
  

 
 

PREPARATION, STRUCTURE AND PROPERTIES OF OCTENYLSUCCINIC 
ANHYDRIDE MODIFIED STARCH 

 
 

by 
 
 

YANJIE BAI 
 
 
 

B.S. China Agricultural University, 2006 
M.S. Kansas State University, 2008 

 
 
 

AN ABSTRACT OF A DISSERTATION 
 
 

submitted in partial fulfillment of the requirements for the degree 
 
 
 

DOCTOR OF PHILOSOPHY 
 
 
 

Department of Grain Science and Industry 
College of Agriculture 

 
 
 

KANSAS STATE UNIVERSITY 
Manhattan, Kansas 

 
 

2013 
 

 

  



  

Abstract 

The reaction of starch and octenylsuccinic anhydride (OSA) produces lipophilic starch 

that has the ability to stabilize oil-in-water emulsions. The functional properties of 

octenylsuccinate (OS) starch depend on its molecular structure and distribution of OS groups. 

Structures of OSA and OS starches were investigated by NMR spectroscopy. In granular OS 

starches, OS groups were substituted at O-2, O-3 positions, but not the O-6 position. Distribution 

of OS groups was investigated by enzyme hydrolysis followed by chromatography analysis. OS 

substitution predominantly occurred at the amorphous region of the starch granules. OS starch of 

degree of substitution (DS) 0.018 had OS groups located close to the branching points, whereas 

the OS substitution in OS starch of DS 0.092 occurred near non-reducing ends as well as the 

branching points. OS starches with different substitution patterns were prepared from two 

approaches. OS starches from the first approach had OS substitution near the branching points or 

non-reducing ends, whereas OS starches from the second approach had OS groups distributed 

randomly throughout the starch chains. A method of preparing OS starch by dry heating a 

mixture of waxy maize starch and OSA was developed. The optimum reaction was investigated 

and found to be pH 8.5 by addition of 3% NH4HCO3, 180 °C and 2 h. Reaction efficiency of ca. 

90% was obtained at OSA levels from 1 to 6%. The OS starch had a DS of 0.0202 with 98% 

solubility when reacted with 3% OSA. Transglucosidation occurred during the reaction. The OS 

starch had a degree of branching of 19.8 %. The highly debranched OS starch showed excellent 

emulsification property for vitamin E and vitamin A.  

The structural changes of insoluble native waxy maize starch granules to cold water-

soluble pyrodextrin during dextrinization under acidic conditions were investigated. We 

proposed that the starch was hydrolyzed by acid in the amorphous regions. Unwinding of the 

double helices also occurred, and crystallite size decreased. Starch molecules were hydrolyzed 

into small molecule fractions but remain in a radial arrangement. Glycosyl linkages including α-

(1→2), α-(1→6), β-(1→2), and β-(1→6) linkages were formed and the majority starch chain 

terminals were 1,6-anhydro-β-D-glucopyranose. Transglucosidation occurred during 

dextrinization and the resulted pyrodextrin was highly branched. 
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Abstract 

The reaction of starch and octenylsuccinic anhydride (OSA) produces lipophilic starch 

that has the ability to stabilize oil-in-water emulsions. The functional properties of 

octenylsuccinate (OS) starch depend on its molecular structure and distribution of OS groups. 

Structures of OSA and OS starches were investigated by NMR spectroscopy. In granular OS 

starches, OS groups were substituted at O-2, O-3 positions, but not the O-6 position. Distribution 

of OS groups was investigated by enzyme hydrolysis followed by chromatography analysis. OS 

substitution predominantly occurred at the amorphous region of the starch granules. OS starch of 

degree of substitution (DS) 0.018 had OS groups located close to the branching points, whereas 

the OS substitution in OS starch of DS 0.092 occurred near non-reducing ends as well as the 

branching points. OS starches with different substitution patterns were prepared from two 

approaches. OS starches from the first approach had OS substitution near the branching points or 

non-reducing ends, whereas OS starches from the second approach had OS groups distributed 

randomly throughout the starch chains. A method of preparing OS starch by dry heating a 

mixture of waxy maize starch and OSA was developed. The optimum reaction was investigated 

and found to be pH 8.5 by addition of 3% NH4HCO3, 180 °C and 2 h. Reaction efficiency of ca. 

90% was obtained at OSA levels from 1 to 6%. The OS starch had a DS of 0.0202 with 98% 

solubility when reacted with 3% OSA. Transglucosidation occurred during the reaction. The OS 

starch had a degree of branching of 19.8 %. The highly debranched OS starch showed excellent 

emulsification property for vitamin E and vitamin A.  

The structural changes of insoluble native waxy maize starch granules to cold water-

soluble pyrodextrin during dextrinization under acidic conditions were investigated. We 

proposed that the starch was hydrolyzed by acid in the amorphous regions. Unwinding of the 

double helices also occurred, and crystallite size decreased. Starch molecules were hydrolyzed 

into small molecule fractions but remain in a radial arrangement. Glycosyl linkages including α-

(1→2), α-(1→6), β-(1→2), and β-(1→6) linkages were formed and the majority starch chain 

terminals were 1,6-anhydro-β-D-glucopyranose. Transglucosidation occurred during 

dextrinization and the resulted pyrodextrin was highly branched. 
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Chapter 1 - Introduction 

Octenyl succinic anhydride (OSA) modified starch was developed by Cardwell and 

Wurzburg in 1953 (Caldwell & Wurzburg, 1953). Polysaccharides are hydrophilic in nature. 

After introducing hydrophobic groups from chemicals such as OSA, starch becomes amphiphilic 

and shows surface active properties. Preparation and properties of octenylsuccinate (OS) starch 

was reviewed by Sweedman et al. (2003). Unique from other starch derivatives, octenylsuccinate 

(OS) starch was approved for food use by US FDA in 1972. It is widely used in beverage 

emulsions, flavors, clouding agents, salad dressings, creams as well as other applications in 

pharmaceutical and industrial areas (Trubiano, 1986).  

 Preparation of OS starch 

OS starch is prepared from esterification reaction (Figure 1.1). Polysaccharides include 

starch, gelatinized or ungelatinized were suggested to be reacted with OSA in an aqueous slurry 

system, dry state or organic suspension (Caldwell & Wurzburg, 1953). OS starch is prepared by 

a standard esterification reaction where OSA and the starch suspended in water and mixed under 

alkaline conditions (Trubiano, 1986). Reaction parameters including pH, reaction time, 

temperature, starch concentration and OSA concentration affect the degree of substitution (DS) 

and reaction efficiency (RE) of OS starch. For the 3% OSA modification, DS obtained from 

granular starch in aqueous slurry reaction under optimum condition was in the range of 0.017 to 

0.020. Reaction efficiency was in the range of 72 to 82%. 

 Reaction conditions 

 Reaction pH 

OSA reaction was reported to be optimum at 8.0 ± 0.5 (Abdollahzadeh, Mehranian & 

Vahabzadeh, 2008; Bai & Shi, 2011; Bhosale & Singhal, 2006; Jeon, Lowell & Gross, 1999; Liu 

et al., 2008; Ruan, Chen, Fu, Xu & He, 2009; Song, He, Ruan & Chen, 2006; Zhu, Xie, Song & 

Ren, 2011). pH below 7.5 was suggested to be not efficient to activate the hydroxyl groups of 

starch for nucleophilic attack of the anhydride moieties (Jeon, Lowell & Gross, 1999). And pH 

above 9.5 was suggested to favor the side reactions as shown in Figure 1.1 of reaction 2 and 3 

(Song, He, Ruan & Chen, 2006) and probably cause swelling of starch granules.  Dilute NaOH 
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2-3% (wt%) was added to maintain pH during the reaction with sufficient stirring (Bai & Shi, 

2011; Jeon, Lowell & Gross, 1999; Liu et al., 2008; Song, He, Ruan & Chen, 2006).  High 

concentration of NaOH would cause locally high alkalinity and result in starch swelling. 

Maintaining the insolubility of the starch granule during chemical reaction and purification is 

very important. Therefore for aqueous process, low alkalinity and dilute NaOH to control pH 

were preferred (Tessler & Billmers, 1996).  However concentration of NaOH lower than 2% 

(wt%) was not favorable because it would dilute the starch slurry and reduce the reaction 

efficiency.  

Figure 1.1 Chemical reaction of OSA and starch.  

 

 Reaction time 

Reaction time of OSA modification varied from 1.5 to 18.7 h (Abdollahzadeh, Mehranian 

& Vahabzadeh, 2008; Bai & Shi, 2011; Bhosale & Singhal, 2006; Jeon, Lowell & Gross, 1999; 

Liu et al., 2008; Ruan, Chen, Fu, Xu & He, 2009; Song, He, Ruan & Chen, 2006). Long reaction 

time was used in many studies as it was believed to favor the diffusion and adsorption of the 

reactants between the modifying agents and starch molecules (Khalil, Hashem & Hebeish, 1995). 

However, by comparing OS starches obtained from reaction of 1.5 to 18.7 h, DS was marginally 

better for the long reaction time. In addition, reaction time was closely related to the speed of 
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OSA addition. Slowly addition of OSA was used in many studies (Abdollahzadeh, Mehranian & 

Vahabzadeh, 2008; Bhosale & Singhal, 2006; Jeon, Lowell & Gross, 1999; Liu et al., 2008; 

Ruan, Chen, Fu, Xu & He, 2009; Song, He, Ruan & Chen, 2006). However, it has been observed 

that the addition speed of OSA did not significantly affect the reaction efficiency at low level of 

OSA modification (3% OSA). But at high OSA level (above 9%), dropwise addition of OSA was 

beneficial for high reaction efficiency (Bai & Shi, 2011).  

 Reaction temperature 

Reaction temperature from 15 to 60 °C was studied and 30 to 35 °C was reported to be 

most desirable temperature for OSA modification (Bhosale & Singhal, 2006; Jeon, Lowell & 

Gross, 1999; Liu et al., 2008; Song, He, Ruan & Chen, 2006; Zhu, Xie, Song & Ren, 2011). 

High temperature was expected to enhance the solubility of OSA in the aqueous phase, OSA 

diffusion into starch granule as well as swelling of starch granule to improve reaction efficiency. 

However, reaction efficiency of modification above 35 °C either remained constant or decreased 

(Bhosale & Singhal, 2006; Jeon, Lowell & Gross, 1999; Ruan, Chen, Fu, Xu & He, 2009; Song, 

He, Ruan & Chen, 2006). It was suspected that an increase in reaction temperature would 

enhance hydrolysis of OSA thus reduced the reaction efficiency (Jeon, Lowell & Gross, 1999). It 

might also be possible that high temperature would accelerate hydrolysis of OS starch and 

remove the substituted OS group and decrease the reaction efficiency.  

 Starch concentration 

Starch concentration of 30 to 45% was suggested to be the optimum for OSA reaction 

(Bai & Shi, 2011; Jeon, Lowell & Gross, 1999; Liu et al., 2008; Ruan, Chen, Fu, Xu & He, 2009; 

Song, He, Ruan & Chen, 2006; Zhu, Xie, Song & Ren, 2011). High starch concentration might 

increase the chance of contact between OSA and starch granules (Song, He, Ruan & Chen, 

2006). In addition, it might increase the starch-reagent reaction relative to reagent hydrolysis, 

which is a competitive process (Jeon, Lowell & Gross, 1999). Starch slurry of concentration over 

40% becomes too viscous to agitate therefore is not recommended.  

 OSA concentration 

OSA modified starch for food application is restricted to be 3% or below by US FDA and 

OS starch of higher DS may have other applications. It has been observed that below 3% OSA 
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modification level, DS and RE increased as OSA level increased, which was interpreted due to 

the greater availability of the OSA molecules in the proximity of the starch molecule (Bhosale & 

Singhal, 2006). As OSA level increase above 3%, DS continued to increase but RE decreased 

(Bai & Shi, 2011; Ruan, Chen, Fu, Xu & He, 2009; Song, He, Ruan & Chen, 2006). Decreasing 

in reaction efficiency was suspected due to the dilution of starch slurry by using high amounts of 

anhydride and alkaline reagents (Song, He, Ruan & Chen, 2006). In addition, it has been noticed 

that as DS passed certain level, starch granules started to swell and lose their birefringence (Bai 

& Shi, 2011). The results reflected that only limited amount of OSA can be reacted with starch 

without disrupting their granular structure. Decreasing in reaction efficiency might also due to 

the restriction and barrier of the starch granular structure. The highest DS obtained for granular 

waxy maize starch was 0.088 (Bai & Shi, 2011). Swelling of the starch granules is undesirable 

and should be prevented during the production. Sodium nitrate of 5 to 20% (wt%) was suggested 

to prevent starch swelling up to OSA level of 15% (Bai & Shi, 2011).  

 Starch recovery and purification 

OS starch is normally recovered by filtration and then washed by water and alcohol. 

Water is able to remove the salt residues created during the reaction. However, it is not efficient 

to remove the free OSA. The free OSA content was 0.29% of OS granular starch as purified by 

water (Bai & Shi, 2011; Qiu, Bai & Shi, 2012). Free OSA is probably detrimental to the stability 

of the emulsion prepared from OS starch. Alcohol would be an efficient solvent to remove the 

free OSA. 

 Botanical source of starch 

The optimum reaction condition was observed to be slightly different for starch from 

different origins (Bhosale & Singhal, 2006). Potato starch was observed to have relatively low 

reaction efficiency compared with waxy maize, early indica rice and amaranth starches (Ruan, 

Chen, Fu, Xu & He, 2009). The difference might be due to the morphology and granular 

structure of the starches that are from different botanical sources. It has been observed that 

amylose has a positive impact on OSA modification (He, Song, Ruan & Chen, 2006). The result 

was proposed due to the model of the starch granule that amylose domains are in amorphous 

regions and better accessible than crystalline lamellae.  
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 OSA reaction on other materials 

   OSA modification was investigated on materials other than native granular starch, 

including inulin, zein protein, microporous starch and soluble maltodextrin (Morros, Levecke & 

Infante, 2011; Biswas, Sessa, Lawton, Gordon & Willett, 2005; Bai & Shi, 2011; Huang, Fu, He, 

Luo, Yu & Li, 2010). Optimum reaction condition varied for different materials and the products 

exhibit different physical and chemical properties. OSA modification on inulin was investigated 

to prepare a natural polymer based surfactants in colloidal systems (Morros, Levecke & Infante, 

2011). OSA was reacted with zein protein to improve the water resistance of the protein and 

enhance its applications in food coatings and biodegradable materials (Biswas, Sessa, Lawton, 

Gordon & Willett, 2005).  

In our previous study, OSA reaction on native waxy maize, microporous starch and 

soluble maltodextrin was compared (Bai & Shi, 2011). Compare to native starch, DS was lower 

for microporous starches at OSA concentration of 3 to 9% (Bai & Shi, 2011).  However, OSA 

was able to react with the starch to a higher DS of 0.12 without swelling of the starch granules 

(Bai & Shi, 2011). It has been suggested that OSA substitution occurred in the inner crystalline 

region of the enzyme treated starch (Huang, Fu, He, Luo, Yu & Li, 2010). Soluble maltodextrin 

is a starch derivative from α-amylase hydrolysis. OSA was suggested to react with maltodextrin 

with high reaction efficiency of 100% at 3% OSA level. The highest DS obtained from soluble 

maltodextrin is 0.27 (Bai & Shi, 2011). OSA modification on soluble polysaccharide was 

described in the original invention (Caldwell, Hills & Wurzburg, 1953). But very few researches 

were performed to investigate the preparation, structure and property of the starch. 

 Reaction types 

Beside slurry reaction, dry-heating method of preparing OS starch was introduced by 

Kim et al. (2010). Granular starch was mixed with OSA that was hydrolyzed in water and pH 

was adjusted to 3 to 5. The dried starch was heated in the oven at 130 to 150 °C for 1 to 3 hours. 

The resulted products had DS in the range of 0.015 to 0.023 and the molecular weight decreased 

significantly from its native starch counterparts. It has been suggested that DS and dextrinization 

were affected mostly by pH as well as temperature and heating time (Kim, Sandhu, Lee, Lim & 

Lim, 2010). The modified starch showed different pasting profile from native starch and it 
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showed promising application as fat-replacing compound in diary cream and fat-reduced muffin 

(Chung, Lee, Han & Lim, 2010; Kim, Sandhu, Lee, Lim & Lim, 2010).  

 Analysis of OS starch 

Bound and free OSA content are important characteristics for OS starches. Bound OSA 

content is used to calculate degree of substitution (DS). DS is a measure of the average number 

of hydroxyl groups on each D-glucopyranosyl unit (AGU) which are derivatized by substitution 

groups (Wurzburg, 1986). The maximum possible DS for starch is 3 since the majority of the 

AGUs have three hydroxyl groups available for substitution. Percentage OSA (%OSA) is 

expressed as the weight of OSA as a percentage of the total starch by substance. DS and % OSA 

can be determined by titration (Bai & Shi, 2011; Huang, Fu, He, Luo, Yu & Li, 2010; Song, He, 

Ruan & Chen, 2006; Kim, Sandhu, Lee, Lim & Lim, 2010), NMR spectroscopy and 

chromatography methods (Bai & Shi, 2011; Tizzotti, Sweedman, Tang, Schaefer & Gilbert, 

2011;  Nilsson & Bergensthl, 2007) 

Traditionally, DS is determined by titration method. It is a fast and accurate method and 

has been used in many studies (Bai & Shi, 2011; Huang, Fu, He, Luo, Yu & Li, 2010; Song, He, 

Ruan & Chen, 2006).  Titration method was also used to determine DS for partially soluble OS 

starch after modification (Kim, Sandhu, Lee, Lim & Lim, 2010).  
1H-NMR spectroscopy is another common method to determine DS. Typical 1H-NMR 

spectra of α-limit dextrin of native waxy maize starch and OS starch with different DS are shown 

in Figure 1.2. A resonance at 0.87 ppm is assigned to methyl protons of the OS substituent. DS is 

calculated by the ratio of the integral from the methyl group to the sum of the starch H-1 peaks at 

5.36, 5.22, 4.96 and 4.63 ppm (Bai & Shi, 2011). DS obtained from the NMR method is 

consistent with titration method with high accuracy and precision (Yanjie master thesis). In 

another method reported by Tizzotti et al (2011), starch without degradation was dissolved in 

DMSO-d6. A very low amount of deuterated trifluoroacetic acid (d1-TFA) was added to the 

starch solution to shift the exchangeable protons of the starch hydroxyl groups to high frequency 

leading to a clear and well-defined 1H NMR spectrum. The practice provides an improved way to 

determine the degrees of both branching and chemical substitution (Tizzotti, Sweedman, Tang, 

Schaefer & Gilbert, 2011). 



7 

 

Chromatography is used to quantify free and bound OSA in OS starches. Free and bound 

OS was determined by GC-MS and HPLC (Park & Goins, 1995; Qiu, Bai & Shi, 2012). 

Extraction of free and bound OSA is the key procedure to the two approaches. For the GC-MS 

approach, OS starch was dispersed in water for 3-4h at temperature below 80 °C then extracted 

by methanol to determine free OS.  Total OSA was determined after alkaline hydrolysis of the 

ester bond of bound OSA and represented the sum of free and bound OSA (Park & Goins, 1995). 

Sample preparation of OS starch for HPLC was relatively easy compare to GC-MS. Free OSA 

was extracted by dispersing OS starch in methanol for 30 min. Total OSA was obtained by 

hydrolyzing OS starch with NaOH overnight. Adjust pH to acid is also critical for obtaining 

accurate results. In one study, HPLC identified six compounds of OSA and its hydrolyzed 

products which are 1-OS acid, cis-2-OS acid, trans-2-OS acid, 1-OSA, cis-2-OSA and trans-2-

OSA (Qiu, Bai & Shi, 2012). 

Figure 1.2 
1
H-NMR spectra of α-limit dextrin of native starch (a), 3% OS starch (b) and 

15% OS starch (C) 

 

 Structure of OS starch 

Location of OS substitution among and within starch granules and within the amylopectin 

and amylose molecules has been investigated. OS substitution was distributed throughout the 

starch granule at DS of 0.03 and 0.11 (Shogren, Viswanathan, Felker & Gross, 2000). A FT-IR 
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microspectroscopy study, which identified the OS substitution level on each single starch granule 

from random sampling, indicated that although most of the starch granules were accessible to 

OSA modification, the reaction was not uniform (Bai, Shi & Wetzel, 2009).  The substitution 

location within starch granule was suggested to be heterogeneous. An X-ray photoelectron 

spectroscopy (XPS) study reported that the surface of starch granule is enriched with OSA group 

by a factor of 3-4 over that of the bulk granule (Shogren, Viswanathan, Felker & Gross, 2000). 

An interesting discussion was made in the publication about diffusion of OSA reagent into the 

starch granule through channels and cavity. A possible reaction mechanism was mentioned that 

OSA reagent was diffused into the starch granule followed by reaction with the starch (Shogren, 

Viswanathan, Felker & Gross, 2000). Another mechanism was also proposed. It was introduced 

that OSA in an aqueous slurry system may exist as a mixture of droplets and dissolved form as 

the low solubility of OSA in water (Shogren, Viswanathan, Felker & Gross, 2000). The droplets 

would react with the granule surface. OSA may travel into the starch granule and react when 

break into extremely fine particles (Shogren, Viswanathan, Felker & Gross, 2000). Details 

studies are required to investigate the mechanisms.    

Granular starch is semi-crystalline, consisting of alternative lamellar of amorphous and 

crystalline regions. OS modification was suggested to be occurred in the amorphous regions of 

the starch granules since the wide-angle x-ray diffraction (WAXD) did not show any changes in 

the crystalline pattern of starch before and after modification (Bai & Shi, 2011; Bhosale & 

Singhal, 2007; Shogren, Viswanathan, Felker & Gross, 2000; Song, He, Ruan & Chen, 2006). 

However, the crystallinity of native starch was suggested to be slightly higher than their esters 

(He, Song, Ruan & Chen, 2006). After OSA modification, the gelatinization temperature and 

enthalpy decreased with increasing concentration of OSA for waxy maize and amaranth starch 

(Bhosale & Singhal, 2007). The results reflect that the granular structure of native starch was 

affected by OSA modification.    

OSA substitution location on the starch anhydroglucose units (AGU) was investigated by 

NMR spectroscopy. Starch is a polysaccharide consists of glucose linked by α-1,4 and 1,6 

linkages. It has been suggested that for granular reaction in an aqueous slurry system, OS 

substitution occurred primarily at O-2 and 3 positions but not at O-6. Substitution location on an 

AGU was different when reaction was carried out with soluble maltodextrin. OS substitution 
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occurred at O-2, 3 and 6 as well as the reducing end (Bai & Shi, 2011). Substitution location may 

affect the functional properties of OS starch. 

 Application of OSA modified starch 

Emulsion stabilization mechanism of OS starch has been investigated in the past few 

years.  Stabilization mechanism of OS starch was suggested to be steric hindrance, since little 

effect of pH, ionic strength and temperature on emulsion stability was observed (Charoen, 

Jangchud, Jangchud, Harnsilawat, Naivikul & McClements, 2011; Qian, Decker, Xiao & 

McClements, 2011). Gum arabic showed good stability to environment stress as well. However it 

produced larger droplet size and required higher hydrocolloid concentration comparing to OS 

starch (Qian, Decker, Xiao & McClements, 2011). OS starch was suggested to be adsorbed at the 

interface of oil/water emulsion (Nilsson & Bergenstahl, 2006). The adsorption is governed by the 

relationship between interfacial area and OS starch concentration. Very high surface load of OS 

starch was observed which was suggested to be caused by jamming at the interface due to lack 

for conformational changes and /or multilayer adsorption (Nilsson & Bergenstahl, 2006). 

Besides stabilizing emulsion by forming a film at the oil/water interface, OS starch showed to 

have capability to modify viscosity of continuous phase. Apparent viscosity and physically 

stability of the emulsion system increased with increase in OS starch concentration. (Dokic, 

Krstonosic & Nikolic, 2012). Substitution level of the OS starch, which was prepared in an 

aqueous slurry system, showed little effect on the emulsion stability (Viswanathan, 1999). 

During the homogenization process, molar mass and root mean square radius of OS starch were 

significantly decreased (Modig, Nilsson, Bergenstahl & Wahlund, 2006). 

OSA modified starch was also used as wall material for encapsulation. Microcapsules can 

be prepared from spray granulation, spray drying and freeze drying (Anwar & Kunz, 2011). Oil 

load of the infeed emulsion markedly influenced the properties of the infeed liquid and the 

characteristic of the resulting powder. Retention of the active material was well correlated with 

the emulsion droplet diameter of the infeed liquid (Paramita, Furuta & Yoshii, 2012). 

 Objectives 

OS starches have shown excellent emulsifying properties in many industrial applications. 

However, the relationship between the starch structure and functional properties has not been 

well understood. 
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The objectives of this dissertation were to: 

1. Determine the detailed structure of the OSA reagent, and differentiate 1- and 2-

octenylsuccinic anhydride as well as their cis and trans isomer.  

2. Understand the OSA reaction with a mixture of granular starch and soluble 

maltodextrin.  

3. Elucidate the substitution of OS groups in starch chains from the evaluation of the 

enzyme hydrolysates of OS starch. 

4. Prepare and characterize α-amylase-degraded OS starches with different OS 

distributions. 

5. Develop a method of prepare soluble OS dextrins that can be used in beverage 

applications. Investigate the optimum reaction condition and characterize the 

structure OS dextrins. 

6. Investigate the structural changes during thermal decomposition based on small angle 

X-ray scattering, wide angle X-ray diffraction, microscopy, gel permeation 

chromatography, and differential scanning calorimetry. 

7. Analyze the structure of pyrodextrin using NMR spectroscopy. It is the first detailed 

study being conducted to interpret 1D and 2D-NMR spectra of pyrodextrin. 
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Chapter 2 - Study of octenylsuccinic anhydride modified waxy 

maize starch by nuclear magnetic resonance spectroscopy
1
 

 Abstract 

Granular waxy maize starch was reacted with two levels (3 and 15%, based on the weight 

of starch) of octenylsuccinic anhydride (OSA). Structure of the OSA and modified starches was 

studied by one-dimensional (1D) 1H and 13C and two-dimensional (2D) homonuclear correlation 

and heteronuclear correlation nuclear magnetic resonance (NMR) spectroscopy. The modified 

starches were converted to α-limit dextrins prior to NMR analysis. By applying the 1D and 2D 

NMR techniques, complete assignments of 1H and 13C NMR spectra of the OSA reagent were 

achieved, and the position of the double bond and ratio of trans to cis isomers were determined. 

As level of OSA substitution increased, the peak (≈5.38 ppm) for the anomeric proton of internal 

α-1,4 D-glucose units became broader in 1H NMR spectra, suggesting that substitution occurred 

at the O-2 position. Compared with the 13C NMR spectrum of the native starch, the modified 

starches gave additional signals at the C-4 peak region and broadening of the C-1, C-2, C-3, and 

C-4 resonances, but not of the C-6 signal. Those results further suggest that the OS groups were 

substituted at the O-2 and O-3 positions, but not the O-6 position.  

Keywords 

Starch, octenyl succinic anhydride, nuclear magnetic resonance spectroscopy 

  

                                                 
1 This chapter was published in Carbohydrate Polymers (2011) 83, 407-413. 
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 Introduction 

Starch is the reserve carbohydrate of higher plants and occurs as granules throughout the 

plant kingdom. However, only a limited number of plants including maize, wheat, potato, 

cassava, rice, sorghum, sago, and arrowroot are grown for commercial starch production (Daniel 

et al., 2007). Native starches are used in food and industrial applications (Daniel et al., 2007), but 

shortcomings of the unmodified starches limit their use in many commercial applications 

(Wurzburg, 1986). These shortcomings, among others, include insolubility or failure of the 

starch granules to develop viscosity in cold water; the cohesive texture of the cooked starch, 

particularly from waxy maize, potato, and tapioca starch; the loss of viscosity by acids or 

mechanical shear; lack of clarity and the tendency to retrograde during storage; and the lack of 

emulsification properties (Trubiano, 1986; Wurzburg, 1986). 

Modified starches have been developed to overcome one or more of the shortcomings. 

Caldwell and Wurzburg (1953) disclosed the reaction between starch and octenyl succinic 

anhydride (OSA). Native starch molecules are hydrophilic,  but with the incorporation of 

hydrophobic groups from OSA, the OSA-modified starch becomes lipophilic and finds 

applications in beverage emulsion; salad dressings; oil- and petroleum-based cosmetics or 

pharmaceutical pastes; alcohol-based lotions and body deodorant sprays; encapsulation of 

flavors, fragrances, vitamins, clouds, and oils (Rutenberg and Solarek, 1984; Trubiano, 1986; 

Wurzburg, 2006). In addition, it has been used in biodegradable plastics (Jane et al., 1991) and 

emulsified foods as fat replacers (Cho et al., 1999; Kim et al., 2010). OSA modification also 

makes a starch more resistant to enzyme digestion and increases the levels of slowly digestible 

and resistant starch (Han & BeMiller, 2007; He et al. 2008; Viswanathan, 1999; Wolf et al., 

2001). The properties of OSA-modified starch depend on the level of bound OS or the degree of 

substitution (DS). Titration (Bao et al., 2003, Bhosale & Singhal, 2006, He et al., 2006; Hui et 

al., 2009; Jeon et al., 1999; Liu et al., 2008; Shogren et al., 2000) and nuclear magnetic 

resonance (NMR) ( í ová  et al., 2007; Choi et al., 2002; Jeon et al., 1999; Shih & Daigle, 

2003)  methods have been used to determine the DS of OSA modified starch.  

Despite the extensive investigation of the reaction of OSA with starch reported in the 

literature, a number of questions remain. For instance, the OSA reagent contains a double bond. 

Are there trans and cis isomers (Figure 2.1 a and b) in the reagent?  If so, what is the percentage 

of each form? Configuration of the OSA may influence properties of the modified starch. 
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Furthermore, the position of the double bond is not clear from published information on OSA. 

Several Web sites show the structure as 1-octenyl succinic anhydride (IUPAC name:3-[(E)-oct-

1-enyl]oxolane-2,5-dione) (Figure 2.1 c and d). Some researchers stated that they used 1-octenyl 

succinic anhydride (Scheffler et al., 2009) and 1-octenyl succinic anhydride modified starch 

(Wolf et al., 2001) in their studies. Others reported using 2-octenyl succinic anhydride to make 

OSA modified starches (Bao et al., 2003; Bhosale & Singhal, 2006; He et al., 2006; Hui et al., 

2009; Kim et al., 2010; Liu et al., 2008). However, to our knowledge, no study has been reported 

on the detailed structure of the OSA reagent, and no method has been reported on how to 

differentiate 1- and 2-octenyl succinic anhydride and their cis and trans isomer. Also, the internal 

glucose repeat units in starch have three hydroxyl groups available for substitution, but no study 

has reported the distribution of the OS substituents. The goal of this work was to answer these 

questions by studying the structure of OSA and OSA-modified starch using high-resolution one-

dimensional (1D) and two-dimensional (2D) NMR techniques. 1D 1H and 13C NMR and 2D 

homonuclear correlation and heteronuclear correlation NMR experiments were used to examine 

the OSA reagent and OSA-modified waxy maize starches having different levels of substitution, 

completely assign the resonances of the protons and carbons in the spectra of the OSA reagent, 

and elucidate the structures of OSA and OSA-modified starch. The information gained in this 

study is needed to relate the structures of OS starches to different reaction conditions and to their 

functional properties and enzyme digestibility.   

 Materials and methods 

 Materials 

The OSA and waxy maize starch (Amoica TF) were obtained from National Starch LLC 

(Bridgewater, NJ). Alpha-amylase (Liquozyme SC DS) was provided by Novozymes 

(Franklinton, NC). Other chemicals used were analytical grade. 

 Preparation of OSA-modified starches 

Waxy maize starch (100 g, dry weight) was suspended in water at 40% solid content, and 

the slurry was adjusted to pH 7.5 by adding 3% (wt%) NaOH. The starch slurry was 

continuously mixed by an overhead stirrer, and OSA (3 or 15% based on the weight of starch) 

was added dropwise from a burette while the pH was maintained at 7.5 by adding 3% (wt%) 
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NaOH using a pH controller (Model 501-3400, Barnant Co., IL). After addition of OSA, the pH 

was stable in 30 min and the reaction mixture was adjusted to pH 6.0 by 1.0 N HCl. The 

modified starch was collected by filtration, and then washed with 300 mL of water and dried in 

an oven at 35 °C for 48 h to about 10% moisture. 

 NMR spectroscopy 

The modified starches were prepared for NMR experiments by following the method of 

Xu and Seib (1997) with modifications. OS waxy maize starch or native waxy maize starch (2 to 

3 g) and α-amylase (Liquozyme SC DS) (10 µL) were mixed in 30 mL of water. In some cases, 

sodium acetate (0.3 g) was added. The slurry was heated in a water bath at 85 ºC with shaking 

for 2 h to hydrolyze the starch, and then placed in a boiling water bath for 30 min to denature the 

enzyme. After cooling to room temperature, the hydrolyzed starch was freeze-dried. The freeze-

dried hydrolyzed starch (0.2 g) was dissolved in 1 mL of D2O and freeze-dried again, and the 

procedure was repeated once. The D2O-exchanged starch (0.05 g) was dissolved in D2O (0.50 

mL) for NMR experiments. The OSA reagent was dissolved in CD3OD (10%, v/v) for NMR 

analysis. 
1H and 13C NMR 1D spectra were recorded on a 500 MHz Varian NMR spectrometer at 

25ºC. The NMR spectrometer was equipped with a 3-mm diameter, triple-resonance, inverse–

detection, pulse-field-gradient probe operating at 499.85 MHz for 1H and 125.70 MHz for 13C. 

The 1H spectra were collected in 128 individual scans with a sweep width of 16 ppm and a delay 

time of 1 s. The 13C spectra of the native and OSA modified starches were collected with a 

sufficient number of scans for good resolution, typically 16,000 scans and a delay time of 1 s. A 

delay time of 15 s was used to obtain the spectrum of the OSA reagent in methanol. 1H-1H 2D 

homonuclear correlation spectroscopy (COSY) was recorded with a single transient per t1 

increment with a sweep width of 3242.8 Hz in both dimensions. Heteronuclear single quantum 

coherence (HSQC) 1H-13C 2D experiments also were performed using 512 transients and 16 

scans per transient. The pulse sequence used was a part of the “Bio-pack” provided by Varian. 

Sodium 3-(trimethylsilyl) - propionate-2,2,3,3-d4 (TSP) was used as a reference (0 ppm). 

Chemical shifts are reported in parts per million (ppm). 
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 Results and discussion 

 Structure of OSA reagent 

A 1H-1H COSY spectrum of the OSA reagent in methanol is shown in Figure 2.2. 

Resonance of the terminal methyl protons is close to 0.87 ppm, and chemical shifts of the 

protons on the C-C double bond are in the region of 5.27 to 5.63 ppm (Guillen and Ruiz, 2001; 

Knothe and Kenar, 2004; Pavia et al., 2008). After those peaks were identified, the remaining 

peaks were assigned with the assistance of the COSY spectrum (Figure 2.2) by tracing out the 

connectivity through cross-peaks, which arise from coupling between the protons (McIntyre and 

Vogel, 1990). Proton assignments are noted on each peak in Figure 2.2. Our assignments 

generally agree with the spectrum of trans-(2-octenyl) succinic anhydride (CAS no. of 81949-

84-0) in the Spectral Database for Organic Compound (SDBS), a Web site organized by the 

National Institute of Advanced Industrial Science and Technology, Japan. For easy comparison 

in this paper, we labeled protons in the OSA the same as in the database. However, we noted 

extra side peaks in our 1H NMR spectrum (Figure 2.2). The small peaks at ≈2.06, 2.31, 2.58, 

2.66, and 3.44 ppm have splitting patterns similar to those of their corresponding adjacent peaks. 

We attributed these minor peaks to the cis isomer. The 13C NMR discussed below further 

confirmed these assignments. 

To determine the configuration of the protons at the double bond (A, B in Figure 2.2), we 

calculated their coupling constant. The coupling constant 3J (H-H) of the proton pair at the 

double bond was 15.21 Hz, indicating the trans configuration was the predominate form. The 3J 

coupling constant for protons that are cis to each other would have a smaller value, close to 10 

Hz (Pavia et al., 2008). 

The 1H-1H COSY spectrum (Figure 2.2) was also helpful in determining the position of 

the double bond. The alkene proton B-trans (5.33 ppm) was coupled with methylene protons 

labeled F (2.47 ppm) and G (2.39 ppm), whereas proton A-trans (5.58 ppm) was coupled with 

the protons labeled J (2.00 and 2.05 ppm), suggesting the double bond was between the 

methylene groups (F, G and J) and the OSA reagent used in the experiment was 3-(E-oct-2-enyl) 

dihydrofuran-2,5-dione (Figure 2.1 a and 1b), not 3-(E-oct-1-enyl)dihydrofuran-2,5-dione 

(Figure 2.1 c and d).  Moreover, the ratio of the area of the resonances that arose from the 

methylene protons labeled K (1.39 to1.22 ppm) to that of the methylene protons labeled J (2.00 
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and 2.05 ppm) was about 3:1, further confirming our assignment of the double bond position. 

The 2-ene position on the side chain of OSA agrees with the mechanism of formation of OSA by 

the Diels-Alder reaction of 1-octene with maleic anhydride (Royals, 1954). 

With the assistance of the 1H-13C HSQC spectrum (Figure 2.3), which shows the 

correlations between a 13C atom and its directly bonded protons (McIntyre and Vogel, 1990), the 

resonance of the 13C NMR spectrum of the OSA in methanol were assigned (Table 2.1). 

Identification of the trans- and cis-isomers of OSA was achieved on the basis of the extensive 

investigation of fats, oils, and unsaturated fatty acids by 13C NMR (Gao et al., 2009) and the 1H-
13C HSQC spectrum (Figure 2.3). Carbons of a cis-double bond occur upfield (Barton II et al., 

1975; Gao et al., 2009; Pfeffer et al., 1977). Not only are the chemical shifts of the ene-carbons 

of a cis and trans double bond different, but also the chemical shifts of the allylic carbons 

adjacent to a cis or trans double bonds are different (Gao et al., 2009; Lie Ken Jie & Mustafa 

1997; Pfeffer et al., 1977). The allylic carbons adjacent to a cis double bond resonate ~5.35 ppm 

to higher field than those adjacent to a trans double bond. In studying a mixture of methyl oleate 

(methyl cis-9-octadecenoate) and methyl elaidate (methyl trans-9-octadecenoate) in CDCl3, 

Pfeffer et al. (1977) reported that allylic carbon resonances for the cis and trans isomers occur at 

27.2, 27.3 ppm, and 32.5 and 32.6 ppm, respectively.  On the basis of that information on fats 

and fatty acids, in this study, the resonances at 28.0 and 33.2 ppm were assigned to the allylic 

carbon (C8) adjacent to the cis and trans double bonds, respectively. Once the allylic carbon 

(C8) resonances were identified, we were able to determine their connected protons by using the 

HSQC spectrum, and then to calculate the ratio of cis to trans isomers in the OSA reagent. 

According to the expanded HSQC spectrum (Figure 2.3), the peak at 33.2 ppm of the trans form 

corresponded to the peak at 2.00 ppm (J-trans) in the proton spectrum, whereas the peak at 28.0 

ppm of the trans form corresponded to the peak at 2.05 ppm (J-cis) in the proton spectrum. By 

calculating the ratio of the integrals of the trans-J proton to that of cis-J proton, which are shown 

to be clearly resolved signals in Figure 2.2, we estimated that the ratio of the trans to cis isomers 

in the OSA reagent to be about 5 to 1. 

 NMR spectroscopy of OSA-modified starch 

1H NMR spectra of α-amylase digests of native waxy maize starch and OSA-modified 

starches (DS = 0.019 and 0.056, respectively) are shown in Figure 2.4. Peaks arising from the 
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glucose in starch were assigned according to the literature (Gidley 1985, McIntyre et al., 1990). 

Compared with the native starch, the OSA-modified starches showed several additional 

resonances due to OS substitution. The assignments are listed in Table 2.2. By comparing the 

intensities of the methyl protons on OS substituents to that of anomeric protons on glucose units, 

the DS of OSA-modified starch can be calculated (Bai & Shi, 2010 accepted).  1H NMR is also a 

useful technique for determining the DS of OSA-modified hyaluronic acid (Eenschooten et al., 

2010).    
1H NMR spectra of α-amylase digests of native waxy maize starch and OSA-modified 

starches (DS = 0.019 and 0.056, respectively) are shown in Figure 2.4. Peaks arising from the 

glucose in starch were assigned according to the literature (Gidley 1985, McIntyre et al., 1990). 

Compared with the native starch, the OSA-modified starches showed several additional 

resonances due to OS substitution. The assignments are listed in Table 2.2. By comparing the 

intensities of the methyl protons on OS substituents to that of anomeric protons on glucose units, 

the DS of OSA-modified starch can be calculated (Bai & Shi, 2010 accepted).  1H NMR is also a 

useful technique for determining the DS of OSA-modified hyaluronic acid (Eenschooten et al., 

2010).    

Compared with the 1H NMR spectrum of OSA (Figure 2.2), the modified starches had a 

shoulder at ≈0.97 ppm adjacent to the sharp signals from the methyl protons at 0.90 ppm (Figure 

2.4). It is possible that terminal methyl protons in some substituted octenyl succinate groups, 

which are hydrophobic, might associate and aggregate in aqueous media (Eenschooten et al., 

2010), and cause shifting of the methyl peak. Another possibility is that some methyl protons 

interact with starch molecules, and the interaction between the starch molecules and substituted 

OS could cause those methyl protons to shift downfield. Interestingly, the shoulder was 

disappeared when the α-limit dextrin of the OSA modified starch was examined in dimethyl 

sulfoxide-d6 (data not shown), suggesting that the shoulder was caused by hydrophobic associate 

in aqueous media. In addition, the resonance of the protons in the OS chain (0.54 to 3.21 ppm) 

became broader and less resolved (Figure 2.4) compared to that of the same protons in the OSA 

reagent (Figure 2.2). The peak broadening was likely a result of mixed molecules. Similar to the 

amylolytic enzyme action on phosphorylated starch (Kasemsuwan & Jane, 1996), the α-amylase 

probably does not hydrolyze glucosidic bonds near glucose units substituted with OS groups. As 

a result, the α-limit dextrins of OSA-modified starches contain molecules of various chain 
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lengths, so the 1H-signals of the protons on the different OS substituents do not coincide. Peak 

broadening was also observed in 31P signals of dextrins prepared from phosphorylated wheat 

starches (Sang et al., 2010). It is also interesting to note that the peak (≈5.38 ppm) for the 

anomeric proton of internal α-1, 4 linkages became broader as the level of OSA substitution 

increased (Figure 2.4), presumably because of substitution of OS at the O-2 position.  
13C NMR spectra of the α-limit dextrins of native waxy maize starch and OS starches (DS 

= 0.019 and 0.056, respectively) had a large number of signals over a wide range of chemical 

shifts (Figure 2.5), which provided spectral resolution that allowed us to determine the position 

of OS substitution. The assignments of the 13C signals in the spectrum of digested OSA modified 

starch (DS = 0.056) are shown in Table 2.3. The C-1 of glucose in the α-1,4-repeat units of 

starch appears at ≈100 ppm (Chi et al., 2008; Dais & Perlin, 1982; Peng & Perlin, 1987). The C-

1 signals of the internal glucose units of OSA-modified waxy maize starches (DS = 0.019 and 

0.056) became broader than those of the native waxy maize starch (Figure 2.5), suggesting that 

the OS substitution occurred at O-2 and that the O-2 substituent affected the chemical shift of the 

neighboring C-1. Moreover, additional resonances were noted between 80.0 and 81.0 ppm, the 

resonance due to C-4 of internal glucose units in starch (Chi et al., 2008; Dais & Perlin, 1982; 

Peng & Perlin, 1987), suggesting that OS groups were substituted at the neighboring O-3 

position in granular waxy maize starch. 

To further determine the positions of substitution in starch modified by OSA, we closely 

examined the resonances of C-2, C-3, C-4, and C-5 (81 to 71 ppm) in modified starches (Figure 

2.5).  With the assistance of the HSQC spectrum (Figure 2.6) and based on peak assignments for 

the carbons of starch (Chi et al., 2008; Dais & Perlin, 1982; Peng & Perlin, 1987) and protons of 

maltodextrin (McIntyre et al., 1990), we assigned the multiplets at 78.2 to 80.2 ppm, 73.6 to 74.6 

ppm, and 75.1 to 76.0 ppm, respectively  to C-4, C-2 and C-3 of internal α-1, 4-linked glucose 

units. Line broadening at 73.9 and 76.0 ppm was observed, confirming the substitution at O-2 

and O-3. Interestingly, no change was observed in the signal at 63.5 ppm, which arose from C-6. 

We concluded that OS substitution occurs at O-2 and O-3 and not at O-6. However, calculating 

the molar substitution at O-2 and O-3 is not possible because the signals due to OS modification 

were not well resolved. 
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 Conclusions 

Complete assignments of 1H and 13C NMR spectra of the OSA reagent were achieved by 
1D and 2D NMR techniques. The OSA reagent used in this study was a 5:1 mixture of the 

trans:cis isomer of the 2-octenyl side chain. The systematic name of the trans isomer of the OSA 

reagent is 3-[(E)-oct-2-enyl]oxolane-2,5-dione. OS substitution occurred mainly at the O-2 and 

O-3 positions of the anhydroglucose units in the OSA-modified granular starch. Future work is 

needed to study the relationship between the structure and properties of OSA-modified starch. 

 References 

Bai, Y., & Shi, Y.-C. (2010). Structure and preparation of octenyl succinic anhydride modified 
granular starch, microporous starch and soluble maltodextrin. Carbohydrate Polymers, 
accepted.  

Bao, J. S., Xing, J., Phillips, D. L., & Corke, H. (2003). Physical properties of octenyl succinic 
anhydride modified rice, wheat, and potato starches. Journal of Agricultural and Food 
Chemistry, 51, 2283-2287. 

Barton II, E. F., Himmelsbach, D. S., & Burdick, D. (1975). Determination of the cis-trans 
composition of methyl oleate and methyl elaidate by carbon-13 NMR. Journal of 
magnetic resonance, 18, 167-171. 

Bhosale, R., & Singhal, R. (2006). Process optimization for the synthesis of octenylsuccinyl 
derivative of waxy corn and amaranth starches. Carbohydrate Polymers, 66, 521-527. 

Caldwell, C. G., & Wurzburg, O. B. (1953). Polysaccharide derivatives of substituted 
dicarboxylic acids. US Patent Office, Pat. No. 2,661,349. 

Chi, H., Xu, K., Wu, X., Chen, Q., Xue, D., Song, C., Zhang, W., & Wang, P. (2008). Effect of 
acetylation on the properties of corn starch. Food Chemistry, 106, 923-928. 

Cho, S.-J., Lim, H. S., Park, H.-J., Hwang, H.-J., & Lim, S.-T. (1999). Physical properties of 
octenyl succinylated corn amylodextrins as fat replacers in mayonnaise. Food Science 
and Biotechnology, 8, 322–328. 

Choi, J.-K., Girek, T., Shin, D.-H., Lim, S.-T. (2002). Structural and physical characterization of 
octenylsuccinyl beta-cyclodextrin. Carbohydrate Polymers, 49, 289-296. 

Čížová A., Koschella, A., Heinze, T., Ebringerová, A., Sroková, I. (2007). Octenylsuccinate 
derivatives of carboxymethyl starch: Synthesis and properties. Starch/Stärke, 59, 482–
492. 

Dais, P., & Perlin, A. S. (1982). High-field, 13C-N.M.R. spectroscopy of beta-D-glucans, 
amylopectin, and glycogen. Carbohydrate research, 100, 103-116. 



22 

 

Daniel, J. R., Whistler, R. L., Roper, H., & Elvers, B. (2007). Starch. In Ullmann’s encyclopedia 
of industrial chemistry, 7th ed. Weinheim, Germany: Wiley-VCH Verlag Gmbh.   

Eenschooten, C., Guillaumie, F., Kontogeorgis, G. M., Stenby, E. H., & Schwatch-Abdellaouli, 
K. (2010). Preparation and structural characterization of novel and versatile amphiphilic 
octenyl succinic anhydride-modified hyaluronic acid derivatives. Carbohydrate Polymers, 
79, 579-605.  

Gao, L., Sedman, J., García-González, D. L., Ehsan, S., Sprules, T., & van de Voort, F. R. 
(2009). 13C NMR as a primary method for determining saturates, cis- and trans-
monounsaturates and polyunsaturates in fats and oils for nutritional labeling purposes. 
European Journal of Lipid Science and Technology, 111, 612-622. 

Gidley, M. J. (1985). Quantification of the structural features of starch polysaccharides by NMR-
spectroscopy. Carbohydrate Research, 139, 85-93. 

Guillén, M. D., & Ruiz, A. (2001). High resolution 1H nuclear magnetic resonance in the study 
of edible oils and fats. Trends in Food Science & Technology, 12, 328–338.  

Han, J. A., & BeMiller, J. N. (2007). Preparation and physical characteristics of slowly digesting 
modified food starches. Carbohydrate Polymers, 67, 366-374. 

He, G. Q., Song, X. Y., Ruan, H., & Chen, F. (2006). Octenyl succinic anhydride modified early 
indica rice starches differing in amylose content. Journal of Agricultural and Food 
Chemistry, 54, 2775-2779. 

He, J. H., Liu, J., & Zhang, G. Y. (2008). Slowly digestible waxy maize starch prepared by 
octenyl succinic anhydride esterification and heat-moisture treatment: Glycemic response 
and mechanism. Biomacromolecules, 9, 175-184. 

Hui, R., Chen, Q.-H., Fu, M.-L., Xu, Q., & He, G.-Q. (2009). Preparation and properties of 
octenyl succinc anhydride modified potato starch. Food Chemistry, 114, 81-86.  

Jane, J. L., Robert, R. J., Nidolov, Z., & Roque, R. L. (1991). Degradable plastics from octenyl 
succinate starch. US Patent Office, Pat. No. 5,059,642. 

Jeon, Y., Viswanathan, A., & Gross, R.A. (1999). Studies of starch esterification: Reactions with 
alkenyl succinates in aqueous slurry systems. Starch/Stärke, 51, 90-93.   

Kasemsuwan, T., & Jane, J. (1996). Quantitative method for the survey of starch phosphate 
derivatives and starch phospholipids by 31P nuclear magnetic resonance spectroscopy. 
Cereal Chemistry, 73, 702–707. 

Kim, H.-N., Sandhu, K. S., Lee, J. H., Lim, H. S., Lim, S.-T. (2010). Characterization of 2-octen-
1-ylsuccinylated waxy rice amylodextrins prepared by dry-heating. Food Chemistry, 119, 
1189-1194.    



23 

 

Knothe, G., & Kenar, J. A. (2004). Determination of the fatty acid profile by 1H-NMR 
spectroscopy. European Journal of Lipid Science and Technology, 106, 88–96. 

Lie Ken Jie, M. S. F., & Mustafa, J. (1997). High-resolution nuclear magnetic resonance 
spectroscopy—Applications to fatty acids and triacylglycerols. Lipids, 32, 1019–1034.  

Liu, Z. Q.,Li, Y., Cui, F. J., Ping, L.F., Song, J. M., Ravee, Y., Jin, L. Q., Xue, Y. P., Xu, J. M., 
Li, G., Wang, Y. J., & Zheng, Y. G. (2008). Production of octenyl succinic anhydride-
modified waxy corn starch and its characterization. Journal of Agricultural and Food 
Chemistry, 56, 11499-11506.  

McIntyre, D. D., & Vogel, H. J. (1990). Two-dimensional nuclear magnetic resonance studies of 
starch and starch products. Starch/Stärke, 42, 287-293. 

McIntyre, D. D., Ho, C., & Vogel, H. J. (1990). One-dimensional nuclear magnetic resonance 
studies of starch and starch products. Starch/Stärke, 42, 260-267. 

Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2008). Nuclear magnetic resonance 
spectroscopy. Part one: Basic concepts. In D. L. Pavia, G. M. Lampman, G. S. Kriz, and 
J. R. Vyvyan (Eds.). Introduction to spectroscopy, 4th ed. (pp. 105-176). Belmont, CA: 
Brooks/Cole. 

Peng, Q.-J., & Perlin, A. S. (1987). Observations on NMR spectra of starches in dimethyl 
sulfoxide, iodine-complexing, and salvation in water-dimethyl sulfoxide. Carbohydrate 
Research, 160, 57-72.   

Pfeffer, P. E., Luddy, F. E., Unruh, J., Shoolery, J. N. (1977). Analytical 13C-NMR: A rapid, 
nondestructive method for determining the cis, trans composition of catalytically treated 
unsaturated lipid mixtures. Journal of the American Oil Chemists’ Society, 54, 380–386. 

Royals, E. E. (1954). Advanced Organic Chemistry. Englewood Cliffs, New Jersey : Prentice-
Hall, Inc.  

Rutenberg, M. W. ,& Solarek, D. (1984). Starch derivatives: Production and uses. In R.L. 
Whistler, J. N. BeMiller, and E. F. Paschall (Eds.). Starch: Chemistry and technology, 
2nd ed. (pp. 311-388). Orlando, FL: Academic Press. 

Sang, Y., P. A. Seib, Herrera, A. I., Prakash, O., & Shi, Y.-C. (2010). Effects of alkaline 
treatment on the structure of phosphorylated wheat starch and its digestibility. Food 
Chemistry, 118, 323-327. 

SBDS, Spectral Database for Organic Compounds, http://riodb01.ibase.aist.go.jp/sdbs/cgi-
bin/cre_index.cgi?lang=eng 

Scheffler, S. L., Wang, X., Huang, L., Gonzalez, F. S.-M., Yao, Y. (2009) Phytoglycogen 
octenyl succinate, an amphiphilic carbohydrate nanoparticle, and ε-polylysine to improve 
lipid oxidative stability of emulsions. Journal of Agricultural and Food Chemistry. 
DOI:10.1021/jf903170b.  



24 

 

Shih, F. F., & Daigle, K. W. (2003). Gelatinization and pasting properties of rice starch modified 
with 2-octen-1-ylsuccinic anhydride. Nahrung-Food, 47, 64-67. 

Shogren, R. L., Viswanathan, A., Felker, F., & Gross, R. A. (2000). Distribution of octenyl 
succinate groups in octenyl succinic anhydride modified waxy maize starch. 
Starch/Stärke, 52, 196-204. 

Trubiano, P. C. (1986). Succinate and substituted succinic derivatives of starch. In O. B. 
Wurzburg (Ed.). Modified starches: Properties and uses (pp. 131-147). Boca Raton, FL: 
CRC Press. 

Viswanathan, A. (1999). Effect of degree of substitution of octenyl succinate starch on 
enzymatic degradation. Journal of Polymers and the Environment, 7, 185–190. 

Wolf, B. W., Wolever, T. M. S., Bolognesi, C., Zinker, B. A., Garleb, K. A., & Firkins, J. L. 
(2001). Glycemic response to a food starch esterified by 1-octenyl succinic anhydride in 
humans. Journal of Agricultural and Food Chemistry, 49, 2674-2678. 

Wurzburg, O. B. (1986). Introduction. In O.B. Wurzburg (Ed.). Modified starches: Properties 
and uses (pp. 4-15). Boca Raton, FL: CRC Press. 

Wurzburg, O. B. (2006). Modified starch. In A. M. Stephen, G. O. Phillips, P. A. Williams 
(Eds.). Food polysaccharides and their applications (Chapter 3, pp. 87-118). Boca Raton, 
FL: CRC Press.  

Xu, A., & Seib, P. A. (1997). Determination of the level and position of substitution in 
hydroxypropylated starch by high-resolution 1H-NMR spectroscopy of alpha-limit 
dextrins. Journal of Cereal Science, 25, 17-26. 

 

 

 

 

 

 

 

 

 

 

  



25 

 

 Tables and figures 

Table 2.1 
13

C-NMR spectrum assignment of octenyl succinic anhydride (OSA) 

Assignment 
13

C chemical shift (ppm) 

1 175.6 
2 172.3 

3-trans 136.5 
3-cis 135.1 

4-trans 125.3  
4-cis 124.6 

5 41.8 
6-trans 34.1 

7 33.9 
8-trans 33.2 

9 32.2 
10 29.8 

6-cis 28.6 
8-cis 28.0 
11 23.3 
12 14.2 
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Table 2.2 
1
H-NMR spectrum assignment of octenyl succinic anhydride (OSA) modified 

starch (DS = 0.056) 

Functional Groups 1
H Chemical shift (ppm) 

OSA
a
 Glucose Unit 

A  5.54 
B  5.43 
 Internal H-1 5.38 
 Reducing end α-form 5.22 
 H-6 (α-1,6) 4.96 
  4.77 (H-O-D) 
 Reducing end β-form 4.64 
 H-2,3,4,5 4.10 to 3.18 
C, D, E, F, G, J  1.93 to 2.99 
K  1.50 to1.20 
L  1.05 to 0.82 
aThe capital letters for protons in OSA group follow the notation in Figure 2.3. 
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Table 2.3 
13

C-NMR spectrum assignment of octenyl succinic anhydride (OSA) modified 

starch (DS = 0.056) 

Functional Groups 13
C Chemical shift (ppm) 

OSA
a
 Glucose Unit 

2-carboxylate  186.8 
2-carboxylate acid  185.0 
1-ester  182.6 
3  136.3 
4  129.5 
 C-1 102.6 
 C-1 α-form 98.6 
 C-1 β-form 94.6 
 C-2, 3, 4, 5 81.7 to 70.5 
 C-6 63.5 
5  48.6 
7  42.8 
6  37.9 
8-trans  34.6 
9  33.6 
10  31.3 
8-cis  29.4 
11  24.7 
12  16.3 
aThe numbers for carbons in OSA group follow the notation in Figure 2.3. 
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Figure 2.1 Four possible structures of octenyl succinic anhydride (OSA) reagent: 3-(E-oct-

2-enyl) dihydrofuran-2,5-dione (1a); 3-(Z-oct-2-enyl) dihydrofuran-2,5-dione (1b); 3-(E-

oct-1-enyl)dihydrofuran-2,5-dione (1c); and 3-(Z-oct-1-enyl)dihydrofuran-2,5-dione (1d).   

 

 

1a 1b 1c 1d 
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Figure 2.2 
1
H-

1
H COSY spectrum of OSA reagent in methanol. Structure of 3-(oct-2-enyl) 

dihydrofuran-2,5-dione is inserted and assignments for protons are listed on the top of the 

corresponding resonances. The region from 3.2 to 1.8 ppm is expanded and shown above 

the COSY spectrum. The arrows point to the small peaks at ≈ 2.06, 2.31, 2.58, 2.66 ppm 

and 3.44 ppm that have splitting patterns similar to those of their corresponding adjacent 

peaks, and are attributed to the cis isomer. A detailed assignment in this region is shown in 

the table below the COSY spectrum. 

 

Assignment D-trans D-cis E-trans E-cis F G J-cis J-trans 

δ (ppm) 3.02 3.05 2.71 2.66 2.47 2.39 2.05 2.00 
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Figure 2.3 Expanded heteronuclear single quantum coherence (HSQC) spectrum (45 to 12 

ppm ) of OSA reagent in methanol. 
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Figure 2.4 
1
H NMR spectra of α-limit dextrins of waxy maize starch (A) and OSA-modified 

starches with DS of 0.018 (B) and 0.056 (C). 
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Figure 2.5 
13

C NMR spectra of α-limit dextrins of native waxy maize starch (A) and OSA-

modified starches with DS of 0.019 (B) and 0.056 (C). 
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Figure 2.6 Heteronuclear single quantum coherence (HSQC) 
1
H-

13
C spectrum of α-limit 

dextrin of 15% OSA-modified starch (DS = 0.056) 
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Chapter 3 - Reaction of octenylsuccinic anhydride with a mixture of 

granular starch and soluble maltodextrin
1
 

 Abstract 

The reaction of octenylsuccinic anhydride (OSA) with a mixture of granular waxy maize 

starch and soluble maltodextrin was investigated. OSA was reacted with a 1:1 (w/w) mixture of 

the granular starch and maltodextrin at OSA levels of 1.5, 3, 9, and 15% (wt% based on starch 

weight). After the first 0.5 h of the reaction, degree of substitution (DS) on maltodextrin reached 

0.021, 0.033, 0.080, 0.10 for 1.5, 3, 9, and 15% OSA, respectively, whereas DS for granular 

starch was only 0.0020, 0.0087, 0.014, and 0.016. At 2 h of the reaction, the bound OS ratio of 

maltodextrin to granular starch was 10.8 when OSA concentration was 1.5% and decreased to ca. 

5 at higher OSA concentrations. OSA preferred to react with maltodextrin than semi-crystalline 

granular starch when both existed in the system. OSA reacted with maltodextrin at a much faster 

rate and to a greater extent than with granular starch, but a significant amount of OSA reacted 

with granular starch at 3 to 15% OSA concentrations.  

Keywords: Starch, maltodextrin, octenylsuccinic anhydride 

  

                                                 
1 This chapter has been submitted to Carbohydrate Polymers for publication. 
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 Introduction  

Octenylsuccinic anhydride (OSA) reaction with starch has been known for decades 

(Caldwell & Wurzburg, 1953), but interest in it is increasing, as evidenced by the number of 

published papers in recent years (Sweedman, Tizzotti, Schäfer & Gilbert, 2013). The product of 

this reaction, octenylsuccinate (OS) starch, functions as a emulsion stabilizer and has wide food, 

pharmaceutical, and industrial applications (Trubiano, 1986). The reaction is an esterification 

reaction normally performed in aqueous solution under alkaline conditions (Trubiano, 1986). 

OSA reaction has been carried out with granular starch from different botanical sources, 

including waxy maize (Bai & Shi, 2011; Bhosale & Singhal, 2006; Shogren, Viswanathan, 

Felker & Gross, 2000; Zhu, Xie, Song & Ren, 2011), normal maize (Park, Chung & Yoo, 2004), 

potato (Ruan, Chen, Fu, Xu & He, 2009), rice (He, Song, Ruan & Chen, 2006; Song, He, Ruan 

& Chen, 2006), and amaranth (Bhosale & Singhal, 2006). In general, optimum reaction pH is 7.5 

to 8.5 (Bai & Shi, 2011; Bhosale & Singhal, 2006; Song, He, Ruan & Chen, 2006; Zhu, Xie, 

Song & Ren, 2011) and optimum temperature is 30 to 35 ºC (Bhosale & Singhal, 2006; Song, 

He, Ruan & Chen, 2006; Zhu, Xie, Song & Ren, 2011). Degree of substitution (DS) increases 

with OSA treatment level (Bhosale & Singhal, 2006; Song, He, Ruan & Chen, 2006) and starch 

concentration (Bai & Shi, 2011; Song, He, Ruan & Chen, 2006; Zhu, Xie, Song & Ren, 2011); 

however, reaction time may vary from 2 to 24 h depending on the speed of OSA addition, other 

reaction parameters, and the botanical source of the starch (Bai & Shi, 2011; Bhosale & Singhal, 

2006; Song, He, Ruan & Chen, 2006).  

In our previous study, we examined OSA reaction with granular waxy maize starch and 

soluble maltodextrin and found higher reaction efficiency (RE) and a faster rate for soluble 

maltodextrin (Bai & Shi, 2011). In addition, the substitution pattern on hydroxyl groups appeared 

to differ between OS maltodextrin and granular OS starch. However, it is not clear how OSA 

would react in a mixture of soluble maltodextrin and granular starch. In this study, instead of 

examining the reaction of OSA with granular starch and soluble maltodextrin separately, we 

investigated the reaction of OSA reaction with a mixture of granular starch and soluble 

maltodextrin.  

 Materials and Methods 

 Materials  
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OSA and waxy maize starch (Amoica TF) were obtained from National Starch LLC 

(Bridgewater, NJ). Maltodextrin (MALTRIN 100) with degree of polymerization (DPn) ~10 was 

obtained from Grain Processing Corporation (Muscatine, IA). Other chemicals used in the study 

were analytical grade. 

 OSA reaction 

A mixture of granular waxy maize starch (50 g dry weight) and soluble maltodextrin (50 

g dry weight) was dispersed in 150 mL water and mixed with an overhead stirrer for 15 min. pH 

was adjusted to 7.5 by 3% (wt%) NaOH solution. OSA of 1.5, 3, 9, and 15% based on total 

weight of the mixture of the starch and maltodextrin was added to the slurry, and the pH was 

controlled at 7.5 during the reaction. Samples were taken during reaction at a time interval of 30 

min. Each sample was vacuum-filtered through a filter paper. The maltodextrin fraction in the 

filtrate was recovered by freeze-drying. The starch cake was washed by distilled water (400 mL) 

three times and then by methanol (400 mL) three times to remove soluble maltodextrin residue 

and unreacted OSA. Starch was dried in an oven at 40 °C for 24 h.  

In a set of separate experiments, OSA reaction was performed with granular starch alone 

at concentrations of 3, 9, 15, and 50% (based on starch weight). Sodium sulfate (5% based on 

starch weight) was added in the reactions of 15 and 50% (based on starch weight) OSA 

concentration.  

 Bound OS content determination 

DS and bond OS were determined by NMR. Granular OS starch was hydrolyzed by α-

amylase for NMR experiments as previously described (Bai, Shi, Herrera & Prakash, 2011). The 

freeze-dried maltodextrin (0.2 g) was washed by methanol (1mL) three times and vacuum-dried. 

OS starch and maltodextrin products were exchanged with D2O once, dissolved in D2O at 10% 

(wt%), and analyzed by NMR. 

 Wide-angle X-ray diffraction 

The starch samples were equilibrated to about 20% moisture at 25 °C in a glass enclosure 

containing water. X-ray diffraction patterns of starches and maltodextrins were obtained with an 

X-ray diffractometer (APD 3520, Philips, Netherlands). The instrument was operated at 35kV, 
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20mA with Cu-Ka radiation, a theta-compensating slit, and a diffracted beam monochromator. 

Data were recorded between the diffraction angles (2θ) of 2 and 35°. 

 Statistical analysis   

Each experiment was performed in triplicate. Analysis of variance was performed with 

SAS (version 9.1.3, SAS Institute Inc., Cary, NC). Least significant differences for comparison 

of means were computed at P<0.05. 

 Results and discussion 

OSA reacted significantly more with maltodextrin than granular starch when both existed 

in the aqueous system (Table 3.1). At the 1.5% OSA level, the amount of OSA that reacted on 

maltodextrin was 10.8 times greater than on the granular starch (Figure 3.1). As the OSA level 

increased to 9 and 15%, we still observed more substitution on the maltodextrin, but the ratio of 

the bound OS in the maltodextrin to that in the waxy maize starch dropped from 10.8 to 4.5 and 

5.3, respectively (Figure 3.1). It seems that most OSA reacted with soluble maltodextrin initially, 

but the reaction rate decreased after OS groups were substituted on maltodextrin.  

We used 3% OSA and reacted it with (i) waxy maize starch, (ii) soluble maltodextrin, 

and (iii) a mixture of the starch and maltodextrin. It is interesting to compare the reaction results 

(Table 3.1). The RE was almost 100% when 3% OSA was reacted with maltodextrin (Table 3.1) 

and DS was 0.023, whereas RE was ca. 80% for the granular starch with DS of 0.019. In 

comparison, when 3% OSA was reacted with a mixture of the granular starch and maltodextrin 

(1/1, w/w) for 2 h, the RE was 84.4% (Table 3.1). Among the total OSA reacted, 69.0% reacted 

on the maltodextrin, resulting in 4.1% OS on the maltodextrin, In contrast, only 15.4% reacted 

on the granular starch (Table 3.1). DS of maltodextrin fraction was 0.033, which was more than 

4 times higher than the granular starch fraction. 

The reaction rate of OSA modification on maltodextrin appeared different from granular 

starch. After the first 0.5 h of the reaction, DS on maltodextrin reached 0.021, 0.033, 0.080, and 

0.10 for 1.5, 3, 9, and 15% (wt% based on starch weight) OSA, respectively, whereas DS for 

granular starch was only 0.0020, 0.0087, 0.014, and 0.016. These results indicate that OSA 

reacted much faster on maltodextrin than granular starch. At high OSA concentrations of 9 and 

15% (wt% based on starch weight), interesting results were observed. At 9% OSA, the DS of the 

maltodextrin continued to increase from 0.5 h to 1.5 h, remained constant from 1.5 to 2.0 h, and 



38 

 

decreased from 2.0 h to 2.5 h. The reaction stopped after 1.5 h was probably because of the 

increase in hydrophobicity after OS substitution. In contrast, the DS of the granular starch 

increased from 0.5 h to 1.0 h, then remained constant up to 2.5 h (Figure 3.2). A similar trend 

was observed for 15% (wt% based on starch weight) OSA concentration (Figure 3.3). These 

results suggest that the OSA reaction rate was fast at the early stage of the reaction for both 

granular starch and soluble maltodextrin, but it slowed as the reaction progressed. Reaction rate 

on granular starch decreased much faster than maltodextrin. The fast decrease in reaction rate 

was probably due to the steric hindrance in granular starch for OSA to react as well as the 

increase in starch hydrophobicity after OS substitution. Granular starch appeared to have much 

less available space for OS substitution than maltodextrin.  

OSA reaction was performed on granular starch alone, and the granular structure change 

was investigated by wide angle X-ray diffraction. Native waxy maize starch showed an A-type 

crystalline pattern. At DS of 0.019 and 0.039, crystalline patter of OS starch appeared to be the 

same as native starch (Figure 3.4). As DS reached 0.074, the crystalline pattern started to lose 

definition, and peak broadening was observed (Figure 3.4). These results suggest that at low 

level of OSA modification, OS substitutions occurred primarily at the amorphous region. For 

granular waxy maize starch without starch swelling, the maximum DS was about 0.088 (Bai & 

Shi, 2011), reflecting limited reaction space in the amorphous regions.  

Therefore, the difference in OSA reaction on granular starch and maltodextrin was due to 

that the granular starch was partially crystalline, whereas maltodextrin was soluble in water. 

OSA reacted preferably with granular starch at the amorphous region and granular surface 

(Shogren, Viswanathan, Felker & Gross, 2000; Song, He, Ruan & Chen, 2006). The crystalline 

region of granular starch was tightly packed and was not readily accessible for starch 

modification (Richardson, Nilsson, Cohen, Momcilovic, Brinkmalm & Gorton, 2003). In 

contrast, maltodextrin, which was completely amorphous and soluble in water, had all the 

molecules available, or, in other words, had more sites for reaction; therefore, it appeared to have 

a faster reaction rate than granular starch.  

When both maltodextrin and granular starch existed in one reaction system, OSA 

preferably reacted with maltodextrin and granular starch in its amorphous region, but the reaction 

was more profound in maltodextrin. As the reaction progressed, OSA reaction on maltodextrin 

and starch slowed; however, due to a much lower reaction rate on granular starch, OSA reacted 
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with maltodextrin, which had more sites available for reaction, until no available OSA in the 

system.  

 Conclusions  

In an aqueous system mixed with the granular starch and maltodextrin, OSA preferably 

reacted with the soluble maltodextrin at OSA concentration of 1.5 to 15% (wt%, based on starch 

weight), but a significant amount of OSA reacted with granular starch at 3 to 15% OSA 

concentration. The initial reaction rate of maltodextrin with OSA was much faster than that of 

the granular starch. OSA preferably reacted with granular starch in its amorphous region and 

with soluble maltodextrin.  
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 Tables and figures 

Table 3.1 Characterization of octenylsuccinate (OS) starch or maltodextrin when prepared 

in a reaction system of a mixture of waxy maize starch and maltodextrin (1/1, w/w) as well 

as starch only and maltodextrin only. 

 

Numbers in the same column followed by a letter in common are not significantly different at P 
< 0.05. 
* Data from Bai and Shi (2011) are incorporated here for comparison.  

OSA 
level 
(%) 

Reaction 
Time (h) 

Starch fraction Maltodextrin fraction 

Degree of 
substitution 

%OS 
% reacted 
based on 
total OSA 

Degree of 
substitution 

%OS 
% reacted 
based on 
total OSA 

1.5 
0.5 0.0020 0.26 8.7 0.021 2.7 89.3 

1.5 0.0018 0.24 8.0 0.021 2.6 86.3 

3.0 

0.5 0.0087c 1.1b 18.5c 0.033a 3.7a 67.7a 

1.0 0.0080b 1.0b 16.7b 0.034a 4.2a 67.9a 

2.0 0.0072a 0.9a 15.4a 0.033a 4.1a 69.0a 

  Starch only * Maltodextrin only * 

3.0 

0.5 0.014a 1.75a n/a 0.023 2.92 n/a 

1.0 0.019b 2.39b n/a 0.023 2.95 n/a 

1.5 0.019b 2.42b n/a 0.024 2.99 n/a 

2.0 0.019b 2.37b n/a n/a n/a n/a 
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Figure 3.1 Ratio of octenylsuccinic anhydride (OSA) reacted on maltodextrin to waxy 

maize starch at different levels of OSA. 
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Figure 3.2 Degree of substitution (bar graph) and reaction efficiency (line graph) of 9% 

octenylsuccinic anhydride modification on the mixture of waxy maize starch (black bars 

and solid lines) and maltodextrin (white bars and dashed lines). 
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Figure 3.3 Degree of substitution (bar graph) and reaction efficiency (line graph) of 15% 

octenylsuccinic anhydride modification on the mixture of waxy maize starch (black bars 

and solid lines) and maltodextrin (white bars and dashed lines). 
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Figure 3.4 Wide-angle X-ray diffraction patterns of native waxy maize starch and 

octenylsuccinate starches of degree of substitution (DS) 0.019, 0.039, 0.074, and 0.13. 
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Chapter 4 - Position of Modifying Groups on Starch Chains of 

Octenylsuccinic Anhydride-Modified Waxy Maize Starch 

 Abstract 

Octenylsuccinic anhydride (OSA)-modified starches with a low and high degree of 

substitution, DS=0.018 (OS-S-L) and 0.092 (OS-S-H), were prepared from granular native waxy 

maize starch in an aqueous slurry. The position of OS substituents along the 1, 4-linked chains 

was investigated by enzyme hydrolysis followed by chromatographic analysis. 

Amyloglucosidase, β-amylase, and isoamylase were used separately or in combination to 

hydrolyze the starches. High-performance anion-exchange chromatography, gel permeation 

chromatography, and size exclusion chromatography with a multi-angle light scattering detection 

were used to analyze the enzyme hydrolysates. Native starch, OS-S-L, and OS-S-H had β-limit 

values of 55.9, 52.8, and 34.4%, respectively. The weight-average molecular weight of the β-

limit dextrin of OS-S-L was close to that of native starch, but for OS-S-H, it was approximately 

7 times the β-limit dextrin of the native starch. Debranching of OS starches was incomplete 

compared with native starch; the β-amylolysis limits of debranched OS-S-L and OS-S-H were 

ca. 91 and 70%, respectively. Analytic results were consistent with the structure of OS-S-L 

having OS groups located on repeat units close to the branching points in amylopectins, whereas 

the OS substituents in OS-S-H occurred both near the branching points and the non-reducing 

ends.  

Keyword: Substitution distribution, octenylsuccinic anhydride, modified starch, starch 

structure  
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 Introduction 

Starch is often modified to enhance its functional properties (Wurzburg, 1986). The three 

general approaches to starch modification are physical, chemical, and enzymatic (Huber & 

BeMiller, 2009). After modification, the physical and chemical properties of native starch are 

altered via molecular scission, molecular rearrangement, oxidation, and introduction of 

substituent chemical groups (Wurzburg, 1986). Substituted starch is of great industrial and 

academic interest due to significant improvements in selected starch properties.  

The structure of substituted starch is often characterized at three levels: universal, 

granular, and molecular (Huber & BeMiller, 2009). At the universal level, substituted starch is 

characterized by the degree of substitution (DS) and molar substitution (MS), which reflects the 

overall extent of modification. At the granular level, substituted starch is characterized by 

whether substituents occur at the surface or interior of granules, and whether they occur in 

amorphous or crystalline regions. At the molecular level, starch is characterized by the 

substitution position on repeating anhydroglucose units (AGUs) and along the starch chain 

(Richardson & Gorton, 2003).  

Octenylsuccinic anhydride (OSA)-modified starch is one of the chemically modified 

starches obtained by substitution modification (Sweedman, Tizzotti, Schäfer, & Gilbert, 2013). 

Food-grade octenylsuccinated (OS) starch is limited legally to OSA treatment with up to 3 wt% 

reagent, and is commonly prepared by reacting granular starch with OSA in an aqueous system. 

OSA modification affects many physical and chemical properties of starch, including 

gelatinization behavior (Carlos-Amaya, Osorio-Diaz, Agama-Acevedo, Yee-Madeira, & Bello-

Perez, 2011; Thirathumthavorn & Charoenrein, 2006), rheological properties (X. Y. Song, Zhu, 

Li, & Zhu, 2010; Thirathumthavorn & Charoenrein, 2006), and digestibility (Carlos-Amaya, 

Osorio-Diaz, Agama-Acevedo, Yee-Madeira, & Bello-Perez, 2011; Han & BeMiller, 2007; J. 

He, Liu, & Zhang, 2008). Knowledge of the structure of OS starch is helpful in understanding its 

physical behavior (Shogren, Viswanathan, Felker, & Gross, 2000).  

The structure of OS starch has been investigated at all three levels. The overall extent of 

substitution, or DS, has been determined by titrimetric (X. Song, He, Ruan, & Chen, 2006) and 

nuclear magnetic resonance (NMR) methods (Bai & Shi, 2011; Bai, Shi, Herrera, & Prakash, 

2011; Tizzotti, Sweedman, Tang, Schaefer, & Gilbert, 2011). In regards to substitution at the 

granular level, most of the starch granules are accessible and react with OSA (Bai, Shi, & 
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Wetzel, 2009; Shogren, Viswanathan, Felker, & Gross, 2000). However, the distribution of the 

OS groups is not uniform among starch granules at DS 0.05, as determined by FT-IR 

microspectroscopy (Bai, Shi, & Wetzel, 2009). For individual starch granules, the surface 

concentration of OS was found to be approximately 3 to 4 times that of the bulk (Shogren, 

Viswanathan, Felker, & Gross, 2000). In addition, OS substitution occurred primarily in the 

amorphous region (Bai & Shi, 2011; G. Q. He, Song, Ruan, & Chen, 2006; Shogren, 

Viswanathan, Felker, & Gross, 2000; X. Song, He, Ruan, & Chen, 2006). At the molecular level, 

OS substitution positions on AGUs varied for the modified starches produced by reaction of 

different physical forms. For modified granular starch, OS substitution occurred primarily at OH-

2 and OH-3 for DS up to 0.056 (Bai & Shi, 2011; Bai, Shi, Herrera, & Prakash, 2011); whereas 

for the modified maltodextrin, OS groups were substituted at OH-2, OH-3, OH-6, and at 

reducing ends (Bai and Shi, 2011). 

One question that is still unknown is how the OS substituents are distributed along a 

typical starch chain. Substitution distribution along the starch chain has been studied for various 

chemically modified starches and is often obtained by analyzing the limit dextrins of a modified 

starch after treatment by a single enzyme or a combination of enzymes. Limit dextrins are 

oligomeric or polymeric saccharides that remain after exhaustive treatment of starch with a 

hydrolytic enzyme. It has been suggested that the action of starch-degrading enzymes is stopped 

by the presence of a substituent on a glucose residue or on an adjacent glucose residue 

(Mischnick & Momcilovic, 2010; Richardson & Gorton, 2003; Steeneken & Woortman, 1994). 

Therefore, the substitution distribution can be inferred by comparing the structures of enzyme 

hydrolysates of a native starch with that of its modified components. Enzymes including α-

amylase, β-amylase, amyloglucosidase, isoamylase, and pullulanase are those most commonly 

used for starch structure characterization (Hizukuri, Abe, & Hanashiro, 2006; Richardson & 

Gorton, 2003). Enzymatic methods have been used successfully to characterize chain 

substitution patterns for methylated (Steeneken & Woortman, 1994; van der Burgt, Bergsma, 

Bleeker, Mijland, Kamerling, & Vliegenthart, 2000a; van der Burgt, Bergsma, Bleeker, Mijland, 

van der Kerk-van Hoof, Kamerling, et al., 1999, 2000a), oxidized (Zhu & Bertoft, 1997), 

cationic (Manelius, Buleon, Nurmi, & Bertoft, 2000; Manelius, Nurmi, & Bertoft, 2000; 

Richardson, Nilsson, Cohen, Momcilovic, Brinkmalm, & Gorton, 2003), acetylated (Chen, 

Huang, Suurs, Schols, & Voragen, 2005; Chen, Schols, & Voragen, 2004; J. Huang, Schols, 
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Klaver, Jin, & Voragen, 2007; J. R. Huang, Schols, Jin, Sulmann, & Voragen, 2007; Wang & 

Wang, 2002) and hydroxypropylated (Biliaderis, 1982; Hood & Mercier, 1978; Kavitha & 

BeMiller, 1998; Richardson, Nilsson, Bergquist, Gorton, & Mischnick, 2000) starches.  

In this study, OS starch was prepared and hydrolyzed exhaustively by various enzymes 

including amyloglucosidase, isoamylase, and β-amylase followed by chromatographic analysis 

as shown in Figure 4.1. The distribution of OS groups along starch chains were deduced from 

analyses of the enzyme hydrolysates. 

 Materials and Methods 

 Materials 

Waxy maize starch was obtained from National Starch LLC (Bridgewater, NJ). 

Amyloglucosidase from Rhizopus sp. (A-7255) were purchased from Sigma-Aldrich (St. Louis, 

MO). Based on the information from Sigma-Aldrich, enzyme activity of amyloglucosidase was 

over 5,000 units/g solid and one unit liberated 1.0 mg of glucose from soluble starch in 3 min at 

pH 4.5 at 55 °C. β-amylase (Diazyme BB) was obtained from Danisco (Madison, WI). The 

enzyme activity was 1320 ± 90 DP°/g as indicated by the product brochure. Isoamylase (EC 

3.2.1.68) was obtained from Hayashibara Biochemical Laboratories, Inc. (Okayama, Japan). The 

enzyme activity was 1.41 X 106 isoamylase activity units (IAU)/g, where 1 unit is an increase in 

absorbance of 0.008 at 610 nm when incubating the enzyme with soluble waxy maize starch in 

the presence of iodine for 30 min at pH 3.5 and 40 °C (Joint FAO/WHO Expert Committee on 

Food Additives., 2007). Glucose, maltose, and a series of oligosaccharides from maltotriose to 

maltoheptaose were purchased from Sigma-Aldrich (St. Louis, MO).  Dextran standards were 

purchased from American Polymer Standards Corp. (Mentor, OH). Other chemicals were 

analytical grade.  

 OSA modification 

The OSA reaction was performed as previously described (Bai & Shi, 2011). Briefly, a 

starch slurry (250 g) of 40% solid content was adjusted to pH 7.5 by 3 (wt %) sodium hydroxide. 

OSA (3 or 15% based on the weight of starch) was added to the starch suspension and the 

reaction was maintained at pH 7.5 by 3 (wt %) sodium hydroxide. After the pH remained 

stabilize for 30 min, the reaction was stopped by adjusting to pH 6 by adding 1 M hydrochloric 
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acid. OS starch was recovered by filtration, washed with methanol (300 mL), and the product 

dried in an oven at 45 °C overnight. The DS of OS starches was determined by NMR as 

previously described (Bai & Shi, 2011). 

 Amyloglucosidase hydrolysis  

Waxy maize starch or OS starches (0.1 g) was dispersed in 5 mL acetate buffer (0.05M, 

pH 4.5) and the slurry heated with agitation in a boiling water bath at 100 °C for 1 h. After 

cooling to 55 °C, amyloglucosidase (1% based on the weight of starch or 5 units of activity) was 

added, and the digest incubated at 55 °C for 24 h. Another 1% (based on the weight of starch) 

amyloglucosidase was added to the first starch digest and the mixture incubated another 24 h. 

The resulting solution was diluted and its glucose content was determined by high-performance 

anion exchange chromatography (HPAEC). The percentage amyloglucosidase hydrolysis was 

calculated as: 

 

 ββββ-amylase hydrolysis 

Waxy maize starch or OS starch (0.5 g) was dispersed in 20 mL acetate buffer (0.01M, 

pH 5.5) and the mixture heated in a boiling water bath at 100 °C for 1 h. After cooling to 55 °C, 

β-amylase (2% wt% based on the weight of starch) was added, and the digest was incubated at 

55 °C for 24 h followed by heating in a boiling water bath for 30 min which denatured the 

enzymes. Starch hydrolysates were diluted, and the solution assayed by HPAEC and size-

exclusion chromatography with multi-angle light scattering (SEC-MALS). The amount of 

maltose liberated from a starch was used to calculate its β-Limit values were calculated as 

follows: 

 

 Isoamylase hydrolysis and successive β-amylolysis 

Waxy maize starch or OS starch (0.5 g) was dispersed in 25 mL acetate buffer (0.05M, 

pH 3.5) and heated in a boiling water bath at 100 °C for 1 h. After cooling to 50 °C, isoamylase 

(1% wt%) was added and incubated at 50 °C for 24 h. A 15 mL portion of the reaction mixture 

was freeze dried and the debranched starch was assayed for GPC and for reducing sugar 
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(dextrose equivalents), and for chain-length distribution by GPC and HPAEC. The remainder of 

the isoamylase hydrolysate (10 mL) was successively hydrolyzed by β-amylase as follows. The 

starch solution after debranching was cooled to 40 °C and adjusted to pH 4.8 by adding 0.05 M 

sodium acetate. β-amylase (2 mL) was added, and the starch solution incubated at 40 °C for 24 h. 

The solution was freeze-dried and the amount of maltose liberated by β-amylase was determined 

by HPAEC. The percentage β-amylase hydrolysis (β-limit) was calculated as stated above. 

 Gel permeation chromatography (GPC) 

GPC analysis was performed as previously described (Cai, Shi, Rong, & Hsiao, 2010). 

Starch hydrolysates (4 to 16 mg) were dissolved in DMSO (4 mL) by stirring at room 

temperature for 12 h, and solutions were injected after filtering through a 2 µm filter (Millex-AP, 

Millipore, Billerica, MA). GPC results were analyzed using CirrusTM GPC Software Version 3.0 

(Agilent Technologies, Santa Clara, CA). Molecular weight was relative to the dextran standards 

 Size exclusion chromatography with multi-angle light scattering (SEC-MALS) 

The SEC-MALS system consisted of a chromatograph (1200 HPLC, Agilent, Palo Alto, 

CA.), a multi-angle light scattering (MALS) detector (DAWN® HELEOS® II, Wyatt 

Technology,Santa Barbara, CA), a Shodex OHpak SB-806M HQ column in series with a Shodex 

OHpak SB-805 HQ column (Showa Denko America, New York, NY.) and a Shodex OHpak SB-

G guard column. A refractive index detector was used to determine mass flow rate 

(dn/dc=0.147). The MALS detector was calibrated with toluene and normalized with bovine 

serum albumin (BSA). SEC-MALS experiments were performed at a column temperature of 55 

°C with 0.1 M NaNO3 as eluent and a flow rate of 0.5 mL/min. Starch solution (10 mg/mL) was 

filtered through a 1 µm filter before injecting. The injection volume was 100 µL. Data was 

analyzed using Astra 6 software.  

 High performance anion-exchange chromatography (HPAEC) 

HPAEC was done as described by Cai and Shi (2010) on a Dionex ICS-3000 

chromatograph (Dionex Corp., Sunnyvale, CA) equipped with a pulsed amperometric detector, a 

guard column, a CarboPacTM PA1 analytical column, and an AS-DV autosampler. Eluent A was 

150 mM NaOH, and eluent B was 150 mM NaOH containing 500 mM sodium acetate. The 

gradient program for debranched starch was: 85% of eluent A at 0 min, 30% at 20 min, 25% at 



52 

 

30 min, 0% at 35 min, and 85% at 41 min. The gradient program for hydrolysates from 

amyloglucosidase and β-amylase was: 85% of eluent A at 0 min, 45% at 15 min, 40% at 20 min, 

0% at 21 min, and 85% at 26 min. The separations were carried out at 25 °C with a flow rate of 1 

mL/min. Peak assignments were done with reference to standard samples of glucose, maltose, 

and a series of malti oligosaccharides of dp 3-6. 

 Reducing sugar analysis 

Dextrose equivalent (DE) of debranched starches was determined by Nelson-Somogyi 

reagent (Somogyi, 1952). DP was calculated as 100/DE. The mole percentage of resistant 

branches was calculated as: 

 

 Statistical analysis 

Each sample was measured in triplicates and means and standard deviations were 

reported. Means were compared with Student’s t test and least significant differences were 

computed at p < 0.05. 

 Results and discussion 

 Amyloglucosidase hydrolysis 

Native starch was 96.2% converted to glucose by amyloglucosidase (Table 4.1), which 

agreed with the results of other workers (Hood & Mercier, 1978; Richardson, Nilsson, Cohen, 

Momcilovic, Brinkmalm, & Gorton, 2003). In contrast, OS starch of DS 0.018 (OS-S-L) and 

0.092 (OS-S-H) gave 84.7 and 58.0% hydrolysis, respectively (Table 4.1). Amyloglucosidase is 

an exo-acting enzyme that releases glucose by hydrolyzing α-1,4 and α-1,6 linkages from the 

non-reducing end of a starch chain. If the enzyme encounters an OS-substituted glucose units, 

action of amyloglucosidase would stop at the modifying group because the substitution groups 

interfere with the binding between enzyme and starch substrates (Hood & Mercier, 1978; 

Richardson, Nilsson, Cohen, Momcilovic, Brinkmalm, & Gorton, 2003), then the glucose units 

released by amyloglucosidase would contain no OS substituents, whereas the residual dextrins 

would contain all the OS groups. Based on the amount of glucose released by glucoamylase 
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(Table 4.1), and invoking the cluster model of amylopectin, the OS-S-L product contained 

almost no OS groups near the non-reducing ends as opposed to the OS-S-H products which did.   

 β-amylase hydrolysis  

Native starch, OS-S-L, and OS-S-H were hydrolyzed exhaustively by β-amylase, and the 

limiting β-amylolysis value was 55.9, 52.8 and 34.4%, respectively (Table 4.1). The β-limit 

value for the native starch is in agreement with that previously reported (Bertoft, 1989; Manners, 

1989). For OS-S-L and OS-S-H, the β-limit value was reduced 3.1 and 21.5% from that of the 

native starch, respectively, indicating the action of β-amylase was inhibited by OS substituents 

on starch chains. Inhibition on β-amylolysis has been reported for many chemically modified 

starches (Hood & Mercier, 1978; Kavitha & BeMiller, 1998; Richardson, Nilsson, Cohen, 

Momcilovic, Brinkmalm, & Gorton, 2003; Zhu & Bertoft, 1997). β-amylase is an exo-acting 

hydrolase that removes unsubstituted maltoglucosyl units from the non-reducing ends of 

amylopectin and leaving the inner part intact (Robyt, 2009). In agreement with our results on 

glucoamylase hydrolysis, β-amylolysis of the OS-S-L product gave a β-limit value that was close 

(-3.2%) to that of the native starch, whereas that of OS-S-H product was considerably reduced (-

22.2%), which was reflected by its much lower β-limit value. 

The β-limit dextrin generated from waxy maize starch had a weight-average molecular 

weight (Mw) of 1.08 x 106 (Table 4.1). The Mw of the β-limit dextrin from OS-S-L was 1.26 x 

106, which was only slightly higher than that of the native starch (Table 4.1), indicating that OS 

substitutions were probably close to the outer branching points of the starch molecules in OS-S-

L. In contrast, the β-limit dextrin of OS-S-H had an Mw of 7.04 x 106 which was much larger 

than that of native starch and OS-S-L (Table 4.1 and Figure 4.2). These results again indicate the 

OS groups in the OS-S-H product must be located near the non-reducing ends on the outer chains 

of its starch molecules.  

 Isoamylase hydrolysis and successive β-amylolysis  

 Isoamylase hydrolysis 

Isoamylase is also known as a debranching enzyme for starch because it hydrolyzes the 

α-1,6 linkages located in the interior of amylopectin molecules. The product of isoamylase 

debranching of unmodified starch is a mixture of malto oligosaccharides varying in dp, mostly 
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below 80 anhydroglucose units (Robyt, 2009). The average DP of the debranched waxy maize 

starch, and the OS-S-L and OS-S-H products, were 22, 26, and 31, respectively (Table 4.1). The 

greater DP values of debranched OS-modified starches, as indicated by their low dextrose 

equivalent (DE) value, verifies that the action of isoamylase was inhibited by OS groups. 

Considering that native starch was 100% debranched by isoamylase, branches resistant to 

isoamylase were calculated to be 13.3% for OS-S-L and 26.7% for OS-S-H (Table 4.1).  

Inhibition of isoamylase action by OS groups also was reflected in the molecular-size 

distribution of the debranched native starch and OS starches as determined by GPC (Figure 4.3). 

Debranched waxy maize starch gave a bimodal distribution as observed by previous work 

(Bertoft, 2004; Biliaderis, 1982; Cai & Shi, 2010). Approximately 22 wt% of molecules were 

eluted from 26 to 29 min (Fraction 1), which are thought to be long B2 and B3 chains in the 

cluster model. The remaining molecules of ~78% were eluted from 29 to 34 min (Fraction 2) and 

those are believed to be short A and B1 chains. The high-molecular size fraction (Fraction 1) 

increased to ca. 32 and 68%, respectively, in the debranched OS-S-L and OS-S-H products 

(Figure 4.3). Moreover, the average DP of Fraction 1 was much larger for debranched OS-S-H 

compared to OS-S-L, which reinforces the postulate that more OS was substituted near the 

branching points in OS-S-H.  

Unit-chain length profiles of debranched starches were determined by HPAEC. 

Debranched starches showed a range of DP’s between 6 to 64 (Figure 4.4-A). The distribution 

pattern found for the waxy maize starch was similar to previous reports (Bertoft, 2004; Cai & Shi, 

2010), where short chains of DP 6 to DP 32 were assigned to A and B1 chains. The distribution 

pattern also showed long chains of DP 33 to 64, and these chains were assigned to B2 and B3 

chains in the cluster model. It has been suggested that the peak area from amperometric detection 

is not directly proportional to the molar concentrations of the maltooligosaccharides of different 

length (Ammeraal, Delgado, Tenbarge, & Friedman, 1991; Koizumi, Fukuda, & Hizukuri, 1991; 

Shi & Seib, 1992). However, when the total amount of injected dextrins is the same for each 

sample, as was the case, then a comparison can be made for each DP oligomer between samples. 

OS starches had reduced areas compare to the native starch over the entire unit-chain length 

profile (Figure 4.4-A). Peak area differences were calculated by subtracting the area of each unit 

chain length of the native starch from the corresponding area of the OS starches. The difference 

represents the relative number of chains that were not released by debranching. The more 
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negative the value, the less of the chain with that length was released. OS-S-H had more negative 

values in the range of DP 6 to 32 than OS-S-L (Figure 4.4-B). These results suggest that OS 

substitution occurred predominately on the A and B1 chains. The area differences for long chains 

(B2 and B3) was probably due to those long chains that carried A and B1 chains containing OS 

substituents.   

 ββββ-amylase hydrolysis 

To further elucidate the structure of the OS starches, we used β-amylase to hydrolyze 

debranched native and OS starches. β-amylase was able to completely convert debranched waxy 

maize starch to 100% maltose equivalents (Table 4.1). HPAEC of the Iβ hydrolysate showed 

predominantly maltose with a low level of glucose, confirming that the molecules of debranched 

waxy maize starch were linear. For debranched OS-S-L, ca. 91% was converted to the theoretical 

yield of maltose by β-amylase (Table 4.1). These results further suggest that OS groups in OS-S-

L were located mostly near the branching points of amylopectin. In contrast, the β-amylolysis of 

the debranched OS-S-H gave only ca. 70% maltose equivalents (Table 4.1), and that Iβ 

hydrolysate contained a large molecular fraction with an average DP of ca. 89, compared to 10 

for OS-S-L (Figure 4.3). These results suggest the presence of OS groups near the non-reducing 

end of the starch chains in OS-S-H.  

 A model of substitution distribution in OSA-modified starches 

Chemical substitution of starch granules has been suggested to occur preferentially in the 

amorphous regions of the partially crystalline granules, which is the location of the branching 

points of amylopectin (Steeneken & Smith, 1991; Steeneken & Woortman, 1994; van der Burgt, 

Bergsma, Bleeker, Mijland, Kamerling, & Vliegenthart, 2000a, 2000b; van der Burgt, Bergsma, 

Bleeker, Mijland, van der Kerk-van Hoof, Kamerling, et al., 1998; van der Burgt, et al., 1999; 

van der Burgt, Bergsma, Bleeker, Mijland, van der Kerk-van Hoof, Kamerling, et al., 2000b). 

Substitution has been reported to occur near the branching points as well as at the non-reducing 

ends for acetylated distarch phosphate made from smooth pea starch and for hydroxypropylated 

distarch phosphate made from waxy maize starch (Biliaderis, 1982). The non-reducing ends of 

amylopectin molecules may occur in tightly packed crystalline lamellae in granules, which limits 

their accessibility to chemical reagents. In agreement with the literature, the substitution groups 

in OS starches of low DS were found close to the branch points of starch molecules; however, at 
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a DS of 0.092, OS starch contained modifying groups near their non-reducing ends (model in 

Figure 4.5). In the initial stage of the reaction of OSA with starch granules, the OS groups are 

substituted near the branching points of the starch. Those initial substituents may cause some 

limited swelling of granules in the slightly alkaline (pH 8.5) reaction medium, which exposes the 

non-reducing ends of starch chains to reaction with OSA.  

 Conclusions 

 
The distribution of OS groups along starch chains in OS starches was studied by enzyme 

hydrolysis followed by structural analysis of reaction products. At a low DS of 0.018, most OS 

groups were located near the branching points of the amylopectin. As DS increased to 0.092, 

modifying groups were located near the branching points and on non-reducing ends.  
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 Tables and figures 

Table 4.1 Structural characteristics of waxy maize starch and octenylsuccinated starches 

with degrees of substitution of 0.018 (OS-S-L) and 0.092 (OS-S-H). 

Starch 

A β I Iβ 

% 
hydrolysis 

β-limit 
value 
(%) 

β-limit 
dextrin 

Mw (x106) 
DE DP 

Resistant 
branches 

(%) 

% 
hydrolysis 

Native 
starch 96.2 ± 1.3c 55.9 1.08 ± 0.07a 4.5 ± 0.0c 22 ± 0a -- 100.0 ± 0.3c 

OS-S-L 84.7 ± 2.3b 52.8 1.26 ± 0.02b 3.9 ± 0.1b 26 ± 1b 13.3 ± 0.3a 91.1 ± 0.1b 

OS-S-H 58.0 ± 1.8a 34.4 7.04 ± 0.10c 3.3 ± 0.1a 31 ± 1c 26.7 ± 0.3b 70.6 ± 1.5a 

 

A = amyloglucosidase hydrolysates 

β = β-amylase hydrolysates 

I = isoamylase hydrolysates  

Iβ = isoamylase and successive β-amylase hydrolysates 

DE = dextrose equivalent  

DP = number average degree of polymerization  

Numbers in the same column followed by a letter in common are not significantly different at p 
< 0.05. 
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Figure 4.1 Enzymatic and analytical methods used to study the structure of 

octenylsuccinated starch. 

A = amyloglucosidase hydrolysates 

β = β-amylase hydrolysates 

I = isoamylase hydrolysates  

Iβ = isoamylase and successive β-amylolysis hydrolysates 

HPAEC = high-performance anion-exchange chromatography 

GPC = gel permeation chromatography 

SEC-MALS = size exclusion chromatography with multi-angle light scattering 
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Figure 4.2 Molecular weight distributions (bottom) and molar masses (top) of β-limit 

dextrins of native waxy maize starch and octenylsuccinated starches with degrees of 

substitution of 0.018 (OS-S-L) and 0.092 (OS-S-H), all determined by SEC-MALS. 
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Treatment Sample 
Fraction 1 Fraction 2 

DP % Area DP % Area 
 Native 68 21.7 12 78.3 
I OS-S-L 105 32.1 12 67.9 
 OS-S-H 500 67.9 105 32.1 
 Native -- -- 2 100.0 

Iβ OS-S-L 10 15.9 2 84.1 
 OS-S-H 89 36.9 2 63.1 

 

Figure 4.3 Molecular size distributions and degrees of polymerization (DP) of debranched 

starch before (I) (—) and after successive β-amylolysis (Iβ) (- - - - -) A = native waxy maize 

starch, B and C = octenylsuccinate starches with degrees of substitution, respectively, of 

0.018 (OS-S-L) or 0.092 (OS-S-H) (C). DP = number average degree of polymerization. 
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Figure 4.4 Chain length distributions (A) and peak area differences (B) of debranched 

waxy maize starch and octenylsuccinated starches with degrees of substitution (DS) of 

0.018 (OS-S-L) and 0.092 (OS-S-H). Peak area differences were the area of each peak from 

an OS-substituted starch minus that of waxy maize starch. 
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Figure 4.5 Proposed model structures for octenylsuccinated starches with degrees of 

substitution of 0.018 (left) and 0.092 (right). 
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Chapter 5 - Preparation and structure of α-amylase-degraded 

octenylsuccinate waxy maize starches with different substitution 

patterns 

 Abstract 

The reaction of starch and octenylsuccinic anhydride (OSA) produces lipophilic starch 

that has the ability to stabilize oil-in-water emulsions. The functional properties of 

octenylsuccinate (OS) starch depend on its degree of substitution (DS), distribution of OS 

groups, and molecular structure. The objectives of this study were to prepare α-amylase-

degraded OS starches with different OS distributions through two approaches and characterize 

the OS substitution distribution by enzyme hydrolysis followed by chromatography analysis. In 

the first approach, granular waxy maize starch was reacted with OSA and then cooked and 

hydrolyzed by α-amylase to produce maltodextrins (gOSMs) with ca. 7.5 dextrose equivalent 

(DE). In the second approach, granular starch was cooked and hydrolyzed by α-amylase to make 

a maltodextrin of DE 7.5 and then reacted with OSA for OS malrodextrins (sOSMs), which 

yielded OS maltodextrins with DS of ca. 0.02 and 0.09. Isoamylase action was significantly 

inhibited for gOSMs and sOSMs, indicating substitutions near the branching points of starch 

chains. Successive β-amylase conversion rates of gOSMs were significantly higher than sOSMs, 

suggesting that the OS substitution in sOSMs were more toward the non-reducing end than in 

gOSMs. Similar results were observed by amyloglucosidase hydrolysis. In addition, sOSMs were 

less converted by α-amylase than gOSMs. OS starches with different substitution distributions 

were prepared with two approaches. One product (gOSMs) had localized OS substitution near 

the branching points or non-reducing ends; the other product (sOSMs) had OS groups distributed 

randomly throughout the starch chains, and OS substitutions were found close to the branching 

points as well as the non-reducing ends.    

Keywords: octenylsuccinic anhydride, substitution distribution, starch, maltodextrin 
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 Introduction 

Octenylsuccinic anhydride-modified starch (OS starch) is a chemically modified starch 

with broad applications in the food industry as an emulsion stabilizer (Trubiano, 1986). OS 

starches are traditionally obtained from granular starch in an aqueous slurry reaction system 

(Trubiano, 1986; Wurzburg, 2006). After modification, OS starch may be further cooked and 

hydrolyzed by enzymes for emulsification applications. In our previous study, we prepared OS 

esters from granular starch and soluble maltodextrin (Bai & Shi, 2011). The soluble OS 

maltodextrin had a different molecular structure from OS granular starch. OS starch prepared 

from maltodextrin exhibited substitution on O-2, O-3, and O-6 as well as reducing ends, whereas 

granular OS starch showed OS substitution on O-2 and O-3 positions for the granular OS starch. 

The substitution distribution for the two OS starches has not been investigated, although we 

believe it would be different. When OSA is reacted with granular starch, starch remains in its 

compact granular form and substitutions are localized in the amorphous region of the starch 

granule (Bai & Shi, 2011; He, Song, Ruan & Chen, 2006; Shogren, Viswanathan, Felker & 

Gross, 2000; Song, He, Ruan & Chen, 2006). However, in a dispersed system, all the starch 

molecules are available for reaction and result in OS starch with a different substitution 

distribution.  

The objectives of this study were to prepare and characterize α-amylase-degraded OS 

starches with different OS distributions. Two approaches were designed. In the first approach, 

granular waxy maize starch was reacted with OSA, then cooked and hydrolyzed by α-amylase to 

produce maltodextrins (gOSMs) (Figure 5.1, approach 1). In the second approach, granular 

starch was cooked and hydrolyzed by α-amylase to make a maltodextrin, and the resulting 

soluble maltodextrin was reacted with OSA for OS maltodextrins (sOSMs) (Figure 5.1, approach 

2). In another approach (Figure 5.1, approach 3), granular starch may be cooked and reacted with 

OSA followed by α-amylolysis. This technique was proposed to make cationic starch 

(Richardson, Cohen & Gorton, 2001); however, it requires very low solids for waxy maize starch 

due to high viscosity after cooking, so it was not used in this study. The substitution distribution 

of OS starches was investigated by enzyme hydrolysis of followed by chromatography analysis. 

Enzymes including α-amylase, β-amylase, isoamylase, and amyloglucosidase were used 

separately or combined to hydrolyze the OS starches. High-performance anion-exchange 

chromatography (HPAEC) and gel permeation chromatography (GPC) were used to analyze the 
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enzyme hydrolysates. Information on the substitution distribution of OS groups is needed to 

correlate the functional properties, such as emulsification performance, of the OS starches. 

 Materials and Methods 

 Materials 

Waxy maize starch was obtained from National Starch LLC. (Bridgewater, NJ). Bacillus 

sp. α-amylase (A6380-100MG, type II-A), α-amylase from porcine pancreas (A3176-5MU, type 

VI-B), and β-amylase from barley (A-7130-10KU, type II-B) were purchased from Sigma-

Aldrich (St. Louis, MO), and the enzyme activity was 839, 23, and 55.7 units/mg solid, 

respectively. The enzyme activity unit for α-amylase as suggested by Sigma-Aldrich is defined 

as one unit liberating 1.0 mg of maltose from starch in 3 min at pH 6.9 at 20 °C. For β-amylase, 

enzyme activity is defined as one unit liberating 1.0 mg of maltose from starch in 3 min at 

pH 4.8 at 20 °C. α-amylase (Termamyl 120L) was obtained from Novozymes (Franklinton, NC); 

its enzyme activity was 120KNU-T/g. One KNU is defined as the amount of enzyme that 

dextrinizes 5.26g of starch (Merck Amylum soluble) per hour under standard conditions (37.0 

°C, 0.0003MCa.2+, and pH5.6). Glucose, maltose, and a series of oligosaccharides from 

maltotriose to maltoheptaose were purchased from Sigma–Aldrich (St. Louis, MO). Other 

chemicals were analytical grade.  

 Preparation of α-amylase degraded OS starch  

 Approach 1 

Preparation of α-amylase-degraded OS starch from approach 1 is shown in Figure 5.1. 

Granular waxy maize starch was first reacted with OSA in an aqueous slurry system as 

previously described . Briefly, starch suspension (250 mL) of 40% solid content was adjusted to 

pH 7.5 by 3% (wt%) NaOH. OSA (3% or 15% based on the weight of starch) was added to the 

starch slurry while pH was maintained at 7.5 by 3% (wt%) NaOH during the reaction. After pH 

stabilized for 30 min, the reaction was terminated by adjusting pH to 6 with 1 N HCl. OS starch 

was recovered by filtration, washed by methanol (400 mL), and dried in an oven at 45 °C. 

Degree of substitution (DS) was determined by NMR spectroscopy. 



70 

 

The OS starches were converted to OS maltodextrins by α-amylase hydrolysis as 

described by Lumdubwong and Seib (2001) with some modifications. α-amylase (Termamyl 

120L) (0.1% based on the weight of starch) was added to a starch slurry of 13% solids with 200 

ppm Ca2+. pH of the slurry was adjusted to 6.0–6.4 by 1 N NaOH. Starch hydrolysis was carried 

out at 94 °C with different reaction time depending on the DS of OS starches. α-amylolysis was 

stopped by adjusting pH to 3.0 by 1.0 N HCl. Starch slurry was held at 94 °C for another 10 min 

and cooled in an ice-water bath. After the temperature dropped below 60 °C, pH was adjusted to 

6.0 by 1 N NaOH. The maltodextrin obtained was filtered and recovered by freeze-drying. 

 Approach 2 

Granular waxy maize starch was first hydrolyzed by α-amylase as described in Approach 

1. Different reaction time was used to achieve the same dextrose equivalent (DE) of the OS 

maltodextrins obtained from Approach 1. The freeze dried maltodextrin was then dispersed in 

water at 40% solid concentration and reacted with 1.89 or 12.20% OSA (wt% based on the 

weight of maltodextrin) to achieve the same DS of the OS maltodextrins obtained from 

Approach 1.  The amount of OSA added in the reaction was calculated based on the reaction 

efficiency of OSA reaction as previously reported . The OSA modified maltodextrins were 

recovered by freeze drying, washed by methanol to remove the unreacted OSA and dried in a 

vacuum drier. DS was determined by NMR spectroscopy. 

 Characterization of OS starches  

 Determination of dextrose equivalent (DE) 

DE of α-amylase hydrolyzed products was determined by the Nelson-Somogyi method 

(Somogyi, 1952). 

 NMR spectroscopy  

OS starches were exchanged with D2O twice, freeze-dried, and dissolved in D2O (10% 

wt%) for analysis. NMR spectroscopy experiments were performed on a Varian (now Agilent; 

Santa Clara, CA) 500 MHz NMR System spectrometer. The NMR spectrometer is equipped with 

a cryogenic carbon enhanced 5 mm triple-resonance inverse detection pulse field gradient probe 

operating at 499.839 and 125.697 MHz for 1H and 13C, respectively. Temperature was set at 25 

°C. The 1H spectra were collected in 32 individual scans with a sweep width of 16 ppm and a 
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delay time of 1 s. The 13C spectra maltodextrin and OS maltodextrin were collected in 2000 

scans and a delay time of 1 s. The procedure for determining DS was performed as previously 

reported . 

 Gel Permeation Chromatography (GPC) 

Maltodextrins (4 mg) were dissolved in DMSO (4 mL), stirred at room temperature for 

12 h, and filtered through a 2 µm filter. GPC analysis was performed as previously described 

(Cai, Shi, Rong & Hsiao, 2010).  

 High performance anion-exchange chromatography (HPAEC) 

HPAEC (Dionex ICS-3000, Dionex Corp., Sunnyvale, CA) was equipped with a pulsed 

amperometric detector, a guard column, a CarboPac PA1 analytical column, and an AS-DV 

autosampler. Eluent A was 150 mM NaOH, and eluent B was 150 mM NaOH containing 500 

mM sodium acetate. The gradient program for debranched starch was: 85% of eluent A at 0 min, 

30% at 20 min, 25% at 30 min, 0% at 35 min, and 85% at 41 min as previously described (Cai & 

Shi, 2010). The gradient program for hydrolysates from amyloglucosidase and β-amylase was: 

85% of eluent A at 0 min, 45% at 15 min, 40% at 20 min, 0% at 21 min, and 85% at 26 min. The 

separations were carried out as previously described (Cai & Shi, 2010). The column was 

qualitatively calibrated for linear dextrins with glucose, maltose, and a series of oligosaccharides 

from maltotriose to maltoheptaose. 

 Amyloglucosidase hydrolysis  

Starch (0.1 g) was dissolved in 5 mL acetate buffer (0.05M, pH 4.5). Amyloglucosidase 

(1% based on the weight of starch) was added and incubated at 55 °C for 24 h. Another 1% 

amyloglucosidase was added to the starch solution and incubate for another 24 h. The solution 

was diluted and analyzed by HPAEC and GPC. 

 β-amylase hydrolysis  

Maltodextrin or OS maltodextrin (0.1 g) was dissolved in 10 mL acetate buffer (0.05M, 

pH 4.8). β-amylase (1% wt% based on the weight of starch) was added. Starch solutions were 

incubated at 40 °C for 1.5 h followed by heating in a boiling water bath for 10 min to denature 

the enzymes. The hydrolysates were analyzed by HPAEC and GPC. β-limit values were 
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determined as the ratio of maltose generated in the β-amylase hydrolysis and the total content of 

maltose in the starch before hydrolysis.  

 Preparation of α-limit dextrin  

α-limit dextrins of OS maltodextrin were prepared as described in Xu & Seib (1997) with 

a few modifications. OS maltodextrins (1.0 g), sodium acetate trihydrate (0.15 g), calcium 

chloride (5 mg), and Bacillus α-amylase (5 mg) were weighed into a 50 mL glass centrifuge 

tube. Water (15 mL) was added to the tube, and the mixture was shaken until the maltodextrin 

dissolved. The tubes were placed in a water bath at 37 ºC and shaken at 100 RPM. The 

temperature of the bath was raised to 80 ºC. After 2 h at 80 °C, the tubes were cooled to 45 ºC. 

Porcine pancreatic α-amylase (5 mg protein) was added, and the mixture was incubated at 45 ºC 

for 18 h. The enzyme was denatured by heating in a boiling water bath for 15 min. After cooling 

to room temperature, the aliquot was filtered through a filter paper (0.45 µm) and freeze-dried. 

 Debranching and successive β-amylolysis  

Starch (0.5 g) was dispersed in 25 ml acetate buffer (0.05M, pH 3.5) and heated in a 

boiling water bath at 100 °C for 1 h. After the starch solution cooled to 50 °C, isoamylase (1% 

based on the weight of starch) was added, and the solution was incubated at 50 °C for 24 h. 

Samples of 10 mL were collected for β-amylase hydrolysis. The rest of the samples were diluted 

and analyzed by HPAEC. 

Starch solution collected after debranching was cooled to 40 °C, and pH was brought up 

to 4.8 by 0.05 M sodium acetate. β-amylase (1% based on the weight of starch) was added, and 

the starch solution was incubated at 40 °C for 24 h. After complete β-amylase hydrolysis, the 

solution was freeze-dried and analyzed by HPAEC. 

 Results 

 Preparation of α-amylase-degraded OS waxy maize starches with different substitution 

patterns 

The action of α-amylase on starch was altered after OS substitution. When α-amylolysis 

was performed under the same conditions (0.1% α-amylase, 1.5 h and 94 °C), the products from 

the native starch and OS starches with DS 0.018 and 0.092 had DE of 15.9, 10.7, and 5.0, 
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respectively (Table 5.1). To obtain maltodextrins with similar DE, α-amylolysis time was 

adjusted to 1.0, 1.25, and 3.0 h for native starch and OS starches of DS 0.018 and 0.092, 

respectively (Table 5.1). The resulted maltodextrin (M) and OS maltodextrins of DS 0.018 

(gOSM-Low) and 0.092 (gOSM-High) had a DE of ca. 7.5 (Table 5.2) with the same molecular 

size range of 4.1E+02 to 7.2E+05 g/mol (Figure 5.2). In approach 2, OSA was reacted with the 

maltodextrin (DE 7.5) prepared from α-amylolysis of native waxy maize starch. OS 

maltodextrins of DS 0.018 (sOSM-Low) and 0.094 (sOSM-High) were obtained. 

 Structure of α-amylase degraded OS waxy maize starches with different substitution 

patterns  

 Substitution distribution on anhydroglucose units  

13C NMR spectrum of OS maltodextrin (DS 0.094) from approach 2 (sOSM-High) is 

shown in Figure 5.3. Peak broadening was observed for resonances at 102.6 (C-1), 98.3 (C-1 α-

reducing), 79.5 (C-4), 76.0 (C-3), 73.9 (C-2), and 63.5 ppm (C-6), indicating that substitutions 

occurred at the O-2, O-3, and O-6 as well as the reducing ends as previously suggested . DE of 

sOSM-Low and sOSM-High were 7.1 and 6.5, respectively (Table 5.2). Because the molecular 

size of maltodextrin did not change after OSA modification as determined by GPC (data not 

shown), the decrease in DE reflected that OS substitution occurred at the reducing end. It was 

calculated that 7.7 and 12.2% of the reducing ends were substituted by OSA for sOSM-Low and 

sOSM-High, respectively (Table 5.1). 

The OS substitution pattern on the anhydroglucose units (AGU) of OSA-modified 

maltodextrin prepared from normal maize starch was reported in our previous study . In this 

study, maltodextrin was prepared from α-amylolysis of waxy maize starch. The NMR results 

suggest that neither amylose nor the process of α-amylolysis affected the substitution location on 

AGU.  

 Amyloglucosidase hydrolysis 

Maltodextrin was 99.4% converted to glucose by amyloglucosidase (Table 5.2), which 

was similar to conversions reported for native granular starch (Hood & Mercier, 1978; 

Richardson, Nilsson, Cohen, Momcilovic, Brinkmalm & Gorton, 2003). The conversion ratio for 

OS maltodextrin was significantly lower than that of maltodextrin (Table 5.2), indicating that 
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starch chains carried OS substitution groups and inhibited the action of amyloglucosidase. For 

OS maltodextrins prepared from approach 1, gOSM-Low and gOSM-High were 93.3 and 83.5% 

converted by amyloglucosidase, respectively. In comparison, the conversion ratio for sOSM-

Low and sOSM-High was 90.8 and 77.2%, respectively (Table 5.2). Because amyloglucosidase 

is an exo-enzyme that hydrolyzes α-1,4 and α-1,6 linkages from the starch non-reducing ends, 

substitution groups in OS maltodextrins from approach 2 were closer to the starch non-reducing 

ends than the maltodextrins from approach 1.  

 α-amylase hydrolysis  

GPC elution profiles of α-amylase hydrolysates of maltodextrin and OS-maltodextrins 

are shown in Figure 5.4. Maltodextrin after α-amylolysis had a peak at molecular weight of 

4.30E+02 g/mol (Fraction 1) and comprised about 72% of the total starch molecules, primarily 

glucose, maltose, maltotriose, and maltotetraose. The rest of the molecules (Fraction 2) eluted 

from 6.63E+02 to 1.06E+04 g/mol were high molecular weight fractions with an average degree 

of polymerization (DP) of 12 (Fraction 1). The products from α-amylolysis were in agreement 

with those suggested in the literature . OS maltodextrins from approach 1 (gOSMs) had slightly 

different elution profiles from maltodextrin. The percentage of molecules eluted in Fraction 2 

was 29.0 and 31.2%, which was slightly higher than that from maltodextrin, for gOSM-Low and 

gOSM-High, respectively. The increase was probably due to the starch molecules containing OS 

substitution groups that were resistant to α-amylase hydrolysis . Similar results were found for 

OS maltodextrins from Approach 2 (sOSMs); however, sOSMs had a more predominant peak at 

4.09E+03 g/mol compared with gOSMs. The proportion of Fraction 2 increased to 32.9 and 

40.6% for sOSM-Low and sOSM-High, respectively, and their corresponding DP was 16 and 18 

(Figure 5.4). The results suggested that at the same DS, sOSM was more resistant to α-

amylolysis than gOSM. It has been suggested that a minimum sequence length of two 

unsubstituted glucose residues is required for amylolysis to occur for methylated starch . 

Although the minimum sequence length required for OS starch might differ from the 

requirement for methylated starch, amylolysis clearly occurred at glucosidic bonds that were a 

few anhydroglucose units away from the substitution groups. Therefore, it is possible that the OS 

substitution groups in gOSMs were closer to each other than sOSMs, and the OS groups in 

sOSMs were distributed throughout the starch chains.   
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 β-amylase hydrolysis  

Maltodextrin and OS maltodextrin were hydrolyzed exhaustively by β-amylase; the β-

limit values are listed in Table 5.2. Compared with maltodextrin, β-limit values for OS 

maltodextrins were significantly lower and decreased with the increase in DS. Results suggest 

that substitution groups in OS maltodextrin occurred at the outer starch chains and blocked the 

action of β-amylase. For OS maltodextrins prepared from approach 1, gOSM-Low and gOSM-

High had β-limit values of 39.3 and 37.5%, respectively. In comparison, β-limit values for 

sOSM-Low and sOSM-High were 36.8 and 34.9, respectively. OS maltodextrins from approach 

2 showed lower β-limit values than those from approach 1 at both low and high DS. β-amylase is 

an exo-enzyme that hydrolyzes α-1,4 linkages from the non-reducing end, and the action of β-

amylase was blocked by starch branching points (Robyt, 2009) as well as chemical substitution 

groups (Hood & Mercier, 1978; Kavitha & BeMiller, 1998; Richardson, Nilsson, Cohen, 

Momcilovic, Brinkmalm, & Gorton, 2003; Zhu & Bertoft, 1997). Therefore, in agreement with 

the results from amyloglucosidase hydrolysis, OS maltodextrins from approach 2 had more 

substituents located closer to the non-reducing ends than the OS maltodextrins from approach 1.  

 Isoamylase debranching and successive β-amylolysis 

The elution profiles of isoamylase debranched maltodextrin and OS maltodextrins as well 

as their β-limit dextrins from GPC are shown in Figure 5.6. Debranched maltodextrin had an 

elution profile from 28 to 36 min (Figure 5.5-A). It had a DE of 15.8, which was more than 

doubled from maltodextrin before debranching. The average DP of debranched maltodextrin was 

6.3 (Table 5.2). Exhaustive β-amylolysis completely converted debranched maltodextrin to 

maltose (Table 5.2 and Figure 5.5-A), suggesting all linear-type molecules in the debranched 

maltodextrin.  

For OS maltodextrins from approach 1 (gOSMs), gOSM-Low after debranching eluted 

from 27 to 35 min indicating that it contained larger molecular size than debranched 

maltodextrin. DE of debranched gOSM-Low was 14.2, which was 81.8% increase from 7.8 (DE 

before debranching) (Table 5.2). Compared with the 102.6% increase in maltodextrin (Table 

5.2), much fewer starch chains were released by isoamylase from gOSM-Low. These results 

suggest that the OS substitution groups probably were close to the branching points of starch 

molecules that inhibited the action of isoamylase. Debranched gOSM-Low was further treated by 

β-amylase and was ca. 87% converted to maltose (Table 5.2). The elusion profile of β-limit 
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dextrin of debranched gOSM-Low had a peak at 32 min, which was absent in that of 

maltodextrin (Figure 5.5-B). In our previous study (Chapter 4), OS substitution occurred 

primarily near the branching points of the granular OS starch at DS 0.018. Therefore, the peak 32 

min was most likely attributed to branching points containing OS substitution groups. 

Debranched gOSM-High eluted at 24 min (Figure 5.5-C), representing high molecular size 

fraction. DE of debranched gOSM-High was 7.6, which was 69.9% increase from DE before 

debranching (Table 5.2). Compared with the maltodextrin and gOSM-Low, fewer starch chains 

were released by isoamylase, suggesting that more OS substitution occurred near the branching 

points. β-amylase treated debranched gOSM-High eluted from 28 min, and only 71.4% of starch 

was converted to maltose. These results suggest that the β-limit dextrin of debranched gOSM-

High contained starch molecules with high molecular size because some OS substitution 

probably occurred close to the branching points and some OS groups were close to the non-

reducing ends. The results were consistent with our previous findings (Chapter 4).  

For OS maltodextrins from approach 2 (sOSMs), GPC profiles of sOSM-Low and 

sOSM-High are shown in Figure 5.5. Compared with the debranched maltodextrin, a high 

molecular size fraction was observed for debranched sOSM-Low, suggesting that OS 

substitution was close to the branch points. DE of debranched sOSM-Low was 14.6. Compared 

with the DE before debranching, an increase of 103.4% was observed (Table 5.2). This value 

was similar to that of maltodextrin and higher than gOSM-Low, suggesting that fewer OS groups 

were located close to the branching points in sOSM-Low than in gOSM-Low. Debranched 

sOSM-Low was 88.4 % converted to maltose, which was slightly lower than gOSM-Low (Table 

5.2). In addition, a high molecular size fraction at 28 min was observed for β-limit dextrin of 

debranched sOSM-Low. These results suggested that some OS groups in sOSM-Low were 

probably located close to the non-reducing ends of the starch chain. When DS in sOSM 

increased to 0.094, significant resistance to the debranching enzyme was observed. The elution 

profile of debranched sOSM-High showed that the sample contained a high molecular size 

fraction at 27 min (Figure 5.5-E). In addition, DE of debranched sOSM-High was 11.7, a 79% 

increase from before debranching. These results suggest that some OS substitution groups 

occurred close to the branching points of sOSM-High; however, compared with the OS 

maltodextrins from Approach 1, fewer OS groups were found close to the branching points. The 

β-limit value for debranched sOMS-High was 67.4, which was lower than that of gOSM-High 
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(Table 5.2) and suggests that more OS groups in sOSM-High occurred close to the non-reducing 

ends of the starch chains than in gOSM-High. Compared with the gOSM, OS substitution in 

sOSM appeared to be randomly distributed along the starch chains. 

 Discussion  

Some have suggested that chemical substitution occurred preferentially in the amorphous 

region of starch granules where the branching points are located (Steeneken & Smith, 1991; 

Steeneken & Woortman, 1994; van der Burgt, Bergsma, Bleeker, Mijland, Kamerling, & 

Vliegenthart, 2000a, b; van der Burgt et al., 1998, 1999, 2000b). The outer chains of amylopectin 

were tightly packed into crystalline lamellae and were inaccessible to the chemical reagents. In 

our previous study, OS substitution was suggested to occur predominantly at the amorphous 

region of the starch granules. OS starch of DS 0.018 had OS groups located close to the 

branching points, whereas the OS substitution in OS starch of DS 0.092 occurred near non-

reducing ends as well as the branching points. After the granular OS starches were converted by 

α-amylolysis, the location of the substitution groups should not change. The present study 

confirmed that OS maltodextrin from Approach 1 of DS 0.018 (gOSM-Low) had substitution 

groups located close to the branch points, whereas highly substituted OS maltodextrin of DS 

0.092 (gOSM-High) had substitution groups close to the branching points as well as the non-

reducing ends. In comparison, for OS maltodextrins from approach 2, OSA was reacted with 

maltodextrin, which is amorphous and completely soluble in water. All the starch molecules 

were available for reaction. As noted in the present study, OS substitution was not restricted in a 

certain part of the starch as in the granular OS starch. OS groups were randomly distributed 

along the starch chains. Even at low DS of 0.018, substituents were found close to the non-

reducing ends of OS maltodextrin.  

 Conclusions  

OS starches with different substitution distributions were prepared from two approaches. 

One product (gOSMs) had localized OS substitution near the branching points at low DS of 

0.018 and near branching points as well as non-reducing ends at high DS of 0.092. The other 

product (sOSMs) had OS groups distributed randomly throughout the starch chains, and OS 

substitutions were found close to the branching points as well as the non-reducing ends at both 

low and high DS.    
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 Tables and figures 

Table 5.1 Dextrose equivalent (DE) and conversion time for maltodextrin (M) and 

octenylsuccinate maltodextrins from approach 1 of DS 0.018 (gOSM-Low) and DS 0.092 

(gOSM-High). 

 DE after 1.5h α-amylolysis Conversion time (h) for DE 7.5 

M 15.9 1.00 
gOSM-Low 10.7 1.25 
gOSM-High 5.0 3.00 
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Table 5.2 Characterization of native starch converted maltodextrin (M) and 

octenylsuccinate maltodextrins from approach 1 of degree of substitution (DS) 0.018 

(gOSM-Low) and 0.092 (gOSM-High) and approach 2 of DS of 0.018 (sOSM-Low) and 

0.094 (sOSM-High). 

Parameters M 
gOSM-

Low 

gOSM-

High 

sOSM-

Low 

sOSM-

High 

Degree of substitution 0 0.018 0.092 0.018 0.094 
AMG hydrolysis (%) 99.4 ± 0.3 93.3 ± 0.0 83.5 ± 1.3 90.8 ± 0.3 77.2 ± 0.6 
β-limit value (%) 41.7 39.3 37.5 36.8 34.9 
Before debranching      

   DEa 7.4 ± 0.3 7.7 ± 0.1 7.5 ± 0.1 7.1 ± 0.2 6.5 ± 0.2 
   DPn

b 12.8 ± 0.8 12.8 ± 0.2 13.0 ± 0.5 12.8 ± 0.8 12.8 ± 0.8 
After debranching      
   DE 15.8 ± 0.5 14.2 ± 1.7 13.1 ± 0.6 14.6 ± 0.2 11.7 ± 0.4 
   DPn 6.3 ± 0.2 7.0 ± 0.8 7.6 ± 0.3 6.8 ± 0.1 8.5 ± 0.3 
   DE increased (%)c 102.6 81.8 69.9 103.4 79.3 
   Successive β-amylolysis 100.0 ± 0.0 86.9 ± 2.8 71.4 ± 0.2 88.4 ± 0.5 67.4 ± 2.0 
a Dextrose equivalent. 

b Degree of polymerization. The values of sOSM-Low and sOSM-High were adapted from the 

DPn value of maltodextrin. 
c Calculated by subtracting DE before debranching from DE after debranching and then divided 

by DE before debranching.  
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Figure 5.1 Three approaches to prepare α-amylase-degraded octenylsuccinic anhydride 

(OSA)-modified starch. 
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Figure 5.2 Molecular size distribution of maltodextrins with same dextrose equivalent (DE) 

from native starch (M) and granular octenylsuccinate starch with degree of substitution of 

0.018 (gOSM-Low) and 0.092 (gOSM-High). 
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Figure 5.3 
13

C-NMR spectra of maltodextrin and octenylsuccinic (OS) maltodextrin from 

approach 2 with DS of 0.094 (sOSM-High). 
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Sample 
α-amylase hydrolysis 

Fraction 1 Fraction 2 

DP % area DP % area 
M 2 72.0 12 28.0 

gOSM-Low 2 71.0 13 29.0 
gOSM-High 2 68.8 14 31.2 
sOSM-Low 2 67.1 16 32.9 
sOSM-High 2 59.4 18 40.6 

 

Figure 5.4 Elution profiles and degree of polymerization (DP) of α-limit dextrins of 

maltodextrin (M) and octenylsuccinate maltodextrins obtained from Approach 1 (A) and 

Approach 2 (B). 

gOSM-Low: OS maltodextrin from Approach 1 of degree of substitution (DS) 0.018. 

gOSM-High: OS maltodextrin from Approach 1 of DS 0.092.  

sOSM-Low: OS maltodextrin from Approach 2 of DS 0.018. 

sOSM-High: OS maltodextrin from Approach 2 of DS 0.094. 
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Figure 5.5 Elution profiles of starch before debranching (—),  after debranching (- - - - -)  

and β-amylase hydrolysis after debranching (……) : maltodextrin (A), octenylsuccinate 

maltodextrins from approach 1 of degree of substitution (DS) of 0.018 (gOSM-Low) (B) 

and 0.092 (gOSM-High) (C) and approach 2 of DS of 0.018 (sOSM-Low) (D) and 0.094 

(sOSM-High) (E). 
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Chapter 6 - Structural changes from native waxy maize starch 

granules to cold water-soluble pyrodextrin during thermal 

decomposition 

 Abstract 

The structural changes occurring during the conversion of insoluble native waxy maize 

starch granules to cold water–soluble pyrodextrin under acidic conditions has been investigated. 

Starch granules were suspended in water and the pH of the slurry was adjusted to 2.5–3.0 by 

0.5M HCl. The air-dried starch was thermally heated for different time intervals at 160 and 170 

°C for 0.5 to 4 h. The pyrodextrins obtained had cold water solubility from 21% to 100%. 

Structural changes of starch granules during dextrinization were determined by multiple 

techniques, including synchrotron small-angle X-ray scattering (SAXS), wide-angle X-ray 

scattering (WAXS), differential scanning calorimetry (DSC) and gel permeation chromatography 

(GPC). In a mixture of water/glycerol (20/80, w/w), the SAXS characteristic peak at 0.6 nm-1 

decreased in intensity as pyrodextrin solubility increased. The peak disappeared as pyrodextrin 

solubility reached 100%. In addition, starch crystal size as well as its melting enthalpy decreased 

as pyrodextrin solubility increased. The pyrodextrin molecular size decreased as solubility 

increased. Pyrodextrins had a granular shape identical to the native starch when observed in 

glycerol under a light microscope and showed strong birefringence under polarized light. It is 

proposed that the starch backbone is hydrolyzed by acid in the amorphous region. Unwinding of 

the double helices also occurs and crystallite size decreases. Starch molecules are hydrolyzed 

into small molecular fractions but remain in a radial arrangement. 

Keywords: Pyrodextrin, dextrin, thermal decomposition, small-angle X-ray scattering, 

starch structure 
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 Introduction 

Thermal decomposition of dry starch usually causes depolymerization at temperatures 

below 300 °C.1 A degraded starch product prepared in the dry state by heating, or through a 

combination of heat and acid, is commonly called a “pyrodextrin”.2 A closely related term 

“dextrin” broadly refers to all degraded starch products regardless of the method used in the 

process. Dextrins may be produced by hydrolysis of starch with enzymes or acids in water as 

well as by dextrinization or pyroconversion, or heating starch in its dry form.2 Depending on the 

temperature, time, and level of acid used, pyrodextrins are generally classified into three 

categories: white dextrin, yellow or canary dextrin, and British gum;2, 3 however, these broad 

classifications are arbitrary, and classifying a given dextrin product is not always easy. The 

properties of the products cover a wide range depending on pretreatment, level of acid used, and 

process conditions (e.g., temperature and time). 2 Yellow dextrin and more degraded British gum 

are soluble in cold water and become a viscous liquid with gummy and adhesive properties.2 

Traditionally, pyrodextrins have wide application in industry as adhesives, coatings, binders, and 

encapsulating agents.1, 2, 4 The various applications and biological activities of pyrodextrins have 

been reviewed.1 Pyrodextrin is suggested to be resistant to α-amylolysis and is considered as 

soluble dietary fiber, 4-10  which has many applications in the food industry. Preparation of 

indigestible dextrins by pyroconversion has been described.11, 12 

Changes in molecular structure during the dextrinization process have been suggested to 

involve hydrolysis, transglycosidation, and repolymerization of the glucans.2, 13 Starch molecules 

are significantly degraded by heat and acid, as reflected in a continual decrease in starch 

molecular weight, a progressive increase in solubility in water, decreased viscosity in water, and 

increased reducing value.2, 4, 14 Transglycosidation results from the hydrolysis of the α-1,4 

glucosidic linkages followed by a recombination of the fragments with nearby free hydroxyl 

groups to produce branched structures.2 Transglycosidation and the branched structure of 

pyrodextrin were proposed from the evidence of methylation15, 16 and reduced degree of β-

amylolysis.17 Repolymerization was proposed due to the slight increase in viscosity and the 

decrease in reducing sugar content.2 

Compared with extensive studies in molecular structure, few attempts have been made to 

understand the precise long-range structural changes during dextrinization. Pyrodextrins look 

identical to native granular starch when viewed in glycerol under both normal and polarized light 
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microscopes,2, 4, 18 and pyrodextrins have a wide-angle X-ray scattering (WAXS) pattern similar 

to native starch but with broader and weaker peaks.5 However, the molecular arrangement in the 

pyrodextrin granules has not been thoroughly investigated; furthermore, it is not well understood 

why pyrodextrin is partially crystalline and retains its granular shape yet is readily soluble in 

water. 

Small-angle X-ray scattering (SAXS), which probes larger length scales than WAXS, has 

been used to characterize the structure of native and modified starches.19-29 Blazek and Gilbert 

(2011) 30 reviewed the application of SAXS to investigate starch structure.  Native starch 

molecules are suggested to be arranged in a lamellar structure with a repeat spacing of ca. 9 nm, 

which corresponded to a SAXS peak at 0.6-0.7 nm-1.31 This SAXS peak disappears due to the 

loss of lamellar order in the case of starch gelatinization22, 32 and acid hydrolysis 20, 27. In this 

study, SAXS and WAXS were used to investigate the granular structure of pyrodextrin. We 

propose a model of starch structural changes during thermal decomposition based on scattering, 

microscopy, gel permeation chromatography (GPC), and differential scanning calorimetry 

(DSC). These findings enable a greater understanding of the granular structure of pyrodextrin 

and the implications to its functionality. 

 Materials and methods 

 Materials 

Waxy maize (WM) starch (Amoica TF) was obtained from National Starch LLC 

(Bridgewater, NJ). Other chemicals used in the study were analytical grade. 

 Methods 

 Preparation of pyrodextrins 

Waxy maize starch (100 g dry weight) was suspended in water (150 mL), and the pH of 

the slurry was adjusted to 3.0 by 0.5 M HCl and stirred for 30 min. Starch was filtered to a cake 

with moisture content at approximately 50%. The starch cake was broken and dried in an oven at 

40 °C for 24 h to a moisture content of 10–15%. Starch pH was approximately 4.0 after air 

drying. The dried starch was ground and passed through a screen (100 mesh) and heated in an 

forced-air oven at 170 °C. Samples were collected at 0.5, 1, 2, 3, and 4 h during heating and were 
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kept at ambient temperature overnight. The resulting moisture content of the pyrodextrin samples 

was about 7%. In a separate experiment, the pH was adjusted to 2.5 and pyrodextrin was 

prepared as described above. 

 Light microscopy 

Starch granules were observed in glycerol or a mixture of glycerol and water using an 

optical microscope with a digital camera (Model BX51, Olympus Co., Japan) under normal 

visible and polarized light. 

 Solubility 

Solubility of OS starch was determined by a handheld refractometer (Fisher Scientific, 

Pittsburgh, PA). Starch (0.100 g) was dissolved in distilled water (0.9 mL) and centrifuged at 

6708 x g for 3 min. Starch concentration in the supernatant was determined by the refractometer.   

 Differential scanning calorimetry (DSC) 

Thermal properties of native starch and pyrodextrin products were measured using a 

Pyris-1 DSC (Perkin-Elmer, Norwalk, CT). Samples were mixed with solvents of distilled water 

or water/glycerol mixture (20/80, w/w) at ratio of 1:3 (starch : solvent, w/w) and were lightly 

stirred with a spatula. Pyrodextrin pastes were sealed in a centrifuge vial and allowed to stand for 

12 h at 25 °C for hydration. Pyrodextrin pastes (40–55 mg) were accurately weighed with a 

microbalance and placed into large DSC stainless steel pans. The DSC pans were sealed and held 

at 10 °C for 1 min and heated to 160 °C at 10 °C/min. Onset (To), peak (Tp), and conclusion 

(Tc) temperatures as well as enthalpy (∆H) were determined. An empty pan was used as a 

reference. Native waxy maize starch was included as a control. Samples were analyzed in 

duplicate. 

 SAXS and WAXS 

Pyrodextrin paste in water, water/glycerol mixture of 20/80 and 40/60 (w/w), or glycerol 

at ratio of 1:1 (w/w) was prepared by manually mixing with a spatula followed by equilibrium at 

room temperature for 15 min. Pyrodextrin paste in water, water/glycerol mixture of 20/80 and 

40/60 (w/w), or glycerol at ratio of 1:1 (w/w) was prepared by manually mixing with a spatula 

followed by equilibrating at room temperature for 15 min.  
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Native starch and pyrodextrin pastes were examined by SAXS and WAXS at the X27C 

beamline at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory 

(BNL). The details of the experimental setup at the X27C beamline have been reported 

elsewhere 33-36. The wavelength of the X-ray was 1.371 Å. Two-dimensional WAXS and SAXS 

images were collected with an X-ray CCD detector (MarUSA) with resolution times of 30 and 

60 s, respectively. The sample-to-detector distance was 155.6 mm for WAXS and 2018.5 mm for 

SAXS, respectively. The scattering angle in WAXS was calibrated using a polypropylene 

standard and an Al2O3 standard from the National Institute of Standards and Technology 

(Gaithersburg, MD). The scattering angle in SAXS was calibrated by an AgBe standard. 

Pyrodextrin samples were sealed in a sample holder and placed on the hot stage (Instec Inc., 

Boulder, CO). The WAXS and SAXS spectra were background-subtracted. The average d-

spacing was calculated by:  

d = 2π/q 

where d (nm) is the lamellar repeat distance and q(1/nm) is the scattering vector, which is 

defined as: 

q = (4πsinθ)/λ 

where λ (nm) is the wavelength of the x-ray source and 2θ is the scattering angle. 

Starch crystallinity was calculated as described elsewhere.37 The approximate average 

size (D) in nm of crystallites in the samples was calculated from the Scherrer formula:  

D = 
0.89×λ

β×cosθ
 

where β is the angular width in radians at the half maximum intensity corrected for 

instrumental line broadening and θ is half of angular position of the peak in radians. In the 

present case, such broadening has negligible influence compared to the width of the peaks 

observed. 

 Statistical analysis 

Each experiment was performed in duplicate. Analysis of variance was performed with 

the SAS program (version 9.1.3, SAS Institute Inc., Cary, NC). Least significant differences for 

comparison of means were computed at P<0.05. 
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 Results and discussion 

 Solubility and molecular weight distribution 

The solubility and degree of degradation was affected by process parameters including 

pH, temperature, and heating time. At a pH of 2.5 and 170 ºC, starch became 100% soluble after 

heating for 0.5 h. At pH 3 and 170 ºC, pyrodextrins with solubility from 21 to 100% were 

produced by heating from 0.5 to 4 h (Table 6.1). Starch solubility increased rapidly during the 

first 2 h of the conversion. As the conversion continued, relatively little change occurred in the 

solubility. In contrast, at pH 3 and 160 ºC, starch was only 42.0% soluble after being heated for 4 

h (Table 6.1). Molecular breakdown was indicated by a shift in molecular size distribution 

profile (Figure 6.1). The molecular weight of the waxy maize starch decreased rapidly at the 

beginning (0.5 to 1 h) of the conversion and slowed after 2 h. At the latter stage of dextrinization, 

starch molecular size remained in the range of 3.6 x 105 to 4.3 x 104 (Figure 6.1). These results 

suggest that starch molecules were hydrolyzed by acid and heat during dextrinization. Molecular 

scission was promoted by low pH, high temperature, and long reaction time, which is in 

agreement with previous studies 2, 5, 14. To investigate the structural changes of starch from 

insoluble granules to water-soluble pyrodextrin, we selected the samples prepared by heating at 

pH 3 and 170 °C from 0.5 to 4 h, because their solubility ranged from 21 to 100%. 

 Birefringence of pyrodextrin 

After dextrinization, starch granules remained and products had a characteristic yellow 

color. When examined under a microscope, pyrodextrins in glycerol appeared identical to native 

starch (Figure 6.2). Under polarized light, the pyrodextrins showed strong birefringence (Figure 

6.2), indicating a radial orientation of molecules; however, when the pyrodextrin was suspended 

in water, the starch granules ruptured quickly. Starch granules disappeared as starch molecules 

dissolved. Similar results have been reported in other studies 2, 38. It has been suggested that the 

crystallites of starch granules were oriented together in parallel fashion and underwent 

significant changes upon dextrinization.17 To fully understand these changes in granular structure, 

we used SAXS and WAXS to characterize the crystalline and amorphous regions and lamellar 

structure of pyrodextrins. 
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 Small-angle X-ray scattering 

The SAXS lamellar peak of starch evolves only upon proper hydration,28, 39 but the 

solubility of pyrodextrins in water increased after dextrinization (Table 6.1), and starch granules 

of pyrodextrins with high solubility disintegrated in water and lost their structural information. 

To effectively probe the structural changes of starch granules during dextrinization by SAXS and 

WAXS, we used a different ratio of glycerol to water as a plasticizer. Glycerol is a less effective 

plasticizer than water, and pyrodextrins retain their granular shape in glycerol (Figure 6.2). Using 

different ratios of glycerol to water, we were able to change the degree of plasticization and fully 

elucidate the structure of pyrodextrins with different water solubility. 

Native waxy maize starch and pyrodextrins showed no SAXS characteristic peak in 

glycerol at room temperature (Figure 6.4); however, a well-defined SAXS peak at 0.62 nm-1 was 

observed for the native starch in a mixture of water and glycerol (20/80 or 40/60, w/w) (Figure 

6.3 and Figure 6.4), which was attributed to the periodic lamellar arrangement of semi-crystalline 

starch with a repeat distance of ca. 9 nm.31 Compared with the native starch, pyrodextrins 

showed significantly different SAXS patterns in water/glycerol (20/80, w/w) (Figure 6.3). A 

characteristic SAXS peak was observed for starch heated for 0.5 and 1 h, but the scattering 

intensity at ca. 0.6 nm-1 was both lower and less resolved than for native starch, suggesting a 

partial reduction in lamellar periodicity. There also appears to be a slight shift in peak position to 

higher q (from 0.62 to 0.65 nm-1) indicating a possible decrease in the repeat distance of the 

alternating crystalline and amorphous lamellae. Such a decrease in lamellar spacing may result 

from the hydrolysis of amorphous lamellae and a partial disruption in the crystalline lamellae, 

resulting in a closer periodic arrangement. However, since the peak width is also broader, this re-

arrangement is certainly not uniform. The 9 nm scattering peak was not observed after 2 h of 

dextrinization (Figure 6.3); this indicates that the lamellar structure of granular starch was 

significantly disrupted during the dextrinization process and there is a corresponding reduction in 

long-range order leading to a broad feature in the scattering after 2 h of dextrinization.  

Increasing the ratios of water to glycerol from 20/80 (w/w) to 40/60 (w/w) reveals 

interesting results (Figure 6.4). For native starch, the size and position of the peak at ca. 0.62 nm-

1 were little changed, but the peak for the 0.5-h pyrodextrin sample became more prominent. Yet, 

no peak was observed for the 4-h pyrodextrin sample, which indicates the loss of periodic 

lamellar structure.  
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Increasing the ratio of water to glycerol from 20/80 (w/w) to 40/60 (w/w) reveals 

interesting results (Figure 6.4). For native starch, the size and position of the peak at ca. 0.62 nm-

1 were little changed, but the peak for the 0.5-h pyrodextrin sample became more prominent. Yet, 

no peak was observed for the 4-h pyrodextrin sample, which indicates the loss of periodic 

lamellar structure.  

In addition to changing the ratio of water to glycerol (i.e., the degree of plasticization), 

we also heated the native starch and pyrodextrin in a mixture of water and glycerol (20/80, w/w) 

and examined their changes by SAXS (Figure 6.5). The peak ca. 0.62 nm-1 was little changed 

when the native waxy maize starch was heated from 25 to 100 °C. For the 0.5-h pyrodextrin 

sample, the intensity of the peak ca. 0.62 nm-1 became stronger from 25 to 60 °C but decreased 

after 60 °C, and the peak almost disappeared at 100 °C. These changes indicate that heating 

initially provides mobility and promotes the alignment of the periodic lamellar structure but 

weakens that structure at high temperatures.  

Water plays dual roles when added to the pyrodextrins, functioning either as a plasticizer 

or solvent depending on the level of water used and the structure of the pyrodextrin. Glycerol 

alone is not able to solvate starch granules, and no SAXS peak is observed due to the lack of 

long-range order.39, 40 When water is added, self-assembly transforms the disordered structure of 

dry starch into an ordered semctic-like lamellar structure as previously suggested39 and observed 

in this study (Figure 6.3). Conversely, in the absence of water, the branches exhibit greater 

disorder and lamellar scattering is reduced. A water to glycerol ratio of 20/80 (w/w) is sufficient 

to allow the evolution of the 9 nm lamellar peak for starch granules at room temperature.39 In this 

study, for the 0.5-h pyrodextrin, the SAXS peak ca. 0.62 nm-1 increased as the water ratio 

increased from 0/100 to 40/60 (w/w) (Figure 6.4); however, for the 4-h pyrodextrin, no SAXS 

peak was observed by increasing the level of water (Figure 6.4) or heating (Figure 6.5), 

indicating permanent loss of any significant long-range order of the alternating lamellar structure. 

The 4-h pyrodextrin retained its granular shape and was birefringent in glycerol (Figure 6.2), but 

in the mixture of water and glycerol (40/60, w/w), it lost both its birefringence and granular 

shape (data not shown), indicating that its granular structure was so weak that it was disrupted by 

the mixture of water and glycerol. Water, acting as a solvent, was able to completely dissolve the 

4-h pyrodextrin sample (Table 6.1). 
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We believe that the loss of the periodic lamellar structure is due to the hydrolysis of the 

amorphous regions of starch and partial disruption of crystalline lamellae by heat. Acid primarily 

hydrolyzed the amorphous regions of the starch granule.2 After a significant number of 

glycosidic bonds are cleaved and crystalline lamellae are disrupted, it is likely that it is no longer 

possible to form a periodic lamellar structure. 

Comparing the SAXS results in this study (heating starch in dry form with acid) with the 

findings on the acid hydrolysis of starches in water is revealing.20, 27 When hydrolyzed by acid in 

water, the lamellar peak intensity increased during the early stages of acid hydrolysis followed 

by a decrease in the latter stages of hydrolysis. In studying the acid hydrolysis of pea starch in 

water, Wang et al.27 also reported that the position of the lamellar peak was essentially constant 

within the first 6–12 days of hydrolysis but shifted to higher q after 35 days of hydrolysis. 

Relative crystallinity increased after the amorphous regions were selectively hydrolyzed in water 

and removed during filtration. In contrast, hydrolyzed products remained inside starch granules 

in this study, and the crystallinity decreased during dextrinization (Figure 6.6) as discussed in the 

next section.  

Using fractal analysis,41 we also found changes in the starch during dextrinization and 

changes in fractal characteristics of the pyrodextrins when different ratios of glycerol to water 

were used. To establish the fractal relation, we re-plotted the SAXS data on a double logarithmic 

scale with intensity (I) as a function of the scattering vector (q) and calculated the slope or 

exponent (α) when there was a linear relationship between log I and log q (i.e. �	 ∝ ��). A linear 

power-law behavior was observed over a range of q from 0.1 to 0.3 nm-1, indicating that the 

native starch and pyrodextrins were fractal in nature.41 

In glycerol, the native starch and pyrodextrin had similar α values of ca. -3.5 (Table 6.2). 

Such a value may be indicative of “surface fractal” behavior in which the surface of the starch 

and pyrodextrin is somewhat roughened in glycerol. As noted previously, both materials had an 

identical shape in glycerol when observed under a microscope (Figure 6.2). In a mixture of water 

and glycerol (20/80, w/w), the starch and 0.5-h pyrodextrin indicated rougher surface-fractal 

behaviour, but the slopes of the pyrodextrin decreased as dextrinization progressed from 1 to 4 h 

and exhibited slopes of between -1 and -3 (Table 6.2, Figure 6.3B). Those pyrodextrins became 

mass fractals that had a self-similar structure. These results indicate that starch granular structure 

was weakened after dextrinization and probably reflect increased water-solubility as reaction 
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time increased (Table 6.1). As the water level increased to 40%, all the starch and pyrodextrins 

appeared to be mass-fractal, because the slopes were in the range of -1.9 to -2.8 (Table 6.2). 

 Wide-angle X-ray diffraction 

Native starch and pyrodextrins showed A-type crystalline WAXS patterns in the 

water/glycerol (20/80, w/w) mixture (Figure 6.6). Pyrodextrins showed broadened peaks with 

reduced intensity at 13, 16, and 21 degrees 2θ compared with the native starch. Similar results 

have been reported previously.5 Crystallinity and crystal size were estimated42 and are shown in 

Table 6.3. Crystallinity of the native waxy maize starch was approximately 43%, which is close 

to previous literature values.42 Heating at 170 ºC for 0.5 and 4.0 h reduced crystallinity to 31.4 

and 14.0%, respectively. In addition, crystal size was reduced from 9.6 nm of native starch to 7.8 

and 7.0 nm of pyrodextrins. These results indicate a loss of structural organization in a direction 

lateral to the semi-crystalline lamellae due to the dextrinization process; however, for the 4-h 

pyrodextrin, WAXS still showed an A-type crystalline pattern in a mixture of water and glycerol 

(20/80, w/w), indicating the existence of crystalline structure. Therefore, the crystalline region of 

starch was not completely destroyed, but crystallites became smaller during the dextrinization 

process. Weak crystallites after dextrinization also were noted when the starch and pyrodextrin 

samples were heated in the mixture of water and glycerol (20/80, w/w) and changes by WAXS 

(Figure 6.7). Crystallinity of native waxy maize starch changed little when it was heated from 26 

to 80 °C. In contrast, the crystallinity of the 0.5-h pyrodextrin was significantly reduced at 80 °C, 

and 4-h pyrodextrin became essentially amorphous at 80 °C.   

 Thermal properties 

A reduction in the crystallinity of pyrodextrins from native starch is also reflected in the 

DSC data (Figure 6.8). Compared with native starch, 0.5-h pyrodextrins showed a lower onset 

temperature and smaller enthalpy of melting endotherm in water. Pyrodextrins with higher 

solubility did not have an endothermic peak, indicating the loss of starch crystallinity in water at 

room temperature. To further probe the structure and properties of pyrodextrin, native starch and 

pyrodextrins were analyzed in a mixture of water/glycerol (20/80 w/w) (Figure 6.8). The 

gelatinization endotherm for the native starch and 0.5-h pyrodextrin was shifted to higher 

temperatures relative to water. Similar results were reported by other studies 39, 43-46; however, 

for the 0.5-h pyrodextrin, the gelatinization peak was much broader and the enthalpy was much 
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higher than that in water. Because glycerol was not suggested to affect the shape of the 

gelatinization endotherm,39 the difference was probably due to changes in the crystalline region 

when hydrated in the two different solvents. Higher gelatinization enthalpy suggests higher 

double helical content.47 Therefore, DSC results further suggest that part of the crystalline region 

was so weak that it dissolved in water at room temperature, resulting in a narrower gelatinization 

endotherm with a lower enthalpy value, but the weak crystalline region remained in the 

glycerol/water mixture. Glycerol has a large molecular weight and is not as effective as water as 

a plasticizer.21 A broad melting peak also was observed for pyrodextrins of 2.0 and 4.0 h in the 

glycerol/water mixture (Figure 6.8), which supports this reasoning. The DSC results suggest that 

the crystalline region existed for all the pyrodextrin samples. Dextrinization affected the 

crystalline region and reduced the crystallinity and crystal size. The less perfect crystallites with 

short double helices were so weak that they disassociated in water at room temperature.  

Native starch and pyrodextrins were also analyzed in 100% glycerol (Figure 6.9). The 

melting endotherm of each sample shifted to higher temperatures as expected. In addition, an 

exothermic peak was observed for all analyzed samples. The exothermic peak is suggested to 

result from a starch-glycerol “interaction,” including the plasticization of amorphous lamellar 

regions that allow the crystalline lamellae to form a periodic lamellar structure and enhance 

crystallization.39 Therefore, based on the model proposed by Perry and Donald 39, the DSC 

results suggest that the starch-glycerol interaction existed for pyrodextrin samples of different 

solubility. The process of rearranging crystalline lamellae to form a periodic lamellar structure 

upon plasticization, as well as crystallization, existed for all the pyrodextrins in glycerol during 

heating. It is also interesting to notice that when the native starch was heated by two heating-

cooling cycles of 10-110-10-150 °C, the exothermic peak was observed in the first heating cycle 

but disappeared in the second heating cycle (Figure 6.9). In addition, little difference was 

observed for the endothermic peak between the two heating steps (Figure 6.9). The results 

suggest that the starch-glycerol interaction is irreversible and occurs prior to the melting of 

crystallites. 

Based on WAXS and DSC results, we suggest that in addition to the effect of hydrolysis 

of the amorphous region, the changes in crystalline regions were another factor that affected the 

SAXS peak. For the 0.5-h pyrodextrin, although the crystalline region was affected by the 

dextrinization process, it still showed sufficient contrast with respect to the amorphous region to 
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exhibit a SAXS peak. However, in highly soluble pyrodextrins, the overall crystalline region was 

significantly altered by the process, and the contrast between crystalline and amorphous areas 

was significantly reduced. The radial arrangement of the starch molecules was not altered during 

the dextrinization process however.   

 Structural changes from native starch to pyrodextrin 

Structural changes from native starch to pyrodextrin have been proposed in the 

literature48 and are shown in Figure 6.10-A. In the traditional model, starch was converted by 

acid hydrolysis in combination with heat into smaller fragments. Starch molecules repolymerized 

into a branched structure; however, native starch granules are partially crystalline, which is not 

reflected in the model.  

A new model describing long-range structural changes of starch during dextrinization is 

proposed based on the microscopic, NMR, GPC, SAXS, WAXS, and DSC results (Figure 6.10-

B). As starch is heated at 170 °C for 0.5 h, the starch backbone is hydrolyzed by acid in the 

amorphous region. Unwinding of the double helices occurs as well, and the crystallite size 

decreases. Starch molecules are hydrolyzed into small molecule fractions but remain in a radial 

arrangement. The semi-crystalline lamellar structure still persists in the early stage of 

dextrinization. Upon proper plasticization, double helices tend to arrange in a periodic order; 

however, the periodicity is not as perfect as in native starch due to the hydrolyzed starch 

backbone and disrupted crystalline region.  

As the dextrinization process continues, the starch backbone in the amorphous region is 

further hydrolyzed along with the crystalline region. Crystallinity decreases, crystallite size is 

reduced and starch molecules are hydrolyzed to a smaller molecular weight. While a crystalline 

arrangement may still have exist upon plasticization, due to the significant hydrolysis of the 

crystalline and amorphous region, a periodic structure of crystalline and amorphous lamellae 

could no longer be formed. Starch molecules still exist in a radial arrangement and result in 

birefringence.     

 Conclusions 

In this chapter, the structural changes occurring during the conversion of insoluble native 

waxy maize starch granules to cold water–soluble pyrodextrin under acidic conditions has been 

investigated. It has been found out that during the dextrinization process, amorphous regions as 
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well as crystalline regions of starch granules are hydrolyzed by acid and heat. Starch molecules 

are hydrolyzed into small molecular fractions but they remain in a radial arrangement.      
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 Tables and figures 

Table 6.1 Solubility of pyrodextrin in water prepared at different pH, heating temperature 

and heating time. 

pH Temperature (°°°°C) Time (h) Solubility (%) 

2.5 170 0.5 100.0 ± 0.9 
3.0 160 4.0 42.0 ± 0.5 
3.0 170 0.5 21.2 ± 0.6 

1.0 22.1 ± 1.2 
2.0 97.1 ± 1.8 
3.0 102.0 ± 1.0 
4.0 101.0 ± 1.2 
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Table 6.2 Slope (α) in SAXS of native waxy maize starch and pyrodextrins prepared at pH 

3, 170 °C for 0.5 and 4 h in the double-log scale plot in solvents of water/glycerol at 

blending ratios of 40/60, 20/80, and 0/100. 

Sample 
Water/glycerol (w/w) 

40/60 20/80 0/100 

Native -2.78 -3.31 -3.50 

Dextrin 0.5 h -2.40 -3.22 -3.49 

Dextrin 4 h -1.92 -2.16 -3.46 
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Table 6.3 Estimated crystallinity (%), crystal size (D), and full width at half maximum 

(FWHM) at 13.3 degree 2θ of samples in water/glycerol (20/80, w/w) mixture. 

 

Sample Time (h) Crystallinity (%) FWHM (Degree) D (nm) 

Native starch n.a. 43.3 0.78 9.6 

Dextrin 

0.5 31.4 0.96 7.8 
1.0 31.7 1.06 7.0 
2.0 24.4 1.07 7.0 
3.0 20.3 1.08 7.0 
4.0 17.4 1.07 7.0 
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Figure 6.1 Molecular weight distribution of native waxy maize starch and pyrodextrins 

prepared from heating at pH 3 and 170 °C for 0.5 to 4 h. 
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Figure 6.2 Microscopy images of (A) native waxy maize starch and (B) soluble pyrodextrin 

(100% solubility) in glycerol. Pyrodextrin was prepared at pH 3 and heated at 170 °C for 4 

h. Scale bar in each graph represents 30 µm. Left images – unpolarized; right images – 

polarized. 

 

A 

B 
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Figure 6.3 (A) Linear and (B) double-log scale SAXS plot of native starch and pyrodextrins 

in solvents of water/glycerol (20/80, w/w). Data shown in log-log plot have been shifted 

vertically for clarity. 
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Figure 6.4 SAXS patterns of (A) native starch, (B) pyrodextrin after 0.5 h, and (C) 

pyrodextrin after 4 h in solvent of water/glycerol with ratios of 40/60, 20/80, and 0/100. 
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Figure 6.5 SAXS curves of native waxy maize starch (A), dextrin (pH 3, 170 °C, 0.5 h) (B), 

dextrin (pH 3, 170 °C, 4 h) (C) in a mixture of water/glycerol (20/80, w/w). Data have been 

vertically offset for clarity. 
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Figure 6.6 WAXS patterns of pyrodextrins (50%, w/w) in water/glycerol (20/80, w/w) 

mixture. Native waxy maize is shown as a reference. Pyrodextrins were prepared by 

heating waxy maize starch (pH  3.0) at 170 °C for 0.5, 1, 2, 3, and 4 h. 
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Figure 6.7 WAXS patterns of (A) waxy maize starch, (B) dextrin (solubility 21%) and (C) 

dextrin (solubility 100%) in a mixture of water/glycerol (20/80). Data have been offset 

vertically for clarity. 
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Solvent Heating time (h) To (°C) Tp (°C) Tc (°C) ∆H (J/g) 

Water 

Native 65.2 ± 0.7 72.1 ± 0.1 81.4 ± 0.4 20.0 ± 1.6 

0.5 49.3 ± 2.2 53.2 ± 0.4 58.2 ± 2.7 6.9 ± 1.2 

2.0 
No endothermic peak 

4.0 

Water/glycerol 

mixture (20/80, 

w/w) 

Native 93.7 ± 0.9 100.7 ± 0.8 109.0 ± 0.5 17.5 ± 0.2 

0.5 63.8 ± 0.3 74.2 ± 0.2 103.1 ± 1.1 14.7 ± 0.3 

1.0 63.1 ± 1.1 74.9 ± 1.1 98.7± 1.6 13.4 ± 2.0  

2.0 47.1 ± 2.2 61.9 ± 0.6 86.3 ± 1.1 10.1 ± 0.1 

3.0 52.4 ± 1.1 63.3 ± 1.2 79.7± 2.5 6.0 ± 0.0 

4.0 52.6 ± 0.3 63.2 ± 0.3 77.4 ± 2.8 4.6 ± 0.5 

 

Figure 6.8 DSC profiles of (A) native starch and (B-D) pyrodextrins prepared at pH 3 and 

170 °C for (B) 0.5 h, (C) 2 h and (D) 4 h. 
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Figure 6.9 DSC traces of (A) native starch and (B-D) pyrodextrins prepared at pH 3 and 

170 °C for (B) 0.5 h, (C) 2 h and (D) 4 in glycerol in one heating cycle (I), and native starch 

in glycerol in two heating cycles (heating from 10 to 108 ºC, cooling to 10 ºC, and reheating 

to 150 ºC) (II). 
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Figure 6.10 Structure changes from native starch to pyrodextrin. Part A is adapted from 

Rutenberg
48

. 
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Chapter 7 - New insights into the structural changes of pyrodextrin 

during dextrinization by nuclear magnetic resonance spectroscopy 

 Abstract 

The linkage type of pyrodextrin was characterized by NMR spectroscopy for the first 

time. Pyrodextrin was prepared by heating waxy maize starch at pH 3 and 180 °C for 4 h. 1H and 
13C-NMR spectra of pyrodextrin were assigned with the assistance of 2D techniques including 

COSY, TOCSY, HSQC, and HMBC. During dextrinization, native waxy maize starch was 

hydrolyzed, and the resulted pyrodextrin became 100% soluble in water. There were 1.2% 

reducing ends (α-form) formed after starch hydrolysis, and 1,6-anhydro-β-D-glucopyranose was 

the major terminal group. Glycosyl linkages including α-(1→6), β-(1→6), α-(1→2), and β-(1→2) 

were formed. The degree of branching of pyrodextrin was 24.6%. Transglucosidation occurred 

during dextrinization, and the resulted pyrodextrin was highly branched. 

Keywords 

 Pyrodextrin, dextrin, dextrinization, thermal decomposition, NMR 
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 Introduction 

Pyrodextrin is prepared by heat degradation of dry starch in the granular form, either with 

or without acid (Wurzburg, 2006). Pyrodextrins have been applied in the industry as binders, 

coatings, adhesives (Bhatt, Kumar & Soni, 2000) and dietary fiber (Lefranc-Millot, Wils, 

Roturier, Le Bihan & Saniez-Degrave, 2009; Ohkuma & Wakabayashi, 2001; Wurzburg, 2006). 

Depending on the preparation conditions, pyrodextrin is classified into three categories: white 

dextrin, yellow or canary dextrin and British gum (Tomasik, Wiejak & Palasinski, 1989; 

Wurzburg, 1986). The physical properties of pyrodextrin are often characterized by their color, 

solubility, alkali-lability, reducing sugar content, viscosity, β-amylolysis and etc. (Tomasik, 

Wiejak & Palasinski, 1989). The chemical reactions of dextrinization are complex and involve 

hydrolysis, transglucosidation and repolymerization. Glycosidic linkages of α-(1→4) and 

probably α-(1→6) are hydrolyzed during pre-drying and initial stages of dextrinization (Tomasik, 

Wiejak & Palasinski, 1989). The starch hydrolysis results in a decrease in the molar mass and 

viscosity, and an increase in reducing sugar and solubility. Transglucosidation means hydrolysis 

of the α-(1→4) glycosidic linkages followed by formation of new linkages with nearby free 

hydroxyl groups (Wurzburg, 1986). Considerable amount of transglucosidation was observed for 

British gum and pyrodextrins (Christensen & Smith, 1957; Geerdes, Lewis & Smith, 1957; 

Thompson & Wolfrom, 1958) . Formation of α-(1→6), β-(1→6), α-(1→2) and β-(1→2) linkages 

was reported for British Gum (Thompson & Wolfrom, 1958). Methylation studies suggested new 

bonds formation and branched structure of pyrodextrin (Brimhall, 1944; Christensen & Smith, 

1957; Geerdes, Lewis & Smith, 1957). However, the details of the glycosidic bonds were not 

reported. The branched structure of pyrodextrin was suggested to be responsible for the increase 

in α-amylase resistance (Laurentin, Cardenas, Ruales, Perez & Tovar, 2003; Brimhall, 1944) . 

Repolymerization was also reported in pyrodextrin (Wurzburg, 1986). A slow increase in 

molecular weight during the latter stage of dextrinization was reported, which was suggested to 

be attributed to the formation of aggregate-like structure susceptible to repolymerization and 

transglycosylation (Terpstra, Woortman & Hopman, 2010). In addition, the formation of 1,6-

anhydro-β-D-glucopyranose or levoglucosan type end groups was reported in British gum 

(Thompson & Wolfrom, 1958; Wolfrom, Thompson & Ward, 1959) and pyrodextrin (Katz, 1934; 

Kroh, Jalyschko & Haseler, 1996; Lowary & Richards, 1991). The anhydro end groups may act 

as an intermediate in reforming the polymer (Wolfrom, Thompson & Ward, 1959). However, the 
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formation of anhydro end group concept was opposed by Brimhall (1944), and a methylation 

study failed to support such a concept (Geerdes, Lewis & Smith, 1957). 

Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to investigate the 

structure of carbohydrates and sugars. It has been successfully applied to characterize the 

glycosidic bonds of D-glucopyranose from analyzing 1H-NMR and 13C-NMR spectra (Roslund, 

Tähtinen, Niemitz & Sjöholm, 2008; Usui, Yamaoka, Matsuda, Tuzimura, Sugiyama & Seto, 

1973).13C-NMR spectrum of yellow potato dextrin was reported (McIntyre, Ho & Vogel, 1990) 

but was not fully characterized. No detail studies on the structure of pyrodextrin by NMR are 

reported. The aim of this study was to analyze the structure of pyrodextrin using NMR 

spectroscopy. It is the first detailed study being conducted to interpret 1D and 2D-NMR spectra 

of pyrodextrin. The study provides new insights into the structural changes of pyrodextrin during 

the dextrinization process.   

 Materials and methods 

  Materials 

Waxy maize starch (Amoica TF) was obtained from National Starch LLC (Bridgewater, 

NJ). α-amylase (Termamyl ® 120L) was obtained from Novozymes (Franklinton, NC) and the 

enzyme activity was 120KNU-T/g. One KNU is defined as the amount of enzyme which, under 

standard conditions (37.0 °C; 0.0003MCa.2+; and pH 5.6) dextrinizes 5.26 g of starch (Merck 

Amylum soluble) per hour. Other chemicals were analytical grade. 

  Preparation of pyrodextrin 

Waxy maize starch (100 g dry weight) was suspended in water (150 mL) and the pH of 

the slurry was adjusted to 3.0 using 0.5 N HCl. Starch was filtered to a cake with approximately 

50% moisture content. The starch cake was broken and dried in an oven at 40 °C for 24 h to a 

moisture content of 10 - 15%. The dried starch was ground, passed through a 100 mesh-screen, 

and heated in an oven at 180 °C. Samples were collected at 4 h and were kept at ambient 

temperature overnight. Moisture content of the pyrodextrins was about 7%.  
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  Preparation of maltodextrin 

Maltodextrin was prepared from native waxy maize starch as reported by Lumdubwong 

and Seib (2001) with some modifications. Briefly, α-amylase (1 mL) was diluted to 10 mL using 

200 ppm Ca2+ solution. The enzyme solution (1.65 mL) was added to 400 mL CaCl2 solution and 

pH was adjusted to 6.0 - 6.4 using 1 N NaOH. The solution was transferred to a three neck flask 

and heated in a water bath at 94 °C. Starch (150 g, dry weight) was suspended in 600 mL of 200 

ppm Ca2+ solution. The pH of the solution was adjusted to 6.0 - 6.4 using 0.1 N NaOH. The 

starch solution was slowly added to the enzyme solution in 2 min with vigorous agitation. The 

hydrolysis lasted for 1 h and was stopped by adjusting pH to 3.0 using 1.0 N HCl and held at 94 

°C for 10 min. The flask was then cooled in an ice-water bath. After the temperature dropped 

below 60 °C, the pH of the solution was adjusted to 6.0 using 1 N NaOH. The maltodextrin 

obtained was filtered through filter paper and freeze dried. 

  NMR spectroscopy 

The pyrodextrin and maltodextrin samples (0.2 g) for NMR were prepared by exchanging 

with D2O (1 mL) twice to reduce the effect of water peak. The D2O-exchanged pyrodextrins 

were dissolved in D2O at 10% (wt%) concentration and analyzed by NMR as previously 

described (Bai & Shi, 2011; Bai, Shi, Herrera & Prakash, 2011) .  

The NMR spectra were recorded on a Varian 500 NMR System ( Palo-Alto, CA) at 25 or 

35 °C. The NMR spectrometer was equipped with a cryogenic carbon enhanced 5 mm triple 

resonance inverse detection pulse field gradient probe operating at 499.839 and 125.697 MHz for 
1H and 13C, respectively. The 1H spectra were collected in 32 individual scans with a sweep 

width of 16 ppm and a delay time of 1 s. The broadband proton decoupled 13C spectrum was the 

accumulation of 500 scans. 1H-1H 2D homonuclear correlation spectroscopy (COSY) was 

conducted with 256 transients and 4 scans per transient. Total correlation spectroscopy (TOCSY) 

was performed with 256 transients and 16 scans per transient. Heteronuclear multiple bond 

correlation (HMBC) 1H-13C 2D experiment was conducted with 256 transients and 16 scans per 

transient. Heteronuclear single quantum coherance (HSQC) 1H-13C 2D experiment was 

conducted with 256 transients and 16 scans per transient in phase-cycling detection mode. The 

COSY, and HSQC pulse sequences used are part of “Bio-pack” provided by the Varian. 



119 

 

Tetramethylsilane (TMS) was used as an internal reference at 0 ppm. Chemical shifts are 

reported in parts per million (ppm).  

  Viscosity 

Viscosity of pyrodextrin was determined by a Brookfield viscometer (RVDVII + Pro, 

Brookfield Engineering Laboratories, Inc., Middleboro, MA) with a CS4-18 spindle and a SC4-

13 RPY chamber.  Pyrodextrin solutions of 30% solid content were analyzed at spindle speed of 

100 RPM at 25 °C.  

 Results and discussion 

  New bonds formation during dextrinization 

The 1H-NMR spectra of the maltodextrin, degraded from waxy maize starch by α-

amylase, and the pyrodextrin, prepared by heating waxy maize starch at 180 °C for 4 h, are 

shown in Figure 7.1. Anomeric protons were well separated and resolved in the low-field region 

of the spectra between 4.4 and 5.5 ppm. All the other protons were overlapping in the crowded 

area between 3.5 and 4.0 ppm. By comparing the 1H-NMR spectrum of the pyrodextrin to that of 

the maltodextrin, new peaks were observed at 5.44, 5.09, 4.75, 4.51-4.60, 4.4-4.5 and 4.1-4.2 

ppm, indicating new bonds or linkages were formed during dextrinization. The peak at 4.75 ppm 

was overlapped with the water peak at 25 °C (Figure 7.1 B and C) but observed at 35 °C (Figure 

7.1 D). 

  Formation of 1,6-anhydro-β-D-glucopyranose 

The resonance at 5.44 ppm was correlated with a doublet at 4.01 ppm with a 3J of 7.7 Hz 

in the TOCSY spectrum (Figure 7.2), indicating that they were in the same spin system. The 

proton at 5.44 ppm was correlated to the C1 at 103.72 ppm in the HSQC spectrum (Figure 7.3), 

while the proton at 4.10 ppm showed a correlation to the carbon at 67.77 ppm which was arisen 

from C6 (Gidley, 1985). The peak at 5.44 and 4.01 ppm were assigned to the H1 and H6 of the 

1,6-anhydro-β-D-glucopyranose, respectively (Figure 7.5-A). Our assignment was consistent 

with the chemical shifts assigned to the 1,6-anhydro-β-D cellubiose (Koll, Borchers & Metzger, 

1990). 
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The structural information was further investigated by analyzing HMBC spectrum of 

pyrodextrin, which detects the long range coupling (two-four bonds) relationships and rejects the 

one-bond relationship. The long range (<1 bond) heteronuclear couplings can be transmitted 

through oxygen and nitrogen as well as carbon. In the HMBC spectrum of pyrodextrin, no cross 

peak at 5.44 and 103.72 ppm was observed which was expected. The proton at 5.44 ppm showed 

three cross peaks at 67.77, 72.26 and 77.65 ppm (Figure 7.4). The strong correlation between H1 

(5.44 ppm) and C6 (67.77 ppm) indicated the long range coupling and therefore confirmed the 

glycosyl bond formation between the hydroxyl groups on the primary carbon and anomeric 

carbon. Complete assignment of protons and carbons of 1,6-anhydro-β-D-glucopyranose was 

achieved by analyzing COSY, HSQC, TOCSY and HMBC spectra and is shown in Table 7.1.  

Observing the low content of reducing ends in pyrodextrin was interesting because the 

pyrodextrin was 100% soluble in water (Table 7.2), which resulted from significant starch 

hydrolysis. The reducing ends in its α- and β-forms resonate at 5.20 and 4.63 ppm, respectively 

(Bai, Shi, Herrera & Prakash, 2011; McIntyre, Ho & Vogel, 1990) in the 1H-NMR spectrum of 

maltodextrin (Figure 7.1).  However, for pyrodextrin, the resonances at 5.20 and 4.63 ppm were 

observed only after the spectrum was significantly intensified (Figure 7.1-C). In the region of β-

form reducing ends (4.63 ppm), multiple peaks were observed but not well resolved, which made 

the integration challenging. The content of α-reducing ends for the pyrodextrin was 1.2% 

compared to 4.2% for the maltodextrin.  

The decrease in reducing sugar content was reported in the literature (Wurzburg, 1986). It 

has been proposed that 1,6-anhydro-β-D-glucopyranose/levoglucosan groups were formed as 

starch chain terminal (Thompson & Wolfrom, 1958). The structure of 1,6-anhydro-β-D-

glucopyranose is shown in Figure 7.5-A. A glycosyl linkage was formed between the primary 

hydroxyl group on C6 and the anomeric carbon. The current study confirmed that very few 

reducing ends existed in pyrodextrin and 1,6-anhydro-β-D-glucopyranose was formed. The 

mechanisms of 1,6-anhydro-β-D-glucopyranose formation was proposed in the literature. One 

theory is that the primary hydroxyl group attacked the glycosyl linkage of the same D-glucose 

unit, resulting a rupture of the chain with formation of an anhydro end group (Thompson & 

Wolfrom, 1958). The other theory postulate that free radicals are formed after hydrolytic scission, 

the hydroxyl groups are attacked either by oxocarbenium ions or by free radicals (Tomasik, 

Wiejak & Palasinski, 1989).  
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 Formation of α-(1→2) glycosyl linkage 

A peak at 5.09 ppm with 3J of 3.62 Hz was observed in the 1H-NMR spectrum of 

pyrodextrin (Figure 7.1) and it showed a correlation to an anomeric carbon peak at 100.29 ppm 

in HSQC spectrum (Figure 7.3). The peak at 5.09 ppm in 1H-NMR spectrum and 100.29 ppm in 
13C-NMR spectrum were assigned to anomeric proton (H1) and anomeric carbon (C1) of the α-

(1→2) linkage, respectively (Figure 7.5-B). The assignment was made based on the chemical 

shift and coupling constant that were reported in the literature for anomeric proton and carbon of 

kojibiose (Roslund, Tähtinen, Niemitz & Sjöholm, 2008). Formation of α-1, 2 linkage was 

confirmed by HMBC spectrum (Figure 7.4). The peak at 5.09 ppm showed three correlation 

peaks at 73.44, 75.65 and 78.45 ppm in the HMBC spectrum (Figure 7.4).  The peak at 73.44 and 

75.65 ppm was assigned to C2 and C3/C5, respectively. In the HSQC spectrum (Figure 7.3), the 

peak at 78.45 ppm was correlated with a proton resonance at 3.68 ppm, which showed no 

correlation with the H1 at 5.09 ppm in TOCSY indicating that those two protons were not in the 

same coupling system. In addition, the peak at 3.68 ppm showed an one-bond coupling with the 

an anomeric proton at 5.36 ppm in the COSY spectrum (Figure 7.6). Therefore, the proton at 

3.68 ppm was assigned to H2’ of the α-(1→2) linkage and its connected carbon (C2’) resonated 

at 78.45 ppm (Figure 7.3).  Moreover, the long range coupling between H1 (5.09 ppm) and C2’ 

(78.45 ppm) as suggested by the HMBC spectrum (Figure 7.2) was caused by the formation of α-

(1→2) glycosyl linkage between two anhydroglucose units (AGUs). Peak assignments of the 

protons and carbons of α-(1→2) linkage are listed in Table 7.1. The assignments were achieved 

by analyzing COSY, TOCSY, HMBC and HSQC spectra.  

  Formation of α-(1→6) glycosyl linkage 

The resonance at 4.93 ppm was assigned to the anomeric proton of α-(1→6) linkage as 

suggested in the previous work (Bai, Shi, Herrera & Prakash, 2011; Gidley, 1985; McIntyre, Ho 

& Vogel, 1990; Xu & Seib, 1997). However, significant peak broadening at 4.93 ppm was 

observed for pyrodextrin as compared to the 1H-NMR spectrum of maltodextrin (Figure 7.1). 

The peak was found to be an overlap of two resonances as shown in TOCSY (Figure 7.2).  The 

tail at 4.95 ppm was probably from the anomeric proton of the AGUs involving in two α-(1→6) 

linkages (Figure 7.7-B). It was possible that an anomeric carbon was originally involved in α-

(1→4) linkage and the primary carbon in the same AGU was involved in α-(1→6) linkage. The 



122 

 

α-(1→4) linkage was hydrolyzed during dextrinization and the hydroxyl group on the anomeric 

carbon formed an α-(1→6) linkage with another AGU. Complete assignment of the protons and 

carbons of the AGUs that were involved in the α-1,6 glycosyl linkage was achieved from COSY, 

TOCSY, HSQC and HMBC, as shown in Table 7.1.  

  Formation of β-(1→6) and other glycosyl linkage 

A new broad peak at 4.48 ppm was observed in the 1H-NMR spectrum of pyrodextrin 

(Figure 7.1) and showed a strong correlation with a carbon at 71.01 ppm in HMBC spectrum 

(Figure 7.4). The carbon was attached directly to protons at 4.15 and 3.87 ppm as indicated in the 

HSQC spectrum (Figure 7.3), but those two protons were not in the same spin system with the 

proton at 4.48 ppm as suggested by TOCSY spectrum (Figure 7.2). The proton at 4.48 ppm was 

assigned to the anomeric protons that involved in β-(1→6) linkages and the primary carbon in 

the linkage (C6’) resonated at 71.01 ppm. It has been reported that primary carbon in the β-(1→6) 

was downfield from that in the α-(1→6) linkage (Roslund, Tähtinen, Niemitz & Sjöholm, 2008). 

The assignment of the protons and carbons that were involved in β-(1→6) linkages are listed in 

Table 7.1.  

A resonance at 4.75 ppm was observed when the HOD peak in the 1H-NMR spectrum 

was shifted by increasing the temperature to 35 °C (Figure 7.1). Its directly attached carbon 

resonated at 77.68 ppm (Figure 7.3) and its long ranged coupled carbon resonated at 103.72 ppm 

(Figure 7.4) indicating that the proton was not anomeric. The proton was assigned to H-5 of D-

glucuronic acid (Figure 7.5 E). Similar assignments were made in the literatures (Grasdalen, 

1983; Grasdalen, Larsen, & Smidsrod, 1977, 1979, 1981).  

In addition, multiple peaks were observed in the region from 3.74 to 4.66 ppm. The broad 

peaks in the region were the overlaps of multiple peaks and were not resolved (Figure 7.2). 

These peaks might be from the linkages of β-1,2, and β-1,4, because the anomeric proton of the 

β-linkages resonates in the region, as suggested in the literature (Roslund, Tähtinen, Niemitz & 

Sjöholm, 2008). Tentative assignment of the anomeric protons of the linkages are shown in 

Table 7.1 based on chemical shifts reported in the literature; however, complete peak assignment 

was challenging due to the low intensity and poor resolution.    

A resonance at 4.75 ppm was observed when the HOD peak in the 1H-NMR spectrum 

was shifted by increasing the temperature to 35 °C (Figure 7.1). In addition, multiple peaks were 
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observed in the region from 3.7 to 4.7 ppm. The broad peaks in the region were the overlaps of 

multiple peaks and were not resolved (Figure 7.2). These peaks might be from the linkages of β-

1,2, β-1,3 and β-1,4 because the anomeric proton of the β-linkages resonates in the region as 

suggested in the literature (Roslund, Tähtinen, Niemitz & Sjöholm, 2008). Tentative assignment 

of the anomeric protons of the linkages were shown in Table 7.1 based on the literature reported 

chemical shift. However, complete peak assignment was challenging due to the low intensity and 

poor resolution.    

  Degree of branching 

Degree of hydrolysis for pyrodextrin was reflected by its solubility and viscosity. 

Pyrodextrins that were prepared from heating for 4 h were 100% soluble in water and the 

viscosity was 63.5 cP (Table 7.2).  The results suggest that native waxy maize starch was 

significantly hydrolyzed during dextrinization.  

Degree of branching of pyrodextrin was calculated based on the assignment of the 1H-

NMR spectrum. However, due to the overlap of peaks that were assigned to different linkage 

types, quantification was made based on each resolved peak instead of the linkage type. 

Pyrodextrin prepared by heating at 180 °C for 4 h had 5.8% anomeric protons in the 1,6-

anhydro-β-D-glucopyranose. Glycosyl linkages including α-(1→6), β-(1→6), α-(1→2), and β-

(1→2) were formed. The total degree of branching (DB) was 24.6%. In comparison, the starch 

converted maltodextrin had DB of only 5.8% which was entirely α-D-(1→6) glycosyl linkage. 

The results indicated that transglucosidation occurred during the dextrinization and the resulted 

in a highly branched pyrodextrin.  

 Conclusions 

1H and 13C-NMR spectra of pyrodextrin were assigned with the assistance of 2D-NMR 

techniques including COSY, TOCSY, HSQC and HMBC. During dextrinization, native waxy 

maize starch was hydrolyzed and the resulted pyrodextrin was 100% soluble in water. Only 1.2% 

reducing ends were formed after starch hydrolysis and 1,6-anhydro-β-D-glucopyranose was the 

major starch chain terminal. Transglucosidation occurred during dextrinization and the resulted 

pyrodextrin was highly branched. Glycosyl linkages including α-(1→6), β-(1→6), α-(1→2), and 

β-(1→2) were formed. The total DB was 24.6%. The highly branched structure of pyrodextrin 
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and transglucosidation would reduce the digestibility of starch which makes pyrodextrin a good 

source of soluble dietary fiber.  
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 Tables and figures 

Table 7.1 Resonance assignments of 1H-NMR spectrum of pyrodextrin prepared at 180 °C 

and pH 3.0 for 4 h. 

 

Proton H1 H2 H3 H4 H5 H6 H1’ H2’ H6’ 

β-1,6 
ahydro 

5.44 3.53 3.68 3.81 3.74 4.10 na na na 

α-1,2 5.09 3.55 4.03 3.75 3.64 3.88 5.36 3.68 na 
α-1,6 4.93 3.54 3.71 3.98 3.69 3.81 5.36 nr 3.73 
GAa nr nr nr nr 4.75 nr na na na 
β-1,2 4.61 3.72 nr  nr nr nr na na na 
β-1,4 4.58 3.72 nr nr nr nr na na na  
β-1,6 4.48 3.31 3.38 3.75 3.45 3.61 5.36 na 4.15/

3.87 
Carbon C1 C2 C3 C4 C5 C6 C1’ C2’ C6’ 

β-1,6 
ahydro 

103.72 72.26 77.65 79.31 77.65 67.77 na na na 

α-1,2 100.29 73.44 75.65 79.31 75.65 63.04 102.24 78.45 67.77 
α-1,6 101.24 72.96 75.96 75.96 75.96 63.04 102.24 na 67.77 
GAa 103.72 73.41 nr nr 77.68 nr na na na 
β-1,2 98.05 nr nr nr  nr nr na na na 
β-1,4 nr nr nr nr  nr nr na na na 
β-1,6 105.15 75.65 75.32 78.64 nr 63.04 102.24 na 71.01 
a D-glucuronic acid 

Note: na: not assigned, nr: not resolved  



128 

 

 

Table 7.2 Chemical linkages, viscosity and solubility of maltodextrin and pyrodextrin 

prepared at 180 °C and pH 3.0 for 4 h. 

 

Chemical shifts (ppm) 

DB
a
 

Viscosity 

(cP) 

Solubility 

(%) 

5.435 5.09 4.93 4.75 4.670-4.352 
1,6-

anhydro α-1,2 α-1,6 β-1,3 
β-1,2 
β-1,6 

Maltodextrin 0 0 5.8 0 0 5.8 30 100 

Pyrodextrin 5.8 3.2 8.5 5.1 12.9 24.6 63.5 104 
a DB: degree of branching  



129 

 

 

 

 

Figure 7.1 
1
H-NMR spectrum of maltodextrin (A), pyrodextrin (B) and its expanded region 

(C) and pyrodextrin recorded at 35 °C (D). ↓ indicates new peaks formed in the 

pyrodextrin. 
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Figure 7.2 Total correlation spectroscopy (TOCSY) spectrum of pyrodextrin prepared at 

180 °C and pH 3.0 for 4 h. 
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Figure 7.3 Heteronuclear single quantum coherence (HSQC) spectrum of pyrodextrin 

prepared at 180 °C and pH 3.0 for 4 h. 
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Figure 7.4 Heteronuclear multiple bond correlation (HMBC) spectrum of pyrodextrin 

prepared at 180 °C and pH 3.0 for 4 h. 
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Figure 7.5 New chemical structures formed in the pyrodextrin prepared at 180 °C and pH 

3.0 for 4 h. 
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Figure 7.6 Correlation spectroscopy (COSY) spectrum of pyrodextrin prepared at 180 °C 

and pH 3.0 for 4 h. 
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Figure 7.7 Schemes of α-(1→6) glycosyl linkages, O = anhydroglucose unit;  ̶  = α-1,4 

linkage; ↓ = α-1,6 linkage. 
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Chapter 8 - Preparation and characterization of octenylsuccinate 

starch obtained from waxy maize starch by dry heating 

 Abstract 

A method of preparing soluble octenylsuccinate (OS) starch with a significantly 

simplified production process, low cost, high yield, and excellent product emulsification 

properties was developed in this study. OS starch was prepared by dry heating a mixture of waxy 

maize starch and octenylsuccinic anhydride (OSA). Reaction conditions including pH, 

temperature, and time were studied to prepare OS starch with a high degree of substitution (DS), 

high reaction efficiency (RE), high solubility, and a light color. The optimum reaction conditions 

were found to be pH 8.5 attained by the addition of 3% NH4HCO3 and heating at 180 °C for 2 h. 

RE of ca. 90% was obtained at OSA levels from 1 to 6%. The OSA reaction did not change the 

granular appearance of the starch; however, the molecular weight of starch was significantly 

reduced after reaction. Heat and OSA reaction resulted in significant starch hydrolysis in the 

amorphous and crystalline regions of starch granules. OS substitutions probably occurred at the 

amorphous region of starch granules. Transglucosidation occurred during the reaction. Glycosyl 

linkages including α-(1→2), α-(1→6), β-(1→2), and β-(1→6) linkages were formed, and 1,6-

anhydro-β-D-glucopyranose was formed at the starch chain terminals. OS starch had a degree of 

branching of 19.8%. The highly branched OS starch showed excellent emulsification property 

for vitamin E and vitamin A. 

 

Keywords  

Pyrodextrin, dextrin, octenylsuccinic anhydride 
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 Introduction 

Preparation of octenylsuccinate (OS) starch was first disclosed by Cardwell and 

Wurzburg in 1953. Traditionally, the reaction was carried out in an aqueous slurry system under 

alkaline conditions (Caldwell & Wurzburg, 1953; Sweedman, Tizzotti, Schäfer & Gilbert, 2013; 

Trubiano, 1986). Cardwell and Wurzburg (1953) mentioned dry reaction and organic dispersion 

methods in their patent. In the dry reaction examples, OSA was thinned with toluene, mixed with 

starch, and agitated for 3 days at 90–100 °F. Degree of substitution (DS) was not reported. Starch 

was not expected to be soluble in water or to be significantly degraded.  

Kim et al. (2010) reported a method of preparing OS waxy rice amylodextrin by dry 

heating. OSA was hydrolyzed to free acid form in water and mixed with starch. The mixture was 

adjusted to pH 3.0–5.0, dried, and heated at 130–150 °C for 1–3 h. Molecular weight of starch 

was reduced, but the product still showed a high peak viscosity and significant breakdown in its 

pasting curve, indicating the swelling of starch granules during gelatinization. The OS dextrin 

produced from this approach was suggested as an effective substitute for the fat in dairy cream 

and muffins because it provided good foaming ability, storage stability, and soft texture (Chung, 

Lee, Han & Lim, 2010; Kim, Sandhu, Lee, Lim & Lim, 2010). 

For OS starch to be used as an emulsifier in beverages, it must undergo enzyme or acid 

conversion to be completely soluble in water (Wurzburg, 1986). In 2008, we filed a provisional 

patent application describing an approach to prepare OS starch by dry heating the mixture of 

OSA and granular starch. Our goal was to prepare soluble OS dextrins that can be used in 

beverage applications. The method of preparing OS starch by dry heating is described in this 

study. Optimum reaction conditions were investigated to prepare OS starch with a high degree of 

substitution (DS), high reaction efficiency (RE), high solubility, and a light color. The structure 

and properties of the OS dextrins were evaluated. The method significantly simplifies the OS 

starch production process and has great potential for low-cost, high-yield industrial production of 

OS starches with excellent emulsification properties. 

 Materials and methods 

 Materials  

Octenylsuccinic acid anhydride (OSA) was obtained from Gulf Bayport Chemicals L.P. 

(Pasadena, TX). Waxy maize starch (Amoica) and commercial OS starch were provided by 
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National Starch LLC (Bridgewater, NJ). α-amylase (BAN 480) was obtained from Novozyme 

(Bagsvaerd, Denmark) with an activity of 480 KNU-B/g. One KNU is defined as the amount of 

enzyme that dextrinizes 5.26g of starch (Merck Amylum soluble) per hour under standard 

conditions (37.0 °C, 0.0003MCa2+, and pH5.6). All other chemicals were analytical grade. 

Vitamin E acetate (purity >98%) and vitamin A were obtained from Zhejiang NVB Co. Ltd (Xin 

Chang, Zhejiang, China) 

 Preparation of OS starch  

The process of preparing OS starch is shown in Figure 8.1. Waxy maize starch (100 g) 

was suspended in distilled water (150 g) with agitation. The pH of the starch slurry was adjusted 

by adding NH4HCO3. The starch suspension was filtered through filter paper (P8, Fisher 

Scientific, Pittsburgh, PA), and the starch cake was mixed with 1–6% OSA (wt% based on the 

dry weight of starch) by a mixer (Model K45SSWH, KitchenAid, St. Joseph, MI) at 2nd speed 

for 15 min. The mixture was dried in an air-forced oven at 40 °C overnight. Starch mixture was 

ground by an analytical mill (A-10, Tekmar, Staufen, Germany) followed by sieving through a 

110-mesh sifter. The powdered starch was thinly spread over an oven pan and heated at 120–

190°C for 0.5–4 h. Degree of substitution (DS) was measured by titration, nuclear magnetic 

resonance spectroscopy (NMR), or high-performance liquid chromatography (HPLC).  

 Titration 

DS of OS starches was determined by a titration method as previously described with 

some modifications (Bai & Shi, 2011). Starch (5.00 g dry weight) was suspended in methanol 

(20 mL) to remove the unreacted OSA. After filtration, the starch cake was re-suspended in a 

mixture of 0.100 M HCl and methanol (1:9, w/w) (20 mL) and stirred for 30 min. The starch was 

filtered and washed with a mixture of water and methanol (1:9, w/w) (40mL) and dispersed in 

water (300 mL). For the completely soluble starch, the starch solution was titrated by 0.100 M 

NaOH directly. For partially soluble starches, the suspensions were cooked in a boiling water 

bath for 20 min, cooled to room temperature, and titrated by 0.100 M NaOH. Phenolphthalein 

was used as an indicator. DS, %OS, and reaction efficiency (RE) were calculated as below: 

% OS =  ( )
W

VV 21100.021 ××−
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Where % OSA is the weight percentage of OSA in OSA modified starch, V1 is the titration 

volume of NaOH (mL) for OS starch, V2 is the titration volume of NaOH (mL) for native starch, 

W is the dry weight (g) of the OS starch. 

DS =  

RE =
 

 NMR spectroscopy 

Starch samples (0.2 g) were exchanged with D2O (1 mL) twice to reduce the effect of 

water peak. The D2O-exchanged starch was dissolved in D2O at 10% (wt%) concentration. The 

NMR spectra were recorded on a Varian 500 NMR System (Palo Alto, CA) at 25 °C. The NMR 

spectrometer is equipped with a cryogenic carbon enhanced 5-mm triple resonance inverse 

detection pulse field gradient probe operating at 499.839 and 125.697 MHz for 1H and 13C, 

respectively. The 1H spectra were collected in 32 individual scans with a sweep width of 16 ppm 

and a delay time of 1 s. The broadband proton-decoupled 13C spectra were the accumulation of 

500 scans. 

 High-performance liquid chromatography (HPLC) 

Determination of DS by HPLC was reported elsewhere (Qiu, Bai & Shi, 2012). Vitamin 

E was measured by an HPLC system (1100 Series, Agilent, Waldbronn, Germany) equipped 

with a quaternary pump, an automatic injector with a 100µl loop, and a diode array detector 

(DAD) and a Phenomenex Kinetex C18 column (2.6 µm, 100×4.6 mm; Torrance, CA) at 25 °C. 

Methanol was used as mobile phase with flow rate of 1.0 mL/min, and the detection wavelength 

was set at 285 nm. Concentration of substance in HPLC was determined from the peak area.  

 Solubility 

Solubility of OS starch was determined by a handheld refractometer (Fisher Scientific, 

Pittsburgh, PA). Starch (0.100 g) was dissolved in distilled water (0.9 mL) and centrifuged at 

6708 x g for 3 min. Starch concentration in the supernatant was determined by the refractometer. 

OSA

OSA

%209210
%162

×−

×

%100
starch  the toadded%OSA 

starch OS of%OSA 
×
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 Small-angle x-ray scattering (SAXS) and wide-angle x-ray diffraction (WAXD) 

Starch in a mixture of water/glycerol (20/80, w/w) at a ratio of 1:1 (w/w) was prepared by 

mixing manually with a spatula followed by equilibrium at room temperature for 15 min. X-ray 

crystallographs were recorded at 25–75 °C. Native and OS starch were examined by SAXS and 

WAXD at the X27C beamline at the National Synchrotron Light Source (NSLS), Brookhaven 

National Laboratory (BNL). The details of the experimental setup at the X27C beamline have 

been reported elsewhere (Cai, Shi, Rong & Hsiao, 2010; Chen et al., 2006; Chen et al., 2007; 

Chu & Hsiao, 2001).  

 Color measurement 

Starch color was measured by Chromameter (CR-210, Konica Minolta Sensing 

Americas, Inc., Ramsey, NJ). Color was reported in the CIE L*a*b color system. L is the 

lightness factor. The maximum L value is 100, representing a perfect reflecting diffuser, and the 

minimum L value is 0, representing black. a and b are the chromaticity coordinates; positive a is 

red, negative a is green, positive b is yellow, and negative b is blue.  

 Gel permeation chromatography (GPC) 

GPC analysis was performed as previously described (Cai, Shi, Rong & Hsiao, 2010). OS 

starches (4 mg) were dissolved in DMSO (4 mL) and stirred at room temperature for 12 h. 

Samples were injected after filtering through a 2-µm filter (Millex-AP, Millipore, Billerica, MA). 

GPC results were analyzed using CirrusTM GPC Software Version 3.0 (Agilent Technologies, 

Santa Clara, CA). Molecular size was relative to the dextran standards. 

 Scanning electron microscope (SEM) 

The starch samples were coated with ≈18nmAu/Pt and examined by a scanning electron 

microscope (LEO1530VP, Zeiss, German) with the field emission gun operating at 3kV. 

 Preparation of vitamin E emulsion 

OS starch solution in water at 8% solid content was heated in a water bath at 60 °C for 2 

h. Sodium benzoate of 0.04 g was added to the starch solution as a preservative. Vitamin E 

acetate of 8% (based on the weight of aqueous phase) was added while mixing with a portable 

homogenizer (Bamix, Mettlen, Switzerland) for 3 min. The starch solution was pre-homogenized 
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by a bench-top homogenizer (PRO 350, PRO Scientific Inc., Oxford, CT) at 6000 RPM for 2 

min. The pre-emulsion was homogenized by a microfluidizer (M-110P, Microfluidics, Newton, 

MA) for 6 passes at 20,000 PSI. Particle size was measured 1 h after preparation of the emulsion 

by a laser diffraction particle size analyzer (LA-910, HORIBA, Ltd., Tokyo, Japan). Volume-

surface mean diameter (d32) and volume-weighted mean diameter (d43) were calculated as 

suggested in the literature (Charoen et al., 2011; Jafari, He & Bhandari, 2007). Emulsions were 

stored in the dark at room temperature. 

 Preparation of vitamin A emulsion 

Starch (30 g) was added to water (60 g) and heated in a 60 °C water bath for 30 min, then 

pH was adjusted to 6.0 by 1% (wt%) NaOH. Vitamin E (0.04 g) and sodium benzoate (0.04 g) 

were added to the starch solution as preservatives. The starch solution was pre-homogenized by a 

bench-top homogenizer (PRO 350, PRO Scientific Inc., Oxford, CT) at 8000 RPM for 5 min. 

Vitamin A (10 g) was added gradually (over a period of 3-5 min) to the starch solution while 

homogenizing at 8000 RPM. Then the speed was increased to 10,000 RPM for another 5 min. 

The pre-emulsion was homogenized by a microfluidizer for 7 passes at 20,000 PSI. The 

emulsion was analyzed by laser diffraction particle size analyzer (LA-910, HORIBA, Ltd., 

Tokyo, Japan) immediately after preparation. Emulsions were stored in the dark at room 

temperature. 

 Determination of vitamin E concentration of the emulsion 

An internal emulsion sample (200 µL) was collected immediately or 7 days after 

preparation of the emulsion. The emulsion was mixed with 0.8 mL sodium acetate buffer (0.1 M, 

pH 5.2) and hydrolyzed by α-amylase (4µL) at 60 °C for 15 min, then diluted to 10 mL by 

ethanol. After centrifugation at 6708 x g for 3 min, the supernatant (0.1 mL) was diluted to 10 

mL with methanol and analyzed by HPLC. The concentration of vitamin E in the emulsion (C1) 

was calculated from a vitamin E standard curve. Oil load (%) was calculated from the equation 

below: 

Oil load (%) =	
�1

�2
 X 100% 

Where C2 is the concentration of vitamin E added to the emulsion 
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 Statistical analysis 

All tests were performed in triplicate except the color analysis. Color was measured once, 

and the average instrument error was reported. Means were compared with Student’s t test. Least 

significant differences for comparison of means were computed at p < 0.05. 

 Results and discussion 

 Preparation of OS starch from dry heating 

 Effects of reaction pH 

Reaction pH changed in three steps during the process (Figure 8.1, Table 8.1). First, pH 

of the starch slurry was adjusted to 8.0, 8.5, 8.5, and 8.8 (pH I) when NH4HCO3 was added at 

concentrations of 0.3, 3.0, 4.0, and 6.3% (wt% based on the dry weight of starch), respectively. 

Second, the starch pH decreased to ca.5 (pH II) after pre-drying, which was attributed to 

hydrolysis of OSA from anhydride form to acid form. Third, after heating at 180 °C, starch pH 

further decreased to 3 (pH III), which resulted from the decomposition of NH4HCO3. OSA 

reaction and dextrinization took place at pH III. It was observed that a different concentration of 

NH4HCO3 resulted in little difference in pH III, which was probably attributed to weak 

alkalibility of NH4HCO3 as well as thermal decompositon of NH4HCO3 at high temperatures.  

DS and RE of OS starch were significantly affected by the concentration of NH4HCO3, 

but solubility and color were not (Table 8.1). As the concentration of NH4HCO3 increased from 

0.3 to 3%, RE increased from 85.93 to 92.00%. Further increasing the concentration of 

NH4HCO3 resulted in decreased DS and RE. OSA appeared to require hydrolyzation to its acid 

form before the reaction to achieve high DS and RE (Kim et al., 2010). In addition, hydroxyl 

groups of starch needed to be activated for nucleophilic attack on OSA (Jeon, Lowell & Gross, 

1999). NH4HCO3 probably played an important role in ionizing starch as well as hydrolyzing 

OSA, because DS and RE were very low without NH4HCO3 (Table 8.1). It was suspected that 

adding a small amount of NH4HCO3 limited starch ionization and OSA hydrolysis, but at a high 

concentration of NH4HCO3, reduced DS and RE was probably due to the reaction between OSA 

and NH4HCO3 during pre-drying. The reaction was optimum when 3% NH4HCO3 was added to 

adjust pH I to 8.5.  
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NH4HCO3 instead of NaOH and Na2CO3 was used in this study because it decomposed at 

high temperature. This property of NH4HCO3 has two advantages. On one hand, a lower pH III 

was achieved with NH4HCO3 than NaOH and Na2CO3, which was not only favorable for 

achieving high DS (Kim, Sandhu, Lee, Lim & Lim, 2010) but also for promoting starch 

conversion (Wurzburg, 1986). On the other hand, little residue was in the OS starch (<1ppm 

nitrogen content), which was desirable for food applications. 

 Effects of reaction temperature 

The effects of temperature on DS, RE, solubility, and color of OS starch are shown in 

Table 8.2. DS increased as temperature increased from 120 to 180 °C and decreased as 

temperature increased to 190 °C. The solubility of OS starch was 0% when OSA and the starch 

mixture were heated at 120 and 140 °C for 2 h and increased to ca. 92% when heated at 170 °C. 

The highest solubility was obtained when the reaction was carried out at 180 °C. A further 

increase in temperature to 190 °C caused a slight decrease in solubility. The color of OS starch 

became yellowish as temperature reached 170 °C. High temperature resulted in products with 

higher b value and lower L value, reflecting a yellowish color, and the starch darkened. The 

yellow color was attributed to dextrinization of starch as well as the yellowish color generated by 

heating OSA.  

Reaction temperature had a significant effect on OSA modification as well as starch 

dextrinization. Reaction efficiency was promoted at high temperature. However, low RE at 190 

°C might be due to the evaporation of OSA, which has a boiling temperature in the range of 179-

183 °C. Starch conversion was also promoted at high temperature. In the approached described 

by Kim et al. (2010), the reaction was carried out at 130–150 °C. The OS starch was not 

expected to be soluble in water, which was also observed in the current study. The optimum 

reaction temperature was suggested to be 180 °C. 

 Effects of reaction time 

The effects of reaction time on DS, RE, solubility, and OS starch color are shown in 

Table 8.3. At 0.5 h reaction time, DS was 0.0185 and RE was ca. 78%. After reacting for 1 h, DS 

and RE reached 0.02 and 84.1%, respectively. Further increase in reaction time did not increase 

DS and RE. Solubility of OS starch was 0% at 0.5 h reaction time and increased to 98.5% after 2 

h. Molecular size distribution of OS starch prepared at 1, 2, and 4 h is shown in Figure 8.2. 
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Starch molecules were significantly hydrolyzed during the reaction, and starch hydrolysis 

increased with reaction time. Even though OS starch prepared from 2-h and 4-h reactions 

showed no significant difference in solubility, the molecular size of the 4-h OS starch was 

smaller. Overall, results indicated that the OS substitution occurred in early stages of the reaction 

(0.5 to 1 h), whereas dextrinization and starch conversion occurred at later stages (1 to 4 h). 

Because longer reaction time resulted in starch with a darker color, the optimum reaction time 

was ca. 2 h. 

 OSA concentration 

Properties of OS starch at different substitution levels are shown in Table 8.4. DS of OS 

starch increased with the OSA concentration. RE remained ca. 90% for all reactions. Solubility 

of the OS starch at the 1 and 2% OS modification level was 95%. Solubility increased to 97% 

when OSA concentration increased to 3% but dropped to 85% as OSA concentration increased to 

6%. The increase in solubility was probably attributed to the low pH from the OS acid. It is 

interesting to note that after OSA concentration increased further to 6%, starch solubility 

decreased significantly. It was suspected that starch molecules were cross-linked at high OS 

concentration. Color of the OS starch was significantly darker than the other samples.  

It is interesting to observe that RE of the OSA reaction by dry heating was significantly 

higher than the reaction between OSA and granular starch in an aqueous slurry system (Bai & 

Shi, 2011). In addition, RE remained at 90% when OSA concentration was 6% compared with 

only 80% for the slurry reaction (Bai & Shi, 2011). The results indicated that OSA reaction by 

dry heating was more effective than the slurry reaction when starch was in granular form.   

 Structure characterization of OS starches 

OS starch prepared at 3% OSA concentration with pH 8.5 (adjusted by 3% NH4HCO3) 

and heated at 180 °C for 2 h was characterized by SEM, WAXS, DSC, SAXS, and NMR.  

OS starch appeared to have the same granular shape and surface morphology as native 

starch (Figure 8.3), indicating that OSA modification did not change the appearance of starch 

granules. 

OS starch showed an A-type crystalline pattern, but peaks were significantly broadened 

and peak intensities were reduced (Figure 8.4). As suggested in the previous study, native waxy 

maize starch had a crystallinity of 43.3% and the crystal size was 9.6 nm. After OSA reaction, 
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crystallinity and crystal size decreased to 22.1% and 7.1 nm, respectively. OS starch at elevated 

temperature showed a decreasing trend for peak broadening and peak intensity (Figure 8.4). OS 

starch became completely amorphous at 75 °C. The results indicated that the OSA reaction 

significantly disrupted the crystalline region of native waxy maize starch granules. Although 

starch crystals still existed, crystal size decreased and starch crystals were very weak and started 

melting at a relatively low temperature. Compared with OSA reaction in an aqueous slurry 

system, which did not affect the crystalline region of starch granules (Bai & Shi, 2011; Bhosale 

& Singhal, 2007; Shogren, Viswanathan, Felker & Gross, 2000; Song, He, Ruan & Chen, 2006), 

the OSA reaction in this study significantly hydrolyzed the crystalline regions of starch granules. 

The process affected the starch granules in a manner similar to dextrinization. 

Reduced crystallinity of OS starch was also reflected by the DSC results (Table 8.5). 

Compared with the native starch, OS starch had a lower onset temperature and lower enthalpy 

value. As the substitution level increased, the melting peak range became narrower and enthalpy 

decreased, suggesting reduced crystallinity. Compared with the yellow dextrin that was prepared 

without OSA modification, the melting peak was narrower and the enthalpy was significantly 

lower. The results indicated that the crystalline regions of starch granules were affected more 

when OSA reaction and thermal degradation occurred simultaneously. 

OS starch showed no SAXS lamellar peak when analyzed in glycerol/water (8/2, w/w) at 

room temperature and elevated temperatures. In contrast, native waxy maize starch showed a 

well-defined SAXS peak at 0.62 nm-1 (Figure 8.5). The SAXS characteristic peak is attributed to 

the periodic lamellar arrangement of semicrystalline starch granules with a repeat distance of ca. 

9 nm. Starch dextrinization with a combination of heat and acid was studied by SAXS. 

Disappearance of the SAXS peak indicated that the lamellar structure of granular starch was 

completely destroyed during the process. Therefore, similar to dextrinization of starch, the 

lamellar structure of starch was destroyed by the OSA reaction at high temperature. 

 Glycosyl linkage type of OS starch 

1H-NMR spectrum of OS starch is shown in Figure 8.6. Resonances were observed in the 

region of 1.3 to 3.0 ppm, which were attributed to OS substituted groups as previously assigned 

(Bai, Shi, Herrera & Prakash, 2011). The starch peaks were in the region of 3.3 to 5.3 ppm. The 

resonances at 5.45, 5.11, 4.94, and 4.51 ppm were assigned to the anomeric protons of 1,6-
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anhydro-β-D-glucopyranose, α-(1→2), α-(1→6), and β-(1→6) linkages, respectively, as 

suggested in the previous work for yellow dextrin. The content of α-(1→2), α-(1→6), and β-

(1→6) were 3.35, 5.65, and 7.3%, respectively. 13C-NMR spectrum of OS starch shows the OS 

peaks in the region of 15 to 40 ppm (Figure 8.7). The resonances at 101.85, 98.40, 99.32, and 

103.44 ppm were assigned to the anomeric carbons of 1,6-anhydro-β-D-glucopyranose, α-

(1→2), α-(1→6), and β-(1→6) linkages, respectively. These results indicate that during the dry 

reaction, starch hydrolysis and transglucosidation occurred. OS starch had a highly branched 

structure with a degree of branching [non-α-(1→4) bonds] of 19.8%. 

 Application in vitamin E and vitamin A emulsions 

Vitamin E emulsion stability for lab-made OS starch and commercial starch is shown in 

Table 8.6. Fresh emulsion from lab-made OS starch has an average particle size (d32) of 1.0 µm. 

Commercial starch has a slightly higher average particle of 1.3 µm. Oil load for lab-made OS 

starch was 93.2%, which is almost 10% higher than that for commercial starch. After storage at 

room temperature for 7 days, average particle size and oil load decreased for both lab-made OS 

starch and commercial starch. However, lab-made OS starch showed superior stability. OS starch 

prepared by dry reaction has great potential for commercial application due to its excellent 

emulsifying properties. 

Particle size distribution of the vitamin A emulsion is shown in Figure 8.8. Particle size 

of vitamin A emulsion prepared from lab-made OS starch was significantly smaller than that 

from commercial OS starch. A homogeneous emulsion system was obtained from lab-made OS 

starch, whereas the oil phase separated quickly when commercial OS starch was used (Figure 

8.9). The results indicate that the OS starch had superior emulsification properties for vitamin A.    

 Conclusions 

OS starch with high DS and solubility was prepared from dry heating granular starch with 

OSA. The best product with high solubility and DS and light color was obtained when 3% (wt% 

by starch weight) NH4HCO3 was added and the starch was heated at 180 °C for 2 h. The OS 

starch had a DS of 0.022, and the reaction efficiency was 90%. The OS starch was 100% soluble 

in water and had a light yellow color.  

The structure of OS starch was investigated by SEM, WAXD, DSC, SAXS, and NMR. 

OSA modification by dry heating did not change the appearance of the granular starch, but the 
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molecular weight of starch was significantly reduced after the reaction. Heat and OSA reaction, 

which reduced the pH of starch, resulted in significant starch hydrolysis in the amorphous and 

crystalline regions of starch granules. The crystalline region was affected by OSA modification. 

The process of dry reaction was similar to dextrinization. A significant number of α-(1→2), α-

(1→6), and β-(1→6) linkages were formed, and β-anhydro-D-glucopyranose was formed as 

starch chain terminals. OS starch obtained from dry reaction had a highly branched structure 

with degree of branching [non-α-(1→4) bonds] of 19.8%. OS starch prepared from a dry reaction 

showed excellent emulsification properties for vitamin E and vitamin A emulsions. 
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 Tables and figures 

Table 8.1 Characteristics of octenylsuccinate (OS) starch prepared at different reaction 

pH. Reactions were carried out at 180 °C; heating time was 2 h. 

 

NH4HCO3 

(%) 

pH
a
 

DS
b
 RE

c
 (%) 

Solubility 

(%) 

Color 

I II III L a b 

0 4.7 3.9 2.5 0.0022 9.3 22.0 ND
d
 ND ND 

0.3 8.0 3.5 2.9 
0.0202 ± 

0.0004 b 

85.93 ± 

0.09 b 
98.9 ± 1.7 a 90.04 -0.93 +12.76 

3.0 8.5 5.7 3.0 
0.0220 ± 

0.0007 c 

92.00 ± 

2.36 d 
98.3 ± 1.9 a 92.50 -1.37 +11.11 

4.0 8.5 5.8 2.8 
0.0214 ± 

0.0001 c 

88.60 ± 

2.51 c 
98.5 ± 3.8 a 91.19 -1.21 +11.41 

6.3 8.8 5.1 3.0 
0.0190 ± 

0.0007 a 

79.40 ±  

2.51 a 
95.0 ± 1.3 a 90.76 -1.24 +11.83 

 
a pH I, II, III are described in Figure 8.1.  
b DS: degree of substitution 
c RE: reaction efficiency  
d ND:  not determined 

Means with the same letter are not significantly different from each other (P<0.05) 
Average error of color analysis was 0.01, 0.01, and 0.00 for L, a, and b values 
respectively.   
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Table 8.2 Characteristics of octenylsuccinate (OS) starch prepared at different reaction 

temperatures. Reactions were carried out at pH 8.5 (adjusted by 3% NH4HCO3); heating 

time was 2 h. 

 

Temp 

(°C) 
DS

a
 RE

b
 (%) 

Solubility 

(%) 

Color 

L a b 

120 0.0156 ± 0.0010 a 66.10 ± 4.10 a 0.0 ± 0.0 a 94.63 -1.49 +2.45 

140 0.0168 ± 0.0011 b 71.10 ± 4.71 b 0.0 ± 0.0 a 95.29 -1.43 +3.33 

170 0.0220 ± 0.0001 c 88.35 ± 0.58 c 92.2 ± 1.9 b 93.48 -1.50 +7.46 

180 0.0220 ± 0.0007 c 92.00 ± 2.36 d 98.2 ± 1.9 c 92.50 -1.37 +11.11 

190 0.0206 ± 0.0010 c 86.90 ± 4.10 c 97.5 ± 2.0 c 88.43 -0.14 +16.89 
a DS: degree of substitution 
b RE: reaction efficiency 
Means with the same letter are not significantly different from each other (P<0.05) 
Average error of color analysis was 0.01, 0.01, and 0.00 for L, a, and b values 
respectively.   
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Table 8.3 Characteristics of octenylsuccinate (OS) starch prepared at different reaction 

time. Reactions were carried out at pH 8.5 (adjusted by 4 % NH4HCO3) and 180 °C with 

heating time of 2 h. 

 

Time (h) DS
a
 RE

b
 (%) Solubility (%) 

Color 

L a b 

0.5 0.0185 ± 0.0010 a 78.03 ± 4.10 a 0.0 ± 0.0 a 92.64 -1.17 +7.71 

1.0 0.0200 ± 0.0011 ab 84.07 ± 4.71 ab 22.2 ± 2.2 b 92.66 -1.31 +8.68 

2.0 0.0214 ± 0.0001 b 88.60 ± 2.51 b 98.5 ± 3.8 c 91.19 -1.21 +11.41 

4.0 0.0213 ± 0.0008 b 90.55 ± 2.26 b 101.1 ± 1.3 c 89.22 -0.61 +13.84 
a DS: degree of substitution 
b RE: reaction efficiency 
Means with the same letter are not significantly different from each other (P<0.05) 
Average error of color analysis was 0.01, 0.01, and 0.00 for L, a, and b values 
respectively. 
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Table 8.4 Characteristics of octenylsuccinate (OS) starch prepared with different levels of 

octenylsuccinic anhydride (OSA). Reactions were carried out at pH 8.5 (adjusted by 3% 

NH4HCO3) at 180 °C and a reaction time of 2 h. 

 

OSA 

(%) 
DS

a
 RE

b
 (%) 

Solubility 

(%) 

Color 

L a b 

1 0.0067 ± 0.0006 a 89.40 ± 7.20 a 95.0 ± 1.7 a 91.92 -1.41 +9.83 

2 0.0141 ± 0.0001 b 89.70 ± 6.30 a 94.7 ± 0.8 a NDc ND ND 

3 0.0220 ± 0.0007 c 92.00 ± 2.36 a 98.2 ± 1.9 b 92.50 -1.37 +11.11 

6 0.0386 ± 0.0007 d 93.43 ± 2.36 a 85.0 ± 2.7 c 89.27 -0.72 +14.12 
a DS: degree of substitution 
b RE: reaction efficiency 
c ND: not determined 
Means with the same letter are not significantly different from each other (P<0.05) 
Average error of color analysis was 0.01, 0.01, and 0.00 for L, a, and b values 
respectively. 
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Table 8.5 Differential scanning calorimetry (DSC) of native waxy maize starch, octenyl 

succinate (OS) starches, and pyrodextrin. 

 

 OSA (%) To (°C) Tp (°C) Tc (°C) ΔH (J/g) 

Native starch 0 93.7±0.9 100.7±0.8 109.0±0.5 17.5±0.2 

Yellow dextrin 0 47.1 ± 2.2 61.9 ± 0.6 86.3 ± 1.1 10.1 ± 0.1 

OS starches 1 55.0 ± 0.2 67.5 ± 1.2 91.6 ± 1.3 3.4 ± 0.2 

 2 53.0 ± 1.1 66.1 ± 0.1 89.9 ± 0.9 3.5 ± 0.2 

 3 54.1 ± 0.9 65.6 ± 0.2 84.7 ± 0.7 2.3 ± 0.1 
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Table 8.6 Emulsion characteristics of octenylsuccinate (OS) starch and commercial starch. 

 

Storage time Starch d32 d43 Oil load (%) 

Fresh 
OS starch 1.0 1.28 96.1 ± 0.0 

Commercial 1.3 1.67 87.5 ± 0.7 

7 days 
OS starch 0.43 0.45 84.5 ± 0.9 

Commercial 0.47 0.53 71.7 ± 0.6 
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Figure 8.1 Process of preparing octenylsuccinate (OS) starch from dry heating 
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Figure 8.2 Molecular size distribution of octenylsuccinate (OS) starch prepared by heating 

at 180 °C for 1 to 4 h.  
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Figure 8.3 Scanning electron microscope (SEM) of native waxy maize starch (A) and 

octenylsuccinate (OS) starch prepared at 3% OSA, pH 8.5 (adjusted by 3% NH4HCO3), 

180 °C and reaction time of 2 h. (B). The scale bar in each picture is 3 µm. 
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Sample Crystallinity (%) FWHM  D (nm) 
OS starch (25°C) 22.1 0.98 7.1 

 
  
Figure 8.4 Wide-angle X-ray diffraction patterns of native waxy maize starch (dotted line) 

and octenylsuccinate starch (solid line) prepared at 3% OSA, pH 8.5 (adjusted by 3% 

NH4HCO3), 180 °C and reaction time of 2 h and native waxy maize starch in glycerol/water 

(8/2, w/w). 
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Figure 8.5 Small-angle X-ray scattering (SAXS) patterns of octenylsuccinate starch (dotted 

line) prepared at 3% OSA, pH 8.5 (adjusted by 3% NH4HCO3), 180 °C and reaction time 

of 2 h and native waxy maize starch (solid line) in glycerol/water (8/2, w/w).  
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Figure 8.6 
1
H-NMR spectrum of octenylsuccinate (OS) starch prepared at 3% OSA, pH 8.5 

(adjusted by 3% NH4HCO3), 180 °C and reaction time of 2 h 
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Figure 8.7 

13
C-NMR spectrum of octenylsuccinate (OS) starch prepared at 3% OSA, pH 

8.5 (adjusted by 3% NH4HCO3), 180 °C and reaction time of 2 h. 
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Figure 8.8 Particle size distribution of emulsion prepared by DR starch and commercial 

starch immediately after preparation. 
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Figure 8.9 Vitamin A emulsion prepared by lab made OS starch prepared at 3% OSA, pH 

8.5, 180 °C, and heating time of 3 h (A) and commercial starch (B).  
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Chapter 9 - Conclusions and future work 

 Conclusions 

This dissertation reported the methods of preparing octenylsuccinate (OS) starch of 

different structures. Conformation of OSA, OS substitution location on anhydroglucose units, OS 

substitution distribution along starch chains, and emulsification property of OS starch were 

described. In a separate topic, a model of structural changes from native waxy maize starch to 

cold water soluble pyrodextrin was proposed and formation of new linkages was reported.  

Structure of the OSA and modified starches was studied by one-dimensional (1D) 1H and 
13C and two-dimensional (2D) homonuclear correlation and heteronuclear correlation nuclear 

magnetic resonance (NMR) spectroscopy. By applying the 1D and 2D NMR techniques, 

complete assignments of 1H and 13C NMR spectra of the OSA reagent were achieved. The OSA 

reagent used in this study was a 5:1 mixture of the trans:cis isomer of the 2-octenyl side chain. 

The systematic name of the trans isomer of the OSA reagent is 3-[(E)-oct-2-enyl]oxolane-2,5-

dione. OS substitution occurred mainly at the O-2 and O-3 positions of the anhydroglucose units 

in the OSA-modified granular starch. 

The substitution distribution of OS groups was investigated by enzyme hydrolysis 

followed by chromatography analysis. When OS starch was prepared in an aqueous slurry 

system from granular waxy maize starch, OS substitution predominantly occurred at the 

amorphous region of the starch granules. OS starch with low substitution level (DS 0.018) had 

OS groups located close to the branching points, whereas the OS substitution in highly 

substitution OS starch (DS 0.092) occurred near non-reducing ends as well as the branching 

points. When OS starch was prepared in a starch solution with soluble maltodextrin, OS 

substitutions were found close to the branching points as well as the non-reducing ends. In 

comparison to OS maltodextrin obtained from granular reaction, OS substitution was more 

uniformly distributed along the starch chain, and more OS substitutions were found close to the 

non-reducing ends. 

The reaction of octenylsuccinic anhydride (OSA) with a mixture of granular waxy maize 

starch and maltodextrin was investigated. OSA was reacted with a 1:1 (w/w) mixture of the 

granular starch and maltodextrin at OSA levels of 1.5, 3, 9, and 15% (wt% based on starch 

weight). OSA preferred to react with maltodextrin than semi-crystalline granular starch when 
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both existed in the system. OSA reacted with maltodextrin at a much faster rate and to a greater 

extent than with granular starch. 

Structural changes of starch granules during dextrinization were investigated by multiple 

techniques including synchrotron small-angle X-ray scattering (SAXS), wide-angle X-ray 

diffraction (WAXD), differential scanning calorimetry (DSC) and gel permeation 

chromatography (GPC). The starch backbone was hydrolyzed by acid at the amorphous region. 

Unwinding of the double helices occurred as well and the crystallite size was decreased. Starch 

molecules were hydrolyzed into small molecule fractions but still remained in a radial 

arrangement.  

Structure of pyrodextrin was characterized by NMR spectroscopy for the first time. 

Pyrodextrin was prepared by heating waxy maize starch at pH 3 and 180 °C for 4 h. 1H and 13C-

NMR spectra of pyrodextrin were assigned with the assistance of 2D techniques including 

COSY, TOCSY, HSQC and HMBC. During dextrinization, native waxy maize starch was 

hydrolyzed and the resulted pyrodextrin became 100% soluble in water. There were 1.2% 

reducing ends formed after starch hydrolysis and 1,6-anhydro-β-D-glucopyranose was the major 

terminal group. Glycosyl linkages including α-(1→6), β-(1→6), α-(1→2), and β-(1→2) were 

formed. The degree of branching of pyrodextrin was 29.7%. Transglucosidation occurred during 

dextrinization and the resulted pyrodextrin was highly branched. 

OS starch with high DS and solubility was prepared from dry heating granular starch with 

OSA. pH was preferably adjusted by NH4HCO3 than NaOH and Na2CO3. Best product with high 

solubility, DS and light color was obtained when 3% (wt% by starch weight) NH4HCO3 was 

added and heated at 180 °C for 2 h. The OS starch had a DS of 0.022 and the reaction efficiency 

was 90%. The OS starch was 100% soluble in water and had a light yellow color. Starch was 

significantly hydrolyzed in the amorphous and crystalline regions of starch granules during 

heating in the presence of OSA. Significant amount of α-(1→2), α-(1→6), β-(1→6) and β-(1→2) 

linkages were formed and 1,6-anhydro-β-D-glucopyranose was formed as starch chain terminals. 

OS starch obtained from dry reaction had a highly branched structure and showed excellent 

emulsification property for vitamin E and vitamin A. 
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 Future works 

Based on the results and conclusions from this dissertation, future research on the 

following subjects should be considered:  

1. To investigate the emulsification properties of OS starches of different structures. 

Effect of substitution distribution along the starch chain, the molecular size of OS 

starch, the degree of branching, and DS of OS starch on the emulsion stability has not 

been investigated. It would be interesting to compare the emulsification properties of 

OS starches obtained from the two approaches as well as the dry heating method. 

2. To explore the functionality of OS starch in emulsion and encapsulation for 

applications in food and drug delivery.  

3. To further understand the structure and properties of OS starch prepared from dry 

heating method. 

4. The effect of dextrinization conditions (ie. temperature, time and pH) on the 

formation of different linkage types. 
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Appendix A - Starch esters and method of preparation 

 Background of the invention 

Field of the Invention 

The present invention is generally directed towards starch that has been modified with an 

organic acid anhydride reagent and methods of preparing the same.  In certain embodiments, 

starch produced according to the present invention exhibits good water solubility and 

emulsifying characteristics when compared with conventional starches.  Further, methods of 

preparing modified starches according to the present invention do not require further treatment 

with acids, other than the organic acid anhydride reagent, or enzymes to make the starch water 

soluble.    

Description of the Prior Art 

Native starch is partially crystalline and not soluble in water at room temperature.  Also, 

native starch molecules are hydrophilic and do not possess emulsifying properties.  A number of 

references such as U.S. Patent No. 2,661,349 and U.S. Patent No. 6,037,466 disclose introducing 

hydrophobic groups to the starch by reaction with cyclic dicarboxylic acid anhydrides so that the 

starch can be used as an emulsion stabilizer.   

Octenyl succinc acid anhydride (OSA) treated starch, prepared by adding up to 3% OSA, 

has been approved by the FDA for food use and can be used in food and beverage applications. 

Starch may also be reacted with greater than 3% OSA for non-food applications, such as in oil- 

and petroleum-based cosmetics, or pharmaceutical pastes, alcohol-based lotions, body deodorant 

sprays, and encapsulation of flavors, fragrances, vitamins, clouds, and oils.  Conventionally, 

OSA-modified starch must undergo acid hydrolysis or enzymatic conversion in order to be 

rendered water soluble at room temperature.  Modified starch that undergoes this further 

processing may contain acid or enzyme residues.    



168 

 

 Summary of the invention 

In accordance with one embodiment of the present invention, there is provided a method 

of preparing a lipophilic starch.  First, a starch mixture having a pH of between about 7 to about 

11 is formed.  The starch mixture is then processed to obtain a starch cake.  An organic acid 

anhydride reagent is added to the cake thereby forming a reaction mixture.  The reaction mixture 

is dried to a moisture content of between about 0 to about 15% by weight.  The dried reaction 

mixture is heated at a temperature of at least about 100°C for between about 1 minute to about 6 

hours. 

 Detailed description of the preferred embodiment 

The present invention provides a method for introducing a hydrophobic group onto starch 

molecules, degrading the starch, and making the starch water soluble.  The starch to be modified 

according to the present invention may be native, converted, or derivatized.  Exemplary starches 

include those derived from corn, potato, wheat, rice, tapioca, sago, sorghum, waxy maize, waxy 

wheat, waxy potato, or high amylase corn.   

In certain embodiments, the process begins by preparing a starch mixture that has a 

neutral to basic pH.  In one embodiment, the starch mixture may be in the form of a starch slurry 

prepared by mixing the starch with water, an alcohol, or other organic solvent, such as toluene.  

In one particular embodiment, the slurry is prepared with water and/or alcohol, wherein the 

alcohol is selected from the group consisting of methanol, ethanol, isopropyl alcohol, and 

mixtures thereof.  The pH of the mixture or slurry is adjusted to between about 7 to about 11 by 

the addition of a base.  In certain embodiments, the base is selected from the group consisting of 

metal and non-metal hydroxides, oxides, carbonates, and mixtures thereof.  In further 

embodiments, the base is selected from the group consisting of sodium hydroxide, ammonium 

hydroxide, ammonium carbonate, ammonium carbonate, and mixtures thereof.  In still other 

embodiments, the pH of the mixture or slurry is adjusted to between about 8 to about 11, or even 

to between about 8.5 to about 10.   

Next, the starch mixture is processed to obtain a starch cake.  In certain embodiments, 

this processing step involves removing liquid from the slurry, such as by filtration.  To the starch 

cake, an organic acid anhydride reagent is added thereby forming a reaction mixture.  In certain 

embodiments, the organic acid anhydride reagent has the general formula 
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wherein R is a dimethylene or trimethylene group and R' is a linear, branched or cyclic 

alkyl, alkenyl, aralkyl or aralkenyl group having 2 to 20 carbon atoms.  In further embodiments, 

the organic acid anhydride reagent is octenyl succininc acid anhydride (OSA).  The organic acid 

anhydride reagent is generally added to the cake at a level of between about 0.5% to about 100% 

by weight, based upon the dry weight of the starch.  In still other embodiments, the organic acid 

anhydride reagent is generally added to the case at a level of between about 1% to about 25% by 

weight, or even between about 2% to about 9% by weight, based upon the dry weight of the 

starch.  The organic acid anhydride may be added to the starch cake by any means known to 

those of skill in the art, such as, for example, by spraying.   

After permitting the reaction between the starch and organic acid anhydride reagent to 

proceed for a predetermined period of time, the reaction mixture is dried to a moisture content of 

between about 0 to about 15% by weight.  In other embodiments, the reaction mixture is dried to 

a moisture content of between about 0% to about 10%, or even between about 0% to about 6% 

by weight.  In certain embodiments, the drying step comprises heating the reaction mixture to a 

temperature of less than about 140°C, or between about  25°C to about 90°C, or between about 

30°C to about 60°C.  

Once the desired moisture content is reached, the dried reaction mixture is heated at a 

temperature of at least about 100°C, or between about 100°C to about 200°C, or between about 

140°C to about 180°C.  This heating step may be carried out for between about 1 minute to about 

6 hours, or between about 30 minutes to about 4 hours, or between about 1 to 3 hours.  Both the 

drying and heating steps may be carried out with any suitable apparatus known to those of skill 

in the art, including forced air ovens, dextrinizers, and fluidized bed dryers. 

In certain embodiments according to the present invention, the starch modified with the 

organic acid anhydride reagent does not undergo a subsequent acid hydrolysis step.  Thus, the 

need to hydrolyze the modified starch with a mineral acid such as HCl or H2SO4 is eliminated.  

Likewise, the present invention eliminates the need for enzymatic conversion of the modified 

starch, such as with ?-amylase or any enzyme within the amylase family, in order to render it 

water soluble.  Therefore, it is an advantage of certain embodiments of the present invention that 

the starch produced contains essentially no residues of such mineral acids or enzymes.   

The modified starch prepared in accordance with the present invention may be water 

insoluble, partially water soluble, or completely water soluble.  Water solubility of the modified 
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starch is measured by a refractometer.  A 10% solids dispersion is prepared, centrifuged, and the 

supernatant is analyzed by the refractometer.  In certain embodiments, the modified starch has a 

solubility in water at 25°C of greater than about 90%, or greater than about 95%, or even greater 

than about 98%.   

As noted above, it is possible to prepare modified starch according to the present 

invention wherein the starch is degraded, so as to improve the water solubility thereof, without 

the addition of mineral acids or starch-degrading enzymes (e.g., amylase enzymes).  Therefore, 

in certain embodiments, the modified starch will have a water solubility as described herein and 

contain less than about 0.5%, or less than about 0.1%, or even less than 0.01% by weight of 

mineral acid and/or starch-degrading enzyme residues.  As used herein, the term “mineral acid 

residues” can refer to either the acid or a salt thereof, and the term “starch-degrading enzyme 

residues” can refer to the enzymes themselves or to denatured forms of the enzymes.  In alternate 

embodiments, the water-soluble, modified starches are substantially free of mineral acid and/or 

starch-degrading enzyme residues.   

 Examples 

The following examples set forth the effects of pH, temperature, and exposure times on 

degree of substitution, reaction efficiency, and solubility of the modified starch.  It is to be 

understood, however, that these examples are provided by way of illustration and nothing therein 

should be taken as a limitation upon the overall scope of the invention.   

Materials and Methods 

Octenyl succinic acid anhydride (“OSA”) was obtained from Gulf Bayport Chemicals 

L.P. (Pasadena, TX).  Waxy maize starch (Amoica TF) was provided by National Starch and 

Chemical (Bridgewater, NJ).  All other chemicals used in the following examples were analytical 

grade. 

 Titration Method 1 

In the following examples, degree of substitution (“D.S.”) was measured by titration.  For 

the insoluble modified starches reacted with 3% OSA, 5.00 g dry weight of the starch was 

suspended in 20.0 mL of 0.100 M HCl, and stirred for 30 minutes.  The suspension was filtered 

through a piece of No.2 filter paper (Whatman Internal Ltd.), and the residue was washed with 
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water until no Cl- could be detected by 0.1 M AgNO3 solution.  The starch was then re-

suspended in 300 mL water and heated in a boiling water bath for 20 minutes.  After cooling 

down, the starch solution was titrated with 0.100 M NaOH solution, using phenolphthalein as an 

indicator.  The control used is described in each example.  The % bound octenyl succinate (OS), 

D.S., and reaction efficiency (“R.E.”) were calculated using the following equations: 

 

% OS = (V1 - V2) x 0.1 x 21 

       W 

 

where % OS is the percentage weight of OS in OS modified starch, V1 is the titration volume of 

NaOH (mL) for OS starch, V2 is the titration volume of NaOH (mL) for control, and W is the dry 

weight (g) of the OS starch. 

 

D.S. =        162  x % OS        

   210 - 209 x % OS 

 

 

R.E. =      %OS of OS starch         X 100% 

 %OSA added to the starch 

 

 Titration Method 2 

The bound OS content for modified starches reacted with greater than 3% OSA, partially 

and completely soluble OS starches was determined, by first suspending 5.00g dry weight of the 

starch in 20.0 mL of methanol and filtered.  The cake was re-suspended in a 20 mL mixture of 

0.100 M HCl and methanol (1:9, w/w) and stirred for 30 minutes.  The starch was filtered and 

washed with a 40mL mixture of water and methanol (1:9, w/w), and then dispersed in 300 mL 

water.  For the completely soluble samples, the solutions were titrated by 0.100 M NaOH 

directly.  For partially soluble starches, the suspensions were cooked in a boiling water bath for 

20 minutes and the solutions were titrated after cooling down.  Phenolphthalein was used as an 

indicator.  The D.S., %OS and R.E. were calculated by the same equations above in method 1. 
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 Solubility of OS starch 

A potable refractometer was used to check the solubility of the OS starch.  A 10% solids 

suspension was prepared, centrifuged, and the supernatant was analyzed by the refractometer.  

 

Example 1 

In this example, NaOH was used to adjust the initial pH of the starch slurry and the 

resulting effects on the degree of substitution (“D.S.”) and reaction efficiency (“R.E.”) of the 

starch were measured.    

Waxy maize starch (100 g) was suspended in distilled water (150 mL) with agitation. The 

pH of the starch slurry was adjusted to 7.5 and 9.5 with 3% (w/w) NaOH.  The suspension was 

filtered and the starch cake was mixed with 3% OSA (based on the dry weight of starch) using a 

mixer (Model K45SSWH, KitchenAid, St. Joseph, MI) at 2nd speed for 15 minutes.  The 

mixture was dried in a forced-air oven at 35°C overnight until the moisture content was below 

12%.  The starch mixture was spread over an oven pan (38cm ×26 cm) and heated at 160°C for 1 

hour, 2 hours, or 4 hours.  Native waxy maize starch was used as a control.  Degree of 

substitution and reaction efficiency were measured by titration method 1.  pH after treatment was 

measured by suspending a portion of the treated starch in water (10% solids by weight).   

As shown in Table A.1, D.S. and R.E. were greater at a the higher pH and longer heat 

treatment times.     

Table A.1 Sample adjusted to pH 7.5 and 9.5 by NaOH and heat treated at 160°C 

No. Adjusted Temperature (°C) Reaction %OSA D.S. R.E.% pH after 

1-A 7.5 160 

0h N/A N/A N/A 2.68 

1h 0.61 0.0047 20.35 2.92 
2h 0.79 0.0062 26.43 2.74 

4h 0.93 0.0073 31.13 2.98 

1-B 9.5 160 

0h N/A N/A N/A 3.45 

1h 1.17 0.0091 39.01 3.56 
2h 1.42 0.0111 47.44 3.91 

4h 1.67 0.0131 55.67 4.07 
 

Example 2 
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In this example, Na2CO3 was used to adjust the initial pH of the starch slurry and the 

resulting effects on Degree of Substitution (“D.S.”), reaction efficiency (“R.E.”), and starch 

solubility were measured.  

Waxy maize starch (100 g) was suspended in distilled water (150 mL) with agitation. A 

weighed amount of Na2CO3 was added to the starch slurry.  The experiments were carried out as 

described in Example 1, except that sample 2-A was heated at 160 °C for 4 hours, then was 

reheated at 190°C for 2 hours.  In contrast, sample 2-B was heated at 190°C for 2 hours. D.S. and 

R.E. of the samples heat treated at 190°C were calculated using titration method 2. D.S. and R.E 

of other samples were determined by titration method 1.  

As shown in Table A.2, the more basic Na2CO3-treated starch slurries generally produced 

higher D.S. and R.E. values. The highest D.S. was achieved at pH 10.3.  In addition, solubility of 

the starch was found to be higher when the starch slurry combined with Na2CO3 was exposed to 

higher temperatures, such as in Samples 2-A and 2-B. 
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Table A.2 Samples adjusted to different pH values by Na2CO3 and heat treated at 160°C 

No. Adjusted 

pH 

% Na2CO3 

(w/w) 
Reaction time %OSA D.S. R.E.% pH %Solubilit

y 

2-A 4.71 0 

0 h N/A N/A N/A 3.89 N/A 

1 h 0.18 0.0014 5.94 2.73 N/A 

2 h 0.34 0.0027 11.46 2.84 7.5 

4 h 0.28 0.0022 9.34 2.47 22.0 

160°C 4 h + 1.23 0.0096 40.89 2.85 95.0 

2-B 9.45 0.56 
Before air dry N/A N/A N/A 4.14 N/A 

0 h N/A N/A N/A 3.17 N/A 

190°C 2 h* 1.86 0.0146 62.10 3.80 100.0 

2-C 9.72 1 

Before air dry N/A N/A N/A 5.20 N/A 
1 h 1.39 0.0109 46.37 5.12 N/A 

2 h 1.58 0.0124 52.55 5.39 N/A 

4 h 1.62 0.0127 53.91 5.64 0.0 

2-D 10.3 1.5 

0 h N/A N/A N/A 4.99 N/A 

1 h 1.76 0.0138 58.54 5.27 N/A 

2 h 1.90 0.0133 56.60 3.10 1.0 

4 h 1.88 0.0147 62.51 3.03 1.0 

2-E 10.32 2.58 

0 h N/A N/A N/A N/A N/A 

1 h 1.40 0.011 46.68 9.34 N/A 

2 h 1.82 0.0143 60.65 8.09 5.0 

4 h 1.54 0.0121 51.30 6.67 5.0 

2-F 10.51 4.57 

Before air dry N/A N/A N/A 9.52 N/A 
0 h N/A N/A N/A 9.97 N/A 

1 h 1.23 0.0096 41.13 10.73 N/A 

4 h 1.74 0.0137 58.13 8.84 10.0 
 

Example 3 

In this example, NH4HCO3 was used to adjust the initial pH and the resulting effects on 

Degree of Substitution (“D.S.”), reaction efficiency (“R.E.”), and starch solubility were 

measured.   

Waxy maize starch (100 g) was suspended in distilled water (150 mL) with agitation. A 

weighed amount of NH4HCO3 was added to the suspension.  The experiment was carried out as 

described in Example 1.  Sample 3-A was heated at 160°C for 4 hours was reheated at 190°C for 

2 hours.  D.S. and R.E. were measured by titration method 2. 
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As shown in Table A.3, the use of NH4HCO3 was effective in achieving relatively high 

D.S. and R.E. values especially when the starch was heated for longer periods of time and/or at 

higher temperatures.  In addition, it was shown that use of NH4HCO3 in conjunction with a 

higher heat treatment temperature (190°C) greatly increased the solubility of the sample.   

Table A.3 Samples adjusted to pH 8.57 by NH4HCO3, and heat treated at 160 °C 

No. Adjusted pH % Reaction %OSA D.S. R.E.% pH %Solubility 

3-A 8.57 3.02 

0 h N/A N/A N/A 2.60 N/A 

1 h 1.38 0.0108 45.90 2.34 N/A 
2 h 1.56 0.0122 51.86 2.34 5.0 

4 h 1.27 0.0100 42.47 2.83 25.0 

+190°C 2 h 2.00 0.0158 66.75 2.57 92.0 
 

Example 4-6 

In these examples the weight of NH4HCO3 added to the starch slurry was varied and the 

effects on degree of substitution (“D.S.”), reaction efficiency (“R.E.”), and starch solubility were 

measured. 

Waxy maize starch (100 g) was suspended in distilled water (150 mL) with agitation.  

The pH of the starch slurry was adjusted to between 8.0 – 8.8 by the addition of varying amounts 

of NH4HCO3.  The experiments were carried out as described in Example 1; however, the 

heating temperature was adjusted to 170°C, 180°C, or 190°C, and heating time was adjusted to ? 

hour, 1 hour, 2 hours, or 4 hours.  A starch sample without adding OSA was prepared as a 

control.  D.S. and R.E. were measured by titration method 2.   

As shown in Tables A.4-6, increased amounts of NH4HCO3 and longer exposure to 

higher temperatures led to an increase in D.S., R.E., and solubility of the starch.   
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Table A.4 Samples adjusted to pH 8.0 by NH4HCO3 (0.27% by starch dry weight) and heat 

treated at different temperatures. 

No. Temp Time %OSA D.S. R.E.% pH Solubility 
4-A 

 

 

 

 

170°C cake N/A N/A N/A 4.51  N/A 

0h 0.71  0.0055  23.71  2.81  0.0  
1/2h 1.18 0.0092 39.48 2.58 0.0 

1h 1.50  0.0117  49.91  2.49  6.0  
2h 2.22  0.0175  73.90  2.72  72.0  
4h 2.20  0.0174  73.36  2.97  95.0  

4-B 

 

 

 

 

180°C cake N/A N/A N/A 5.54  N/A 
0h N/A N/A N/A 3.42  N/A 

1/2h 0.66  0.0051  21.99  3.40  0.0  
1h 1.61  0.0126  53.60  3.09  2.0  
2h 2.50  0.0198  83.22  2.89  20.0  
4h 2.80  0.0222  93.45  2.94  92.5  

4-C 

 

 

190°C 1/2h 1.73  0.0136  57.70  2.77  5.0  
1h 2.59  0.0205  86.26  2.77  30.0  
2h 2.68  0.0212  89.36  2.82  100.0  
4h 2.70  0.0214  89.98  2.93  98.0  

 

 

Table A.5 Samples adjusted to pH 8.5 by NH4HCO3 (3.85% by starch dry weight) and heat 

treated at different temperatures 

No. Temp Time %OSA D.S. R.E.% pH Solubility 
5-A 

 

 

 

 

170°C cake N/A N/A N/A 6.48  N/A 

0h N/A N/A N/A 5.19  5.0  
1/2h 2.36  0.0186  78.56  2.82  5.0  
1h 2.29  0.0181  76.30  2.79  5.0  
2h 2.72  0.0216  90.61  2.81  85.0  
4h 2.61  0.0207  87.14  2.83  100.0  

5-B 

 

 

180°C 1/2h 2.33  0.0184  77.82  2.80  5.0  
1h 2.68  0.0212  89.36  2.76  80.0  
2h 2.57  0.0204  85.71  2.81  102.5  
4h 2.58  0.0204  86.04  2.85  85.0  

5-C 

 

 

190°C 1/2h 2.10  0.0165  69.96  3.24  6.0  
1h 2.72  0.0216  90.82  2.87  86.0  
2h 2.61  0.0206  86.90  2.91  100.0  
4h 2.38  0.0188  79.41  2.91  96.0  
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 Table A.6 Samples adjusted to pH 8.75 by NH4HCO3 (6.29% by starch dry weight) and 

heat treated at different temperatures. 

No. Temp Time %OSA D.S. R.E.% pH Solubility 

6-A 

 

 

 

 

170°C cake N/A N/A N/A N/A N/A 
0h 0.61  0.0047  20.18  4.30   N/A 

1/2h 1.74  0.0137  57.99  3.61  2.5  
1h 2.10  0.0165  69.94  3.09  5.0  
2h 2.12  0.0167  70.70  3.00  7.5  
4h 2.79  0.0221  92.87  3.02  81.0  

6-B 

 

 

180°C 1/2h 2.22  0.0176  74.18  2.86  5.0  
1h N/A N/A N/A 2.98  90.0  
2h N/A N/A N/A 3.02  95.0  
4h N/A N/A N/A 3.03  97.5  

6-C 

 

 

190°C 1/2h N/A N/A N/A 2.92  0.00  
1h N/A N/A N/A 2.80  95.0  
2h N/A N/A N/A 2.81  101.0  
4h N/A N/A N/A 2.78  100.0  

 

Example 7 

In this example, the viscosities exhibited by different starch samples from Examples 4, 5, 

and 6 were measured. 

Viscosity of the starch samples was determined by a Brookfield viscometer (RVDVII + 

Pro, Brookfield Engineering Laboratories, Inc., Middleboro, MA) with a CS4-18 spindle and a 

SC4-13 RPY chamber at 25 °C.  Starch solutions of 50% solids of lab made starches and a 

commercial starch were prepared and added to the chamber.  The commercial starch is a 

converted (degraded), OSA-modified starch obtained from National Starch LLC, Bridgewater, 

NJ.  The spindle speed (RPM) was selected.  The reading of shear stress (SS), shear rate (SR), 

viscosity (cP) and % (torque) are shown in Table A.7.  

Viscosity of a starch solution reflects the molecular weight of a starch sample.  Compared 

with a commercial sample, the lab made starch sample showed higher viscosity indicating that 

the molecular size of the lab made sample was higher than that of the commercial sample. 
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Table A.7 Viscosity of OS starch and a commercial starch solution 

Sample Starch SS SR CP % RPM 
 4-A, 4h 50 262.3 9.30 2825 56.5 10 

 5-A, 2h 50 146.9 2.33 6340 31.8 5 
 6-A, 4h 50 124.2 9.30 1340 26.7 10 

 Commercial 50 135.3 18.60 727.5 29.1 20 
 Commercial  30 43.2 93.0 46.5 9.3 100 

 5-B, 2h 30 96.7 93.0 104.0 20.8 100 
 

Example 8 

In this example, the effect of grinding the starch prior to heat treatment on solubility was 

measured.  

Waxy maize starch (100 g) was suspended in distilled water (150 mL) with agitation.  

The pH of the starch slurry was adjusted to 8.45 by different weights of NH4HCO3 (Table 8). The 

experiment was carried out as in Example 1.  However, the heating temperature was adjusted to 

170°C or 180°C, and heating time was 2 hours.  For sample 7-D, the OSA-modified starch was 

sieved by a 200-mesh sifter after heating.  For sample 7-E, the starch mixture before heating was 

ground by an analytical mill (A-10, Tekmar) and sieved through a 200-mesh sifter.  The starch 

was thinly spread over an oven pan (38cm ×26 cm) and heated at 180°C for 2 hours.  A starch 

sample without adding OSA was prepared as a control.  D.S. and R.E. were measured by titration 

method 2.  

Solubility of the OS starch dispersed in an aqueous medium (10%, w/w) was analyzed by 

a potable refractometer before centrifugation (“SBC”).  The starch solution was centrifuged at 

3500 rpm for 5 minutes and the supernatant was analyzed by the refractometer as well (“SAC”).  

As shown in Table A.8, grinding of the starch prior to heat treatment appeared to have a 

slight positive effect on the solubility of the starch product when compared to samples that had 

not undergone grinding.  
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Table A.8 Samples adjusted to pH 8.45 by NH4HCO3 (6.29% by starch dry weight) and 

heat treated at different temperatures. 

 

No. Wt of 

NH4HCO3 

(g) 

#200 

mesh 

sieve  

Temp 

(°C) 

pH after 

heating 

SBC (%) SAC (%) %OSA D.S. R.E.(%

) 

7-A 3.02 No 170 3.23 100 84.2?3.8 2.80 0.0222 93.19 

7-B 4.00 No 170 3.19 90 N/A N/A N/A N/A 
7-C 3.85 No 170 3.25 72 N/A N/A N/A N/A 

7-D 3.85 Yes 180 2.81 102.5 94 2.57  0.0204  85.71  

7-E 3.02* Yes 180 3.01 N/A 99 2.68 0.0213 89.47 

 

*Cake moisture: 50.20%  

 

 Example 9 

This Example describes an embodiment of the present application directed to a non-food 

application using a 5% OSA treatment. 

Waxy maize starch (100 g) was suspended in distilled water (150 mL) with agitation.  

The pH of the starch slurry was adjusted to 8.45 with 3.02 g NH4HCO3.  The suspension was 

filtered and the starch cake was mixed with 5% OSA (based on the weight of starch) by a mixer 

(Model K45SSWH, KitchenAid, St. Joseph, MI) at 2nd speed for 15 minutes.  The mixture was 

dried in an air oven at 35°C overnight until the moisture content was below 12%.  The mixture 

was then spread over an oven pan (38cm ×26 cm) and heated at 180°C for 2 hours.  Afterwards, 

the starch mixture was ground by an analytical mill (A-10, Tekmar) and sieved through a 200-

mesh sifter.  A starch sample without adding OSA was prepared as a control.  D.S. and R.E. were 

measured by titration method 1.   

The bound OS content was 4.77%.  The D.S. and R.E. of the OS starch were 0.0386 and 

93.43%, respectively.  Solubility of the OS starch was analyzed by a potable refractometer.  The 

starch solution (10%, w/w) was centrifuged at 3500 rpm for 5 minutes.  The solubility of the 

material was found to be 86%. 
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Example 10  

In this example, wheat starch (100 g) was suspended in distilled water (150 mL) with 

agitation.  The pH of the starch slurry was adjusted to 8.45 by adding 3.02 g NH4HCO3.  The 

experiment was carried out as described in Example 9 except that 3% OSA was added.  The 

bound OS content was 2.59%.  The D.S. of the OS starch was 0.0205, and the R.E. was 94.33%.  

The solubility of the OS starch was 75%. 

Example 11 

In this example an emulsion of sample 7-E was prepared.  OS starch (8.0g, dry basis) was 

mixed with sodium benzoate (0.1g), citric acid (0.2g) and water (50.40 mL) in a Waring blender 

(Model 31BL92, Dynamics Corporation of America).  The mixture was blended at low speed 

(powerstat at 25-30) for 2 minutes.  Orange oil (8g) was slowly added to the mixture over 30 

seconds and the mixture was blended for an additional 30 seconds.  The jar was then covered and 

blended at high speed (powerstat at 100) for 2 minutes.   The emulsion solution was permitted to 

rest in the blender for 30 minutes and transferred to a tall glass jar (10 oz.).  The jar was capped 

and heated at 45°C in an air oven for 24 hours.  The emulsion was very stable after heating at 

45°C for 24 hours.   Microscope photographs of the emulsion were taken and are shown in 

Figures A.1 and depict a small oil droplet size.   

       

Figure A.1 Microscope pictures of emulsion prepared from sample 7-E after heat at 45ºC 

for 24h 

Example 12 

In this example, Samples 7-E and 5-B (both heat treated for 4 hours) were suspended in 

glycerol and viewed with a microscope under normal and polarized light.  Figure A.2 depict 

Emulsion made by 7-E, specimen 1 Emulsion made by 7-E, specimen 2 
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Sample 7-E and 5-B under normal and polarized light. Figure A.2 shows that starch granules of 

both samples had Maltese cross-like crystalline structures when viewed under polarized light.  

The results suggest that the molecular order of starch granules remained after OSA modification. 

   

   

Figure A.2 Microscope pictures of sample 7-E and 5-B (4h) 

Example 13 

In this example, Sample 5-B (heat treated for 1 hour, 2 hours, and 4 hours) and a 

commercial sample (same as used in Example 7 above) were analyzed by gel permission 

chromatography (GPC).  The starch (0.1% by weight) was dispersed in DMSO and heated in a 

boiling water bath for 1 hour.  Then the solution was analyzed by the GPC. The results are 

shown in Figure A.3.  The lab made OS samples exhibited larger molecular weights than the 

commercial sample. 

Example 14 

Corn starch (100 g) was suspended in distilled water (150 g) with agitation. The pH of 

the starch slurry was adjusted to 8.47, 8.51 and 8.70 by addition of NH4HCO3. The method is 

5-B 5-B 

7-E 7-E 
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described in Example 8. Heating temperature was adjusted to 170°C, 180°C or 190°C and 

heating time was 1 h, 2 h, 3h, 4 h and 5h. Solubility (Figure A.4) and pH (Table A.9) of the final 

product was measured. The method of measuring solubility is the same as example 8. DS and RE 

of two samples (Table A.10) were measured by the titration method 2. A starch sample without 

adding OSA was prepared as a control.  

 

 

Figure A.3 Solubility of OS corn starch prepared by dry reaction. 

Table A.9 Samples adjusted to pH 8.47, 8.51 and 8.70 by NH4HCO3 and heat treated at 

different temperatures. 

Adjusted 

pH 

Amount of 

NH4HCO3 added 

(g) 

Cake 

moisture 

(%) 

Temp. 

(°C) 

pH of starch 

before heat 

pH of heated 

starch 

8.70 3.02 46.22 180 5.10 3.02 

8.51 1.02 46.03 180 3.67 3.31 

8.47 0.51 47.60 190 3.54 3.02 
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Table A.10 DS and RE of two samples of OS corn starch prepared by dry reaction 

Heat time 
Adjusted 

pH 

pH of starch 

before heat 

Heat 

temp. 

(°C) 

Solubility (%) DS RE %OSA 

2h30min 8.70 5.10 180 50 0.0199 84.0 2.52 

5h 8.51 3.67 180 77 0.0177 74.6 2.24 

 

Example 15 

Tapioca starch (100 g) was suspended in distilled water (150 g) with agitation. The pH of 

the starch slurry was adjusted to 8.62 and 8.72 by addition of NH4HCO3. The experiment is 

carried out as described in Example 8. Heating temperature was adjusted to 180°C or 190°C and 

heating time was 1 h or 2 h. Solubility of the final product was measured by using the same 

method in example 8. DS of the products is measured by the NMR method and is shown in Table 

A.11. 

Table A.11 DS and RE of two samples of OS tapioca starch prepared by dry reaction 

Adjusted 

pH 

Amount of 

NH4HCO3 

added (g) 

Temp. 

(°C) 

Time 

(h) 

Cake 

moisture 

(%) 

pH of 

starch 

before heat 

pH of 

heated 

starch 

Solubility 

(%) 
DS 

8.62 3.02 180 2 45.87 N/A N/A N/A 0.01792 

8.72 1.33 190 2 46.73 3.90 2.88 99.57 0.01811 

Example 16 

Potato starch (100 g) was suspended in distilled water (150 g) with agitation. The pH of 

the starch slurry was adjusted to 8.59 by addition of NH4HCO3 (3.02 g). The experiment is 

carried out as described in Example 8. Heating temperature was adjusted to 180°C and heating 

time was 2 h. Solubility of the final product was 85.7% as measured by using the same method 

as in example 8. The value is 85.66%. DS of the product is measured by the NMR method and 

the value is 0.01956. the RE is 82.43%. 

Example 17 

Waxy maize starch (100 g) was suspended in distilled water (150 mL) with agitation. The 

pH of the starch slurry was adjusted to 8.45 by 3.02 g NH4HCO3. The suspension was filtered 
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and the starch cake was mixed with 3% OSA (by the weight of starch) by a mixer (Model 

K45SSWH, KitchenAid, St. Joseph, MI) at 2nd speed for 15min. The mixture was dried in an air 

oven at 35°C overnight until the moisture content was below 12%. Starch mixture (31.12 g) was 

mixed with sodium aluminum phosphate (SAP) (3.09 g). pH of the starch sample was 4.90 with 

SAP. The starch was heated in the air-forced oven at 180 °C for 2 h. DS of the product is 

measured by the NMR method and the value is 0.01821. The RE is 76.86%. 

Example 18 

OSA (3.02 g) was stirred in 20 mL NaOH (3% wt %) for 2h. Hydrolyzed OSA was added 

to starch (100 g, dry weight) in ethanol (180 proof, 100mL) solution. pH of the solution was 

adjusted to 3.0 by 1N HCl. The starch slurry was dried in an air-forced oven at 35 °C until the 

moisture content was below 12%. Starch was ground by a coffee grinder and heated in oven at 

180 °C for 0.5 h and then 165 °C for 2 h. pH of the final product was 3.3. DS was measured by 

the titration method and the value is 0.1152. RE was 49.03%. 

Example 19 

Waxy maize starch (100 g) was suspended in distilled water (150 mL) with agitation. The 

pH of the starch slurry was adjusted to 8.45 by 3.02 g NH4HCO3. The suspension was filtered 

and the starch cake was mixed with 3% OSA (by the weight of starch) and 100 mL ethanol. The 

mixture was dried in an air oven at 35°C overnight until the moisture content was below 12%. 

The starch was heated in the air-forced oven at 180 °C for 2 h. DS of the product is measured by 

the NMR method; the value is 0.01242.The RE is 52.84%. 

 Claims 

1. A method of preparing a lipophilic starch comprising: forming a starch mixture 

having a pH of between about 7 to about 11; processing said starch mixture to obtain a starch 

cake;  adding an organic acid anhydride reagent to said cake thereby forming a reaction mixture, 

said organic acid anhydride reagent having the formula wherein R is a dimethylene or 

trimethylene group and R' is a linear, branched or cyclic alkyl, alkenyl, aralkyl or aralkenyl 

group having 2 to 20 carbon atoms; drying said reaction mixture to a moisture content of 

between about 0 to about 15% by weight; and heating said dried reaction mixture at a 

temperature of at least about 100°C for between about 1 minute to about 6 hours. 
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2. The method according to claim 1, wherein said starch mixture is prepared by 

forming a starch slurry. 

3. The method according to claim 2, wherein said starch slurry is prepared by 

dispersing a quantity of starch in a liquid medium, said liquid medium being selected from the 

group consisting of water, alcohol, toluene, or combinations thereof. 

4. The method according to claim 2, wherein the pH of said starch slurry is adjusted 

by adding a base thereto, said base being selected from the group consisting of metal and non-

metal hydroxides, oxides, carbonates, and mixtures thereof. 

5. The method according to claim 4, wherein said base being selected from the 

group consisting of ammonium hydroxide, ammonium carbonate, and ammonium bicarbonate, 

and mixtures thereof. 

6. The method according to claim 2, wherein said step of processing said starch 

mixture to obtain a starch cake comprises filtering said starch slurry. 

7. The method according to claims 1 or 2, wherein said organic acid anhydride 

reagent comprises octenyl succinic anhydride. 

8. The method according to claims 1 or 2, wherein said organic acid anhydride 

reagent is added to said cake at a level of between about 0% to 100% by weight, based on the dry 

weight of the starch. 

9. The method according to claims 1 or 2, wherein said step of drying said reaction 

mixture comprises heating said reaction mixture to a temperature of less than 120°C until said 

moisture content of between about 0% to about 15% by weight is achieved. 

10.    The method according to claim 1 or 2, wherein said step of heating said dried 

reaction mixture comprises heating said dried reaction mixture at a temperature of between about 

100°C to about 200°C.   

11. The method according to claim 10, wherein said step of heating said dried 

reaction mixture comprises heating said dried reaction mixture at a temperature of between about 

140°C to about 180°C for between about 30 minutes to about 3.5 hours.  

12. A water-soluble, lipophilic starch comprising starch that has been modified with 

an organic acid anhydride reagent and which contains less than about 0.5% by weight of mineral 
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acid and/or starch-degrading enzyme residues, said lipophilic starch having a solubility in water 

at 25°C of greater than about 90%. 

13. The water-soluble, lipophilic starch according to claim 12, wherein said organic 

acid anhydride reagent has the formula and wherein R is a dimethylene or trimethylene group 

and R' is a linear, branched or cyclic alkyl, alkenyl, aralkyl or aralkenyl group having 2 to 20 

carbon atoms. 

14. The water-soluble, lipophilic starch according to claim 13, wherein said organic 

acid anhydride reagent comprises octenyl succinic anhydride. 

15. The water-soluble, lipophilic starch according to claim 12 or 13, wherein said 

lipophilic starch is substantially free of mineral acid and/or starch-degrading enzyme residues. 

 

Abstract 

A lipophilic starch is provided along with methods of making the same.  The starch is 

prepared by modifying the starch with an organic acid anhydride reagent, such as octenyl 

succinic anhydride, drying the modified starch to a moisture content of less than 15% by weight, 

and then heat treating the dried starch at a temperature of at least 100°C for at least one minute. 
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Appendix B - Dry reaction of OSA reaction at low temperature 

 Method 

Waxy maize starch (100 g) was suspended in distilled water (150 g) with agitation. The pH of 

the starch slurry was adjusted by adding NH4HCO3 of 3.02g. The suspension was filtered and the 

starch cake (50% moisture content) was mixed with 3% OSA (by the dry weight of starch) by a 

mixer (Model K45SSWH, KitchenAid, St. Joseph, MI) at 2nd speed for 15min. The mixture was 

dried in an air-forced oven at 35°C overnight. The starch mixture was spread over an oven pan 

(38cm ×26 cm) and heated at 120 °C or 140 °C for 2 h, 4 h, or 6 h. Native waxy maize starch 

was used as a control. 

Solubility of the product is 0%. Titration results are shown in Table B.1. 

 Results 

Table B.1 DS and RE of OS waxy maize starch prepared at low temperature 

 

Temperature Time %OSA D.S. R.E.% 

120 °C 2h 1.982 0.01560 66.07 

 4h 1.863 0.01465 62.11 

 6h 1.829 0.01437 60.98 

140 °C 2h 2.132 0.01680 71.07 

 4h 2.528 0.02000 84.26 

 6h 2.547 0.02016 84.90 
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Appendix C - Hydrolysis of NH4HCO3 and spraying on the starch 

 Method 

In previous experiments, starch was dispersed in water and NH4HCO3 was added to the 

starch slurry. After filtration the starch cake has a moisture content of ca. 50%. If 3% (wt% based 

on starch weigh) of NH4HCO3 was added then approximately 1.5% NH4HCO3 was left in the 

starch cake.   In this experiment, NH4HCO3 solution in water (10%, wt%) was sprayed on dry 

starch to have NH4HCO3 to starch ratio of 1.5/100 (w/w) . The mixture was manually blended by 

hand. Then OSA dissolved in ethanol (37.5%, wt%) was sprayed on starch to have OSA to starch 

ratio of 3/100 (w/w). Starch and OSA was mixed by hand. The mixture was heated in an air 

forced oven at 40°C overnight then heated at 180ºC for 2h. Degree of substitution of the product 

obtained was measured by titration. 

In another approach, OSA was mixed with NH4HCO3 solution (10%, wt%) for 10min and 

1h, respectively. OSA was not completely soluble in NH4HCO3 solution after mixing for 10 

mins. Whereas, after 1h mixing, OSA in NH4HCO3 solution became clear. Then the each mixture 

was sprayed on dry starch. Starch mixture was manually mixed by hand. The mixture was heated 

in an air forced oven at 40°C overnight then heated at 180ºC for 2h. Degree of substitution of the 

product obtained was measured by titration. 

Solubility 

Starch solution (1%, w/v) was heated at 85 ºC for 30 min then immediately cooled with 

an ice water bath. The solution was centrifuged at 5000X g for 10 min. The supernatant was 

decanted, heated at 60 ºC overnight. The residue was dried at 130 ºC for 1h. The solubility was 

calculated as: (dry matter in the supernatant/total dry weight of starch)*100%.  
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 Results 

Table C.1 Characteristics of OS starches prepared from OSA of differerent pre-

treatments. 

Sample name %OSA D.S. R.E.% OSA Conc. Solubility (%) 

OSA in NH4HCO3 for 10 min 1.666 0.01307 66.63 2.50 88.77 

OSA in NH4HCO3 for 1h 1.976 0.01555 77.48 2.55 86.03* 

OSA dissolved in ethanol 1 1.781 0.01399 55.66 3.20 88.37 

OSA dissolved in ethanol 2 1.784 0.01401 53.57 3.33 88.01* 

* average value 
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Appendix D - Wide angle X-ray diffraction and small angle X-ray 

scattering of pyrodextrins from waxy wheat and waxy potato 

starches 

 
Figure D.1 Waxy wheat dextrins in H2O 
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Figure D.2 Waxy wheat dextrins in glycerol/water (8/2) 
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Figure D.3 Waxy wheat dextrins in glycerol/water (9/1) 
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Figure D.4 Waxy potato dextrins in H2O 
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Figure D.5 Waxy potato dextrins in glycerol/water (6/4) 
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Figure D.6 Waxy potato dextrins in glycerol/water (8/2) 
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Figure D.7 Waxy potato dextrins in glycerol/water (9/1) 
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Figure D.8 Waxy wheat dextrins in H2O 
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Figure D.9 Waxy wheat dextrins in glycerol/water (6/4) 
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Figure D.10 Waxy wheat dextrins in glycerol/water (8/2) 
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Figure D.11 Waxy wheat dextrins in glycerol/water (9/1) 
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Figure D.12 Waxy potato dextrins in H2O 
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Figure D.13 Waxy potato dextrins in glycerol/water (6/4) 
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Figure D.14 Waxy potato dextrins in glycerol/water (8/2) 
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Figure D.15 Waxy potato dextrins in glycerol/water (9/1) 

 

 

 


