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Abstract 

Globally, wheat (Triticum aestivum L.) is the second most widely grown cereal grain and 

is primarily used as a food crop. To meet the demands for human consumption, cultivars must 

possess suitable end-use quality for release and acceptability. However, breeding for quality 

traits is often considered a secondary goal, largely due to amount of seed needed and overall 

expense of such testing. Without testing and selection, many undesirable materials tend to be 

advanced.  

Here we demonstrate two methods, mega-genome-wide association mapping and 

genomic selection, to enhance selection accuracy for quality traits in the CIMMYT bread wheat 

breeding program. The methods were developed using high-density SNPs detected from 

genotyping-by-sequencing and processing and end-use quality evaluations from unbalanced 

yield trial entries (n = 4,095) during 2009 to 2014, at Ciudad Obregon, Sonora, Mexico. 

Genome-wide association mapping, with covariates for population structure and kinship, 

was applied for each trait to each site-year individually and results were combined across years 

in a mega-analysis using an inverse variance, fixed effect model in JMP-Genomics. This method 

presents a new way to detect genes of interest within a breeding program and develop markers 

for selection of these traits, which can then be used in earlier generations. 

Genomic selection prediction models were developed using ridge regression, Gaussian 

kernel, partial least squares, elastic net, and random forest models in R. With these predictions 

genomic selection (GS) can be applied at earlier stages and undesirable materials culled before 

implementing expensive yield and quality screenings. In general, prediction accuracy increased 

over time as more data was available to train the model. Based on these prediction accuracies, we 

conclude that genomic selection can be a useful tool to facilitate earlier generation selection for 

end-use quality in CIMMYT bread wheat breeding.  

Genomic selection was conducted for processing and end-use quality traits in the Kansas 

hard red winter wheat breeding unit. Genomic predictions demonstrate increases in accuracy 

with added data over time. These data demonstrate that current genomic selection models will 

need more data to continue improvement in prediction accuracy. 
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Abstract 

Globally, wheat (Triticum aestivum L.) is the second most widely grown cereal grain and 

is primarily used as a food crop. To meet the demands for human consumption, cultivars must 

possess suitable end-use quality for release and acceptability. However, breeding for quality 

traits is often considered a secondary goal, largely due to amount of seed needed and overall 

expense of such testing. Without testing and selection, many undesirable materials tend to be 

advanced.  

Here we demonstrate two methods, mega-genome-wide association mapping and 

genomic selection, to enhance selection accuracy for quality traits in the CIMMYT bread wheat 

breeding program. The methods were developed using high-density SNPs detected from 

genotyping-by-sequencing and processing and end-use quality evaluations from unbalanced 

yield trial entries (n = 4,095) during 2009 to 2014, at Ciudad Obregon, Sonora, Mexico. 

Genome-wide association mapping, with covariates for population structure and kinship, 

was applied for each trait to each site-year individually and results were combined across years 

in a mega-analysis using an inverse variance, fixed effect model in JMP-Genomics. This method 

presents a new way to detect genes of interest within a breeding program and develop markers 

for selection of these traits, which can then be used in earlier generations. 

Genomic selection prediction models were developed using ridge regression, Gaussian 

kernel, partial least squares, elastic net, and random forest models in R. With these predictions 

genomic selection (GS) can be applied at earlier stages and undesirable materials culled before 

implementing expensive yield and quality screenings. In general, prediction accuracy increased 

over time as more data was available to train the model. Based on these prediction accuracies, we 

conclude that genomic selection can be a useful tool to facilitate earlier generation selection for 

end-use quality in CIMMYT bread wheat breeding.  

Genomic selection was conducted for processing and end-use quality traits in the Kansas 

hard red winter wheat breeding unit. Genomic predictions demonstrate increases in accuracy 

with added data over time. These data demonstrate that current genomic selection models will 

need more data to continue improvement in prediction accuracy. 
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Chapter 1 - Literature review 

The human population is growing exponentially with current projections predicting a 

population of greater than 9 billion by the year 2050 (Gerland, et al., 2014). Currently bread 

wheat (Triticum aestivum L.) per capita consumption is 65 kg per year, supplying nearly 16 g of 

protein daily on average for each person in the world (Faostat, 2013). This consumption pattern 

is increasing fastest in the world’s least developed countries, which were predicted to have the 

largest population increase over the next century (Faostat, 2013, Gerland, et al., 2014). An 

intersection of improved agronomic practices and improved crop varieties will be imperative to 

meet the amount of food available for this population. While overall production must increase, 

there is also growing demand to produce higher-quality and more nutritive food products. Here, 

we review testing and genetic control of wheat processing and end-use quality for a wheat 

breeding program. 

Bread wheat (Triticum aestivum L.) flour is traditionally used for a variety of products 

including leavened, unleavened and steamed breads, as well as cookies, cakes, and pastries. Each 

of these products demands flours with specific best-fit quality profile (Morris, 2002, Peña, 2002). 

Additionally, wheat is used for malt in brewing, ready-to-eat breakfast cereals, and there are 

growing markets for healthier whole-wheat alternatives and convenience foods such as frozen or 

refrigerated dough products which are purchased ready-to-cook. These food products represent 

even wider specific end-use quality requirements for optimal production in an industrial process.  

End-use and processing quality for wheat requires a multi-faceted description. Several 

phenotypes using wheat as grain, flour, dough, and final products must be assessed to determine 

an overall best end-use product, for a given wheat cultivar or breeding line (Peña, 2002). In 

general, hard grain with high protein content and strong, extensible gluten is marketed for 

making industrial pan bread, whereas soft grain with low protein content and weak, extensible 

gluten is marketed for use in making cookies, cakes, and pastries (Peña, 2002). Many tests must 

be considered to ensure that wheat lines fall into basic marketing classes, or if there are alternate 

end-use products for which a wheat line is well suited to produce.  

The tests of grain can be done on a small scale, quickly, and cheaply. Several of these 

tests can be conducted on small samples, many using near infrared spectroscopy (NIRS) or 
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single kernel characterization (AACC, 2000), making them possible to implement in high 

throughput programs. However, dough rheology and end-use tests require larger quantities of 

grain for milling into flour, which implies these tests cannot be conducted until later in the 

breeding program. In addition, tests conducted post-milling are, in general, more costly and time 

consuming, which indicates they will likely be performed on fewer samples. Independently these 

tests can be useful for material culling thresholds, but are often interpreted collectively or used to 

inform for further stages of testing. Overall, selecting for wheat processing and end-use quality is 

an art and science, as are the other parts of wheat breeding.   

 Grain testing 

Wheat grain is assessed for pre-milling characteristics, which impact marketing. These 

tests include kernel weight, test weight per volume, color, hardness, vitreousness of the kernel, 

and total protein content. In industrial markets, kernel size, volume, and protein tests are often 

used for bulk purchasing and allow the wheat to be sorted in large marketing classes (e.g. hard 

white, hard red winter, soft white, etc.), which will later impact milling and flour mixing by 

millers to ensure consistent end-use products over time. In local markets in the developing world, 

the visual characteristics of a cultivar are extremely important, as much of this wheat will be 

milled and used in the home. 

Grain color is an indication of amount of phlobaphene, a polyphenol compound, in the 

aluerone layer of wheat grain (Miyamoto and Everson, 1958). Grain color can be determined 

visually or through digital imaging, and is typically classified as either white or red, although 

blue grain is also found (Abdel-Aal and Hucl, 2003). White grain is favored in local, soft, and 

whole-wheat end-use product markets. Both red and white grains are used in bread-making. 

Though grain color does not impact endosperm quality or color, regional preference is common 

for red or white.  

Grain color is genetically controlled by the three R genes on the long arms of the series 3 

chromosomes (McIntosh, et al., 2000), which are transcription factors for the flavonoid 

biosynthesis pathway (Himi and Noda, 2005). Since these transcription factors inhibit the 

pathway, red (a allele) is dominant to white (b allele) at each locus. Additional genetic and 

environmental variation has been found for grain color beyond the three major alleles (Matus-

Cadiz, et al., 2003). 
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Grain weight per kernel and volume are important characteristics to milling efficiency of 

wheat. Grain weight is often indicated as thousand kernel weight (TKW). TKW can be measured 

on using machines which analyze individual seeds, or using a grain counter followed by 

weighing a specific number of kernels (AACC, 2000). Test weight measures grain weight per 

volume and is represented in lb bu
-1

 or kg hl
-1

. There are several instruments available to 

measure weight per unit volume at varying scales (AACC, 2000).  

Grain weight is a parameter of total grain yield along with grains per spike and spikes per 

unit area. Thus, grain weight is typically highly correlated with grain yield, which is highly 

impacted by environment and genotype by environment interactions. Grain weight per kernel 

and per volume were found to have increased in CIMMYT and Great Plains bread wheats over 

time and was significantly correlated with yield (Cox, et al., 1988, Aisawi, et al., 2015). The 

grain protein content homeologue on chromosome 6A was recently found to also impact grain 

yield and protein content as it was associated with senescence (Cormier, et al., 2015). Several 

other unannotated genetic regions for TKW and test weight have been found across the genome 

using association mapping strategies (Breseghello and Sorrells, 2006, Liu, et al., 2010, 

Neumann, et al., 2010, Reif, et al., 2011, Mir, et al., 2012, Edae, et al., 2014). 

Wheat endosperm texture also plays an important role in milling and end-use targets. 

Hardness refers to the strength required to crush wheat grain. Hardness can be measured by 

particle size index, force required to crush grains, or NIR calibration (AACC, 2000). Hard and 

soft wheat differ in the strength which starch granules are attached to the protein matrix (Barlow, 

et al., 1973). Hard wheat has much stronger attachment, thus requiring more force in milling and 

damaging more starch than in soft endosperm wheat (Giroux and Morris, 1997). Higher damaged 

starch increases the amount of water which may be absorbed by the dough. Higher amounts of 

water absorbed are favored in bread baking, as opposed to making cookies and pastries.  

Genetically, hardness is qualitatively controlled by Ha hardness genes located on the 

short arm of chromosome 5D, which control hardness class (Morris, 2002, McIntosh, et al., 

2013). Wheat lines with wild-type alleles have soft grain, while wheat with null alleles at these 

loci have hard grain, as is the case in durum wheat which is missing these two loci. Previous 

results have shown very high proportions of haplotype of hardness genes Pina-D1-b with Pinb-

D1-a in CIMMYT breeding material (Lillemo, et al., 2006). While the hardness loci control 

much genetic variation for grain hardness, other genetic modifiers are present which help 



4 

account for the variation found within class (Morris, 2002, Pasha, et al., 2010). The largest 

portion of variance in an association study has been attributed to the Pin alleles, however other 

regions were found which also demonstrated genetic control of grain hardness (Bordes, et al., 

2011).  

Grain protein content is a pre-milling test which is both correlated to yield and quality 

performance metrics. Protein can be measured through a Kjeldahl combustion method or 

estimated by an NIR calibration to this method (AACC, 2000). Grain protein content is highly 

correlated with grain hardness, dough strength (Borghi, et al., 1995, Blandino, et al., 2015), loaf 

volume in pan breads (Bushuk, 1997), and overall baking of hard wheats quality (Garg, et al., 

2006). However, grain protein content is often negatively correlated with yield, as increased 

grain fill is attributed to increase in starch deposition, and is highly impacted by environment and 

agronomic management (Terman, et al., 1969, Borghi, et al., 1995, Blandino, et al., 2015). Still, 

increases have been made in protein content, as well as TKW, over time due to breeding in the 

Great Plains and CIMMYT  (Cox, et al., 1989, Aisawi, et al., 2015).   

One gene from durum wheat which was found to increase grain protein content is Gpc-B1 

on the short arm of chromosome 6B (Uauy, et al., 2006). This gene has homeologues on the 

other 6 series chromosomes as well as on 2 series chromosomes (Cormier, et al., 2015). Though 

Gpc-B1 has been known for a longer period of time, the homeologue on chromosome 6A is the 

one found to show most genetic variation in a diverse panel of bread wheats (Cormier, et al., 

2015). Alleles of this gene were found to either promote or delay senescence, which would 

change the amount of grain filling duration, thus impacting final yield and grain protein 

concentration. Additionally, studies have shown multiple loci in locations across the genome 

demonstrating genetic control for grain protein concentration (Neumann, et al., 2010, Bordes, et 

al., 2011, Reif, et al., 2011). 

Flour yield is impacted by TKW and test weight, as discussed earlier, as well as genetic 

and environmental factor. Increases in flour yield are beneficial to millers, but it is important to 

note that optimal flour yield is attained when mill rollers and sieves are set appropriately for the 

common shape and size of a specific wheat line. As such, experimental test mills cannot be reset 

for each genotype and commercial mills are milling a mixture of many different varieties unless 

a cultivar is specifically sourced. Significant associations marker-trait associations for flour yield 

have been found on wheat chromosomes 2D and 5B (Breseghello and Sorrells, 2006).  
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 Endosperm proteins 

Wheat is special among cereals for its viscoelastic ability to rise and extend, while still 

retaining shape and connectivity. The viscoelastic properties of wheat dough originate from the 

storage proteins; glutenins and gliadins (Payne, et al., 1987, Garg, et al., 2006, Zheng, et al., 

2009, Delcour and Hoseney, 2010). Glutenins are responsible for the elasticity and resistance to 

extension properties of wheat dough (Delcour and Hoseney, 2010). The multiallelic glutenin 

profile refers to alleles present in the high molecular weight glutenins Glu-A1, Glu-B1, and Glu-

D1 on the long arms of 1A, 1B, and 1D, respectively, and low molecular weight glutenin alleles 

Glu-A3, Glu-B3, and Glu-D3 on the short arms of 1A, 1B, and 1D, respectively (Payne and 

Lawrence, 1983, Payne, et al., 1987, Branlard, et al., 1992). The low molecular weight glutenins 

are in tight linkage with the γ and ω Gli-1 gliadins Gli-A1, Gli-B1, Gli-D1 on chromosomes 1A, 

1B, 1D, respectively (Payne and Lawrence, 1983, Payne, et al., 1987). Additionally there are α 

and β Gli-2 gliadins  Gli-A2, Gli-B2, and Gli-D2, on chromosomes 6A, 6B, and 6D, respectively 

(Payne and Lawrence, 1983, Payne, et al., 1987). The gliadins are responsible for the cohesive, 

visousproperties of wheat dough, which allow it to rise and retain gas in the leavening process 

(Delcour and Hoseney, 2010). Additionally, other constituents of the wheat kernel, such as non-

starch polysaccharides, enzymes, oligosaccharides, phytic acid, lipids, vitamins and minerals, 

and damaged starch may also have impacts on dough rheology and end-use quality (Delcour and 

Hoseney, 2010). 

Flour sodium dodecyl sulfate (SDS) sedimentation is correlated with both protein 

concentration and protein quality. In this test flour is mixed with water and rested, then lactic 

acid is added and solution is again rested. The volume of sediments precipitated is measured. 

High sedimentation volumes are associated with greater protein and higher gluten strength 

(AACC, 2000). Micro SDS-sedimentation can be used as a high-throughput test of wheat flour to 

screen many lines quickly for gluten strength, which indicates it will be impacted by the type and 

quantity of glutenins present. Additionally, significant marker-trait associations for small 

quantitative traits controlling SDS-sedimentation were found on 2B, 3A, and 7A (Neumann, et 

al., 2010), as well as 1B, 2A, 2D, and 5B in a diversity panel (Reif, et al., 2011). 

 Dough rheology 

Flour is mixed with water to create viscoelastic dough.  In this process gluten is formed 

as a complex protein aggregate of the glutenins and gliadins. The gluten-containing dough then 
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has the ability to maintain a cohesive unit which is both elastic and extensible. The dough can be 

used in leavened breads which can rise by trapping carbon dioxide within its structure. The exact 

properties of wheat dough highly impact the optimal end-use product (Peña, 2002).  

Dough rheology traits measure attributes related to performance of wheat dough during 

and following mixing and resting. Several tests are available which may measure gluten strength, 

extensibility, elasticity, optimum dough development times, tolerance to over mixing, optimum 

water absorption, starch gelatinization, and starch pasting. Mixograph, farinograph, alveograph, 

and other equipment are also widely used in dough rheology testing.  

These tests are all impacted by amount of water added to the dough. All methods have 

first estimates of water absorption criteria in the AACC (2000) method, but an experienced 

researcher may need to optimize water absorption from the estimates made in the method.  

Alternatively, optimal water absorption may be estimated in using solvent retention capacity 

tests (Guzmán, et al., 2015). 

The mixograph (National Manufacturing, Lincoln, NE) records the resistance of dough 

mixing on the pins in the mixer (AACC, 2000). The height and width of the resistance curve 

changes as the flour is initially absorbing water, developing to the optimal mixing time (peak), 

through time beyond optimal mix (breakdown). The optimal mixing time is important as 

commercial bakeries demand a specific interval of optimal mixing times and for use in empirical 

bake tests. Wheat gluten strength can be measured digitally and through assessment of the 

overall mixing curve. Weak gluten wheats have short mixing time and low tolerance to 

overmixing. Overmixing tolerance is measured by the width of the curve past peak mix time. 

Digitally, using the MixSmart software (National Manufacturing, Lincoln, NE), percent torque at 

the optimal mixing time is an indicator of gluten strength, mix time, and over mixing tolerance 

can all be measured.  

Alveograph is a test of dough functionality which measures the force required to make 

and break a bubble blown in rested wheat dough. Gluten strength and extensibility can be 

measured through the curve recorded over time. Dough strength is highly controlled by glutenins 

(Payne, et al., 1987, Zheng, et al., 2009).  

 End-use testing 

Dough rheology tests are useful for determining various attributes of the wheat line and 

its protein quality. Dough rheology tests and grain protein tests are moderate to highly correlated 
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with bread baking volume (Miller, et al., 1956, Kaur, et al., 2004). However, they do not explain 

full phenotypic variation in wheat bread loaf volume.  

Bread making is a very complex system. Baking will be impacted by water and additives 

applied, mixing speed and time, resting periods, and sheeting, as well as the baker. Controlled 

wheat bread making processes control for these variations on various scale sizes of the testing 

(AACC, 2000).  

In addition to the flour and dough properties, genetic control for wheat bread loaf volume 

have been recently identified in the wheat bread making, wbm, gene found using RNA-seq 

(Furtado, et al., 2015). This gene is expressed 14 to 30 days post anthesis. This may control more 

of the previously unknown variance from protein content and protein quality to final end-use 

product. 

In summary, wheat processing and end-use quality testing is a multi-faceted process 

involving screening of several traits to determine overall acceptability of a wheat line for an end-

use product. Many tests are available which can demonstrate a characteristic of wheat grain or 

dough properties, but these individual properties do not necessarily indicate that an overall good 

end-use product can always been made. Thus, selecting for wheat quality is an art and a science. 

However, recent efforts to digitize and increase throughput of wheat quality testing may help in 

the breeding process as more modern wheat breeding programs increase their throughput. 
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 Abstract 

Wheat (Triticum aestivum L.) is the second most widely grown cereal grain, primarily 

used as a food crop. To meet the demands for human consumption, cultivars must possess 

suitable end-use quality for release and acceptability. However, breeding for quality traits is 

often considered a secondary goal, largely due to amount of seed needed and overall expense of 

such testing. Without testing and selection, many undesirable materials tend to be advanced. 

Here we develop and validate whole genome prediction models for end-use quality phenotypes 

routinely generated by the CIMMYT bread wheat breeding program.  With these predictions 

genomic selection (GS) can be applied at earlier stages and undesirable materials culled before 

implementing expensive yield and quality screenings. Prediction accuracy was tested using 

quality data from unbalanced yield trials from 2009 to 2014 (n = 4,095) at Ciudad Obregon, 

Mexico evaluated for quality parameters: test weight, thousand kernel weight, grain hardness, 

grain and flour protein, flour yield, SDS-sedimentation, Mixograph and Alveograph 

performance, and bread loaf volume. High-density markers were generated with genotyping-by-

sequencing and SNPs were imputed.  Prediction models were developed using ridge regression, 

Gaussian kernel, partial least squares, elastic net, and random forest models in R. In general, 

prediction accuracy increased over time as more data was available to train the model. Mean 

forward prediction accuracies (r) for quality parameters in 2014 ranged from 0.262 (grain 

hardness) to 0.593 (mix-time). Based on these prediction accuracies, we conclude that GS can be 

a useful tool to facilitate early generation selection for end-use quality in wheat.  
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 Introduction 

The human population is growing exponentially with current projections predicting a 

population of greater than 9 billion by the year 2050 (Gerland, et al., 2014). An intersection of 

improved agronomic practices and improved crop varieties will be imperative to meet the food 

required for this population. While overall production must increase, there is also growing 

demand to produce higher-quality food products. Bread wheat (Triticum aestivum L.) flour is 

used for a variety of products including leavened breads, unleavened breads, noodles, cookies, 

cakes, and pastries.  Each of these products demands flours with specific best-fit quality profile 

(Peña, 2002).  

End-use and processing quality for wheat is difficult to define by any one given 

parameter. Several phenotypes using wheat as grain, flour, dough, and final products must be 

assessed to determine an overall best end-use product, for a given wheat cultivar or breeding 

line. Typically, hard grain with high protein and strong and extensible gluten is acceptable for 

making industrial pan bread, whereas soft grain with low protein and weak and extensible gluten 

is more acceptable for cookies, cakes, and pastries (Peña, 2002). However, many tests must be 

considered to ensure that wheat lines fall into these basic marketing classes. Some of these tests 

are useful on their own with general selection thresholds, whereas others should be interpreted 

collectively or are used to inform for further stages of testing. Overall, selecting for wheat 

processing and end-use quality is an art and science, as are the other parts of wheat breeding.   

Wheat grain is assessed for pre-milling characteristics, which impact marketing. These 

tests include kernel weight, weight per volume, color, hardness, vitreousness of the kernel, and 

total protein content. Many of these characteristics are strongly correlated with grain yield with 

varying levels of heritability. Grain weight was found to have increased in CIMMYT bread 

wheats over time and was significantly correlated with yield (Aisawi, et al., 2015).  In contrast, 

grain protein content is often negatively correlated with yield and is highly impacted by 

environment and agronomic management (Terman, et al., 1969).  

Wheat endosperm texture also plays an important role in milling and end-use targets. 

Hard and soft wheat differ in the strength of which starch granules are attached to the protein 

matrix.  Hard wheat has much stronger attachment, thus requiring more force in milling and 

damaging more starch than in soft endosperm wheat (Giroux and Morris, 1997). Higher damaged 

starch increases the amount of water which may be absorbed by the dough, and higher amounts 
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of water are favored in bread baking as compared to making cookies and pastries. Genetically, 

hardness is qualitatively controlled by Ha hardness genes located on the short arm of 

chromosome 5D.  In industrial markets, kernel size, volume, and protein tests are often used for 

bulk purchasing and allow the wheat to be sorted in large marketing classes (e.g. hard white, 

hard red winter, soft white, etc.), which will later impact milling and flour mixing by millers to 

ensure consistent end-use products over time.  In local markets in the developing world, the 

visual characteristics of a cultivar are extremely important as much of this wheat will be milled 

and used in the home. 

The next stage of testing produces information regarding milling value and protein 

concentration of the flour. Increases in flour yield can be beneficial to millers, but it is important 

to note that optimal flour yield is attained when mill rollers and sieves are set appropriately for 

the common shape and size of a specific wheat line.  As such, experimental test mills cannot be 

reset for each genotype and commercial mills are running a mixture of all different varieties. The 

other two tests measure the amount of protein in the flour sample, as this is very important to be 

correct for further testing. 

Wheat is special among cereals for its viscoelastic ability to rise and extend, while still 

retaining shape and connectivity. Dough rheology and end-use tests involve mixing flour into 

dough to determine the viscoelastic properties of strength, elasticity, and tolerance. These tests 

are time consuming, costly, and require large quantities of flour. However, each of these tests are 

collectively necessary to predict an ideal end-use product for a specific wheat line (Peña, 2002).  

The viscoelastic properties of wheat mostly originate from the storage proteins; glutenins 

and gliadins (Payne, et al., 1987, Garg, et al., 2006, Zheng, et al., 2009, Delcour and Hoseney, 

2010). Glutenins are responsible for the elasticity and resistance to extension properties of wheat 

flour dough. The multiallelic glutenin profile (Payne and Lawrence, 1983, Payne, et al., 1987) in 

the high molecular weight glutenin alleles Glu-A1, Glu-B1, and Glu-D1 are on the long arms of 

1A, 1B, and 1D, and low molecular weight glutenin alleles Glu-A3, Glu-B3, and Glu-D3 are on 

the short arms of 1A, 1B, and 1D (Branlard, et al., 1992). Gliadins, Gli-A1, Gli-B1, Gli-D1 Gli-

A2, Gli-B2, and Gli-D2, on chromosomes 1A, 1B, 1D, 6A, 6B, and 6D, respectively (Payne and 

Lawrence, 1983, Payne, et al., 1987), are responsible for the cohesive properties of wheat dough, 

which allow it to rise and retain gas.  Additionally, other constituents of the wheat kernel, such as 



16 

non-starch polysaccharides, enzymes, oligosaccharides, phytic acid, lipids, vitamins and 

minerals, and damaged starch may also have impacts on dough rheology and end-use quality. 

Historically, wheat breeding has focused on using yield and visual selection for lines with 

improved agronomic performance, and disease resistance. Quality traits are generally evaluated 

as a final performance test because the tests are intensive, expensive, and usually cannot occur 

until later in the breeding program due to the large amount of grain necessary. This often results 

in advancement of promising wheat cultivars that should not be released due to poor quality. In 

addition, there is limitation for developing wheat cultivars with good and specialized end-use 

traits. Accurate processing and end-use quality prediction models would allow breeding 

programs to cull unacceptable lines or target specific lines earlier in the pipeline, before money 

and time was invested in lines which would not pass the final test.  

Due to the polygenic nature of these traits, marker assisted selection with previously 

identified significant markers is not a fully applicable solution to the problem (Heffner, et al., 

2011). Genomic selection (GS) models, however, utilize high-density genotype data sets 

simultaneously model all additive genetic variance. These models use entries with known 

phenotype and genotype to train an algorithm, cross-validate the prediction, and then predict 

quantitative traits in materials with only genotype information available. This approach was first 

introduced into animal breeding by Meuwissen, et al. (2001)advocating for ridge regression and 

Bayesian approaches to solve this problem. Their claim that attaining large amount of markers 

would become cheaper than phenotyping each individual is coming to fruition (Poland and Rife, 

2012). Many methods have been proposed that handle the problem of multicollinearity from 

massively more predictors (markers) than observations available (Lorenz, et al., 2011). Taking 

all this into consideration, GS could serve as a way to predict processing and end-use quality 

phenotypes earlier in the pipeline before breeders have enough seed for testing and allow 

predictions of more individuals than would be possible to phenotype.   

Genomic selection has been tested many times for wheat yield and disease resistance 

(Heffner, et al., 2009, Crossa, et al., 2010, Rutkoski, et al., 2010, Rutkoski, et al., 2012, Dawson, 

et al., 2013, Crossa, et al., 2014, Rutkoski, et al., 2014), but not thoroughly for wheat processing 

and end-use quality. GS was tested in wheat end-use quality in a biparental population and a 

small breeding population (Heffner, et al., 2009, Heffner, et al., 2011).  These studies utilized 

cross-validation, rather than forward prediction approaches and used soft wheat quality traits 
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from a small market. They did find processing and end-use quality traits to be more highly 

predictive than grain yield. Here we conducted forward prediction in the breeding program with 

GS models on all end-use and processing quality traits regularly assessed by the CIMMYT bread 

wheat breading program. The objective of this study was to determine prediction accuracy of 

several GS models in several wheat processing and end-use traits over time, with the intention of 

introducing this method to the CIMMYT bread wheat breeding program. 

 

 Materials and Methods 

 Germplasm 

Wheat lines used in training and testing the GS models were from first year yield trial 

materials advanced to quality testing in CIMMYT bread wheat breeding program.  All wheat 

lines were grown in Ciudad Obregon, Sonora, Mexico, over subsequent years.  However, a given 

line was only evaluated for quality in one year, to allow for the largest, least selected training set 

possible. Materials were planted in a lattice design with 28 entries to every 2 checks, in 2 

replications. Only those selected for superior yield or other agronomic performance were 

advanced to processing and end-use quality testing. A single sample from one replication was 

used to measure grain, flour, dough, and end-use quality phenotypes for each selected wheat line.   

 Phenotypes 

Grain morphological characteristics were evaluated with digital image system SeedCount 

SC5000 (Next Instruments, Australia) to obtain thousand kernel weight (TKW, g) and test 

weight (TESTWT, kg hl
-1

). Grain protein (GRNPRO), hardness (GRNHRD), and moisture 

content were determined by near-infrared spectroscopy (NIRS), using NIR Systems 6500 (Foss, 

Denmark) by the official methods of the American Association of Cereal Chemists (AACC) 39-

10, 39-70A, and 39-00, respectively (AACC, 2000). GRNPRO was reported at 12.5% moisture 

basis. Grain samples were tempered and milled using a Brabender Quadrumat Jr. experimental 

mill (C. W. Brabender OHG, Germany). Flour protein (FLRPRO) and moisture content were 

estimated by NIRS using an Antaris II FT-NIR Analyzer (Thermo, USA). Both NIRS 

instruments were calibrated for particle size index (AACC Method 55-30), moisture (AACC 

Method 44-15A), and protein (AACC Method 46-11A). Sodium dodecyl sulfate (SDS)- 

sedimentation (FLRSDS) was conducted as in Peña, et al. (1990). 
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Dough rheology was assessed using the Mixograph (National Mfg. Co., USA) according 

to AACC Method 54-40A (AACC, 2000), and the Chopin Alveograph (Tripette & Renaud, 

France), AACC Method 54-30A (AACC, 2000). These methods were adjusted to allow for 

variable water content based on Solvent Retention Capacity, as in Guzmán, et al. (2015). 

Optimal mix time (MIXTIM) and torque (MP) were measured by Mixograph. Dough strength, 

work value (ALVW), and tenacity vs. extensibility, the ratio of height to length (P/L, ALVPL), 

were measured using Alveograph. Alveograph P/L values were log transformed prior to analysis 

for normalization. Bread was baked to test end-use productivity as pan bread with AACC 

Method 10-09 (AACC, 2000). Pup loaf baking also utilized the Guzmán, et al. (2015) adjustment 

for optimal water absorption. Bread loaf volume (LOFVOL) was measured by rapeseed 

displacement in accordance with AACC Method 10-05.01 (AACC, 2000).   

 Genotypes 

Leaf tissue was collected and bulked from five plants per line and DNA was extracted 

using a modified CTAB protocol (Saghai-Maroof, et al., 1984).  DNA was quantified and 

normalized, then digested with a two-enzyme approach, barcoded, amplified, then sequenced 

(Poland, et al., 2012). Sequences were trimmed to 64 base pairs, unique sequence tags were 

aligned, and single nucleotide polymorphisms (SNPs) were recoded numerically as (-1, 0, 1) 

using a modification of TASSEL 5v2 (Bradbury, et al., 2007) in Java script. The SNPs were 

aligned with the IWGSC draft reference map (International Wheat Genome Sequencing, 2014) 

using Bowtie 2 (Langmead and Salzberg, 2012). SNPs were investigated for percent missing and 

heterozygosity. Markers with greater than 20% missing data or greater than 20% percent 

heterozygous and individuals with greater than 80% missing data were removed from further 

analysis. Remaining missing SNPs were imputed using mean imputation based on marker 

frequency using R (R Development Core Team, 2014) package ‘rrBLUP’ (Endelman, 2011). 

 Analyses 

Genomic selection models were constructed using packages in R (R Development Core 

Team, 2014).  Ridge regression best linear unbiased predictor (RR-BLUP) and reproducing 

kernel Hilbert space, here referred to as Gaussian kernel (GAUSS), models were conducted 

using the package ’rrBLUP’, as described in Endelman (2011). Partial least squares regression 

(PLSR), elastic net (EN), and random forest (RF) were tested using R packages ‘pls’ (Mevik and 
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Wehrens, 2007), ‘glmnet’ (Friedman, et al., 2009), and ‘randomForest’ (Liaw and Wiener, 

2002), respectively. These models were combined by Gaynor (2015) into R package ‘GSwGBS’.  

The average prediction across prediction models was calculated using standardized 

values to avoid overly weighting the average towards any single prediction model. This was 

accomplished by first calculating standardized values, z, using the equation: 𝑧𝑖𝑗 = 𝑥𝑖𝑗 − 𝑥̅𝑗𝑠𝑗, 

where 𝑥𝑖𝑗 is the predicted value of the i-th individual from the j-th model and 

𝑠𝑗 = √∑ (𝑥𝑖𝑗 − 𝑥̅𝑗) / (𝑛 − 1)𝑛
𝑖=1  is the sample standard deviation for predictions from the j-th 

model. The standardized predictions for each individual were then averaged across prediction 

methods. This average, 𝑧̅𝑖, was then returned to its original units, 𝑥̅𝑖∗, using a back-

transformation: 𝑥 ̅𝑖∗=𝑧 ̅𝑖𝑠𝑝+𝑥 ̿, where 𝑠𝑝 = √∑ 𝑠𝑗
2/𝑚𝑚

𝑗=1  is the square root of the pooled variance.  

RRBLUP uses a mixed model to solve for individual random marker effects (Endelman, 

2011). These effects are then multiplied by the marker matrix of the line to be predicted. GAUSS 

is similar to ridge regression, except it utilizes a kernel effect based on the Euclidean distance 

between lines to determine genetic covariance instead of marker matrix (Endelman, 2011). PLSR 

is similar to regression based on principal components (Mevik and Wehrens, 2007). We used a 

10-fold cross validation to train the PLSR model for optimal number of components to be used in 

the prediction algorithm. EN fits a generalized linear model with penalized maximum likelihood 

(Friedman, et al., 2009). EN was also trained using a 10-fold cross validation in training data to 

tune the alpha, mixing, and lambda, regularization, parameters. RF regression is based on a 

decision tree method (Breiman, 2001). The RF predictions were made using 1000 trees.  

Models were tested using temporal forward and cross validation predictions. Forward 

predictions were conducted using data as it would have historically become available to predict 

the following year (i.e. 2009 predicts 2010, 2009 and 2010 predict 2011, etc.). Cross validation 

predictions were conducted on all data across all years with 20% random masked, which was 

replicated 10 times. Predictions were examined using linear models comparing the predicted and 

actual values in (R Development Core Team, 2014) and correlations between predicted 

phenotypes and empirical phenotypes are presented.   
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 Results and Discussion 

 Materials and genotypes 

Phenotypic assessment was conducted on 6,398 lines in first year yield trials between 

2009 and 2014 for processing and end-use quality. In the first year of the project, 2009, only 

individuals promoted to advanced testing were genotyped, whereas other years all individuals in 

the first year yield test were genotyped. This resulted in many fewer individuals present in the 

first year. Individuals were filtered for large amounts of missing data per individual. Overall this 

resulted in 4,095 individuals with high quality genotype and phenotype for GS (Table 1). 

Originally, 20,833 SNPs were found using the TASSEL pipeline which also aligned to the 

IWGSC reference sequence (International Wheat Genome Sequencing, 2014). These SNPs were 

then restricted no more than 20% missing to ensure higher accuracy through reduced reliance on 

imputation, resulting in 3,075 SNPs that were used in the GS models.  

Phenotype distributions of all traits within all years followed an approximately normal 

distribution (Fig. 1 & 2), except Alveograph P/L (Fig. 2), which was log transformed for 

subsequent analysis (Box, 1964).  Phenotype mean and standard deviations are presented by year 

(Table 2).  Since materials were not replicated across years in this model, heritability was not 

calculated, however, it is generally assumed that the heritability of most processing and end-use 

quality traits is intermediate to high (Breseghello and Sorrells, 2006, Kuchel, et al., 2006).   

Protein assessments were highly correlated to each other (Fig. 3). This is expected since 

the majority of the protein in the wheat kernel is stored in the endosperm (Delcour and Hoseney, 

2010). Most dough rheology traits evaluated here were highly correlated among themselves, with 

the exception of Alveograph P/L (Fig. 3). Phenotypic correlations in this study again 

demonstrate that no single quality test is a substitute for end-use testing, as the correlations from 

all other parameters are present, but not strongly correlated to final pup loaf volume (Fig. 3). 

This further supports classification systems for end-use as a function of several quality 

phenotypes (Peña, 2002, Guzmán, et al., 2014). 

 Genomic selection 

GS models used in this study all tended to produce highly correlated results, with the 

exception of random forest (Fig. 4-6). For traits of varying genetic architecture, however, models 

may have differing accuracy. Model averaging has been shown as a valid option when the ideal 

prediction model is unknown, as is the case in forward prediction (Raftery, et al., 1997, Raftery, 
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et al., 2010), thus, model averaging with prediction models normalized for mean and standard 

deviation was conducted for each entry. In general, GAUSS was the best prediction model in 

cross validation (Fig. 7). However, the AVE model produced consistently high correlations in 

forward predictions between predicted and empirical phenotypes for all traits and were not 

heavily impacted by fluctuations in accuracy by trait as individual prediction models were (Fig. 

4-6). This indicates that either the models with lower prediction accuracy are adding information 

to the overall mean or the other models are overfitting to the training data, thus favoring them in 

cross validation. 

TKW and TESTWT were evaluated here since they impact milling and were assessed in 

the wheat quality laboratory. Data for TKW was only available starting in 2012 (Table 2). 

Predictions were better with an increase from 0.40 to 0.44 in the subsequent year (Table 3). 

Random forest performed worst for this trait (Fig. 4).  It is unclear whether the accuracy for this 

trait will continue to increase with time, but the cross validation accuracies for TKW seem to 

indicate there is room for continued improvement (Fig. 7). Test weight predictions increased 

from ~ 0.1 correlation in the first year to 0.36 in 2014 (Table 3 and Fig. 4). This trait is highly 

impacted by environment and relatively low in heritability, like yield. However, it is promising 

to see prediction accuracy tripling over time. 

There was no predictive ability for GRNHRD in 2011. With a larger training set over 

time, this increased to 0.26 correlation between the observed and predicted (Table 3 and Fig. 3). 

Additionally, GRNHRD has one of the lowest predictive accuracies in cross validation (Fig. 7). 

These results corroborate with Heffner, et al. (2011) who found that softness had lower 

prediction accuracy than other quality traits. While there is a normally distributed phenotypic 

range for GRNHRD (Fig. 1), most material in this data set was classified as hard or semi-hard, 

with few soft lines present. A high proportion of the CIMMYT historical and breeding lines 

previously tested had the haplotype Pina-D1b and Pinb-D1a  alleles for the hardness, Ha, genes 

on the short arm of chromosome 5D (Lillemo, et al., 2006). Protein concentration, where more 

protein leads to harder grain, may be one of the factors responsible for some of the smaller 

differences found within hardness class.  

FLRYLD data was not available until 2011 for prediction in 2012 (Tables 2 and 3). The 

predictions for FLRYLD were highest in the first year of testing and dropped slightly in the two 

following years (Table 3 and Fig. 4). Grain and flour protein are very highly correlated 
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phenotypes (Fig. 3), and follow very closely to one another in predictive ability using GS (Table 

3 and Fig. 5). In these traits we saw a general increase over time. Protein traits could continue to 

increase in accuracy as they are still not nearing cross validation accuracy (Fig. 7). FLRSDS, 

which is correlated to both protein and dough rheology traits (Fig. 3), is fairly highly predictive 

(Figures 5 and 7), but may have come to a forward accuracy plateau of between 0.5 and 0.6 (Fig. 

5 and Table 3). 

Dough rheology traits MIXTIM, MP, and ALVW are all highly correlated (Fig. 3). MP 

and ALVW are measures of gluten strength, while ALVPL is a better indication of the balance of 

viscoelasticity. These traits are the foundation of determining gluten strength classification 

(Peña, unpublished), which informs end-use quality type.  For example, strong gluten is typically 

favored in pan breads, medium strength gluten is better for flat breads and noodles, weak gluten 

is best for cakes, cookies, and pastries, and tenacious gluten is only acceptable as wheat for 

animal feed (Peña, 2002). MIXTIM, MP, and ALVW are all highly predictive with forward (Fig. 

5, 6, and Table 3) and cross validation (Fig. 7 and Table 3) GS models. However, ALVPL has a 

lower forward and cross validation prediction accuracy (Fig. 6, 7, and Table 3). Accuracies have 

increased approximately 5% with log transformation of ALVPL (data not shown). These varying 

dough rheology prediction accuracies could be due to dough strength having high genetic control 

from the high and low molecular weight glutenins, whereas ALVPL values less than 0.8 or 

greater than 1.2 would be influenced by more factors (with more environment dependence) apart 

from specific glutenin profile.   

Baking a pup loaf is the final end-use quality test to determine appropriateness of a wheat 

line for industrial pan bread. This test gives quantitative and qualitative results not only of how 

big the resultant loaf is, but also the appearance of loaf and crumb structure. Here we 

demonstrate that forward prediction accuracy of LOFVOL is approximately 0.45 for the last 

three years (Fig. 7 & Table 3), but could reach as high as cross validation accuracy 0.67 (Fig.6 & 

Table 3). 

Prediction accuracy of whole-genome models was lower in forward prediction (Fig. 4-6) 

than cross validation (Fig. 7) for all traits (Table 3).  This is likely due to cross validation models 

using training and testing data containing all years, thus better accounting for environmental 

variation prior to training the prediction models.  Another reason could be due to the possibility 

of full-siblings being randomly assigned to training and testing sets.  The selection procedure in 
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the breeding program keeps all good material, regardless of their relationship, and sometimes 

favors advancement of large groups of full siblings. In the full yield trial of 2014 (n=7,672), 

there was an average of 5.3 entries per cross, with a maximum of 51 full siblings for one specific 

cross (data not shown). Thus, we assume cross validation represents an over inflation compared 

to forward predictions, and could possibly represent a ceiling of highest attainable prediction 

accuracy for a given trait and model. 

 

 Conclusions 

Wheat quality is typically not the primary breeding objective, often secondary to yield, 

agronomic performance, and disease resistance.  However, with the implementation of GS for 

wheat quality, predictions that are available in earlier generations of selection will enable better 

selection for quality and even targeting of wheat lines to potential areas of specific end use.  The 

models here demonstrate that GS for processing and end-use quality has sufficient accuracy for 

implementation in the breeding program. In addition, the accuracy increased over time, likely 

due to increasing training population size. Finally, we corroborate previous research (Gaynor, 

2015) showing that model averaging gives stable high forward prediction accuracy among all 

methods. 

Phenotyping for wheat processing and end-use quality for the traits included in this study 

can take 1 kg of seed and cost approximately $60 US dollars at the internal rate, at high 

throughput, without assessment of indirect costs. Genotyping a wheat line with GBS currently 

costs ~$10 USD per line, which can also be utilized for multiple trait GS and other analyses.  

Wheat breeding programs may screen lines for traits which can be assessed in small samples, 

such as protein, SDS-sedimentation, or mixograph, as early as head or line row stage, but 

typically do not have enough seed for all tests until after preliminary yield tests. This makes GS 

much less expensive and has potential for predictions years earlier than phenotyping, especially 

when considering that the cost is applicable to many traits at one time. Still, the authors note that 

currently GS is not considered to be a complete replacement for phenotypic selection, but that it 

can be used to make more informed selection decisions for material advancement between 

harvest and planting of the next cycle and prioritizing what is evaluated in the quality labs. 

Computation time and resource availability is often a consideration in GS model choice 

as training and testing populations grow, along with the number of traits and possibly models 
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used in GS. GS models should run quickly in order to produce phenotypic prediction in a timely 

manner for a breeding program. These models were computed on the Beocat high performance 

computing cluster at Kansas State University. While larger resources were available, the models 

for forward prediction all ran on a modest amount of resources in a relatively short amount of 

time; 8 cores running with 4 Gb memory per core for 11 traits all ran within 24 hours on these 

data sets with maximum 20% missing markers. However, models with large amounts of 

computations for relational structure or bootstrapping are more time consuming. As we moved 

forward into the 2015 breeding program predictions for ~9,000 lines, computation time and 

resources were increased with GS models running within 1 week.   

GS for processing and end-use quality at CIMMYT has now been in development since 

2012. In 2014, predictions for end-use and processing quality were available in the fall before 

phenotype assessments were completed. In 2015, quality phenotypes were predicted in the spring 

around the time of harvest of 9,000 lines in preliminary yield trails. These predicted phenotypes, 

with the assumed accuracy from the 2014 cycle, were available to breeders as selections for 

advancement were made. It is expected that predictive information regarding end-use quality 

earlier in the breeding program will enable selections to be made for specific end-use quality 

products in the near future of wheat breeding.  
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 Tables 

Table 2-1: Materials available for genomic selection modeling 

Trial Harvest Year Total in Yield Trial Screened for quality Phenotype and 

genotype 

available 

2010 4,956 1,258 250 

2011 6,685 1,000 995 

2012 10,196 1,580 850 

2013 9,436 1,215 886 

2014 7,672 1,345 1,114 

Total 38,945 6,398 4,095 
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Table 2-2: Phenotype means and standard deviations by year. 

Year 2010   2011   2012   2013   2014   

Entries 250   995   850   886   1114   

  MEAN SE MEAN SE MEAN SE MEAN SE MEAN SE 

TKW          48.30 0.13 46.57 0.11 47.79 0.11 

TESTWT  

 
82.43 0.06 80.15 0.05 82.37 0.03 81.83 0.03 81.74 0.03 

GRNHRD  40.75 0.36 45.77 0.15 40.31 0.16 42.95 0.11 43.56 0.09 

GRNPRO  12.07 0.05 11.73 0.02 11.31 0.02 11.70 0.02 12.23 0.02 

FLRYLD     67.55 0.11 68.83 0.08 69.35 0.06 70.57 0.06 

FLRPRO  

 
10.22 0.05 10.20 0.02 9.57 0.02 9.99 0.02 10.71 0.02 

FLRSDS  14.86 0.15 14.35 0.07 13.83 0.08 14.05 0.26 13.68 0.06 

MIXTIM  2.75 0.04 3.15 0.02 3.11 0.02 3.35 0.03 2.97 0.02 

MP      106.12 1.00 116.41 0.92 123.02 1.10 113.16 0.83 

ALVW 285.88 5.70 256.68 2.17 271.58 2.33 291.74 3.10 253.06 2.49 

ALVPL 1.04 0.02 0.93 0.01 1.03 0.01 0.99 0.01 0.96 0.01 

LOFVOL 746.12 4.22 785.25 1.49 752.46 2.48 807.83 1.85 822.59 1.72 

TKW- thousand kernel weight (g), TESTWT- test weight (kg hL
-1

), GRNHRD- grain hardness 

(PSI), GRNPRO- grain protein (at 12.5% moisture basis), FLRYLD- flour yield from milling (% 

recovered), FLRPRO- flour protein (at 14% moisture basis), FLRSDS- SDS-sedimentation 

volume (mL), MIXTIM- optimum mix time (min), MP- torque at the integral of the midline 
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peak, ALVW- work value from alveograph curve (J), ALVPL- Alveograph P, strength, divided 

by L, extensibility, (mm mm
-1

), LOFVOL pup loaf volume (cc). 
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Table 2-3: Average GS prediction accuracies of forward and cross-validation.  Forward 

predictive models trained on all prior data, whereas cross-validation trained on a random 

80% of the data to predict the remaining masked 20%.  Cross validation was replicated 10 

times.  Average was conducted after variance within each model was standardized. 

 

Validation 

population 2011 2012 2013 2014 

Cross 

Validation 

      

Training size 250 995 2095 2981 3276 

Testing size 995 850 886 1,114 819 

      

TKW   0.400 0.443 0.620 

TESTWT 0.102 0.276 0.263 0.362 0.643 

GRNHRD -0.014 0.114 0.217 0.256 0.497 

FLRYLD  0.410 0.357 0.364 0.517 

GRNPRO 0.284 0.452 0.433 0.477 0.646 

FLRPRO 0.259 0.410 0.369 0.435 0.647 

FLRSDS 0.378 0.542 0.578 0.521 0.668 

MIXTIM 0.404 0.532 0.657 0.595 0.696 

MP  0.453 0.592 0.559 0.683 

ALVW 0.338 0.523 0.615 0. 551 0.674 

ALVPL 0.252 0.288 0.354 0.470 0.514 

LOFVOL 0.309 0.453 0.460 0.448 0.667 

 

TKW- thousand kernel weight (g), TESTWT- test weight (kg hL
-1

), GRNHRD- grain hardness 

(PSI), GRNPRO- grain protein (at 12.5% moisture basis), FLRYLD- flour yield from milling (% 

recovered), FLRPRO- flour protein (at 14% moisture basis), FLRSDS- SDS-sedimentation 

volume (mL), MIXTIM- optimum mix time (min), MP- torque at the integral of the midline 

peak, ALVW- work value from alveograph curve (J), ALVPL- Alveograph P, strength, divided 

by L, extensibility, (mm mm
-1

), LOFVOL pup loaf volume (cc). 
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 Figures 

Figure 2-1: Distribution of thousand kernel weight, test weight, grain hardness, flour yield, 

grain protein, and flour protein across all years. 

 

 

  



30 

Figure 2-2: Distribution of flour SDS-sedimentation, Mixograph mix time and midline 

peak, Alveograph W and P/L, and loaf volume across all years. 
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Figure 2-3: Correlation scatterplot of all processing and end-use quality phenotypes from 

2014. 
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Figure 2-4: GS prediction accuracies for thousand kernel weight, test weight, grain 

hardness, and flour yield over time. 
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Figure 2-5: GS prediction accuracies for grain protein, flour protein, flour SDS-

sedimentation, and Mixograph mix time over time. 
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Figure 2-6: GS prediction accuracies for Mixograph torque, Alveograph W and P/L, and 

loaf volume over time. 
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Figure 2-7: Genomic selection cross validation accuracies 
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 Abstract 

  Bread wheat (Triticum aestivum L.)  is a staple cereal grain which must be processed into 

food products for human consumption. Many breeding programs have focused on increasing 

wheat yield, but processing and end-use quality must also be considered for feeding the rising 

population of the next century. End-use quality traits are expensive to test, and many require 

large amounts of seed, thus they cannot be tested until late in breeding programs. Thus, our goal 

is to have more reliable markers for utilization within breeding programs for quality traits. Here 

we describe a new method to identify marker-trait associations within a breeding program using 

a mega-genome wide association study. This method allowed for mapping in 4,095 individuals 

for all of the quantitative processing and end-use quality phenotypes and high- and low-

molecular weight glutenins from advanced breeding lines of the CIMMYT bread wheat breeding 

program from 2009 – 2014. Using the mega- genome-wide analysis we have identified new 

marker-trait associations for grain protein and loaf volume, as well as known marker-trait 

associations for high- and low-molecular weight glutenins, which impact dough rheology. Many 

detected associations indicate the major allele in the breeding program as detrimental for the trait 

of interest, which indicates there is continued room for improvement. These results are 

promising for increasing processing and end-use quality as the alleles are already found within 

breeding populations, and can be altered through marker-assisted selection. 
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Globally, bread wheat (Triticum aestivum L.) per capita consumption is 65 kg per year, 

supplying nearly 16 g of protein daily on average for each person in the world (Faostat, 2013).  

This consumption pattern is increasing fastest in the world’s least developed countries (Faostat, 

2013), which also are predicted to have the largest increases in population over the next century 

(Gerland, et al., 2014).  Continuing to increase wheat yield potential through breeding remains 

vital, and in addition, will be important to tailor these wheat breeding lines to specific, local 

processing and end-use specifications. 

Processing and end-use quality are paramount characteristics in a wheat cultivar for 

ensuring market acceptance. Wheat is commonly used in making leavened breads, flat breads, 

cookies, and crackers. There are also many wheat end-use products which have historically been 

region specific, such as a variety of dense breads, flat breads, steamed breads, and bread wheat 

noodles. Now, there are also growing trends for end-use products that fit well within the 

convenience and health foods models, such as refrigerated and frozen dough products, and more 

nutritious products made from whole wheat flour. All of these products are best made with wheat 

flours with specific attributes regarding grain color and hardness, protein content, and dough 

rheology which can be targeted through breeding (Peña, et al., 2002).   

Wheat breeding programs typically breed for regionally specific end-use product or 

products, and release cultivars with not only results of yield and disease resistance, but also end-

use quality performance. In wheat breeding programs, wheat is assessed as grain, flour, dough, 

and end-use products to determine the genetic aptitude of wheat lines for processing and end-use 

quality (Peña, 2002). The tests of grain can be done on a small scale, quickly, and cheaply. 

Several of these tests can be conducted using near infrared spectroscopy (NIRS) (AACC, 2000), 

making them possible to implement in high throughput programs. However, dough rheology and 

end-use tests require large quantities of grain for milling into flour, are more costly, and more 

time consuming, which implies these tests cannot be conducted until later in the breeding 

program. 

Wheat grain is assessed for basic characteristics which impact grain marketing. Wheat is 

separated into marketing groups based on growth habit of the plant, grain hardness and color 

(hard white, hard red winter, soft white, etc.). In general, hard wheat is preferred for pan bread, 

whereas soft wheat is preferred for cookie and cake. However, several cultivars, possibly from 

differing regions, will be mixed in industrial mills to ensure consistency with end-use quality 
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specifications over time. In local markets in the developing world, the visual characteristics of a 

cultivar, such as kernel size, vitreousness, which often is an indicator of hardness (Delcour and 

Hoseney, 2010), and color, are extremely important as much of this wheat will be milled and 

used in the home.  

The viscoelastic properties of wheat allow for rise and retention of gas, while still 

retaining shape and connectivity. Dough rheology tests involve mixing flour with water to make 

dough, and then measuring the viscoelastic properties of strength, elasticity, and tolerance. End-

use testing requires making the target product to assess final internal and external appearance, as 

well as size, of the end-use product when the dough is optimally mixed. Both dough rheology 

and end-use tests are time consuming, costly, and require large amounts of grain to conduct. 

However, combinations of tests of grain hardness, protein content, and dough rheology are 

necessary to predict best suited end-use products for a specific wheat line (Peña, 2002).  

Since these traits cannot be assessed until late in the breeding program there is interest to 

use marker assisted selection in aiding breeding for end-use quality. Typical quality markers 

used in the CIMMYT bread wheat breeding program are for grain protein content on 6B (Uauy, 

et al., 2006), grain hardness on 5D (Gautier, et al., 1994), and high and low molecular weight 

glutenins on 1A, 1B, and 1D (Liu, et al., 2008, Ragupathy, et al., 2008, Wang, et al., 2009, 

Wang, et al., 2010). However, these markers are mostly assessed on parents of crosses, and 

rarely within segregating or testing material.   

Gene mapping in plants has historically been conducted using biparental mapping to 

detect genetic makers in linkage disequilibrium (LD) with quantitative trait loci (QTL). Recently, 

mapping with other structured populations has become more common, such as nested association 

mapping (Yu, et al., 2008) or multi-parent advanced generation inter-cross (Cavanagh, et al., 

2008) populations. These approaches attempt to decrease LD distance and genetic background 

effect. However, the structured populations are still limited in size, have ascertainment bias due 

to population founders, and the genetic background effect may not be thoroughly detected.  

GWAS is a tool commonly used in human genetics where making structured populations 

cannot ethically be conducted to map traits of interest. In this method a population of individuals 

is used to associate markers to phenotypes. The use a large population reduces the ascertainment 

bias and genetic background effect issues, and historical recombination through many 

generations decreases LD between the detected marker and the causative genomic region. 
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Spurious associations may be found due to relatedness of individuals. However population 

structure and relatedness, Q and K, respectively, can be accounted for GWAS (Yu, et al., 2006) 

to reduce these limitations. GWAS results can further be strengthened by results confirmed over 

several years or in several studies through mega-analysis or meta-analysis, respectively (Begum, 

et al., 2012). These powerful meta- and mega-analyses have not previously been shown in 

detecting QTL in wheat breeding programs. 

GWAS has previously been utilized several times to detect yield and disease resistance in 

wheat (Crossa, et al., 2007, Liu, et al., 2010, Neumann, et al., 2010, Edae, et al., 2014, Juliana, 

et al., 2015), but has not been utilized thoroughly for wheat processing and end-use quality. 

Three of these studies included thousand kernel weight (TKW), test weight, or protein content in 

their analyses (Liu, et al., 2010, Mir, et al., 2012, Edae, et al., 2014). However, few studies have 

focused solely on processing and end-use quality traits. 

Two previous studies have examined association mapping for quality in soft wheat lines 

(Breseghello and Sorrells, 2006, Reif, et al., 2011), and one has investigated a core collection of 

hexaploid wheat, likely containing both hard and soft types (Bordes, et al., 2011). Breseghello 

and Sorrells (2006) focused solely on chromosomes 2D, 5A, and 5B based on prior information 

to detect associations for kernel size and milling quality not related to glutenins. Reif, et al., 

(2011) investigated TKW, test weight, protein content, SDS-sedimentation volume, and starch 

content in a genome-wide scan of 207 soft wheat breeding lines. Both of these studies utilized 

low-density simple sequence repeat (SSR) markers, whereas now, higher density marker 

platforms are available which could differentiate more quantitative traits. The core collection 

study (Bordes, et al., 2011) used a high-density genome wide scan of 372 core diversity lines in 

their study. They found marker-trait associations for grain protein content, grain hardness, 

viscosity, flour color, and Mixograph parameters for dough consistency, strength, elasticity, and 

optimal mix time.  

None of the previous studies have shown associations for Alveograph dough rheology or 

end-use pup loaf volume. Additionally, GWAS has not previously been conducted in tandem 

with high and low molecular weight glutenins, which have long been deemed biologically 

relevant to the final outcomes in wheat quality (Payne, et al., 1987). Finally, these studies used 

panels of germplasm designed to maximize the potential of the association mapping, whereas 

here we present GWAS using data from a breeding program, which can immediately continue to 
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be applied for further improvement without new linkage drag. The objectives of this study were 

to conduct mega genome-wide association mapping for all quantitative processing and end-use 

quality traits in the CIMMYT bread wheat breeding program to identify SNPs associated with 

these traits which could be used in breeding programs. 

 

 Materials and Methods 

Wheat lines used in association mapping for wheat quality were materials in the 

preliminary and advanced yield trials of the CIMMYT bread wheat breeding program between 

2009 and 2014. All wheat lines were grown in Ciudad Obregon, Sonora, Mexico, in at least one 

year, under full irrigation. Site-years were treated individually for the QK-Mixed model GWAS 

and were considered eligible for analysis if there were greater than 200 entries tested. Best 

materials for agronomic and quality traits were advanced in the breeding program and grown and 

tested a second year under full irrigation. The full set for association mapping, n=4,095, included 

both replicated and non-replicated entries to increase the size of the association mapping panel 

and show validity of the mega-GWAS method.   

 Phenotype Assessment 

Continuous quality phenotypes for thousand kernel weight, test weight, grain hardness, 

flour yield, grain protein, flour protein, SDS-sedimentation, Mixograph mix time and torque, 

Alveograph W and PL
-1

, and pup loaf volume, were measured according to AACC (2000) with 

water absorption modifications (Guzmán, et al., 2015) as in Battenfield et al. (2015, chapter 2). 

High and low molecular weight glutenins were assessed in a subset 952 lines using SDS-PAGE 

(Gupta and Shepherd, 1990, Singh, et al., 1991). Glutenins were recorded as binary for the 

presence or absence of each allele. Only glutenin classes with greater than 5% frequency were 

analyzed, removing rare alleles, which could be better screened in a more targeted panel. 

 Genotype assessment 

Tissue collection for DNA (Saghai-Maroof, et al., 1984) and GBS protocol (Poland, et 

al., 2012) was conducted using TASSEL 5 v2 pipeline. GBS tags were aligned to the soft-

masked Triticum aestivum IWGSC genome assembly version 2.25 (IWGSC, 2014) and indexed 

using Bowtie 2 (Langmead and Salzberg, 2012). SNPs were identified by chromosome and 

position number and numerically coded for major, minor, heterozygous, or missing classes. 
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SNPs were then curated in JMP-Genomics 7.1 (SAS, Cary, NC) to maintain maximum 

data accuracy with the large amounts of missing data found using genotyping-by-sequencing. 

Individuals with greater than 35% missing data were removed from further analysis. Markers 

with greater than 25% missing data, greater than 20% percent heterozygous, or less than 5% 

minor allele frequency were also removed. Polymorphism information content was calculated for 

each marker. Linkage disequilibrium (LD) was plotted and markers were removed which showed 

excessive LD over long genomic distances. 

The final annotated and curated set of SNPs was aligned with POPSEQ (Mascher, et al., 

2013). POPSEQ allowed determination of approximate cM position of the markers in reference 

to the Synthetic W7984 x Opata M85 recombinant inbred line mapping population (Sorrells, et 

al., 2011, Chapman, et al., 2015). These reference positions were used to display significant 

marker-trait associations in mapped positions more consistent with previously detected loci.  

 Data analysis 

Population and relationship structure were investigated and added to the association 

mapping analysis as covariates to help prevent spurious associations (Yu, et al., 2006). Principal 

component analysis was conducted using “PCA for population stratification” in JMP-Genomics 

7.1 (SAS, Cary, NC) to create the population structure matrix, Q. Relative kinship between 

individuals was also analyzed using JMP-Genomics. This was conducted using identity by 

descent method in the “Relationship matrix” program with false discovery rate (FDR) multiple 

testing correction, resulting in the K matrix (Benjamini and Hochberg, 1995).   

Association mapping for continuous phenotypes was conducted using a “Q-K mixed 

model” in JMP-Genomics 7.1 (SAS, Cary, NC) for each site-year with false discovery rate 

(FDR) multiple testing correction applied (Benjamini and Hochberg, 1995, Yu, et al., 2006). The 

site-year marker-trait associations were combined using “GWAS meta-analysis” using an 

inverse-variance, fixed effects model where each site-year was treated as a fixed effect (Begum, 

et al., 2012). Multi-year marker-trait associations were corrected again for multiple testing using 

FDR (Benjamini and Hochberg, 1995). Probabilities were transformed using –log10(p), and 

shown at the α < 0.05, 0.01, and 0.001 levels, but reported as significant at α < 0.001. 

Association mapping for high and low molecular weight glutenins was conducted with all 

952 samples pooled across all years since these were measured simply on presence or absence of 

the allele in question. PCA and IBD were determined as in the continuous traits. In order to 
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efficiently map these binary glutenins, a K-matrix compression was conducted for each trait 

separately in JMP-Genomic 7. The GWAS was then fit using 3 PCAs and the compressed K-

matrix for the trait of interest. Less power was available in the binary screening, thus α was set 

more stringently to 5 x 10
-8

. 

 

 Results 

 Genotypes 

 A total of 1,625 SNP markers were identified to have high quality and be acceptable for 

use in GWAS. Mean SNP counts were 93, 116, and 23, for the A-, B-, and D-series, respectively 

with Bowtie alignment (Figure 1). 906 of the 1,625 SNPs aligned with cM positions from 

PopSeq, with mean 47, 68, and 14 SNPs per A-, B-, and D-series chromosomes represented. 

Still, all 1,625 SNPs were used in mapping marker-trait associations. SNP markers were well 

distributed across the chromosomes, except in the weakly represented 3D and 4D chromosomes.  

 Population and kinship structure 

 Population structure and relationship structure were present in these data (Figure 2). PCA 

of the genotype matrix demonstrated that 4 principal components explained the largest portions 

of the variance before approaching a plateau (Figure 2). There was also significant structure in 

the genetic relationship based on probability of IBD. There was no correlation between the PCA 

and IBD principal components (Table 1).  Therefore, 4 principal components and the IBD matrix 

were used as Q and K matrix covariates, respectively, in GWAS. 

 Significant associations by year, significant associations across site-years 

 Significant marker-trait associations were found across years on all chromosomes except 

3D and 4D. 127 significant marker-trait associations were found over the all traits.  These 

collectively represent 77 unique SNPs (Figs. 3-14; Table 2). The loci in the same region of a 

chromosome with more than one collective effect will be referred to as hotspots. Position of 

glutenins found by binary Q-K mixed model GWAS were only used in reference to the other 

marker-trait associations. 

 Significant marker-trait association hotspots were found in the regions of high molecular 

weight glutenins for dough rheology traits and grain hardness.  Markers associated with the 

differentiation of Glu-D1- 2+12 or 5+10 had the largest effect on dough rheology traits. The 

responses at this locus for ALVW, ALVPL, MIXTIM, and MP, demonstrated that the major 
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allele in the CIMMYT program, Glu-D1 5+10, was highly beneficial for these traits. 

Associations in other high and low molecular weight glutenin regions demonstrated that most 

prominent alleles at these loci had mix impacts on the protein, dough rheology, and loaf volume 

traits (Table 2; Figs 3-14).    

 Largest marker-trait associations for grain and flour protein were found on chromosome 

6A at 62-65 and 70 cM, which were also hotspots with loaf volume (Figs 4, 5, 6, 9, and 10). The 

major alleles found in the 62-65 cM region had a negative impact on protein content, thus also 

negative associations with dough strength and loaf volume. The major allele found around 70 cM 

had a positive impact on protein concentration and loaf volume (Table 2). Additionally, smaller 

impact QTL for protein concentration were found on 6B.  

 Wheat bread loaf volume was most significantly impacted by QTL on chromosome 7A 

(Figure 10). This significant QTL is located near 83 cM (Table 2). This QTL is expressed larger 

in final loaf volume, but appears to be first impacting extensibility through ALVPL (Table 2). 

This hotspot is found as the minor allele in the CIMMYT breeding program, thus selection for 

this QTL could improve bread making performance. 

 

 Conclusions 

Here we present a new application of a mega-study of genome wide association mapping 

directly to unreplicated data from a breeding program. The results agree with empirical 

expectations, and thus seems this method is a good fit for finding alleles present in a breeding 

program that impact trait outcomes and can be immediately selected in the breeding program.  

We also identified two new regions of interest on 6A and 7A for grain protein concentration, 

dough extensibility, and loaf volume, which have some recent empirical evidence and will be 

more thoroughly investigated. 

The viscoelastic properties of wheat mostly originate from the storage proteins glutenins 

and gliadins (Delcour and Hoseney, 2010). Wheat high and low molecular weight glutenins have 

been highly studied and found responsible for the elasticity and resistance to extension properties 

of wheat dough (Payne, et al., 1987, Zheng, et al., 2009). The multiallelic glutenin profile (Payne 

and Lawrence, 1983, Payne, et al., 1987) in the high molecular weight glutenin alleles GluA-1, 

GluB-1, and GluD-1 on the long arms of 1A, 1B, and 1D, and low molecular weight glutenin 

alleles GluA-3, GluB-3, and GluD-3 on the short arms of 1A, 1B, and 1D has been found to be 
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related to end-use properties (Branlard, et al., 1992). Gliadins, GliA-1, GliB-1, GliD-1 GliA-2, 

GliB-2, and GliD-2, on chromosomes 1A, 1B, 1D, 6A, 6B, and 6D, respectively (Payne and 

Lawrence, 1983, Payne, et al., 1987), are responsible for the cohesive properties of wheat dough, 

which allow it to rise and retain gas (Delcour and Hoseney, 2010). We report significant 

associations for Alveograph, Mixograph, flour SDS, grain hardness, flour yield, and loaf volume 

relating to glutenins.  These associations collectively make over half of the significant hits in this 

data set, and have the most significant results found in dough rheology and SDS traits. 

Grain protein content is highly correlated with dough strength (Borghi, et al., 1995, 

Blandino, et al., 2015), loaf volume in pan breads (Bushuk, 1997), and overall baking of hard 

wheats quality (Garg, et al., 2006). However, grain protein content is often negatively correlated 

with yield and is highly impacted by environment and agronomic management (Terman, et al., 

1969, Borghi, et al., 1995, Blandino, et al., 2015). This inverse relationship between grain 

protein and yield can be explained through TKW as grain fill over time is mostly starch 

deposition. While yield is most often the metric considered for cost of wheat, not quality, thus 

yield is economically favored over quality in many wheat production markets. However, both 

TKW and grain protein concentration been shown to be increasing over time (Cox, et al., 1989, 

Aisawi, et al., 2015).  

One gene found to increase grain protein content is Gpc-B1 on the short arm of 

chromosome 6B (Uauy, et al., 2006). This gene was first characterized in Triticum turgidum L. 

ssp durum, but must be specifically incorporated into bread wheat. Additionally there are 

homeologues for this gene on 6A and 6D, and paralogues on 2A, 2B, and 2D (Cormier, et al., 

2015). Here, in agreement with Cormier, et al. (2015), we find that the 6A homeologue of Gpc-

B1, Gpc-A1, or NAM, as it is named in other species, controls the largest portion of the variance 

for grain protein content. Gpc-A1 is particularly interesting for breeding impact as the two 

primary alleles control the tradeoff between senescence timing, TKW, and grain protein 

concentration (Cormier, et al., 2015). We find that both the a and d alleles discussed in Cormier, 

et al. (2015) appear to be present in this population, leading one to believe that there is reason to 

select both haplotypes in different breeding situations.  

Hardness, or wheat endosperm texture, appears to be mostly controlled by Ha hardness 

genes the short arm of chromosome 5D. Hard wheat contains starch granules which are more 

tightly attached to the protein matrix, thus requiring more force in milling and damaging more 
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starch than in soft endosperm wheat (Giroux and Morris, 1997). Previous results have shown 

very high proportions of haplotype pin with pin in CIMMYT breeding material (Lillemo, et al., 

2006).  We believe the overwhelming majority for one haplotype of pin alleles leads to the lack 

of their detection in this study. Beyond that, the remainder of genetic variation seems to be 

attributable to protein concentration and glutenin alleles.  

Final loaf volume is complex trait as it is impacted by both type and amount of storage 

proteins present in the flour. Here, our results agree that loaf volume is impacted by the glutenin 

profile on the 1 series chromosomes, as well as the protein concentration QTL on 6A.  In 

addition, there is a hotspot for dough extensibility and loaf volume found on chromosome 7A.  

We believe this could be an impact of the recently discovered wheat bread making, wbm, gene 

identified through RNA-seq post anthesis (Furtado, et al., 2015). The favorable allele at this 

locus is currently minor within the breeding program, so selection for this allele could further 

increase dough extensibility within this breeding program. 
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 Figures 

 

Figure 3-1: Marker distribution by counts for all chromosomes 

 

 

  



59 

Figure 3-2: Popularion structure demonstrated by Principal Coordinate Analysis (PCA) 

and Inbreeding by Descent (IBD). Where PCA is on the left and IBD is on the right. a) and 

b) show the three-dimensional representation while c) and d)show the two-dimension 

representation of each component of the population structure explained by PCA and IBD, 

respectively. Plots e) and f) show the scree plots of the explained variance by each 

component for PCA and IBD, respectively. 
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Figure 3-3: Manhattan plot of ALVPL 

 

 

Figure 3-4: Manhattan plot of ALVW  
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Figure 3-5: Manhattan plot of FLRPRO 

 

 

Figure 3-6: Manhattan plot of FLRSDS 
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Figure 3-7: Manhattan plot of FLRYLD 

 

 

Figure 3-8: Manhattan plot of GRNHRD  

 

 

  



63 

Figure 3-9: Manhattan plot of GRNPRO 

 

 

Figure 3-10: Manhattan plot of LOFVOL 
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Figure 3-11: Manhattan plot of MIXTIM 

 

 

Figure 3-12: Manhattan plot of MP 
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Figure 3-13: Manhattan plot of TESTWT 

 

 

Figure 3-14: Manhattan plot of TKW  
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 Tables 

Table 3-1: Correlation between principal components from structure analysis (PCA 1-4) 

and principal components from kinship structure (IBD 1-4). 

  

PCA 1 

(6.0%) 

PCA 2 

(4.9%) 

PCA 3 

(3.3%) 

PCA 4 

(2.0%) 

IBD 1 

(20.1%) 

IBD 2 

(16.5%) 

IBD 3 

(8.4%) 

IBD 4 

(4.2%) 

PCA 1 

(6.0%) 1.0000 0.0000 0.0000 0.0000 0.0083 -0.0060 -0.0200 0.0054 

PCA 2 

(4.9%) 0.0000 1.0000 0.0000 0.0000 0.0111 -0.0382 -0.0184 -0.0119 

PCA 3 

(3.3%) 0.0000 0.0000 1.0000 0.0000 0.0276 0.0635 -0.0201 -0.0208 

PCA 4 

(2.0%) 0.0000 0.0000 0.0000 1.0000 0.0176 -0.0210 0.0063 -0.0093 

IBD 1 

(20.1%) 0.0083 0.0111 0.0276 0.0176 1.0000 -0.0004 -0.0038 -0.0020 

IBD 2 

(16.5%) -0.0060 -0.0382 0.0635 -0.0210 -0.0040 1.0000 -0.0034 -0.0018 

IBD 3 

(8.4%) -0.0200 -0.0184 -0.0201 0.0063 -0.0037 -0.0034 1.0000 -0.0163 

IBD 4 

(4.2%) 0.0054 -0.0119 -0.0208 -0.0093 -0.0020 -0.0018 -0.0163 1.0000 

 

 

Table 3-2: Significant marker trait associations with Bowtie and POPSEQ alignment, and 

overall effect, standard error, and False Discovery Rate adjusted –Log10(p-value). 

Marker Chr. Position 

PS 

Chr. PS cM Trait 

Overall 

Effect 

Overall 

SE 

FDR   

Neg 

LOG10(p) 

Loci_S1_460472 1A 460472 1A 0 ALVW -8.02 1.72 5.51 

Loci_S1_460474 1A 460474 1A 0 GRNHRD -0.61 0.13 3.25 

Loci_S1_1246860 1A 1246860 1A 4.562 ALVW -8.62 1.60 7.15 

Loci_S1_1246860 1A 1246860 1A 4.562 FLRSDS -0.31 0.05 6.14 

Loci_S1_1246860 1A 1246860 1A 4.562 MIXTIM -0.11 0.02 8.70 

Loci_S1_1246860 1A 1246860 1A 4.562 MP -4.19 0.63 7.74 

Loci_S1_243975850 1A 243975850 

  

TESTWT -0.19 0.02 11.15 

Loci_S1_244605162 1A 244605162 

  

TESTWT 0.20 0.02 12.63 

Loci_S1_245341120 1A 245341120 1A 139.761 ALVPL -0.03 0.01 3.84 

Loci_S1_245341120 1A 245341120 1A 139.761 TESTWT 0.18 0.02 10.54 

Loci_S2_2163545 1B 2163545 

  

ALVW -9.96 2.01 6.15 

Loci_S2_2163545 1B 2163545 

  

GRNHRD -0.61 0.10 5.63 

Loci_S2_2532201 1B 2532201 

  

ALVW -15.87 1.64 21.36 

Loci_S2_2532201 1B 2532201 

  

FLRSDS -0.29 0.05 4.82 

Loci_S2_2532201 1B 2532201 

  

MIXTIM -0.11 0.02 8.79 
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Loci_S2_2532201 1B 2532201 

  

MP -4.27 0.67 7.36 

Loci_S2_7828321 1B 7828321 1B 26.891 MIXTIM -0.10 0.02 3.28 

Loci_S2_247110912 1B 247110912 

  

ALVW -10.89 2.30 5.66 

Loci_S2_252844209 1B 252844209 

  

FLRSDS 0.33 0.06 4.51 

Loci_S2_258464672 1B 258464672 1B 74.787 LOFVOL -5.39 1.16 3.48 

Loci_S2_266250969 1B 266250969 1B 79.233 ALVW 9.72 1.23 14.66 

Loci_S2_266250969 1B 266250969 1B 79.233 GRNHRD 0.76 0.07 25.06 

Loci_S2_276759258 1B 276759258 1B 94.045 ALVPL -0.04 0.01 6.26 

Loci_S2_282749164 1B 282749164 1B 106.272 ALVPL 0.11 0.01 29.17 

Loci_S2_282749164 1B 282749164 1B 106.272 FLRPRO -0.05 0.01 3.93 

Loci_S2_282749164 1B 282749164 1B 106.272 FLRYLD -0.52 0.04 28.88 

Loci_S2_282749164 1B 282749164 1B 106.272 LOFVOL -6.66 1.00 8.11 

Loci_S2_282801547 1B 282801547 

  

ALVPL 0.05 0.01 5.78 

Loci_S2_282801547 1B 282801547 

  

FLRYLD -0.27 0.05 3.72 

Loci_S2_284583852 1B 284583852 

  

ALVPL 0.03 0.01 3.04 

Loci_S3_108397610 1D 108397610 1D 78.754 ALVPL 0.07 0.01 6.76 

Loci_S3_108397610 1D 108397610 1D 78.754 ALVW 45.26 2.41 32.00 

Loci_S3_108397610 1D 108397610 1D 78.754 MIXTIM 0.52 0.02 29.16 

Loci_S3_108397610 1D 108397610 1D 78.754 MP 19.21 0.88 29.18 

Loci_S3_113356875 1D 113356875 1D 78.474 ALVPL 0.08 0.01 7.98 

Loci_S3_113356875 1D 113356875 1D 78.474 ALVW 44.42 2.36 32.00 

Loci_S3_113356875 1D 113356875 1D 78.474 MIXTIM 0.53 0.02 29.16 

Loci_S3_113356875 1D 113356875 1D 78.474 MP 19.79 0.88 29.18 

Loci_S3_134641057 1D 134641057 

  

ALVPL -0.04 0.01 6.19 

Loci_S4_253161415 2A 253161415 4A 0 FLRSDS -0.31 0.06 3.98 

Loci_S4_253161415 2A 253161415 4A 0 LOFVOL -6.76 1.41 3.76 

Loci_S5_41827195 2B 41827195 

  

ALVW -11.21 2.60 4.80 

Loci_S5_332355376 2B 332355376 2B 116.178 MIXTIM 0.16 0.03 3.61 

Loci_S6_16493617 2D 16493617 2D 77.464 GRNPRO 0.06 0.01 3.10 

Loci_S7_14150522 3A 14150522 3A 55.919 LOFVOL 5.90 1.18 4.14 

Loci_S7_24772605 3A 24772605 3A 63.04 LOFVOL 5.28 1.14 3.48 

Loci_S7_70434692 3A 70434692 

  

LOFVOL -6.91 1.40 3.99 

Loci_S7_164428314 3A 164428314 3A 102.094 FLRPRO -0.06 0.01 3.04 

Loci_S7_164428314 3A 164428314 3A 102.094 FLRSDS -0.29 0.06 3.98 

Loci_S7_178923859 3A 178923859 3A 159.687 ALVPL 0.03 0.01 3.33 

Loci_S8_511291591 3B 511291591 

  

TKW 0.70 0.13 4.54 

Loci_S8_652811064 3B 652811064 3B 94.67 GRNPRO 0.06 0.01 3.34 

Loci_S9_50810552 3D 50810552 3D 67.442 ALVW -7.43 1.37 7.21 

Loci_S9_50810552 3D 50810552 3D 67.442 FLRPRO -0.05 0.01 3.76 

Loci_S9_50810552 3D 50810552 3D 67.442 GRNPRO -0.06 0.01 3.87 

Loci_S9_50810552 3D 50810552 3D 67.442 MIXTIM -0.07 0.01 4.04 

Loci_S9_50810552 3D 50810552 3D 67.442 MP -2.58 0.54 3.27 

Loci_S9_96868734 3D 96868734 3D 82.278 GRNPRO 0.05 0.01 3.44 
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Loci_S10_24957419 4A 24957419 4A 58.701 TESTWT -0.11 0.02 3.02 

Loci_S10_201716835 4A 201716835 

  

ALVW 10.61 2.17 5.98 

Loci_S10_202066152 4A 202066152 

  

ALVW 11.52 2.36 5.99 

Loci_S10_203231427 4A 203231427 

  

ALVW -11.72 2.32 6.39 

Loci_S11_4861934 4B 4861934 4B 34.63 GRNHRD 0.35 0.08 3.25 

Loci_S11_9212182 4B 9212182 4B 46.92 ALVPL -0.04 0.01 4.18 

Loci_S11_9212182 4B 9212182 4B 46.92 FLRPRO -0.06 0.01 3.98 

Loci_S11_9212182 4B 9212182 4B 46.92 GRNHRD 0.44 0.08 5.22 

Loci_S11_9212182 4B 9212182 4B 46.92 GRNPRO -0.06 0.01 3.58 

Loci_S11_9212182 4B 9212182 4B 46.92 MIXTIM 0.09 0.02 5.08 

Loci_S11_9791147 4B 9791147 

  

ALVW -13.94 2.15 10.02 

Loci_S13_77029577 5A 77029577 5A 10.487 ALVW 7.88 1.55 6.46 

Loci_S13_77296972 5A 77296972 5A 10.487 ALVW 6.64 1.52 4.92 

Loci_S13_82914716 5A 82914716 

  

ALVW -7.78 1.49 6.73 

Loci_S13_82914716 5A 82914716 

  

MIXTIM -0.07 0.01 3.06 

Loci_S14_236729118 5B 236729118 

  

TKW 0.45 0.10 3.38 

Loci_S14_270906880 5B 270906880 5B 165.726 GRNHRD -0.61 0.14 3.11 

Loci_S14_271965160 5B 271965160 

  

GRNHRD -0.82 0.15 4.81 

Loci_S15_143849002 5D 143849002 

  

TKW 0.51 0.11 3.35 

Loci_S16_5034804 6A 5034804 

  

GRNHRD -0.50 0.11 3.25 

Loci_S16_8917119 6A 8917119 

  

FLRSDS -0.31 0.06 4.54 

Loci_S16_19072856 6A 19072856 6A 62.364 FLRPRO -0.12 0.01 17.63 

Loci_S16_19072856 6A 19072856 6A 62.364 GRNPRO -0.12 0.01 13.86 

Loci_S16_19072856 6A 19072856 6A 62.364 LOFVOL -7.89 1.21 7.84 

Loci_S16_24998762 6A 24998762 6A 63.546 FLRPRO -0.13 0.01 18.40 

Loci_S16_24998762 6A 24998762 6A 63.546 GRNPRO -0.13 0.01 14.38 

Loci_S16_24998762 6A 24998762 6A 63.546 LOFVOL -7.77 1.31 6.32 

Loci_S16_33226117 6A 33226117 6A 65.769 ALVW -9.47 1.85 6.51 

Loci_S16_33226117 6A 33226117 6A 65.769 FLRPRO -0.18 0.01 29.43 

Loci_S16_33226117 6A 33226117 6A 65.769 GRNPRO -0.16 0.01 26.77 

Loci_S16_33226117 6A 33226117 6A 65.769 LOFVOL -10.15 1.28 11.54 

Loci_S16_50275005 6A 50275005 

  

FLRPRO 0.13 0.02 6.60 

Loci_S16_50275005 6A 50275005 

  

GRNPRO 0.10 0.02 3.24 

Loci_S16_94542206 6A 94542206 

  

TKW 0.66 0.14 3.38 

Loci_S16_143466155 6A 143466155 

  

GRNPRO 0.07 0.01 3.44 

Loci_S16_150663555 6A 150663555 6A 70.269 FLRPRO 0.14 0.02 6.99 

Loci_S16_150663555 6A 150663555 6A 70.269 GRNPRO 0.13 0.02 4.62 

Loci_S16_150663555 6A 150663555 6A 70.269 LOFVOL 10.30 2.17 3.67 

Loci_S16_154516738 6A 154516738 

  

TKW -0.51 0.10 3.70 

Loci_S17_5974923 6B 5974923 6B 25.394 ALVPL -0.07 0.01 10.96 

Loci_S17_5974923 6B 5974923 6B 25.394 FLRPRO 0.07 0.02 3.61 

Loci_S17_6513799 6B 6513799 

  

ALVPL -0.07 0.01 9.78 

Loci_S17_164481606 6B 164481606 6B 61.6255 FLRPRO 0.07 0.01 3.16 
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Loci_S17_164481606 6B 164481606 6B 61.6255 GRNPRO 0.07 0.02 3.44 

Loci_S17_176721264 6B 176721264 

  

FLRPRO -0.06 0.01 3.40 

Loci_S17_176721264 6B 176721264 

  

GRNPRO -0.06 0.01 3.10 

Loci_S17_180461356 6B 180461356 6B 67.906 FLRPRO -0.07 0.01 3.38 

Loci_S18_20387611 6D 20387611 6D 59.749 ALVW 6.52 1.39 5.58 

Loci_S18_20387611 6D 20387611 6D 59.749 TKW 0.58 0.07 11.76 

Loci_S18_111388404 6D 111388404 6D 66.9795 ALVW 7.26 1.40 6.69 

Loci_S18_111388404 6D 111388404 6D 66.9795 TKW 0.46 0.07 6.57 

Loci_S19_15975054 7A 15975054 7A 41.985 FLRPRO -0.07 0.02 3.25 

Loci_S19_15975054 7A 15975054 7A 41.985 GRNPRO -0.08 0.02 3.82 

Loci_S19_18380157 7A 18380157 

  

GRNPRO -0.07 0.02 3.30 

Loci_S19_78415889 7A 78415889 

  

LOFVOL -8.63 1.18 9.79 

Loci_S19_101352522 7A 101352522 

  

ALVPL 0.04 0.01 3.33 

Loci_S19_101352522 7A 101352522 

  

LOFVOL -8.33 1.17 9.43 

Loci_S19_112027332 7A 112027332 7A 82.926 ALVPL 0.04 0.01 3.84 

Loci_S19_112027332 7A 112027332 7A 82.926 LOFVOL -8.49 1.22 8.98 

Loci_S19_162307306 7A 162307306 7A 110.34 TKW -0.44 0.09 3.35 

Loci_S20_17646955 7B 17646955 7B 61.943 GRNHRD -0.64 0.14 3.19 

Loci_S20_173057509 7B 173057509 

  

ALVPL -0.04 0.01 3.04 

Loci_S20_211863525 7B 211863525 

  

GRNPRO -0.07 0.01 3.44 

Loci_S20_235418274 7B 235418274 7B 125.056 GRNHRD -0.44 0.09 4.18 

Loci_S20_251235369 7B 251235369 7B 151.479 ALVW 7.66 1.51 6.37 

Loci_S20_251235369 7B 251235369 7B 151.479 GRNPRO -0.06 0.01 3.51 

Loci_S20_251235369 7B 251235369 7B 151.479 MIXTIM 0.08 0.02 4.12 

Loci_S21_51496571 7D 51496571 7D 117.486 FLRSDS 0.27 0.06 3.59 

Loci_S21_55673430 7D 55673430 7D 115.977 TKW -0.51 0.09 4.65 

 

 

Table 3-3: Tag sequence with polymorphic index content, heterozygous frequency, and 

minor allele frequency for significant marker-trait associations. 

Marker Tag Sequence PIC Het 

Freq. 

MAF 

Loci_S1_460472 TTCAGGCCGAGTCACTGCACCGACCCGTCCATGC

GTGCTCGACGGTGGGATTGGACGAGCTGCA 

0.30 0.04 0.24 

Loci_S1_460474 TTCAGGCCGAGTCACTGCACCGACCCGTCCATGC

GTGCTCGACGGTGGGATTGGACGAGCTGCA 

0.10 0.01 0.06 

Loci_S1_1246860 TGCAGTCAATGATCCAGTTCCTCCGACCAAAGAC

CTCGCAACAGAACAACTGCCAGTTGAAGCG 

0.32 0.03 0.28 

Loci_S1_1246860 TGCAGTCAATGATCCAGTTCCTCCGACCAAAGAC

CTCGCAACAGAACAACTGCCAGTTGAAGCG 

0.32 0.03 0.28 
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Loci_S1_1246860 TGCAGTCAATGATCCAGTTCCTCCGACCAAAGAC

CTCGCAACAGAACAACTGCCAGTTGAAGCG 

0.32 0.03 0.28 

Loci_S1_1246860 TGCAGTCAATGATCCAGTTCCTCCGACCAAAGAC

CTCGCAACAGAACAACTGCCAGTTGAAGCG 

0.32 0.03 0.28 

Loci_S1_243975850 TGCAGTCAAGGGCCTCGTCAGCTCCTCCACCATC

TATCTTTTGTCATGCAGAGTTTCACTACAT 

0.38 0.04 0.50 

Loci_S1_244605162 TGCAGCTCGGCCGCCATGGCGAGATCCATCCACT

GGAACGCAACCCTGGTTTTGCAGCGCCAGC 

0.38 0.04 0.50 

Loci_S1_245341120 CCCCAAAACATCACTGGCTGCTGGAACACAGGT

TATCTCCGAAAAGGGGCAGATGAACACTGCA 

0.37 0.03 0.49 

Loci_S1_245341120 CCCCAAAACATCACTGGCTGCTGGAACACAGGT

TATCTCCGAAAAGGGGCAGATGAACACTGCA 

0.37 0.03 0.49 

Loci_S2_2163545 TGCAGTAGAGAGCCCCAATGCCTGATGGACTCA

GTACCACTCAAGACAAACATTGGTAGATGAT 

0.18 0.02 0.11 

Loci_S2_2163545 TGCAGTAGAGAGCCCCAATGCCTGATGGACTCA

GTACCACTCAAGACAAACATTGGTAGATGAT 

0.18 0.02 0.11 

Loci_S2_2532201 TGCAGCGTTTCTTCTTCTTCTTTGCCTTGATGATC

GTTTGCCTTGCGTTTTTGCAGCGAGAATA 

0.28 0.02 0.21 

Loci_S2_2532201 TGCAGCGTTTCTTCTTCTTCTTTGCCTTGATGATC

GTTTGCCTTGCGTTTTTGCAGCGAGAATA 

0.28 0.02 0.21 

Loci_S2_2532201 TGCAGCGTTTCTTCTTCTTCTTTGCCTTGATGATC

GTTTGCCTTGCGTTTTTGCAGCGAGAATA 

0.28 0.02 0.21 

Loci_S2_2532201 TGCAGCGTTTCTTCTTCTTCTTTGCCTTGATGATC

GTTTGCCTTGCGTTTTTGCAGCGAGAATA 

0.28 0.02 0.21 

Loci_S2_7828321 TGCAGAAACTAATGTATACTTCCTACTCCCTTCA

GCCTGCTTGCTGATGGTTCTGTGGTCTCGT 

0.21 0.02 0.14 

Loci_S2_247110912 TGCAGCTAAACTTTACTTGTACGGTCGTACGTGC

CGTACTGTCCG 

0.19 0.02 0.12 

Loci_S2_252844209 TGCAGGTGTCCGACATGGACATGTATTACCATTT

ACGTGACCCTGTTTTTGTTGATGTCATGAT 

0.26 0.03 0.19 

Loci_S2_258464672 TGCAGAGGAATGGAGGAGGGAACCTGCTGAGAC

GGGAGGTGGCGGCGTGGGGAAGAAGGTCTCT 

0.37 0.04 0.49 

Loci_S2_266250969 TGCAGCGTCACCCCCTGCACGCTCACCCCCCTGC

ACTCCTCGAAATGCAACGCCTACAACATCC 

0.38 0.04 0.50 

Loci_S2_266250969 TGCAGCGTCACCCCCTGCACGCTCACCCCCCTGC

ACTCCTCGAAATGCAACGCCTACAACATCC 

0.38 0.04 0.50 
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Loci_S2_276759258 AGATAAAACCTCTCGAAGTCTTCTCGATAACCTC

GCTGTCGTGGATCCGTAGTAAGTCGCTGCA 

0.35 0.03 0.33 

Loci_S2_282749164 GGGTCCATCCAACAAATCTGTGACCCTAAGTTGC

TTGCATGTTTCGCACACAAGTGAATCTGCA 

0.37 0.03 0.45 

Loci_S2_282749164 GGGTCCATCCAACAAATCTGTGACCCTAAGTTGC

TTGCATGTTTCGCACACAAGTGAATCTGCA 

0.37 0.03 0.45 

Loci_S2_282749164 GGGTCCATCCAACAAATCTGTGACCCTAAGTTGC

TTGCATGTTTCGCACACAAGTGAATCTGCA 

0.37 0.03 0.45 

Loci_S2_282749164 GGGTCCATCCAACAAATCTGTGACCCTAAGTTGC

TTGCATGTTTCGCACACAAGTGAATCTGCA 

0.37 0.03 0.45 

Loci_S2_282801547 TGCAGCAGCGTGAACCGTGAAGCAAGGAACCAC

CAACGGAGAGATCGGAAGAGCGGTTCAGCAG 

0.31 0.03 0.27 

Loci_S2_282801547 TGCAGCAGCGTGAACCGTGAAGCAAGGAACCAC

CAACGGAGAGATCGGAAGAGCGGTTCAGCAG 

0.31 0.03 0.27 

Loci_S2_284583852 TGCAGTTGAGAGATATGTATGTATCAGCGCCAC

AAGCAGAGGTCAAGCATCAACAAGGTAACCG 

0.31 0.03 0.26 

Loci_S3_108397610 TGCAGAGGAGGTCAGAGTTCCTCATCTCTGAGGT

GGGGCTGGAACCGACATACATTGCTCATCG 

0.15 0.01 0.09 

Loci_S3_108397610 TGCAGAGGAGGTCAGAGTTCCTCATCTCTGAGGT

GGGGCTGGAACCGACATACATTGCTCATCG 

0.15 0.01 0.09 

Loci_S3_108397610 TGCAGAGGAGGTCAGAGTTCCTCATCTCTGAGGT

GGGGCTGGAACCGACATACATTGCTCATCG 

0.15 0.01 0.09 

Loci_S3_108397610 TGCAGAGGAGGTCAGAGTTCCTCATCTCTGAGGT

GGGGCTGGAACCGACATACATTGCTCATCG 

0.15 0.01 0.09 

Loci_S3_113356875 CTAGTAATAACTAGGCTGATGTGATGTAGCGCAT

GTGTGCCTCGCCGCTGCCTGGCTGCCTGCA 

0.16 0.01 0.10 

Loci_S3_113356875 CTAGTAATAACTAGGCTGATGTGATGTAGCGCAT

GTGTGCCTCGCCGCTGCCTGGCTGCCTGCA 

0.16 0.01 0.10 

Loci_S3_113356875 CTAGTAATAACTAGGCTGATGTGATGTAGCGCAT

GTGTGCCTCGCCGCTGCCTGGCTGCCTGCA 

0.16 0.01 0.10 

Loci_S3_113356875 CTAGTAATAACTAGGCTGATGTGATGTAGCGCAT

GTGTGCCTCGCCGCTGCCTGGCTGCCTGCA 

0.16 0.01 0.10 

Loci_S3_134641057 TGCAGATGTCATCGTCAGTATTTCACTCACTAGA

ACTAGCCGCAACATCAACATGTCAGCAGCA 

0.38 0.06 0.50 

Loci_S4_253161415 GCTCCGTGCGGAGCTGTCGGAGCTGCGGGCTAA

AACAGTAGAGTTGAAAAATAGGCACTCTGCA 

0.35 0.04 0.34 
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Loci_S4_253161415 GCTCCGTGCGGAGCTGTCGGAGCTGCGGGCTAA

AACAGTAGAGTTGAAAAATAGGCACTCTGCA 

0.35 0.04 0.34 

Loci_S5_41827195 GTTGGAATGCACGATCCTTTCATTTGCTTGAAGC

CTTCAAGATTTTTTCTCCATGGAAACTGCA 

0.27 0.02 0.20 

Loci_S5_332355376 TCACTTTGAAGATTCAAGTGCAGGCGAGGAGTA

AAGACCAGAGAGTGCTTACAAGTCGGCTGCA 

0.09 0.01 0.05 

Loci_S6_16493617 TGCAGAGTACGAGTACCTATCTCATACAACCAC

GAACTGAAACGATGTATGTGTACAATCCAAT 

0.31 0.03 0.27 

Loci_S7_14150522 CATGCCATCGAGCAGAACATATTCGCCAGCTGTC

TGTCACACCTGCAAGGAAAGCAAGTCTGCA 

0.36 0.03 0.39 

Loci_S7_24772605 TGCAGCATGCCCCTATCATGGTTTGGGAAGCAAT

TGATGCCCCGCAGATGACATTTTTAAGAGG 

0.36 0.03 0.39 

Loci_S7_70434692 ATCCCGTGGCAGCATATTCAAAGATCGAATCTG

AGCCGTCATCTTTCCCCGCCATTGCCCTGCA 

0.25 0.02 0.18 

Loci_S7_164428314 TGCAGAATTGACAGATGCATCAAAATTGGTAGC

CGCTGAAGCTAACAATGCTCATGTTGATGTT 

0.30 0.02 0.24 

Loci_S7_164428314 TGCAGAATTGACAGATGCATCAAAATTGGTAGC

CGCTGAAGCTAACAATGCTCATGTTGATGTT 

0.30 0.02 0.24 

Loci_S7_178923859 TCTTTCGCGACAACAAAAAGCATCGGGCGATCC

AACTAGAGGCGGAGTTCAGGAACACTCTGCA 

0.32 0.03 0.27 

Loci_S8_511291591 TGCAGGTTTCATGGAGCTGCTCAAAGTCCTCAGT

GGCCCTCACGGCAGCGTATACGTCTGGATT 

0.12 0.01 0.07 

Loci_S8_652811064 CTCCACATCAGCTTTTACGTAAAACTCCTATGTT

ACTTTTCGGCATTTCCTATTTGACGCTGCA 

0.37 0.04 0.44 

Loci_S9_50810552 CATTTGTCCGTCCATACGTTAATGCTTGTCCCAT

CCCCAACTCTCTGAATAATGCCTAGCTGCA 

0.37 0.03 0.42 

Loci_S9_50810552 CATTTGTCCGTCCATACGTTAATGCTTGTCCCAT

CCCCAACTCTCTGAATAATGCCTAGCTGCA 

0.37 0.03 0.42 

Loci_S9_50810552 CATTTGTCCGTCCATACGTTAATGCTTGTCCCAT

CCCCAACTCTCTGAATAATGCCTAGCTGCA 

0.37 0.03 0.42 

Loci_S9_50810552 CATTTGTCCGTCCATACGTTAATGCTTGTCCCAT

CCCCAACTCTCTGAATAATGCCTAGCTGCA 

0.37 0.03 0.42 

Loci_S9_50810552 CATTTGTCCGTCCATACGTTAATGCTTGTCCCAT

CCCCAACTCTCTGAATAATGCCTAGCTGCA 

0.37 0.03 0.42 

Loci_S9_96868734 TGCATACTACATGGATGGGTAAAGGCATTGTAA

AGGCAGCATGCATGGCACTAGCATGACTGCA 

0.37 0.03 0.45 
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Loci_S10_24957419 TGCAGTGATTTTATGCCAAGAAACAAGAGCACG

TGCTGTAAATTTGCGCTTCTTTGGCCTTGTC 

0.37 0.02 0.46 

Loci_S10_201716835 ATCTCTACCTAACACGCCTCCAGCACTTCAACAG

GAGAAGAAGAGCACCTCCATACCCCCTGCA 

0.37 0.03 0.49 

Loci_S10_202066152 GCACATACGACTTGCGGTGTTGGAGAGGTGGCT

CTAGCTCCACGACTGCATCGGTGCCTCTGCA 

0.37 0.04 0.49 

Loci_S10_203231427 TGCAGCCCATCCCTCTGCACTTCCTCCAGGGTTT

GGATGTGCTGTGCGGTGTCAACCCAACAAA 

0.37 0.04 0.49 

Loci_S11_4861934 TGCAGAAGCCAGGACTCCAGCCAGTGACATCAT

GGAAATGTGAAAAGTTACCGCGCGCACACAC 

0.36 0.02 0.39 

Loci_S11_9212182 TGCAGTACATCATATTTCTGCTGGAAAGGGAGA

AGCCTTCAATCTAATCAGAACTCATGACCAT 

0.33 0.02 0.30 

Loci_S11_9212182 TGCAGTACATCATATTTCTGCTGGAAAGGGAGA

AGCCTTCAATCTAATCAGAACTCATGACCAT 

0.33 0.02 0.30 

Loci_S11_9212182 TGCAGTACATCATATTTCTGCTGGAAAGGGAGA

AGCCTTCAATCTAATCAGAACTCATGACCAT 

0.33 0.02 0.30 

Loci_S11_9212182 TGCAGTACATCATATTTCTGCTGGAAAGGGAGA

AGCCTTCAATCTAATCAGAACTCATGACCAT 

0.33 0.02 0.30 

Loci_S11_9212182 TGCAGTACATCATATTTCTGCTGGAAAGGGAGA

AGCCTTCAATCTAATCAGAACTCATGACCAT 

0.33 0.02 0.30 

Loci_S11_9791147 CTCTACTACACAGCCTCTAATCGCATGTGTTTGT

AGTACGGTAGGTGGGTACGCACTGGCTGCA 

0.21 0.02 0.14 

Loci_S13_77029577 TGCAGACCAGGTTAACGATCAACTTTCTCTCAAT

AAAAAAATGTTAGCGATCAAAGCTGCTTGG 

0.36 0.04 0.37 

Loci_S13_77296972 TGCAGTCTGACGTACCCAGTGCTCCGCATCGATG

ATTTCCTCGACTCTCTATATTCCTTCTCCA 

0.35 0.04 0.34 

Loci_S13_82914716 TATAGACTTTTTCTTCAAATCATTCCACACCGAT

TATGCTTTCGCAAATTAAAGGCTGCCTGCA 

0.37 0.04 0.47 

Loci_S13_82914716 TATAGACTTTTTCTTCAAATCATTCCACACCGAT

TATGCTTTCGCAAATTAAAGGCTGCCTGCA 

0.37 0.04 0.47 

Loci_S14_236729118 GCGCGCGGGTCTTGTTGATGGTGATGCCACCGA

GCGACGACGAGTCACCGCCGAGAGCGCTGCA 

0.27 0.02 0.20 

Loci_S14_270906880 TGCAGTAGCCACAACTTGCAGCTTTAGCCGTGTG

CGTGCATGTGTGTGAGAGGTCAGCAATTCA 

0.13 0.01 0.08 

Loci_S14_271965160 GTACGGAAGTAGTCGACCGTCGGCTTCTTCTTGC

GCCACGCCTCGTAGGGCATCATTCCCTGCA 

0.13 0.01 0.08 
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Loci_S15_143849002 GCGTCCACGTCGACATCACGGTTGCCAACGTTGC

CATGCTCCGCTGCGCCGCGCGCTACCTGCA 

0.18 0.02 0.11 

Loci_S16_5034804 TGCAGGCCCACTCTGTGCCGCCCTGCTGCTGGCG

ACGGCAGTCGTGCTCCTCGTGGTCGCCGCG 

0.24 0.02 0.16 

Loci_S16_8917119 GCCATGTCGTTGAACTACGGTTGCCATCTCGGAC

AACTACAGTTGCCATGTTTGCTGAACTGCA 

0.35 0.03 0.36 

Loci_S16_19072856 GCGGTGACCGCGACCTCCAACTTGGCCCTGTCCG

AGAGAAAGCGGAGCATCATGTTCCCCTGCA 

0.34 0.03 0.33 

Loci_S16_19072856 GCGGTGACCGCGACCTCCAACTTGGCCCTGTCCG

AGAGAAAGCGGAGCATCATGTTCCCCTGCA 

0.34 0.03 0.33 

Loci_S16_19072856 GCGGTGACCGCGACCTCCAACTTGGCCCTGTCCG

AGAGAAAGCGGAGCATCATGTTCCCCTGCA 

0.34 0.03 0.33 

Loci_S16_24998762 TGCAGCACACACCAGCAATTAAAATTTGCACAC

CAAACCGTGCCACTATCTTAGCACTGAAAGG 

0.33 0.03 0.29 

Loci_S16_24998762 TGCAGCACACACCAGCAATTAAAATTTGCACAC

CAAACCGTGCCACTATCTTAGCACTGAAAGG 

0.33 0.03 0.29 

Loci_S16_24998762 TGCAGCACACACCAGCAATTAAAATTTGCACAC

CAAACCGTGCCACTATCTTAGCACTGAAAGG 

0.33 0.03 0.29 

Loci_S16_33226117 TGAACGCACCGAAGCCAACAATCGAAATCATAA

AGCCATCAAATGCCGCGGGAGAGAGCCTGCA 

0.28 0.02 0.21 

Loci_S16_33226117 TGAACGCACCGAAGCCAACAATCGAAATCATAA

AGCCATCAAATGCCGCGGGAGAGAGCCTGCA 

0.28 0.02 0.21 

Loci_S16_33226117 TGAACGCACCGAAGCCAACAATCGAAATCATAA

AGCCATCAAATGCCGCGGGAGAGAGCCTGCA 

0.28 0.02 0.21 

Loci_S16_33226117 TGAACGCACCGAAGCCAACAATCGAAATCATAA

AGCCATCAAATGCCGCGGGAGAGAGCCTGCA 

0.28 0.02 0.21 

Loci_S16_50275005 TGCAGAGTAGAAGGCATGAAGCGTACCATGGAG

CCCCGCGTTATGAAGTTGGAGCTCGGTAACA 

0.18 0.01 0.11 

Loci_S16_50275005 TGCAGAGTAGAAGGCATGAAGCGTACCATGGAG

CCCCGCGTTATGAAGTTGGAGCTCGGTAACA 

0.18 0.01 0.11 

Loci_S16_94542206 TGATTCTCATGTTGCTGCAAAATTCCCAGCAACA

TCACCCACTGTCACTAGCAAAGCAGCTGCA 

0.26 0.01 0.19 

Loci_S16_143466155 ACTTGAGTTTCAACAACTTTTATGGAGAGATACC

ACAATCAATCTGCAACCTGACGAACCTGCA 

0.37 0.03 0.45 

Loci_S16_150663555 TGCAGCGACCCGAAAAAGATTCAGGTGAGCCCT

GGCGACTACTTTGGGCTACCAGCAGCCCAGT 

0.18 0.01 0.11 
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Loci_S16_150663555 TGCAGCGACCCGAAAAAGATTCAGGTGAGCCCT

GGCGACTACTTTGGGCTACCAGCAGCCCAGT 

0.18 0.01 0.11 

Loci_S16_150663555 TGCAGCGACCCGAAAAAGATTCAGGTGAGCCCT

GGCGACTACTTTGGGCTACCAGCAGCCCAGT 

0.18 0.01 0.11 

Loci_S16_154516738 AAGACTCCACTAGACCATCCGAGAAAATTTGGC

ATGCCTGCACGCAGTTCAGCTGAACCCTGCA 

0.37 0.03 0.45 

Loci_S17_5974923 TGCAGATCTCCGCAGCTGGCTTCACACCCAGGTC

GTCAGCCACACGAACTGATAGACGGTAAAC 

0.23 0.02 0.16 

Loci_S17_5974923 TGCAGATCTCCGCAGCTGGCTTCACACCCAGGTC

GTCAGCCACACGAACTGATAGACGGTAAAC 

0.23 0.02 0.16 

Loci_S17_6513799 CTCGTATCCACCTCTAGAGATGTCTTACTTCTGT

ACTGACATTGCTCTAATTGTTAACTCTGCA 

0.23 0.02 0.16 

Loci_S17_164481606 TGCAGAATGAAGTACTATACGCTGTGCGCGCGC

GCGTGTGCAGTCTAGGAGAAGAGGACGATGC 

0.37 0.03 0.46 

Loci_S17_164481606 TGCAGAATGAAGTACTATACGCTGTGCGCGCGC

GCGTGTGCAGTCTAGGAGAAGAGGACGATGC 

0.37 0.03 0.46 

Loci_S17_176721264 GTCACTGGCACGACCGACATGACCATTTACCAC

GGCCTGCCTGCACAAGAAACAGCTTCCTGCA 

0.37 0.03 0.47 

Loci_S17_176721264 GTCACTGGCACGACCGACATGACCATTTACCAC

GGCCTGCCTGCACAAGAAACAGCTTCCTGCA 

0.37 0.03 0.47 

Loci_S17_180461356 TGCAGTGATATATATAACCATGGACTAGATGATA

AAATTAGAGGAGTAGCTACGTGTAGCATCC 

0.25 0.02 0.18 

Loci_S18_20387611 TAGACCTTTACAACTAGCCATATTTACATACATA

TGGTTGACATACTAGTAACTAGAGCCTGCA 

0.36 0.04 0.38 

Loci_S18_20387611 TAGACCTTTACAACTAGCCATATTTACATACATA

TGGTTGACATACTAGTAACTAGAGCCTGCA 

0.36 0.04 0.38 

Loci_S18_111388404 GTGTCGGCATGACTGATTCTCCTATGCTACAACA

TCACCCACTGTCACTAGCAAAGCAGCTGCA 

0.37 0.03 0.46 

Loci_S18_111388404 GTGTCGGCATGACTGATTCTCCTATGCTACAACA

TCACCCACTGTCACTAGCAAAGCAGCTGCA 

0.37 0.03 0.46 

Loci_S19_15975054 TGCAGCTTCGCAAAAGAACGGCCATCGGGTCAA

TAATGAAGGCAGGATAACATTTCGGTTTCTG 

0.23 0.02 0.15 

Loci_S19_15975054 TGCAGCTTCGCAAAAGAACGGCCATCGGGTCAA

TAATGAAGGCAGGATAACATTTCGGTTTCTG 

0.23 0.02 0.15 

Loci_S19_18380157 TGCAGCTTGCACGTGCCCGAGCATTATCTTTGTC

ACCTTGTCGGAGTTCTGTCTCCACATACCA 

0.25 0.02 0.18 
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Loci_S19_78415889 TTTTCAACTTTCCATGTCTTCTGAGTCCAGTAAGT

TTTATCAAATTCCATGTTAAATATCTGCA 

0.37 0.04 0.41 

Loci_S19_101352522 ATGACGTGGTGGCCAGGCGCTGGTTGCTGCCTCA

CCCGACCCCAGCGTGCCCGAGGTGCCTGCA 

0.36 0.03 0.39 

Loci_S19_101352522 ATGACGTGGTGGCCAGGCGCTGGTTGCTGCCTCA

CCCGACCCCAGCGTGCCCGAGGTGCCTGCA 

0.36 0.03 0.39 

Loci_S19_112027332 TGCAGGCCGTTTACCTAAGTCTCCACACACCTGT

ACCCTACAGCTGGCCGCCACACGCCTGGAG 

0.36 0.03 0.39 

Loci_S19_112027332 TGCAGGCCGTTTACCTAAGTCTCCACACACCTGT

ACCCTACAGCTGGCCGCCACACGCCTGGAG 

0.36 0.03 0.39 

Loci_S19_162307306 TGCAGTTGGTTCGTCTAGCCTCATCGTTGGTGTT

CATCGGCACGTTCAAAGGGGAAGAAGACAG 

0.26 0.02 0.19 

Loci_S20_17646955 TGCAGATATATTCACATGCCTCAAGTTAATTGTA

AGCCAGAACACTGAACATATAACCACATTC 

0.26 0.01 0.19 

Loci_S20_173057509 ACTTGGAGCACCTCTACCTTGATTTCTCTCGGGT

GTTGAGTGCGTCGAAGGGTTCGTATCTGCA 

0.37 0.05 0.49 

Loci_S20_211863525 TATTATTATTGAGAAAGGAGCGGAGCGTATCAC

ATGAGATGAACAACCGAATATCCTATCTGCA 

0.37 0.03 0.43 

Loci_S20_235418274 TTGTGATTAAAAGCCCGATCTACATAGTGAGCG

GAAGTTCAGAAATAACACAAGAACATCTGCA 

0.27 0.03 0.21 

Loci_S20_251235369 GAAGGAAAGGCATGTTGGATGGCCAGTAAACTG

TGCGAACGTAGCACAAAGCTAGCGGCCTGCA 

0.37 0.04 0.42 

Loci_S20_251235369 GAAGGAAAGGCATGTTGGATGGCCAGTAAACTG

TGCGAACGTAGCACAAAGCTAGCGGCCTGCA 

0.37 0.04 0.42 

Loci_S20_251235369 GAAGGAAAGGCATGTTGGATGGCCAGTAAACTG

TGCGAACGTAGCACAAAGCTAGCGGCCTGCA 

0.37 0.04 0.42 

Loci_S21_51496571 TTGAAACCGAAGAAAAACTAACAGCTACCAAGC

AGAATGCAGGCGCTCCCTATTTAGCACTGCA 

0.25 0.03 0.17 

Loci_S21_55673430 TCGACGGTGTACAGCCACGGTGCTGTCGGAAAC

TTGAGGCACGAGGATGAGCCAAATAACTGCA 

0.30 0.03 0.25 
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 Abstract 

Hard red winter wheat (Triticum aestivum L.), the predominant field crop of Kansas, is 

primarily used in making leavened bread. Regional quality standards for bread making are 

imperative for cultivar release. However, breeding for quality traits is often considered a 

secondary goal, largely due to amount of seed needed and expense of such testing. Without 

testing and selection, many undesirable materials tend to be advanced. Here we develop and 

validate whole genome prediction models for end-use quality phenotypes routinely generated by 

the Kansas State University hard red winter wheat breeding program in Manhattan, KS. With 

these predictions genomic selection (GS) can be applied at earlier stages and undesirable 

materials culled before implementing expensive yield and quality screenings. Prediction 

accuracy was tested using data from unbalanced yield trials from 2009 to 2014 (n = 472) in 

central Kansas evaluated for quality parameters: test weight, average kernel weight and diameter, 

grain and flour protein, mixing time, water absorption, and bread loaf volume. High-density 

markers were generated with genotyping-by-sequencing and SNPs were imputed. Prediction 

models were developed using ridge regression, Gaussian kernel, partial least squares, elastic net, 

and random forest models in R. In general, prediction accuracy increased over time as more data 

was available to train the model. Mean prediction accuracies (r) for quality parameters in cross 

validation ranged 0.2 (loaf volume) to 0.6 (Mixograph water absorption). Based on these 

prediction accuracies, we conclude that GS can be cautiously applied in the breeding program, 

but more model development is still needed for full integration.  
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Hard red winter wheat is the most widely grown crop in Kansas. The wheat from Kansas, 

and the Southern Great Plains, in general, is commonly considered as high-quality for wheat 

bread making. This is primarily due to the typically high protein content, dough strength, 

extensibility, and tolerance to overmixing which is common in commodity wheat from this 

region.  

Wheat in the Great Plains can experience a variety of biotic and abiotic stresses resulting 

in yield reduction to various levels (Holman, et al., 2011). Wheat quality can be highly impacted 

by these changes as high environment and genotype by environment interactions have been 

found for flour protein content in several locations across Nebraska (Graybosch, et al., 1996). 

The variance in flour protein content in turn changes the quality profile for dough rheology and 

baking. Despite these environmental challenges and cost of screening, breeding progress have 

been made to increase the processing and end-use quality over time in the Great Plains (Cox, et 

al., 1989). 

Wheat tested as grain, flour, dough, and final products must be assessed to determine an 

overall best end-use product, for a given wheat cultivar or breeding line. Typically, hard grain 

with high protein and strong and extensible gluten is acceptable for making industrial pan bread, 

whereas soft grain with low protein and weak and extensible gluten is more acceptable for the 

cookies, cakes, and pastries (Peña, 2002). Regional breeding standards for hard red winter wheat 

quality traits in released cultivars are set by the Wheat Quality Council (HWW Quality Targets 

Committee, 2006). Meeting these parameters maintains the good quality for all wheat grown in 

this area and is an imperative of all individual released varieties.  

Testing for wheat quality requires large amounts of seed, and has cost in addition to field 

testing. Due to the amount of materials in the breeding program to be tested and the amount of 

seed required, resources for testing these traits are often not utilized until late in the breeding 

program. Thus, breeding program resources will be spent on materials which may not pass the 

quality targets. Therefore, the objective of this research was to test the utility of genomic 

selection to predict processing and end-use quality in the Kansas State University wheat breeding 

program in Manhattan, so that predictions of wheat quality may be available earlier in the 

program. 
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 Materials and Methods 

 Breeding Program Outline 

There are two publicly funded wheat breeding programs in the state of Kansas working 

through Kansas State University (KSU). These programs are located in Manhattan and Hays, KS. 

The primary focus of this paper is the Manhattan breeding program, which produces hard red 

winter wheat varieties mostly for Central and Eastern Kansas.  

The Kansas State University Manhattan wheat breeding program uses a selected bulk 

strategy in segregating generations, derives wheat pure lines at the F5 stage, and then begins 

yield testing in the F5:6. F5:6 are tested in small plot, augmented yield tests, and processing and 

end-use quality is first tested for SKCS and Mixograph parameters. Results of these tests are 

typically available for selection for advancement of materials to replicated yield tests. Full bakes 

are not conducted until following the 7
th

 generation replicated yield tests. These results are 

typically not available until during the field season of the 8
th

 generation. By this time, the 

program has highly selected candidates based on agronomic performance, and then needs to 

conduct culling more heavily based on wheat quality. 

The F5:6 are tested in an unreplicated, small-plot (0.75 x 2.25 m) yield trial, referred to as 

the individual plant short row (IPSR). The lines grown here are investigated for overall 

appearance, disease resistance, augmented yield comparison, and test weight. After the lines 

have been filtered for these traits, the remaining entries are tested in the wheat quality lab for 

grain size, grain protein, then milled and screened for peak mix time and tolerance to overmixing 

using Mixograph dough recorder (National Manufacturing, Lincoln, NE). This step serves as a 

secondary filtration for entries which were questionable after the yield test, and likely only 

removes entries with no tolerance to overmixing or extreme mix times. If the line performed very 

well in the augmented yield test or had other target traits of interest, which will be handled in 

another cycle of breeding, the material stays in the program regardless of quality at this point. 

The next stage of testing for the KSU wheat breeding program is larger (1.5 x 4.5 m) 

replicated preliminary yield tests or nurseries (PYN). These tests are grown also in an 

unreplicated, augmented design per location, however they are replicated in several locations 

across the state. The top performers of this test over several locations will be tested for the full 

panel of processing and end-use tests: SKCS, grain protein, milling Mixograph and baked into a 

pup loaf. The results of these tests do not return to the breeder until the following yield test is 
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planted, so all advancement decisions in this round are based on yield, agronomic performance, 

disease resistance, and other specifically targeted traits of interest. 

Advanced yield nurseries (AYN) contain best materials at this stage from both Manhattan 

and Hays breeding programs. These tests are conducted in two replicate plots (1.5 x 4.5 m) in 

alpha lattice design for the Manhattan program managed locations, and three replicate plots (1.5 

x 4.5 m) in a randomized complete block design for the Hays program managed locations. The 

final advanced stage of testing is the Kansas intrastate nursery (KIN) which is planted in all 

locations in replicated designs. Materials are typically tested in the KIN and other regional yield 

tests for several years before release decisions are made for wheat lines. 

 Genotypes 

All materials in the PYN in 2011 and beyond from the KSU Manhattan wheat breeding 

program have been genotyped using genotyping-by-sequencing. Additionally, genotyping moved 

up one year in the breeding scheme starting in 2013, from that time forward all IPSR were 

genotyped. This results in a total of 6,134 materials genotyped in the KSU Manhattan breeding 

program to date. 

Annually, as new nurseries were finalized, DNA was extracted from bulked leaf tissue 

using the BioSprint 96 DNA Plant Kit (Qiagen) with the BioSprint 96 Workstation (Qiagen). 

Genotyping-by-sequencing was conducted as in Poland, et al. (2012) using TASSEL (Bradbury, 

et al., 2007) version 4 de novo pipeline to identify single nucleotide polymorphisms (SNPs). The 

SNPs were converted from the hap files to numeric (1, 0, -1, for homozygous major allele, 

heterozygous, and homozygous minor allele, respectively) using R package ‘GSwGBS’ (Gaynor, 

2015). The genotype matrix was then filtered for a maximum of 20% missing within each 

marker, and maximum of 50% missing markers for each individual and mean marker imputation 

was conducted (Endelman, 2011).  

 Phenotypes 

472 wheat lines yield tested between 2005 and 2014 were used in genomic selection for 

wheat quality. These lines represent all available entries with genotype and phenotype 

information from PYN testing and beyond. Since only best materials selected for advancement 

are tested for quality, these data are unbalanced replicates where some lines were replicated in 

more than one environment per year, or tested across multiple years. Best linear unbiased 

estimates (BLUEs) of the quality parameters were made to allow for one phenotype per line, per 
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trait for the GS modeling. BLUEs were determined using site-year, the location-year 

combination, as a fixed effect in linear modeling in R package ‘lme4’ (Bates, et al., 2013). 

Test weight per bushel (TESTWT) is the weight of grain required to fill a level 

Winchester bushel. This measurement is correlated with the flour yield from milling, and an 

important metric in grain sales. The regional goal for cultivars is greater than 60 lb bu
-1 

(HWW 

Quality Targets Committee, 2006). For this study, TESTWT was measured with a Seedburo 

Filling Hopper and Stand (Seedburo Equipment, Des Plaines, IL)  using method 55-10.01 

(AACC, 2000). 

Individual wheat kernels were measured using the Single Kernel Characterization System 

(SKCS) for wheat kernel texture, SKCS 4100 (Perten Instruments, Inc., Springfield, IL). This 

instrument measures grain hardness, weight, and diameter on each kernel. Averages of 200 

measured kernels are represented here. The method used was 55-31.01 (AACC, 2000). Almost 

all entries available for training were hard, and little deviation was found for hardness index, thus 

they were excluded from modeling. Regional targets for grain weight (AVGWT) and diameter 

(AVGDIA) are kernels greater than 30 mg and 2.4 mm, respectively (HWW Quality Targets 

Committee, 2006).  

Grain protein (GRNPRO) was assessed using AACC method 46-30.01 (AACC, 2000). 

Measured using Diode Array 7200 NIR (Perten Instruments, Inc., Springfield, IL) and reported 

on a 12% moisture basis. Preferably, wheat contains great than 12% protein content at 12% 

moisture basis according to the HWW Quality Targets Committee (2006). Milling was 

conducted with Brabender Quadrumat Sr. (Brabender, Duisburg, Germany) and requires at least 

1500 g seed for mixograph and bake tests for these tests. Flour protein (FLRPRO) and moisture 

determined by NIRS (Perten Instruments, Inc., Springfield, IL). This is reported at 14.5% 

moisture basis. 

Dough development time (MIXTIM) and water absorption (MIXABS) were determined 

by Mixograph recording dough mixer (National Manufacturing, Lincoln, NE), method 54-40.02 

(AACC, 2000). This test requires 50g of flour for each replicate. Regional targets prefer greater 

than 62% water absorption at 14% moisture basis and a peak mixing time between 4 and 8 

minutes, for optimal adaptation to industrial baking processes (HWW Quality Targets 

Committee, 2006). 
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Test baking was conducted by AACC method 10-10.03 (AACC, 2000). This test requires 

600 g flour. The water absorption and mixing time during baking preparation are recorded as 

BAKEABS and BAKETIM, respectively. Wheat quality standards for this region are greater 

than 62% water absorption at 14% moisture basis and 3-5 minute mixing time(HWW Quality 

Targets Committee, 2006). Loaf volume (LOFVOL) was measured by rape seed displacement. 

Local standards prefer loaf volume greater than 850 cc in released cultivars (HWW Quality 

Targets Committee, 2006). 

 GS Methods 

Genomic selection prediction was conducted using the methods in Gaynor (2015). 

Briefly, R package ‘GSwGBS’ utilizes other R packages ‘rrBLUP’, ‘pls’, ‘randomForest’, and 

‘glmnet’ to conduct various methods to solve for marker effects in a training population (Liaw 

and Wiener, 2002, Mevik and Wehrens, 2007, Friedman, et al., 2009, Endelman, 2011). Methods 

in this package are ridge regression best linear unbiased predictor (RRBLUP), Gaussian kernel 

(GAUSS), partial least squares regression (PLSR), elastic net (EN), and random forest (RF). All 

prediction models are also averaged to prevent poor prediction accuracy in unknown years and 

characteristics (Gaynor, 2015). These methods are more fully described in chapter 2 of this 

dissertation and in Gaynor (2015).  

Marker effects solved by the models are then tested on either a new population to be 

predicted, which was previously untested, or some portion of the previously tested materials in 

cross validation. Here we test GS on 472 wheat breeding lines with wheat bread making quality 

phenotypes were available from 2005-2014 (Figure 1). 251 of the entries were tested in 2014, 

and 221 entries were historical, or tested between 2005 and 2013. Historical entries were used to 

train the model, predicting for the 2014 entries, and vice versa. Additionally, cross validation 

was conducted where 80% of the entries were used to train the model and 20% were masked to 

test the model. In all testing methods correlations were made between predicted and empirical 

quality phenotypes.  

Distributions of MIXTIM and BAKETIM did not follow a Gaussian distribution. These 

were log transformed prior to analysis. To demonstrate the log transformation these results are 

demonstrated as lMIXTIM and lBAKETIM. 
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 Results and Discussion 

Cross validation within all 472 entries resulted in significant predictions for all 

processing and end-use quality traits in the Kansas State University hard red winter wheat 

breeding program (Figure 2). GS methods were typically not significantly different in predictive 

ability; however RF has highest accuracies in mixing and baking time. While many methods 

demonstrate variable performance between the traits, AVE method performs stable and among 

the highest prediction correlation.  

Forward prediction where one set of materials trains a model to predict different 

materials in a different year, however, is more indicative of a breeding program. Forward 

prediction accuracies were much lower than cross prediction for all traits. Significant predictions 

were found for AVGWT and AVGDIA were found in when historical material predicted 2014 

entries for quality (Table). These significant prediction correlations were low, though, 0.261 and 

0.176, respectively for AVGWT and AVGDIA.  

In the reverse scenario when 2014 materials trained the model to predict historical lines 

more traits were significantly predictive: TESTWT, AVGWT, AVGDIA, MIXTIM, BAKETIM, 

LOFVOL, and the log transformed bake and mixing times. These significant models, however, 

still only predicted a low portion with correlations ranging from 0.12 to 0.29. In these tests the 

models fluctuated by trait which was most accurate, but significant differences were not seen in 

model performance. 

 Conclusions 

Genomic selection for wheat end-use and processing quality has shown promise in the 

Kansas State University hard red winter wheat breeding program in cross validation testing. 

However, predictions across environments for processing and end-use quality are much less 

accurate and in many cases non-significant. Prediction models trained with the 2014 year where 

more materials were sampled from the same environment produced a more robust training model 

than the BLUEs from all unbalanced historical data. 

Prediction model performance was variable by trait and material tested. Predictions made 

from the model averaging method demonstrate most stability over multiple traits in multiple 

years. This validates the results of Raftery, et al. (1997) and Claeskens and Hjort (2008) which 

indicate that the model averaging protects from model variability in predictions into unknown 
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situations. Breeders are constantly faced with unknown situations due to varying environment 

and genotype by environment impact, which is another reason this method is preferred. 

Higher prediction accuracies were seen in the CIMMYT bread wheat breeding program 

for all traits in forward and cross prediction accuracy (Battenfield, Chapter 2). Possible 

explanations are fewer lines in the Kansas training population, possibility of less genetic 

variation for the traits of interest in the Kansas program, and more environment or genotype by 

environment impact unaccounted for in the Kansas program. Based on high accuracies of 

random forest method compared to the rrBLUP method in Kansas forward predictions, we can 

assume the models will continue increasing accuracy with more materials as this method works 

better with less data (unpublished results). Differing predictive abilities of the historical set of 

highly unbalanced data compared to the 2014 materials indicates that more wheat lines should be 

sampled from individual site-years to increase predictive accuracy of the model. Additionally, 

since Kansas breeds only for industrial pan bread in the less diverse winter background, it is 

possible that the genetic diversity may have an impact on the upper limits of attainable GS 

accuracy in Kansas. Finally, we know there are high impact of environment and genotype by 

environment for the quality traits in the Great Plains (Graybosch, et al., 1996). Our methods used 

fixed effect BLUEs to account for these impacts, but models were not built to handle these 

factors well. 

Currently, these models need more information before full implementation into the 

Kansas hard red winter wheat breeding program. However, the models have been utilized with 

cautious optimism. Here breeder recommendations have been made indicating lines greater than 

1 or 2 standard deviations away from the mean of all predictions for a trait. Quality traits should 

remain within the parameters given by the HWW Quality Targets Committee (2006). Currently, 

middle predictions, average predictions plus or minus one standard deviation, represent the 

middle of the quality targets for most traits. Tails of the predicted distributions have materials 

which typically are also in the empirical tails, thus, we can select for the portion of the predicted 

curve as applicable to the trait of interest. This strategy will likely need to be reassessed as allele 

frequencies within the breeding program shift with selection. 
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 Tables 

Table 4-1: GS predictions using historical set to predict 2014 materials. 

  RRBLUP GAUSS PLSR ELNET RF AVE 

  Correlation coefficient ( r ) 

TESTWT 0.016 0.062 0.028 0.031 0.097 0.042 

AVGWT 0.254** 0.298** 0.231* 0.254** 0.190* 0.254** 

AVGDIA 0.178 0.198* 0.155 0.179 0.190* 0.182 

GRNPRO 0.052 0.092 0.039 0.092 0.177* 0.084 

FLRPRO -0.024 0.027 -0.071 -0.039 -0.008 -0.036 

MIXABS 0.009 0.050 -0.034 0.008 -0.028 0.000 

MIXTIM 0.079 0.069 0.084 0.081 0.161 0.097 

BAKEABS 0.066 0.232** 0.093 0.074 0.133 0.109 

BAKETIM 0.077 0.065 0.046 0.146 0.178* 0.112 

LOFVOL 0.012 0.024 0.032 0.014 0.010 0.021 

lBAKETIM 0.102 0.091 0.100 0.193* 0.231** 0.155 

lMIXTIM 0.094 0.082 0.097 0.196* 0.211* 0.147 

 

Table 4-2: GS predictions using 2014 materials to predict historical set. 

  RRBLUP GAUSS PLSR ELNET RF AVE 

  Correlation coefficient ( r ) 

TESTWT 0.157** 0.161** 0.166** 0.118* 0.207*** 0.187** 

AVGWT 0.240*** 0.286*** 0.147** 0.163** 0.162** 0.221*** 

AVGDIA 0.146** 0.163** 0.114 0.121* 0.059 0.134* 

GRNPRO 0.076 0.092 0.082 0.079 -0.050 0.069 

FLRPRO 0.076 0.122 0.072 0.077 -0.036 0.073 

MIXABS -0.100 -0.090 -0.103 -0.055 -0.032 -0.085 

MIXTIM 0.121* 0.119* 0.172** 0.191** 0.236*** 0.190** 

BAKEABS 0.013 0.024 0.033 0.011 -0.024 0.012 

BAKETIM 0.114 0.127* 0.113 0.198*** 0.239*** 0.177** 

LOFVOL 0.110 0.134* 0.086 0.155** 0.004 0.112 

lBAKETIM 0.136* 0.165** 0.131* 0.260*** 0.327*** 0.224*** 

lMIXTIM 0.146* 0.147* 0.212*** 0.255*** 0.291*** 0.254*** 
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 Figures 

 

Figure 4-1: Number of entries from each year represented in genomic selection modeling  

 

 

Figure 4-2: Cross validation correlations of genomic selection for all quality traits in 472 

entries using 80% to train model and 20% to test. Model was randomly iterated 10 times. 
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