurement
accuracy. Physical properties that typically inseeaccuracy were minimized with the TIRIS
design by selecting TIR camera cores for the deésipatial resolution, creating standard operating
protocol, and specifically designed software. Agsult, the developed TIRIS is intended to add

utility to uncooled thermal camera for direct ubeard sensing platforms in precision agriculture.

Results revealed adhering to critical spatial nesmh maintains measurement accuracy
while maximizing coverage area where critical spatesolution depends on the current plant
growth stage in order to limit background tempeamtexposure. The Tamarisk 320 with an 11
mm lens had 19% lens distortion; and, the TamaB¥® with a 25 mm lens had 18% lens
distortion. Both lens distortions were automaticalbrrected in batch processing. A relationship
between image overlap and camera views was createder to determine a flight campaign that
is capable of representing a target measuremehtavgiven confidence. Similarly, an applied
pixel variance filter increased mapping efficietgyincreasing the amount of aligned photos from

69% to 99% of the given image set.
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An OT radiometric calibration method was used tovjate absolute surface temperature
at calibrated environmental conditions. RT grougigmence data provided the ability to make in-
flight OT radiometric calibration corrections teetimal imagery flown aboard a multirotor SUAS
in order to achieve a temperature measurementaocof +1.38°C, whereas an on-ground OT

radiometric calibration yielded a measurement amuof £1.60°C.

Due to their low cost compared to cooled TIR camenanimal size and weight, and lack
of moving parts, uncooled TIR cameras have beerhasiped and utilized aboard sUAS platforms
for coverage and spatial crop temperature assessn&indy results indicated that TIRIS could
be further researched in order to produce temperataps for spatial crop water stress at scales
needed for large agricultural production systemedecers, agricultural service providers, and

researchers should consider TIRIS for crop watesstmonitoring applications.
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Appendix A - Supplemental Materials for Chapter 2

SYSTEM FEATURES

FOCAL PLANE ARRAY POWER
Datector Type Uncooled VOx Microbolometer Input Voltage 3 - 5.5V Base configuration
Array Siza 220 x 240 4.5 - 18 V Base configuration with Fea-
ture Board
Pixel Pitch 17 pm ) )
Power Dissipation {nominal) < 1.0 W Base configuration
Spectral Band 8-14 pm < 11 W Base configuration with Feature
Sensitivity (NEAT) & /1.0 @ <50 mK Board
Hoom Fempacyre PoUSE (Powsr over USS) Requires Feature Board
VIDEO FORMAT FEATURES
Fraima ey B0 ¥, 5 fps Available Command Protocols  LVCMOS UART: RS-232: USB 2.0
Analog Video NTSC (4800); PAL (576i) Field switchable imiags Enbancament image Contract Enhancement (ICE™)
Digital Video 14-hit/8-bit LVCMOS or Camera Link® Extornal Syne Yes
Autematic Galn and Level User defined and persistent through it 24.bit RGB output via Camera Link®
power cycles
; Image Control Polarity: White Hot / Black Hot
Digital Zoom-and Pan Region of Interest, E-zoom from 1X - 4X Drientation: Invert / Revert
Nioat-Lnfemity Coctastion -paint with shutter or through lens Symbalogy User selectable options include:
Time to First image < 2.0 seconds Zoom, Polarity and Shutter Notification
MECHANICAL Custom Lens Configuration Storage for up to 5 LUTs
Dimensions See Configuration and Lens Data - Page 4 ENVIRONMENTAL
Camera Cors Weight See Configuration and Lens Data - Page 4 Operating Temp Range -40°C to +80°C
CONFIGURATIONS Shock / Vibration 70 G (all axis) / 4.3 G (three axis)
Base Detector, Blas Board, Processor Board EMC Radiation FCC Class A digital device
With Feature Board Base with Feature Board Hurnidity 5 to 95%, non-condensing

{Back cover also available)

Standards Compliance
Sealed lens/lens mount
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TAMARISK®;,, CONFIGURATION AND LENS DATA

Range*
EFL Weight” Dimensions” Parformance
t/# Fov (Camera + HaiWwsD Man Det. / Rec.
Product View Focus Typa® (H* x V") Lens) 0.5 mm Veh Det. / Rec.
0 No Lens No Lens 29g 34 x30x 30 No Lens
7.5 mm 370m /70
m m
/12 40% x 30 g 2852435
930m f 1B0m
MF
7.5 mm 370 m /70
m m
/12 40" x 30" 4G g 32x27x38
< 930m f 1B0m
11 mm
540 m / 100 m
iz 275% 20° a9g 31 % 26 ¥ 40 :
1360m/ 260 m
MF
21 mm
g990'm / 190 m
/12 15%x 13* Blg 34 %28 x40
2380m/ 490 m
MF
19 mm
. . 890 m / 180 m
12 16%x 12 B5g 36535 41
= 2,380 m / 490 m
35 mm 1,620 m / 320
B20m/ 320 m
/12 Lo 8 B4 37x32x49
i’ £ 3,750m/ 810 m
MF
35 mm )
V12 Gexe?  13dg  ATxaTiEa Looom/320m
2 §%x 6. A7 x4
" 3,750 m / B10 m
“FocusType A= Athermatized, MF = Mancal Focus
* welgnt Weights provided above are Tor the OEA configuration. Add 7 grams for OEAX configurations with the
optional Featurs Board. Add 5 grams whan the optional back shell i Included.
*Dimensions  Sizes provided above are for the OEA configurstion. Add 7.5 mm 1o the dapth for GEAX configurations
with the optional Feature Board.
‘RangeData  50% of detection and on a clear day, other factors apply

TAMARISK®3,, ACCESSORIES

Product Documentation CD
Part #: 1013165 includes the following:

User Manual, Mechanical ICD, Mechanical Drawing Source Files, Blectrical ICD, Software ICO, Camera Control Software,

Camera Control Software User's Guide and Application Notes

Camera Interface Cable Terminated
Part # 1002775-001

137 30-pin cable w@rminated on both ends

{/’

Camera Interface Cable Un-terminated
Part #: 1010520-001

127 30-pin cable terminated on one end

Breakout Box
Part #: 1003785-001

For use with camera modules equipped with the
optsonal Feature Epard

Back Shell
Part #: 1012462-001

Custom it for the CEAX configuration (opan
electronics architeciure with featire board)

Tripod Mounting Bracket

for cameras: 40°A; 15°; 9°MF and no lens
Part #: 1003631-001

for camera: 40°MF

Part # 1003631-002

for camera: 27 *MF

Part #1003631-003

Anodized aluminum with 1/8-20 thread in base

Figure A.1 Tamarisk® 320 Data Specifications

Retaining Rings
for cameras: 40°A; 15°; 9°MF and no lens
Part #: 1002419-001

for camera: 40" MF
Part #: 1002417-001

for camera: 27 *MF
Part #: 1003145001

Anadired alEminum retaining ring
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Specifications

Overview

Thermal Imager

FPA / Digital Video Display Formats
Analog Video Display Formats
Pixel Pitch

Spectral Band

Full Frame Rates

Exportable Frame Rates
Sensitivity (NEAT)

Scene Range (High Gain)
Scene Range (Low Gain)
Time to Image

Factory Optimized Video

Physical Attributes

Size (w/o lens)

Lensed & Lensless Configurations
Available

Precision Mounting Holes (M2x0.4) on
3 sides (2 per side)

Sealable Bulkhead Mounting Feature
on Lens Barrel (M29x1.0), WFQV Only

Radiometric Features

Tau 640 Tau 336 Tau 324
Uncocled VOx Microbolometer
640 x 512 336 x 256 324 % 256
640 x 480 (NTSC); 640 x 512 (PAL}
17 pm 25 pm
7.5-13.5pum
30 Hz (NTSC) 30/60 Hz (NTSC)
25 Hz (PAL) 25/50 Hz (PAL)

7.5 Hz NTSC; 8.3 Hz PAL

<50 mK at f/1.0

-25°C to +135°C -25°C to +100°C -25°C to +135°C
-40°C to +550°C

=5.0 sec =4.0 sec

Yes

Tau 640 Tau 336 Tau 324
1.75" X 1.75" x 1.18"

Yes

Yes

Tau 640 Tau 336 Tau 324

Isotherms See Product Spec page 34 Section 3.3.3.1
Spot Meter Temperatures measured in central 4x4

Improved accuracy, moveable spot meter, image metric data, T-
Advanced Radiometry @ Linear (digital output)

Image Processing & Display

Controls

NTSC/PAL (field switchable)

Image Optimization

Digital Detail Enhancement
Invert/Revert (analog and 8-bit digital)
Polarity Control (black hot/white hot)
Color & Monochrome Palettes (LUTSs)
Digital Zoom

Continuous Zoom

Symbology (256 gray & 256 color)

Digital Video

LVDS (14-bit or 8-bit)

CMOS (14-bit or B-bit)

BT.656 (8-bit)

Camera Link (Expansion Bus Accessory
Maodule)

Slow Video Option (factory configured)

(OEM part number required, additional charge)
Tau 640 Tau 336 Tau 324

Yes

Yes

Yes

Yes

Yes

Yes

2%, 4%, 8x 2%, 4%

Yes

Yes, single-pixel resolution for all models

Tau 640 Tau 336 Tau 324

Yes
Yes
Yes

Yes
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Interfacing Tau 640 Tau 336 Tau 324

Primary Electrical Connector 50-pin Hirose
IsrihLLL;:eF;;)wer(max 2.5 amp during S e

Power Dissipation, steady state <1.2W ~1.0 W
Flat-Field Correction (FFC) Duration =0.5 sec

Power Reduction Switch (disables analog -

viden)

R5-232 Compatible Communication 57,600 & 921,600 baud
External Sync Input/Qutput Yes

Discrete /0 Controls Available Yes (10-camera minimumn)
Settable Splash Screens Yes (10-camera minimum)
User Configurability via SDK & GUI Yes

Dynamic Range Switching No Yes

Figure A.2 FLIR® Tau 2 Data Specifications

141



iPORT CL-U3 External Frame Grabbers

Video Connectivity Solutions

iPORT External Frame

< Highly reliable, 3 Gb/s data transfer rate

Grabber with low, end-to-end latency Connectors
« Surface-mountable enclosure
Video - SDR-26 (Minl CL) for Camera Link
+ @BUS Universal Pro driver
2BUS SDK - Sample applications and docurmentation - 10pin USE 3.0 mieroB Receptacle with
+ Support for CLProtocol use Jocking Soraw connactons
+ Fully compatible firmware load = q
:::nﬂix_nm and « Guarantees delivery of ail packets S0 2P cei fannscto
- Comprehensive data transfer diagnostics - Power over LISE cabie
Power In + GPIO Connector (CL-U3 industrial
Video Formats models only)
Tap Support < Base mode: 1 and 2 taps Powear Out - BotL
- Medium mode: 1,2, and 4 taps gr::l_::'lf industrial models | | cpo ol e rar
Tap Gaometry MDY, AN, IND 1Y, 1X2, 1XA_1Y, 1X4
Video Modes + Mono, BayerGR, BayerRG, BayerGB, 7 I
RayerBG, RGB, BGR, Sparse Color Filter Ordering Information
| amein 9030007 - IPORT CL-U3B External Frame Grabber for Camera Link
Pixel Depth + 8,10, 12, 14, 16 bits, 24-bit RGE SR IO
9030011+ IPORT CLUZE Development Kit incleding 9030007,
Features USB 3.0 cable, and eBUS SDK USE stick.
Pixel Clock = 20 MHz to 85 MHz 903-0009 - iPORT CLUSEIND External Frame Grabber {Industrial
use) for Camera Link Base mode, extended operating
Frame Buffar + 120 MB temperature range. extensive GPI0, and power over
Camaera Link (PaCL).
USE 3.0 based + Connection to low-cosl, easylouse
aquipmant 9030013 - IPORT CLUBEIND Development Kit including 903-
+ USB3 Viston 1.0 compliant 0009, power supply, USB 3.0 cable, and eBUS SDK
USB stick.
Programmable Logic - Advanced Image capture contral
Controller + Integrated with GPIO 903-0008 - IPORT CLU3M External Frame Grabber for Camera
Link Medium mode.
eo : ;Ebtﬁ"ﬁ: e, 903.0012 - iPORT CLU3M Develapment Kit including 903-0008,
p USB 3.0 cable, and eBUS SDK USB stick.
GPIO + 2 LVDS/RS-422/HVTTL/ 224V £30V 903-0040 - IPORT CL-USNHND External Frame Grabber (industrial
{CL-U3 industrial differential or single-ended inputs use) for Camera Link Madium mode, extended
models only) + 2 TTL/LVCMOS Inputs operating temperature range, extensive GPIO, and
+ 3TTL/AVCMOS outputs power over Camera Link (PoCL).
Characteristics 9030014 - IPORT CLAUBNHND Development Kit including $03-
0010, power supply, USB 3.0 cable, and eBUS SDK
Size (L x W x H) and - 38 mm X 83 mm X 51 mm USE stick.
Weight ~Uptoi3zg
« 0°C to 45°C
Operating temperature - S20°C 1o 80°C (CLUZ industrial models
only)
Storage temperatura - A40°C 1o 85°C
External power supply = 11.6V 16 13.0V (CLU3 industrial models
only}
Power consumption - 3.5 W maximum for all models
Pleora Technologies Inc. Tel: +1.613.27T0.0625 © 2014 Pleora Technologies Inc. POAT. vDispisy eBUS, AuibGEY, and NetCommand
ks of Pi=ora inc. information N this dooument is providesd in connection
i::;:";:;?m'smm 0 Fax: +1.613.270.1425 with Fleara Technologies products. Na lioense. express or implied, by estoppels o atheowise,
Canada, K2K 3A2 Email: info@pleora.com e e o e e s

be clamed umewwertrufumers EXNORIE 30004 Rev 7.2 0df 12714

Figure A.3 IPORT CL-U3 External Frame Grabber
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ON-930-44004 shown

larger than actual size.

13 [%) Minimum |
Dimensions: mm (inch)
1 Available in 5 Resistance
1+ Aluminum Housing Values to Fit Your
. Provides Rapid Heat Instrumentation Needs
ON-930 Series Transfer Between the »* 28 AWG Stranded PFA
Sensor and Mounting Insulated Wire with
Surface for Accurate St:ipg;ed Leads Standard
Measurements (See Table for Length)
To Order
Model No. mghztsn*’g:m '"“’;312 {:l":l".‘:mt"“I Tmmum e‘m {in;ﬁ} Tumn
ON-930-44004 2252 Q +0.2°C 100°C (212°F) | 300 mm (127 Stripped
ON-930-44005 3000 @ £0.2°C 100°C (212°F) | 300 mm (127) Stripped
OM-930-44007 5000 2 +0.2°C 100°C {212°F) 300 mm (12%) Stripped
ON-930-44006 10000 @ £0.2°C 100°C (212°F) | 300 mm (127) Stripped
ON-930-44008 30000 2 +0.2°C 100°C (212°F) 300 mm (12%) Stripped
ON-930-44004-40 2752 Q +0.2°C 100°C (212°F) 1 m (40%) Stripped
ON-930-44005-40 3000 @ +0.2°C 100°C (212°F) 1 m (40%) Stripped
ON-930-44007-40 5000 2 +0.2°C 100°C (212°F) 1 m (40%) Stripped
ON-930-44006-40 10000 0 +0.2°C 100°C (212°F) 1 m (40%) Stripped
ON-930-44008-40 30000 0 +0.2°C 100°C {212°F) 1 m (40") Stripped

Naotes: For addifional cable lsngth, add required length (in inches) fo end of the modal number for addiional cost. For a phome plug, add “-PP"
1o the model number for adaitional cost. For tighter interchangeability, substitute the themmisior part number from the table baiow.

Ordering Examples: ON-830-44004, flag-mount thermistor sensor with 8 resisfance of 2252 4 at 25°C and an interchangeability of +0.2°C,

300 mm (127 of cabfe.

ON-830-44034-40-PP, flag-mount thermistor sensor wilh a resisfance of 5000 L1 af 25°C and an interchangeability of +0.15C, T m (40%) of cabls

and & phone plig connecior.

Optional Thermistors

Resistance Maximum Storage and Working
Model @ 25°C Working hmehan?mhillly Temp for Best
Number (<) Temp @ 0to 70°C Stability

44033 2252 75°C (165°F +0.1°C -80to 75°C (-110 to 165°F
44030 3000 75°C (165°F +0.1°C -80to 75°C (-110 to 165°F
44034 5000 75°C (165°F +0.1°C -80to 75°C (-110 to 165°F
44031 10,000 75°C (165°F £0.1°C -80to 75°C (-110 to 165°F
44032 30,000 75°C (165°F +0.1°C -80 to 75°C (-110 to 165°F

Figure A.4 Surface mount thermistors

930-44033 were used for research covered in Chapt2r 3, and 4.
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TIR Camera Chamber Monitor
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Figure A.5 Near-Perfect Black-Body Enclosure Monitoing VI front panel (a) and back panel (b)
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thermistor voltage H thermister temperature

Brror in (No error) e P g rrar in (NO error) 2
(a)
thermistor voltage
2
o 0
thermister temperature
0
(b)
thermistor voltage y=((20000"(-v))/(v)); t=-22.69273585%In(x)+200.818; thermister temperature
(o=l v ] H ¥OBL]
(c)

Figure A.6 The wiring of the Thermistor sub-VI (a), front panel (b), and block diagram (c) show the
input from the logarithmic calibration curve in ord er to convert input voltage into temperature °C.

Folder Name .
i C:\Users\default. ENGG\Dropbox\1 TIRISabview\1 Ground Stat oo |
TIR Camera Evaluation  Jeyaraceooseen view\1 Gr ]

p Fk Name
L L] Record J E(ab_!au 324_lens distortion.csv ‘ [~
- - — | )

©  stop
— « q e el A
Time of Test (min) | Z/|15 | ant o )
Camera Temperature (C) |[37.6 ] Box Ref. P M. CTR P wetRef. "
— "37.6 ‘ o Ref. g . aLcR O a ) WetRef O l

Rel. Humidity (%) |130.2 |

Air Temperature (C) | 1261 |

d°c

AN

KANSAS STATE |

UNIVERSITY

and Agricultural Engineering

Figure A.7 TIR Camera Evaluation VI front panel
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Distortion Model: Polynomial (K1, K2, K3)
Correct Tangential Distortion

N

Faster, less accurate Slower, more accurate
Calibration Results
Image Iﬂ/ of 1
Display |PointDistortion Overlay [=]

Overlay Scale [462 &l =

Mean Error: 0.00584381  inch
Max Error: 0.00629178  inch
Std Dey: 6.289276E-5 inch
% Distortion: 0.151043
Cursor Position; 162, 423 pixels
2.773, 7.714inch
Error at Cursor: 0.00595337  inch
Focal Length: (fu; fy) = (1315.70; 1355.57)

Optical Center; x = 267.718 ; vy = 271,249 pixels
Figure A.8 Tamarisk® 320 lens distortion calibratio results

Distortion Model: Polynomial (K1, K2, K3)

Correct Tangential Distortion
Faster, less accurate Slower, more accurate
Calibration Results
Image 1 7—:;\ of 1
Display Point Distortion Overlay [
OverlayScale (59  [4] %
Mean Error: 0.092141 pixels
Max Error: 0.0960437 pixels
Std Dev: 0.000551235 pixels
% Distortion: 0.30385

Cursor Position: 423, 34 pixels
12.731, 1.673 pixels
Error atCursor:  0.092103 pixels
Focal Length: (fx; fy) = (603.44; 603.90) pixels
Optical Center:  x = 324.894; y = 239.932 pixels

Figure A.9 FLIR® Tau 2 (324) lens distortion calibmation results
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Appendix B - Supplemental Materials for Chapter 4

SYSTEM FEATURES

FOCAL PLANE ARRAY POWER
Detector Type Uncooled VOx Microbolometer Input Voltage 3- 5.5 V Base configuration
Array Format 640 x 480 4.5 - 18 V Base configuration with Feature
) Board
Pixel Size 17 pm
Power Dissipation {nominal) < 1.2 W Base configuration
Spectral Band 8o 14 pm < 1.4 W Base configuration with Feature
Sensitivity [NEDT) /102 < 50 mK Board
Roam Te
T PoliSE (Power ovar USE) Requires Featurs Board
VIDEO FORMAT
FEATURES

Frame Rates

30ps, 9 1ps Avallable Command Protocols  LVCMOS UART: RS-232: USB 2.0
Analog Vid 480i); i

R NYSE (43, PAL (5761} Flatd 5":“““ Image Enhancement Image Contrast Enhancement (ICE™)

Digital Video 14/8-bit LWCMOS,/Camera Link' Extamal Sync Yes
Automatic Gain and Leval US;r Defined, persistent through power Color 24-hit RGB output via Camera Linke®

cycles

. ; Image Control Polarity: White Hot / Black Hot

Digital Zoom and Pan Region of Interest; E-zoom from 1X - 4X Orientation: Invert / Revert
Mon-Unitarmity Corraction 1-point with shutter or through lens Syrmbology User selectable options include:
Tima to First Image < 2.5 seconds Zoom, Polarity and Shutter Notification
MECHANICAL Customn Lens Configuration Storage for up to 5 LUTs
Dimansions See Configuration and Lens Data - Page 5 ENVIRONMENTAL
Camera Core Weight See Configuration and Lens Data - Page 5 Operating Temp Range -40°C to +80°C
CONFIGURATIONS Shock / Vibration 75 G (all axis) / 4.43 G (all axis)
Base Detector, Bias Board, Processor Board EMC Radiation FCC Class A digital device
With Feature Board Base with Feature Board Humidity 5% and 95%, non-condensing

TAMARISK %, CONFIGURATION AND LENS DATA

{Back cover also available)

Standards Compliance
Sealed lens/lens mount

ROHS and WEEE
IP 67

Range”
Effective Horizontal x Verti- Weight" Dimensions” Performance
Focal cal FOV Fov (with lens HxWxD Detection / Recognition
Length H*xV*) {mirads) e in grams) 0.5 mm (meters) Focus Type
No Lens No Lens Nolens Nolens 65 46x40x31 No Lens No Lens
- * Man: 335 / 60
7.5 mm 20° x 67 245 14 100 46X 40%39 (oA B 560 Athermal
= e Man: 390 / 75
9 mm 70° x 52 18 /14 105 46X 40 % 46 Goldche 606+ 60 Athermal
= = Man: 550 / 100
128mm  49.8°x37 135 /14 110 46X 46 % 50 il 088 7580 Athermal
5 i Man: 640 / 120
1425mm  44°x33 119 /14 110 46x40x51 a8 § 340 Athermal
= = Man: TA5 / 140
167mm  375°x28 101 /125 90 46X 40x 40 e 30, 5 308 Athermal
Man: 1,030 / 195
2 s
25mm  248°x186 0.58 /1.2 115 46X 40x 52 ik 2 01 00 Athermal
5 < Man: 1,450 / 285
I/mm  176°x132 0.48 /1.2 165 50 47 x 59 il 550 7 25 Athermal
e Man: 2,105 / 425
50 mm 12.4° x93 0.34 /12 295 58 x 58 x 86 kA0 £ L0 Athermal
5 mm 96" x7.2° 0.25 /12 525 73x73x 106 Mipsit 2,0 /008 Athermal

Figure B.10 Tamarisk® 640 Data Specifications

Vehicle: 5,950 / 1.405
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Distortion Model: Polynomial (K1, K2, K3)
Correct Tangential Distortion

Faster, less accurate Slower, mare accurate

Calibration Results

Image L a1
Display Point Distortion Cverlay El
Overlay Scale %7 | |
Mean Error: 0.0111733 inch
Max Errar: 0.0113283 inch
Std Dev: 3.18302E-5 inch
%o Distortion: 0. 186056
Cursor Position: 218, 475 pixels
8.238, 1.355inch
Error at Cursor: 0.0111915 inch
Focal Length: (fx; fy) = (1480.85; 1485.00)

Optical Center; % = 274.953 ; y = 283,328 pixels

Click Add Images to acquire additional grid images to
improve the calibration accuracy,

Figure B.11 Tamarisk® 640 lens calibration results

—
o

Start myRIO ] ‘ 10/27/2014 12:30:45.0.1250

{ Save Calibration _

1 Image 2 : (58 | um. Re ane‘ 28 |
Wood Ref. Panel

& Calibrate

Wet Ref. Panel ||

CameraGain’ 3538

Camera Level ‘ 1550

Center Temp.

Suggest Level Setting || 1562 |

> Satellites

Altitude

Radiometric Curve Temp Range (C))

2 K-STATE “ Y (C) = 0.079522 x X (Pixel Intensity) + 15 | [

]\ 124 |

Figure B.12 OT Calibration VI front panel
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Appendix C - Software CD

1. Complete LabVIEW™ Projects
a. Vis
i. TIR Camera Evaluation
ii. TIR Field Calibration
iii. Automated Greenhouse Monitoring System

iv. Auto Analyze Greenhouse Monitoring Data for Indivadl Crop Water
Stress

v. AVI Segmentation to Filtered Images
b. Complete Sub-Vis
i. Thermistor Sensor
ii. Air Temperature/Relative Humidity Transmitter Semso
lii. Upload and Download to USB
iv. GPS Read
v. Tamarisk® 320 Lens Distortion Correction
vi. Tamarisk® 640 Lens Distortion Correction
vii. FLIR® Tau 2 Lens Distortion Correction
viii. Save to CSV File
ix. Upload from CSV File
c. Remote Target Vls
i. MyRIO TIR Field Calibration and Flight ReferencetBa
ii. MyRIO TIR Cabinet Monitoring
lii. SBRIO Greenhouse Monitoring

2. Complete Agisoft™ Professional Image Bundles
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