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ABSTRACT The most abundant transposable elements (TEs) in plant genomes are Class I long terminal
repeat (LTR) retrotransposons represented by superfamilies gypsy and copia. Amplification of these super-
families directly impacts genome structure and contributes to differential patterns of genome size evolution
among plant lineages. Utilizing short-read Illumina data and sequence information from a panel of Helianthus
annuus (sunflower) full-length gypsy and copia elements, we explore the contribution of these sequences to
genome size variation among eight diploid Helianthus species and an outgroup taxon, Phoebanthus
tenuifolius. We also explore transcriptional dynamics of these elements in both leaf and bud tissue via
RT-PCR. We demonstrate that most LTR retrotransposon sublineages (i.e., families) display patterns of
similar genomic abundance across species. A small number of LTR retrotransposon sublineages exhibit
lineage-specific amplification, particularly in the genomes of species with larger estimated nuclear DNA
content. RT-PCR assays reveal that some LTR retrotransposon sublineages are transcriptionally active across
all species and tissue types, whereas others display species-specific and tissue-specific expression. The
species with the largest estimated genome size, H. agrestis, has experienced amplification of LTR
retrotransposon sublineages, some of which have proliferated independently in other lineages in the
Helianthus phylogeny.
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Transposable elements (TEs) are DNA sequences capable ofmobilizing
within a host genome. Mobilization typically occurs either by physical
excision-reinsertion events or through a process of replicative trans-
position whereby individual elements transcriptionally give rise to new
copies that are reverse transcribed prior to insertion at new locations in
the genome (Kumar and Bennetzen 1999; Feschotte et al. 2002). TEs
that mobilize via replicative transposition (Class I TEs) are a major
genomic component of many plant species because their mobilization
involves sequence propagation and large-scale copy number increases.
Because these events occur independently and at different rates and
scales in the genomes of different plant lineages, even closely related

species may diverge rapidly in TE content and genome size (Hawkins
et al. 2006; Tenaillon et al. 2011).

The most abundant Class I TEs in plants are long terminal repeat
(LTR) retrotransposons andare subdivided into superfamilies gypsy and
copia (Kumar and Bennetzen 1999; Wicker et al. 2007). Differential
proliferation and abundance of families (or sublineages) within these
superfamilies are known to directly impact genome size evolution
(Vitte and Panaud 2005; Hawkins et al. 2006; Piegu et al. 2006;
Charles et al. 2008; Tenaillon et al. 2011; Piednoel et al. 2012; Kelly
et al. 2015). Characterizing particular sublineages within superfamilies
that undergo proliferation and determining patterns of proliferation
events among related species can be a difficult task given sequence
variation among sublineages and the difficulty of accurately estimating
copy number abundance of elements within sublineages across taxa.

Advances in next-generation sequencing (NGS) approaches have
greatly facilitated efforts to generate and characterize whole-genome-
level sequence data (Lam et al. 2012) for model and nonmodel organ-
isms alike (Kelly and Leitch 2011). Major impediments of de novo
genome assembly of NGS data exist, however, on account of short-read
lengths generated by many NGS platforms and the difficulty of assem-
bling reads derived from genomes with a high repetitive fraction (e.g.,
with a large TE component). NGS data nonetheless have proved
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extremely informative for characterization of the genomic TE content
both within species and across related taxa (Tenaillon et al. 2011;
Bonchev and Parisod 2013), and several analysis methods have been
developed for such characterizations, even under scenarios of low se-
quence coverage (Macas et al. 2007; Kurtz et al. 2008; Novak et al.
2010).

Wild sunflowers in the genus Helianthus provide an opportune
system for studies of TE proliferation dynamics and associated genome
evolution (Giordani et al. 2014).Helianthus includes�49 species native
to North America that are collectively widespread throughout the
United States, southern Canada, and northern Mexico (Heiser et al.
1969) and phylogenetic relationships are well resolved (Rieseberg 1991;
Schilling 1997; Schilling et al. 1998; Timme et al. 2007; Stephens et al.
2015). Genomic resources and tools are available for severalHelianthus
species (Kane et al. 2013) and a genome sequencing effort is underway
for the cultivated sunflower H. annuus (Kane et al. 2011). Multiple
ploidy levels are foundwithin the genus (Kane et al. 2013) with genome
size varying considerably even among species of the same ploidy (Sims
and Price 1985). Genome structure and organization have been best
characterized for the diploid species H. annuus. The genome of this
species is highly repetitive, with LTR retrotransposons and their deriv-
atives comprising.70% of nuclear DNA (Staton et al. 2012; Gill et al.
2014). Recent insertional activity of these sequences has been docu-
mented in H. annuus (Buti et al. 2011; Staton et al. 2012) as have
patterns of tissue-specific expression (Gill et al. 2014). Recent and even
larger-scale proliferation of LTR retrotransposons has been docu-
mented for three diploid annual Helianthus species derived via ancient
hybridization events (Ungerer et al. 2006, 2009; Staton et al. 2009;
Kawakami et al. 2010), with sublineages that proliferated in these spe-
cies remaining active transcriptionally and expressed at higher levels
when compared to the parental species from which the hybrid taxa are
derived (Kawakami et al. 2011; Ungerer and Kawakami 2013).

In the current studywe explore the contribution of LTR retrotransposons
to genome size variation among eight diploid Helianthus species rep-
resenting all four taxonomic sections based on current classification
(Schilling and Heiser 1981) and an outgroup species, Phoebanthus
tenuifolius. These eight Helianthus species represent much of the
existing variation in diploid genome size, ranging nearly fourfold in
estimated nuclear DNA content (Sims and Price 1985). We combine
short-read NGS data with sequence information from a panel of
H. annuus (common sunflower) full-length LTR retrotransposons in
a de novo graph-based clustering approach that enables meaningful
comparisons of LTR retrotransposon sublineage identity and abun-
dances across species. We demonstrate that nuclear genome size is
significantly correlated with repetitive DNA content in these species
and that the species under investigation generally exhibit similar
abundances of different LTR retrotransposon sublineages, suggestive
of shared ancestry. We also note signatures of amplification for a small
number of LTR retrotransposon sublineages in species with the largest
genomes, thus identifying a contributing mechanism of genome size
expansion in these species. Lastly, we highlight how graph-based clus-
tering approaches are preferable to read-mapping-based approaches in
interspecific comparative analyses of TE abundance.

MATERIALS AND METHODS

Plant materials and DNA sequencing
Seeds of species utilized in this study were obtained from the United
States Department of Agriculture (USDA) National Plant Germplasm
System (http://www.ars-grin.gov/npgs/) or collected from natural pop-
ulations (Table 1). Seeds were germinated in the dark on moist filter

paper in Petri dishes and 2- to 3-d-old seedlings transferred to 8-inch
pots with a 2:1 mixture of Metro-mix 350: all-purpose sand. All plants
were grown under a 16 hr:8 hr, light:dark cycle in the Kansas State
University glasshouse facility. Watering was conducted daily or as
needed and fertilization with a weak nutrient solution (N:P:K =
15:30:15) was applied weekly.

Young, fully-expanded leaves from one individual per species were
collected for DNA extraction and subsequent whole-genome shotgun
(WGS) sequencing. All harvested tissue was flash-frozen in liquid
nitrogen and stored at280� until needed. GenomicDNAwas extracted
using the DNeasy Plant Mini Kit (Qiagen, Valencia, CA). Three mi-
crograms of total DNA per species were utilized for library preparation
and WGS sequencing on an Illumina HiSeq2000 platform, generating
2 · 100 bp paired-end reads. Library preparation was performed fol-
lowing the Tru-Seq standard protocol (Illumina Inc., San Diego, CA)
with a library insert size of 350 bp. Libraries were multiplex sequenced
on a single lane. Library construction and sequencing were performed
at the University of Missouri DNA Core Facility, Columbia, MO
(http://biotech.missouri.edu/dnacore/). Sequence data were trimmed
and filtered using Trimmomatic V0.30 (Bolger et al. 2014) according
to the following criteria: (1) adapters and barcodes removed, (2)
reads ,80 bases removed, (3) bases trimmed from read ends if
quality ,30, and (4) read ends trimmed while mean quality ,25 in
a 4 bp sliding window. Chloroplast reads were removed bymapping the
filtered dataset to the H. annuus chloroplast genome (NC_007977.1)
using BWA v0.7.6 (Li and Durbin 2009) with default parameters.
Genomic coverage for each species was estimated using the equation
Coverage = LN/G (Lander and Waterman 1988), where L is average
read length, N is number of reads per species and G is genome length.
Genome length for each species was calculated utilizing the haploid 1C
value, derived from 2C data estimated by flow cytometry (Table 1), and
the equation 1 pg = 978 Mb (Dolezel et al. 2003).

Genome size determination
Nuclear DNA content (2C genome size) was estimated using a Guava
PCA-96 microcapillary flow cytometry system (Guava Technologies,
Hayward, CA). Five biological replicates were evaluatedper specieswith
a minimum of 5000 events per sample. Sample preparation for flow
cytometry followed that of Kawakami et al. (2011). An external stan-
dard (H. petiolaris) was used along with the internal standard chicken
erythrocyte nuclei (CEN; BioSure). Data were analyzed using CytoSoft
V 2.5.4 (Guava Technologies, Haywood, CA).

Estimation of genomic repetitive fraction based on
short-read sequence data
The genomic repetitive fraction of each species was determined sepa-
rately using a graph-based clustering approach developed by Novak
et al. (2010) and implemented in RepeatExplorer (Novak et al. 2013) on
the Galaxy Server (http://www.repeatexplorer.org/). Briefly,�3 M sin-
gle end (R1) 100 bp reads were randomly sampled from each species
(Table 1, Supplemental Material, Table S1) and clustered based on an
all-by-all comparison of sequence similarity ($90%) and overlap
($55%). Individual clusters were identified and counted toward the
genomic repetitive fraction if they contained $0.01% of the starting
number of sampled sequences (e.g., for 3 M sequences, minimum clus-
ter size = 300 sequences). These parameter values represent default
settings of RepeatExplorer. Datasets where fewer than 3M reads were
sampled (Table S1) were automatically reduced by RepeatExplorer
based on an initial analysis of a randomly sampled subset of reads
and assessment of genome repeat structure as described in the
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RepeatExplorer manual. To assess potential variation in repetitive
fraction estimates for a given dataset, five separate graph-based clus-
tering analysis runs (each analysis run �3 M randomly sampled
reads) were conducted, with means 6 SE presented in the Results.

To assess the strength of association between genome size and
repetitive fraction, Pearson product–moment correlation coefficients
and phylogenetically adjusted correlation coefficients were performed
in Program R (v3.2.2, R Foundation for Statistical Computing, Vienna,
Austria). The phylogenetically adjusted correlations were performed
using phylogenetic independent contrasts with the ‘APE’ package in
R (Paradis et al. 2004), based on evolutionary relationships presented in
Stephens et al. (2015). The phylogeny was truncated using the drop.tip
function in APE to consist only of the species under investigation, with
the exception of H. anomalus, which is of hybrid origin (Rieseberg
2006) and thus not included in the phylogenetically adjusted analysis.

Clustering with full-length LTR retrotransposons from
the H. annuus genome
To aid interpretation of repetitive sequence cluster identity and size
across species as they pertain to LTR retrotransposons, graph-based
clustering analysis runswere performedwith adiverse referencepanel of
full-length gypsy and copia LTR retrotransposons derived from the
H. annuus genome (Buti et al. 2011; Staton et al. 2012) (File S1). Indi-
vidual elements were extracted and characterized from published BAC
sequences utilizing the LTRharvest (Ellinghaus et al. 2008) LTRdigest
(Steinbiss et al. 2009) pipeline in genometoolsV1.4.2. Of 110 full-length
elements identified by these methods, 52 (40 gypsy + 12 copia) were
identified as possessing an intact reverse transcriptase (RT) domain and
thus retained for phylogenetic analysis based on their RT amino acid
sequences (File S2). The majority of these full-length elements repre-
sent relatively ‘young’ copies, with insertion estimates within the last
2 million yr (Buti et al. 2011; Staton et al. 2012). Multiple sequence
alignment was performedwith ClustalW and phylogenetic analysis was
conducted using neighbor-joining (NJ) and maximum parsimony
(MP) methods in Molecular Evolutionary Genetics Analysis 4.0.2
(Tamura et al. 2007). The reliability of tree topologies was estimated
with bootstrap replication (1000 pseudoreplicates).

Full-length elements subjected tophylogenetic analysis (n=52)were
subsequently converted to 100 bp kmers of sliding 85 bp overlap using a
custom perl script to standardize sequence length with the Illumina-
generated short-read dataset. By this method, 281 to 1073 kmers were
generated per full-length element (35,488 kmers total). The�3 million
Illumina reads per species were analyzed jointly with this collection of
100 bp kmers, which served as genomic ‘tracers’ enabling meaningful

comparisons of the LTR retrotransposon content and abundance of
different species’ genomes. The decision to use 85 bp overlap for adja-
cent 100 bp kmers for each full-length element was based on the fact
that the resulting similarity (100% shared bases across overlap of 85%)
exceeded considerably the RepeatExplorer parameters for sequence
clustering (i.e., $90% shared bases across overlap of $55%).

RT-PCR assays
LTR retrotransposon transcriptional activity was evaluated via RT-PCR
in both vegetative (leaf) and reproductive (bud) tissues from a single
individual per species. For each sampled plant, leaf tissue representing
the eight-leaf stage and the first bud were harvested and immediately
flash-frozen in liquid nitrogen. Total RNA was extracted using TRIzol
(Invitrogen, Carlsbad, CA) and purified with an RNeasy Mini Kit
(Qiagen, Valencia, CA). RNA was treated with RNase-Free DNase
(Qiagen, Valencia, CA) to eliminate DNA contamination. Two
sublineages of gypsy and a single sublineage of copia were assayed
for transcriptional activity in both tissue types for all species utilizing
sublineage-specific primers targeting the Integrase and RNASEH do-
mains of gypsy and copia elements, respectively (Kawakami et al. 2010;
Ungerer and Kawakami 2013). RT-PCR assays were conducted using
the ImProm-II Reverse Transcriptase system (Promega, Madison, WI;
Table S2). RT-PCR reactions of the actin gene were used as positive
controls for all samples. Negative control reactions were performed by
withholding the reverse transcriptase enzyme. RT-PCR amplifications
were conducted with an initial denaturing step of 94� for 2 min, fol-
lowed by 5 cycles of 94� for 15 sec, 55� (+1.0�/cycle) for 15 sec, and 72�
for 15 sec, followed by 30 cycles of 94� for 15 sec, 60� for 15 sec, and 72�
for 15 sec, with a final incubation step of 72� for 5 min. Amplification
products were size-separated via electrophoresis in 2% agarose gels and
stained with ethidium bromide for visualization.

Data availability
Raw sequence reads have been submitted to the NCBI Short Read
Archive [SRP074507].

RESULTS

Genome size and repetitive sequence content
Genome size estimates based on flow cytometry (Table 1) are largely
consistent with earlier reports for overlapping Helianthus species (n =
7) obtained by Feulgen-staining (Sims and Price 1985), with the excep-
tion of H. divaricatus, which was estimated at 2C = 9.41 pg (60.08) in
the current study vs. 16.9 pg reported previously (Sims and Price 1985).

n Table 1 Study species, genome size estimates, and associated genomic data

Species Abbreviation Life Cycle Accession Paired-End Readsa 2C (pg) (SE)
Genome
Coverage

Repetitive
Fraction (%) (SE)

H. praecox PRA Annual PI 435847 10,314,126 6.94 (0.10) 0.59 68.17 (0.18)
H. annuus ANN Annual PI 468607 12,060,743 7.36 (0.12) 0.67 68.97 (0.21)
H. cusickii CUS Perennial PI 649959 11,981,577 9.32 (0.24) 0.51 74.58 (0.18)
H. divaricatus DIV Perennial PI 503212 6,752,840 9.41 (0.08) 0.29 69.55 (0.29)
H. anomalus ANO Annual PI 468642 12,228,849 11.82 (0.37) 0.41 75.26 (0.19)
H. heterophyllus HET Perennial PI 664732 11,753,278 11.82 (0.29) 0.40 71.42 (0.20)
H. angustifolius ANG Perennial ANG-MCUb 6,837,151 12.91 (0.32) 0.21 73.38 (0.33)
H. agrestis AGR Annual PI 468416 16,909,589 24.23 (0.84) 0.28 82.12 (0.15)
P. tenuifolius PHO Perennial PHO-LAc 10,971,465 13.94 (0.71) 0.31 74.08 (0.16)
a
Post processing.

b
Collected in Anson County, NC (M. C. Ungerer).

c
Collected in Apalachicola National Forest (Loran Anderson).
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Intraspecific ploidy variation in H. divaricatus may underlie this ob-
servation (E. Baack, personal communication), though it is generally
thought to be rare in Helianthus (Kane et al. 2013). Greater variability
in 2C values exists among the sampled Helianthus annual species
(range = 6.94–24.23 pg) vs. perennial species (range = 9.32–12.91 pg;
Table 1). With the exception of H. agrestis, all Helianthus species dis-
play 2C values lower than observed for closely related P. tenuifolius
(2C = 13.94pg 6 0.71), a diploid species and outgroup taxon for
Helianthus (Schilling et al. 1998; Timme et al. 2007; Stephens et al. 2015).

The Illumina Hi-Seq platform generated �6.8–16.9 M paired-end
reads (2 · 100 bp), post processing, for each of the eight Helianthus
species and P. tenuifolius, yielding genome coverage estimates ranging
from 0.21· to 0.67· (Table 1). Based on subsampling of �2.4–3 M
single end reads per species, graph-based clustering yielded genomic
repetitive fraction estimates between 68.17% and 82.12% (Table 1 and
Figure 1) and these estimates are strongly correlated with estimates of
genome size (phylogenetic independent contrast analysis: r = 0.9041,
P = 0.0052; Figure 1).

LTR retrotransposon contribution to genomic
repetitive fraction
To evaluate the contribution of LTR retrotransposons to the repetitive
fraction of these genomes, the short-read sequence data for each species
were analyzed jointlywith a library of 100 bpoverlapping kmers derived
from 40 full-length gypsy and 12 full-length copia elements identified
previously from the H. annuus genome (see Materials and Methods).
Phylogenetic analyses based on the reverse transcriptase (RT) domains
of these 40 + 12 full-length elements indicate multiple well-supported
gypsy and copia sublineages (Figure 2, A and B, respectively). Compar-
isons of these full-length element derived RT amino acid sequences
across sublineages for both superfamilies revealed high sequence vari-
ability, with average genetic distances ranging from 0.108 to 0.667, and
from 0.318 to 0.644 in pairwise comparisons of amino acid sequences
from different sublineages within gypsy and copia, respectively (Table
S3). These elements are highly diverse, and represent a majority of the
gypsy and copia diversity reported previously in sunflower based on

sequence survey approaches (Ungerer et al. 2009; Kawakami et al.
2010) and analyses of multiple sequenced H. annuus BACs (Buti
et al. 2011; Staton et al. 2012). Nomenclature for sublineage designa-
tions follows that reported in Ungerer et al. (2009) and Kawakami
et al. (2010). Identified sublineages based on phylogenetic analyses
presented herein also are largely congruent with family classification
described in Staton et al. (2012) (Figure 2).

Clustering with these panels of modified full-length LTR retrotrans-
posons allowed, for each species under investigation, assignment of
short-read Illumina sequences to distinct gypsy and copia superfamilies
and sublineages within these superfamilies (Figure 3, A and B). Across
species, sequences derived from gypsy elements were 3.8- to 5.3-fold
more abundant than sequences derived from copia elements and to-
gether sequences derived from these two superfamilies combine for
between 38.3% and 49.2% of all sequences for the species assayed (Table
S1). Sequences from specific gypsy sublineages consistently are more
abundant within species’ genomes than others (e.g., sublineages A, B, C,
X1, and X2 vs. sublineages E’, Y1, Y2, Z1, and Z2; Figure 3A); these
more abundant sublineages form a monophyletic group in phyloge-
netic analysis of gypsy sequences (Figure 2A).

For certain sublineages, elevated read densities were observed for
some species, suggesting species-specific amplification events. For ex-
ample, H. agrestis, the species with the largest estimated genome size
and highest genomic repetitive fraction, displayed elevated read densi-
ties for two gypsy sublineages (A and C), indicating that proliferation
of these sublineages may underlie genome expansion in this species.
Similar elevated density of reads was observed for sublineage A in
H. anomalus and sublineage X1 in P. tenuifolius.

Analogous patterns were observed for sublineages of copia elements
with respect to relative abundance, with sublineages 1, 3, and 7 contrib-
uting disproportionately more, and sublineages 2, 4, 5, and 6 dispropor-
tionately less, to the genome repetitive fraction across species. Unlike
observations for gypsy sublineages, however, the more abundant copia
lineages are not monophyletic but rather consist of three separate, well-
supported lineages in the copia phylogeny (Figure 2B). Elevated density
was observed in copia sublineage 1 for H. agrestis, again suggestive of a

Figure 1 Phylogenetic relationships (A) and correlation between genome size and genomic repetitive fraction (B) for species under investigation.
Phylogenetic tree is based on relationships presented in Stephens et al. (2015) and does not include H. anomalus, which is of hybrid origin
(Rieseberg 2006). Genome size and genome repetitive fraction are significantly correlated: phylogenetic independent contrast analysis: r =
0.9041, P = 0.0052; unmodified analysis: r = 0.9121, P = 0.0006. Species abbreviations in (B) are as in Table 1. Red, annual; blue, perennial;
teal, perennial outgroup. Values (6 SE) are provided in Table 1.
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role of this sublineage in genome expansion. Elevated density, though to a
lesser degree, also was observed in copia sublineage 3 forH. angustifolius.

Transcriptional activity of LTR retrotransposons in leaf
and bud tissue
Transcriptional activity of gypsy sublineages A and C and copia sub-
lineage 1 (see Figure 2, A and B) was assayed via RT-PCR in both leaf
and bud tissues for all species under investigation. Detection of tran-
scriptional activity was variable across species and tissue types for gypsy
sublineage A (Figure 4A), with transcripts clearly detected in both leaf
and bud tissue for all annual species but less detectable in perennial
species; and withmore detectable expression signal in bud vs. leaf tissue
for perennials. In contrast, transcriptional activity of copia sublineage
1 was equally detectable across all species and in both tissue types
(Figure 4B). Transcriptional activity of gypsy sublineage C was not
detected in any tissue type in any species (data not shown). Positive

control reactions targeting actin expression yielded no detectable ex-
pression differences across tissue types or species (Figure S1).

DISCUSSION
Nuclear genome size across angiosperms varies dramatically, stretching
nearly 2,400-fold between the smallest and largest documented flower-
ing plant genomes (Leitch andLeitch 2013).Differential abundance and
proliferation of TEs is now recognized as a significant contributor to
genome size variation in plants, with LTR retrotransposons recognized
as the most abundant and transpositionally dynamic (Hawkins et al.
2006; Piegu et al. 2006; El Baidouri and Panaud 2013). Evaluating TE
diversity in organismal genomes has been revolutionized by NGS tech-
nologies that enable rapid and detailed analysis of TE composition both
within and among species (Macas et al. 2007; Swaminathan et al. 2007;
Wicker et al. 2009; Piednoel et al. 2012; Sveinsson et al. 2013; Diez et al.
2014; Agren et al. 2015; Kelly et al. 2015).

Figure 2 Neighbor-joining trees depicting sublineages of gypsy (A) and copia (B) elements based on 129 and 239 amino acid residues of the
reverse transcriptase (RT) domain, respectively. Numbers along branches indicate bootstrap support for Maximum Parsimony/Neighbor-joining
analyses. Branch colors depict different LTR retrotransposon sublineages and correspond to designations used in Ungerer et al. (2009) and
Kawakami et al. (2010). Symbols at branch tips correspond to sunflower LTR retrotransposon families identified as highly abundant in Helianthus in
Staton and Burke (2015).
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Here we utilized Illumina short-read sequence data coupled with
sequence information from a panel of full-length gypsy and copia LTR
retrotransposons obtained from the H. annuus genome to explore the
contribution of LTR retrotransposons to genome size variation among
eight diploid Helianthus species representing all four taxonomic sec-
tions based on current classification schemes (Schilling and Heiser
1981) and an outgroup species, P. tenuifolius. The species under in-
vestigation consist of both annuals and perennials, vary in genome size
by �fourfold, yet all are diploid with a haploid chromosome comple-
ment of n = 17. Given that other major classes of TEs such as DNA
transposons and non-LTR retrotransposons (e.g., LINEs) represent a
very small fraction of the sunflower genome (�2% and 0.6%, respec-

tively) (Staton et al. 2012), these other TE categories were not included
in the current analyses. In addition, cluster annotation in RepeatExplorer
based on the RepeatMasker Viridplantae database indicates that other
repeat types (i.e., low complexity repeats, simple repeats, and satellite
DNA) generally are rare (,2% combined). This latter category of
repeat types was thus also excluded from analysis.

Variation in genome size
With the exception ofH. agrestis, allHelianthus species investigated in
the current study possess genome size estimates lower than that for the
outgroup species P. tenuifolius. It is currently unknown whether this
pattern is attributable to a general history of genome size reduction of

Figure 3 Genomic abundance of different sublineages of gypsy (A) and copia (B) elements. Shown are means (6 SE) based on five graph-based
clustering analysis runs for each dataset. Error bars for some histograms are too small to be seen at the resolution of this figure.
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Helianthus lineages, genomic expansion in P. tenuifolius, a combina-
tion of the two forces, or an artifact of the species sampled. Genome
size reduction (DNA loss) can result from processes such as illegiti-
mate recombination and/or unequal intrastrand homologous recom-
bination events at the site of LTRs or interior coding regions of LTR
retrotransposons (Devos et al. 2002; Vitte and Panaud 2003; Ma et al.
2004; Hawkins et al. 2009). Hallmarks of these events include the
presence in the genome of truncated elements and solo LTRs. These
hallmarks have not been thoroughly investigated inHelianthus species
or comparatively in P. tenuifolius due to a lack of sufficient sequence
data. Based on analyses of 21 BAC clone sequences of the common
sunflower H. annuus, however, truncated elements and solo LTRs do
not appear a common feature of the sunflower genome (Staton et al.
2012). Evidence for independent genome expansion in P. tenuifolius
following divergence fromHelianthus lineages is suggested by elevated
read density for at least one gypsy sublineage described in the current
study (Figure 3A, see also Staton and Burke 2015). Despite these
observations, broader trends across the Asteraceae suggest a di-
rectional increase in abundance of the more common gypsy LTR
retrotransposons (and accordingly in genome size) from basal to
more derived lineages, the latter of which include Helianthus and
Phoebanthus species (Staton and Burke 2015). As such, Helianthus
and Phoebanthus species’ genomes should be considered larger and
with higher copy numbers of LTR retrotransposons compared with
other members of Asteraceae, at least based on the limited sampling
to date.

Clustering with panels of full-length
LTR retrotransposons
A strong positive correlation was found between genome size and
genome repetitive fraction, indicating an important role for repetitive
DNA in underlying genome size variation in this group. Combining
short-read data with sequence information from a panel of full-length
LTR retrotransposons in a de novo graph-based clustering approach
enabledmeaningful comparisons of LTR retrotransposon presence and
relative abundance across species. The majority of elements within this
panel have estimated insertion times in the H. annuus genome within
the last 2 million yr (Buti et al. 2011; Staton et al. 2012). As such, our
analyses focus on LTR retrotransposons in Helianthus likely to have
been active recently; more ancient elements potentially involved in
older amplification events may be less well represented. Sequences de-

rived from gypsy elements were observed to be 3.8- to 5.3-fold more
common than sequences from copia elements for these species. These
results are consistent with previous analyses of the H. annuus genome
(Buti et al. 2011; Staton et al. 2012), and consistent with genomic
composition analyses in other plant species where similar abundance
biases have been observed (International Rice Genome Sequencing
2005; Ming et al. 2008; Paterson et al. 2009).

Our results indicate variation in abundance for different sublineages
of gypsy and copia elements within genomes, but general stability in
read density within a sublineage across species. Stability in read density
across species is expected if most LTR retrotransposon proliferation
activity occurred in the common ancestor of these species, with se-
quence abundances remaining relatively unchanged following subse-
quent cladogenesis. Elements from the most abundant sublineages of
gypsy (i.e., sublineages A, B, C, X1, and X2; Figure 3A) represent part of
a larger, well-supported, monophyletic group (Figure 2A), and thus
share a common evolutionary history. In contrast, copia sublineages
with the highest read densities (i.e., sublineages 1, 3, and 7) represent
more distantly related and nonmonophyletic elements.

While general stability in read density within most sublineages was
observed across species, exceptions to this pattern were found, most
notably for three gypsy sublineages (sublineages A, C, and X1) and a
single copia sublineage (sublineage 1). These exceptions were marked
by higher read densities for species with larger genome size estimates,
and were most apparent for H. agrestis and P. tenuifolius. These pat-
terns likely reflect recent and lineage-specific amplifications that have
contributed to genome size expansion in these species. Similar patterns
have been observed in other plant genera whereby differential abun-
dance of a small number of LTR retrotransposon lineages underlies
large genome size differences among species (Hawkins et al. 2006;
Piegu et al. 2006; El Baidouri and Panaud 2013). Interestingly, repre-
sentative elements for two of the abundant gypsy sublineages (i.e., RLG-
iketas and RLG-wimu) and copia sublineage 1 (RLC-amov, RLC-jiliwu)
(see Figure 2, A and B, respectively) also display signatures of recent
insertional activity in the common sunflower (H. annuus) genome,
indicating potential widespread activity throughout the genus.

Developing appropriatemethods formeaningful comparisons of TE
content and abundance across species genomes hasbecome increasingly
necessary as NGS technologies continue to improve and costs continue
to decline. The graph-based clustering approach of short-read Illumina
data combined with sequence information from a TE reference panel

Figure 4 RT-PCR assays of gypsy sublineage A (A) and
copia sublineage 1 (B) in leaf (L) and bud (B) tissue.
Minus signs in parentheses indicate lanes with negative
control reactions. Species abbreviations are as in Table 1.
Red, annual; blue, perennial; teal, perennial outgroup.
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proved effective for interspecific analyses of sublineage identification
and sequence densities in Helianthus, and provides a useful method
when TE reference panels are available. A potential complicating factor
of this method is that, due to sequence divergence among genomes,
fewer sequence reads and/or sublineages might be identified in inter-
specific comparisons as genetic distance increases from the TE refer-
ence panel. To explore this possibility, we tested whether the density of
species-specific Illumina reads clustering with gypsy and copia tracer
sequences decreased with increasing genetic distance from the
H. annuus-derived TE reference panel. We failed to find such a neg-
ative correlation (Figure S2A). Interestingly, however, a negative cor-
relation was observed when the LTR retrotransposon panel was used
as a reference in a read-mapping based approach (Figure S2B). This
negative correlation persisted when mapping stringency was relaxed and
greater numbers of mismatches allowed. Interspecific read-mapping to
quantify TE abundances has been problematic in other species groups as
well (Sveinsson et al. 2013), and generally should be avoided.

Transcriptional activity of gypsy and copia
Transcriptional activity of both gypsy and copia elements has been
documented previously in both cultivated (Vukich et al. 2009; Gill
et al. 2014) and wild (Kawakami et al. 2011; Kawakami et al. 2014;
Ungerer and Kawakami 2013; Renaut et al. 2014) sunflowers. In the
current study we confirmed expression of these elements in two species
(H. annuus and H. anomalus) and demonstrate that transcriptional
activity occurs broadly across the genus. Transcriptionally active ele-
ments documented in the current study represent the same variants
associatedwith genome expansion events documented in three sunflower
homoploid hybrid species (Ungerer et al. 2006; Kawakami et al. 2010).

Transcriptional activity of gypsy sequences was readily detectable in
both leaf and bud tissue for all annualHelianthus species, less detectable
in bud tissue of perennial Helianthus species, and undetectable in leaf
tissue of perennial Helianthus species. Although the primers used to
assay for transcriptional activity were developed from H. annuus (an
annual species), differential detection for annual vs. perennial species is
unlikely attributable to sequence divergence with increasing phyloge-
netic distance fromH. annuus given thatH. agrestis is an independently
evolved annual species and more distant genetically from H. annuus
than the remainingHelianthus species under investigation (Figure S2).
It is interesting to note that more detectable transcriptional activity in
annual species is consistent with a higher density of reads derived from
this same sublineage based on clustering analyses of genomic short-
read data (Figure 3A), demonstrating a potential link between tran-
scriptional activity and genomic abundance level of element copy
number in this group of plants. Quantitative PCR experiments have
confirmed such a relationship comparing annual sunflower taxa
H. annuus and H. petiolaris with their hybrid derivative species
H. anomalus,H. deserticola, andH. paradoxus, where higher expression
was observed in species with higher copy number abundances (Ungerer
and Kawakami 2013; Renaut et al. 2014, but see Gill et al. 2014).
Transcriptional activity of this gypsy sublineage was not detected in
either leaf or bud tissue of P. tenuifolius, indicating that expression
may be restricted to within Helianthus.

In contrast to results for gypsy transcriptional activity, expression of
copia was equally detectable among Helianthus annual and perennial
species, across tissue types, and in P. tenuifolius. Read density of geno-
mic short-read data for this same sublineage generally are comparable
across annual and perennial Helianthus species with the exception of
H. agrestis, for which read density is higher. More quantitative assays of
transcriptional activity of both gypsy and copia elements may yield
additional insights into expression dynamics of these elements across

the sunflower genus. Transcriptional activity of additional sublineages
of gypsy and copia have been documented previously in H. annuus
(Gill et al. 2014) via RNA-seq and shown to exhibit tissue-specific
expression.

Genome expansion in H. agrestis
A notable finding of the current study is genomic amplification of LTR
retrotransposon sublineages in the genome ofH. agrestis.H. agrestis has
a restricted geographical distribution in the southeastern United States,
with populations found in central and southern Florida and in a single
county in southern Georgia (Heiser et al. 1969). As noted above, this
species is an annual, but distantly related from most other Helianthus
annuals that form a monophyletic group and thus has independently
evolved this life history form (Stephens et al. 2015). H. agrestis is
atypical in being one of only two Helianthus species that lack a self-
incompatibility system (Heiser et al. 1969). Genome size estimates of
H. agrestis indicate a nuclear genome �1.9–3.5· larger than any other
Helianthus species under investigation in the current study and �1.7·
larger than that for the outgroup species P. tenuifolius.

Genome expansion inH. agrestis is associated with amplification of
a small number of LTR retrotransposon sublineages, represented by
two different gypsy sublineages and a single copia sublineage. Sequences
from these three sublineages represent�28% of theH. agrestis genome
based on our estimation procedures (Table S1). This observation is
consistent with previous findings demonstrating that large interspecific
variation in genome size can be attributable to a small number of LTR
retrotransposon sublineages (Hawkins et al. 2006; Piegu et al. 2006;
Vitte and Bennetzen 2006; El Baidouri and Panaud 2013) but contrasts
with results observed for species of plants harboring some of the largest
genomes (e.g., Fritillaria) where genome composition appears to
consist of highly diverse, but relatively low abundance repeat types
(Kelly et al. 2015). As noted above, two of the three most abundant
sublineages in the H. agrestis genome (gypsy sublineage A and copia
sublineage 1) have contributed to major genome expansion events in
one or more diploid hybrid Helianthus species (Ungerer et al. 2006;
Kawakami et al. 2010), and these sublineages remain active transcrip-
tionally across the genus. It is thus noteworthy that the same LTR
retrotransposon sublineages have experienced large-scale amplification
events and promoted genome expansion independently in different
regions of the Helianthus phylogeny. The forces governing activation
(and repression) of these sublineages in different Helianthus species’
genomes is the focus of ongoing work.
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