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Abstract 

The impact of computer simulations has become quite significant especially with the 

development of supercomputers during the last couple of decades. They are used in a wide range 

of purposes such as exploring experimentally inaccessible phenomena and providing an alternative 

when experiments are expensive, dangerous, time consuming, difficult and controversial. In terms 

of applications in biological systems molecular modeling techniques can be used in rational drug 

design, predicting structures of proteins and circumstances where the atomic level descriptions 

provided by them are valuable for the understanding of the systems of interest. Hence, the potential 

of computer simulations of biomolecular systems is undeniable. Irrespective of the promising uses 

of computer simulations, it cannot be guaranteed that the results will be realistic. The precision of 

a molecular simulation depends on the degree of sampling achieved during the simulation while 

the accuracy of the results depends on the satisfactory description of intramolecular and 

intermolecular interactions in the system, i.e. the force field. Recently, we have been developing a 

force field for molecular dynamics simulations of biological systems based on the Kirkwood Buff 

(KB) theory of solutions, not only with an emphasis on the accurate description of intermolecular 

interactions, but also by reproducing several physical properties such as partial molar volume, 

compressibility and composition dependent chemical potential derivatives to match with 

respective experimental values. In this approach simulation results in terms of KB integrals can be 

directly compared with experimental data through a KB analysis of the solution properties and 

therefore it provides a simple and clear method to test the capability of the KB derived force field. 

Initially, we have provided a rigorous framework for the analysis of experimental and simulation 

data concerning open and closed multicomponent systems using the KB theory of solutions. The 

results are illustrated using computer simulations for various concentrations of the solutes Gly, 



  

Gly2 and Gly3 in both open and closed systems, and in the absence or presence of NaCl as a 

cosolvent. Then, we have attempted to quantify the interactions between amino acids in aqueous 

solutions using the KB theory of solutions. The results are illustrated using computer simulations 

for various concentrations of the twenty zwitterionic amino acids at ambient temperature and 

pressure. Next, several amino acids were also studied at higher temperatures and pressures and the 

results are discussed in terms of the preferential (solute over solvent) interactions between the 

amino acids. Finally, we have described our most recent efforts towards a complete force field for 

peptides and proteins. The results are illustrated using molecular dynamics simulations of several 

tripeptides, selected peptides and selected globular proteins at ambient temperature and pressure 

followed by replica exchange molecular dynamics simulations of a few selected peptides. 
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Abstract 

The impact of computer simulations has become quite significant especially with the 

development of supercomputers during the last couple of decades. They are used in a wide range 

of purposes such as exploring experimentally inaccessible phenomena and providing an alternative 

when experiments are expensive, dangerous, time consuming, difficult and controversial. In terms 

of applications in biological systems molecular modeling techniques can be used in rational drug 

design, predicting structures of proteins and circumstances where the atomic level descriptions 

provided by them are valuable for the understanding of the systems of interest. Hence, the potential 

of computer simulations of biomolecular systems is undeniable. Irrespective of the promising uses 

of computer simulations, it cannot be guaranteed that the results will be realistic. The precision of 

a molecular simulation depends on the degree of sampling achieved during the simulation while 

the accuracy of the results depends on the satisfactory description of intramolecular and 

intermolecular interactions in the system, i.e. the force field. Recently, we have been developing a 

force field for molecular dynamics simulations of biological systems based on the Kirkwood Buff 

(KB) theory of solutions, not only with an emphasis on the accurate description of intermolecular 

interactions, but also by reproducing several physical properties such as partial molar volume, 

compressibility and composition dependent chemical potential derivatives to match with 

respective experimental values. In this approach simulation results in terms of KB integrals can be 

directly compared with experimental data through a KB analysis of the solution properties and 

therefore it provides a simple and clear method to test the capability of the KB derived force field. 

Initially, we have provided a rigorous framework for the analysis of experimental and simulation 

data concerning open and closed multicomponent systems using the KB theory of solutions. The 

results are illustrated using computer simulations for various concentrations of the solutes Gly, 



  

Gly2 and Gly3 in both open and closed systems, and in the absence or presence of NaCl as a 

cosolvent. Then, we have attempted to quantify the interactions between amino acids in aqueous 

solutions using the KB theory of solutions. The results are illustrated using computer simulations 

for various concentrations of the twenty zwitterionic amino acids at ambient temperature and 

pressure. Next, several amino acids were also studied at higher temperatures and pressures and the 

results are discussed in terms of the preferential (solute over solvent) interactions between the 

amino acids. Finally, we have described our most recent efforts towards a complete force field for 

peptides and proteins. The results are illustrated using molecular dynamics simulations of several 

tripeptides, selected peptides and selected globular proteins at ambient temperature and pressure 

followed by replica exchange molecular dynamics simulations of a few selected peptides. 
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1 

Chapter 1 - Introduction  

 1.1 Computational Chemistry 

The foundations of computational chemistry are laid in quantum chemistry,1 where the 

ultimate goal is to solve the time dependent Schrodinger equation, 

 
−𝑖ℏ

𝜕Ψ(𝑟, 𝑟𝑒,𝑡)

𝜕𝑡
= ℋΨ(𝑟, 𝑟𝑒 , 𝑡) 

(1.1) 

 

Here the wave function Ψ is a function of the instantaneous positions of all the nuclei (r) and 

electrons (re) of the system, and ℋ is the Hamiltonian operator. The postulates of quantum 

mechanics state that this wave function contains all possible information regarding the system. 

Unfortunately, Equation (1.1) is not solvable for all but the smallest (eg. single electron) systems 

and approximate solutions are computationally expensive, rising rapidly with the number of 

atoms/electrons in the system. Even with contemporary computers, this limits the system sizes that 

can be treated with quantum methods to 102 - 103 atoms. 

In many cases we wish to study systems which comprise a much larger number of atoms. 

Consequently, the limitation of quantum chemistry has initiated the development of a host of 

computational techniques capable of simulating larger system sizes. In most of these techniques 

the behavior of nuclei and electrons are only considered in an averaged manner. The central 

concept involved is the ability to decompose the phenomena of interest into discrete size scales 

and model the system to a granularity commensurate with the phenomena of interest (Figure 1.1). 

For example, the lipid membranes comprising biological cell and organelle walls have often been 

treated as elastic sheets to study their undulations. In this case individual nuclei and electrons are 

unimportant, other than their contribution to the flexibility and compressibility of the membrane; 
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molecules which interact strongly will result in a stiffer membrane, which can be accounted for 

through the use of bending and stretching moduli as a part of the elastic model. 

 

 

Figure 1.1 A schematic diagram of temporal and spatial scales accessible by simulation 

techniques. (Figure taken without modification from Nielsen’s paper) 2 

 

The computational method suitable to study a system depends on the phenomena we are 

interested in studying. Figure 1.1 shows the length and time scales related to some chosen physical 

processes and common simulation techniques that may be used to study them. The nature of the 

interactions also helps in this decomposition because the length scale of interactions tends to 

follow the timescale of processes, allowing for example, the study of molecular vibrations using 

quantum calculations in the femto to pico-second length scale and vesicle fusion using continuum 

models in the milli-second scale. 
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 1.2 Molecular Dynamics 

Molecular dynamics (MD) is a computer simulation method which mainly uses classical 

mechanics (sometimes can also use quantum mechanics) to evolve a many-bodied system with 

time and, through statistical mechanics, enables the evaluation of equilibrium and transport 

properties.3 Although molecules do not strictly follow classical mechanics, for many applications 

we are not interested in electron wave-functions generated by quantum mechanics, but rather the 

resultant interactions arising between atoms and the consequent molecular behavior. 

Conceptually, molecular dynamics consists of repeating steps of evaluating the force on 

every atom, and moving them in space according to Newton’s second law, F = ma. The application 

of classical mechanics to molecular systems relies on two main assumptions. The first assumption 

is the applicability of a force field, which maps atomic coordinates to a potential energy value. 

Common force fields are built on models which treat atoms as beads and bonds as springs and 

decompose the total potential energy into independent terms. The force field determines the 

physics of the systems and consequently the correlation between simulations and real systems. 

Due to their importance a comprehensive discussion of force fields is given in Section 1.3. The 

second assumption is the applicability of Newton’s second law in simulating dynamics which is 

discussed in the following section. 

 

 1.2.1 Time Evolution 

Integral to the method of molecular dynamics is the ability to approximate continuous 

movement through the use of small discrete time steps, wherein the system coordinates are 

updated. The time step, δt, must be adequately small so the change in force experienced by the 

atoms over a time step is negligible. While this assumption holds, at any given time the application 
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of a force field together with information of the molecular topology of a system yields the potential 

energy U(r), which can be used to calculate the force acting on each atom, F = −∇U(r). These 

relations in conjunction with a numerical integrator allow the simulation of a many-bodied system. 

The most common integrators for molecular dynamics are based on a truncated Taylor expansion 

of spatial position,4 

 𝑟(𝑡 + 𝛿𝑡) = 2𝑟(𝑡) − 𝑟(𝑡 − 𝛿𝑡) + 𝛿𝑡2𝑟̈(𝑡) (1.2) 

 

where 𝛿𝑡, 𝑟(𝑡), 𝑟̇(𝑡), and 𝑟̈(𝑡) represent integration time step, current position, velocity, and 

acceleration, respectively. This expression is usually cast as a ‘velocity Verlet’ algorithm, which 

comprises four simple steps, 

i. Update positions: 𝑟(𝑡 + 𝛿𝑡) = 𝑟(𝑡) + 𝛿𝑡𝑟̇(𝑡) +
1

2
𝛿𝑡2𝑟̈(𝑡) 

ii. Calculate velocities at half step: 𝑟̇ (𝑡 +
1

2
 𝛿𝑡) = 𝑟̇(𝑡) +

1

2
 𝛿𝑡𝑟̈(𝑡) 

iii. Evaluate forces and acceleration at (𝑡 + 𝛿𝑡) 

iv. Calculate new velocities at full step: 𝑟̇(𝑡 + 𝛿𝑡) = 𝑟̇ (𝑡 +
1

2
 𝛿𝑡) +

1

2
 𝛿𝑡𝑟̈(𝑡 + 𝛿𝑡) 

Essentially, molecular dynamics is carried out by iterating these steps repeatedly. Most codes give 

the option of writing out the trajectory of the system, i.e. the coordinates of atoms in the system, 

intermittently. This allows for visualization and analysis after the completion of the MD run. 

The time represented by a simulation is simply the number of time steps multiplied by the 

time step interval. The choice of the time step used is dictated by the gradient of the potential 

energy surface of the system. For atomic systems with relatively steep changes in potential energy 

with atomic positions, a time step of 1 - 2 fs is common. However, for systems with softer 

potentials such as coarse grained systems a larger time step (in the range of ∼10 - 40 fs) can safely 

be used while conserving energy. Furthermore, multi-time step integrators are also common, where 
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the interactions which change rapidly with position are integrated over small steps, while the more 

slowly changing interactions are integrated over longer time steps, and therefore less often.2 

 

 1.2.2 Periodic Boundary Conditions 

In computer simulations the molecules are localized to a spatial region designated as a 

simulation ‘box’ or ‘cell’. Due to computer resources being finite, we are limited to modeling a 

finite box size. In most cases these system sizes do not approach experimental size scales. 

Consequently, simulation cells have a high ratio of surface atoms to bulk atoms, leading to 

unnatural behavior. 

This problem is avoided by enforcing periodic boundary conditions, where the simulation 

cell is replicated throughout space to form an infinite lattice.4 The positions of the atoms in these 

replicas are not stored, but mirror the movement of atoms in the central box. As an atom or 

molecule moves through the edge of the central simulation box, the corresponding atom or 

molecule from a neighboring cell moves in from the opposite side. The mass and density of the 

simulation cell is conserved, and furthermore because atoms at the edge of the central simulation 

cell feel a homogeneous environment due to replica cells, no edges are present in the simulation 

and the system models an infinitely extended ‘bulk’ system. 

The disadvantage of using periodic boundaries arises from the artificial constraints they 

can impose upon the system. Particularly in the presence of long ranged interactions a periodic 

system may induce artificial forces or suppress natural ones. For example, in the simulation of 

lipid membranes the size of the simulation cell limits the longest wavelength of the undulation 

modes. In small simulation cells the presence of periodic boundaries may even affect the 

structuring of liquid4 due to indirect interactions which span the length of the box. 
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 1.2.3 Control of Temperature and Pressure 

Since most of the fundamental formulations of molecular dynamics obey Newton’s laws, 

they conserve energy. In this sense they can be thought of as sampling from the microcanonical 

(NVE) ensemble. However, for better correlation with experimental conditions MD techniques 

have been developed to sample from the isothermal-isobaric (NPT), canonical (NVT) and even 

the grandcanonical (μVT) ensembles. The use of thermostats and barostats is particularly 

important for chemistry applications where experiments are carried out under constant temperature 

and pressure conditions. 

The control of temperature in simulations is performed through the coupling of the 

simulation cell with an imaginary external heat bath. Temperature is a measure of the kinetic 

energy of the molecules within a system, which can be manipulated in several ways to maintain a 

constant temperature. The simplest scheme of ‘velocity rescaling’ uniformly scales the velocities 

of all the molecules in the system to obtain the required temperature. Stochastic thermostatting 

methods aim to replicate random collisions of the system atoms with those of the heat bath, of 

which the Andersen scheme is a common example.5 Presently the most widespread thermostatting 

method is the Nose-Hoover chain, which is the least perturbative to the natural dynamics (that is, 

NVE dynamics) of MD simulations. This method couples the atomic degrees of freedom with 

external variables which propagate with the system.6–8 

 

 1.3 Replica Exchange Molecular Dynamics 

The replica exchange (RE) method9-12, also known as parallel tempering, has emerged as a 

relatively straightforward and powerful approach that can enhance conformational sampling. The 

basic idea is to simulate multiple replicas of the system at different temperatures independently 
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using either MC or MD. Periodically, replicas attempt to exchange simulation temperatures 

according to a Metropolis criterion that preserves the detailed balance and ensures canonical 

distributions at all temperatures. The resulting random walk in the temperature space helps the 

replicas to escape the energy local minima and sample a wider range of conformational space. 

Replica exchange molecular dynamics (REMD) in particular has been successfully applied to 

protein simulations 13-17. On the other hand, the true efficiency of REMD in sampling large-scale 

protein conformational transitions needs to be rigorously benchmarked, and the dependence of 

REMD simulations on the protein system and key parameters needs to be explored. 

 

 1.4 Force Fields 

A force field aims to separate the contributions to the total energy of the system into 

physically motivated independent terms in relation to the relative position of atoms to one another. 

These terms usually include bond stretching, bending, and dihedrals for the bonded interactions 

and Coulombic and van der Waals interactions for the non-bonded interaction. 

The importance of a force field is that it maps atom positions (r ≡ x1, y1, z1, ..., xN, yN, zN), 

or more generally interaction sites to potential energy (U(r)). Importantly, this allows one to 

determine the negative gradient of the potential energy as a function of particle position, i.e. the 

force acting on the particle, a central quantity in molecular dynamics. 

The functional form of a force field can be expressed by the following equation, 

 𝑈𝑡𝑜𝑡𝑎𝑙 = 𝑈𝑏𝑜𝑛𝑑 + 𝑈𝑎𝑛𝑔𝑙𝑒 + 𝑈 𝑝𝑟𝑜𝑝𝑒𝑟
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙

+ 𝑈𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙

+ 𝑈𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐𝑠

+ 𝑈𝑣𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠 

(1.3) 
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where the total energy, 𝑈𝑡𝑜𝑡𝑎𝑙 of the system is the sum of the bonded and non-bonded terms, which 

are discussed below. 

 

 1.4.1 Bonded Interactions 

These interactions operate on atoms which are specified to be bonded in the system 

topology and are within three bonds of one another. The bond stretching is modeled through a 

harmonic potential and operates only on directly bonded atoms, 

 
𝑈𝑏𝑜𝑛𝑑 = Σ

1

2
𝑘𝑏(𝑟 − 𝑟0)2 

(1.4) 

 

where 𝑟 is the distance between two bonded atoms, 𝑘𝑏 is the bond stretching force constant, and 

𝑟0 is the equilibrium bond distance. The harmonic potential assumes that the bond is always close 

to its equilibrium length, and hence does not account for anharmonicity or bond breaking. 

Consequently, this functional form is not suitable for high energy applications or chemical 

reactions. 

The bond bending is also modeled through a harmonic function, although this terms acts 

on atoms separated by two bonds, 

 
𝑈𝑎𝑛𝑔𝑙𝑒 = Σ

1

2
𝑘𝑎(𝜃 − 𝜃0)2 

(1.5) 

 

where 𝜃 is the bond angle, 𝑘𝑎 is the angle bending force constant, and 𝜃0 is the equilibrium bond 

angle. 

The proper dihedral potential is evaluated through a Fourier series, 

 𝑈 𝑝𝑟𝑜𝑝𝑒𝑟
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙

= Σ𝑘𝜙[1 + cos (𝑛𝜙 − 𝜙𝑠] (1.6) 
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where 𝜙 is the dihedral angle, 𝑘𝜙 is the dihedral force constant, n is the multiplicity of the torsion, 

and 𝜙𝑠 is the phase shift. 

The last bonded term is the improper dihedral function, 

 
𝑈𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙

= Σ
1

2
𝑘𝜉(𝜉 − 𝜉0)2 

(1.7) 

 

which is an additional term used to enforce planarity conjugation between the four specified atoms. 

Here 𝑘𝜉  is the improper dihedral force constant, and (𝜉 − 𝜉0) is the out-of-plane angle. 

 

 1.4.2 Non-bonded Interactions 

Non-bonded interactions are treated in two parts: electrostatics modeled through 

Coulombic interactions, and van der Waals interactions modeled through the Lennard-Jones (LJ) 

function. 

Electrostatic interactions are modeled through Coulombic interactions, 

 𝑈𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐𝑠 = Σ
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
 

(1.8) 

 

where 𝑞𝑖 and 𝑞𝑗 are the effective partial atomic charges on the ith and jth atoms, and 𝑟𝑖𝑗 is the 

interatomic distance. 

The evaluation of electrostatics in computer simulations is not straightforward due to their 

extended decay length combined with the use of periodic boundary conditions. Accurate 

evaluation of the electrostatic energy must include interactions spanning over several periodic 

images. Conventional approaches to efficiently solve this problem rely on splitting the Coulombic 

interaction into a short ranged component with a cutoff similar to the LJ cutoff and long ranged 
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component which is solved in inverse (Fourier) space. The first method which was widely adopted 

was the Ewald summation method,3 which has since been supplanted through the use of  

particle-mesh methods.3 

Lennard-Jones potentials model van der Waals interactions between two non-bonded 

atoms by using two opposing terms which account for the Pauli repulsion and the attraction due to 

dispersion. 

 
𝑈𝑣𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠 = Σ4𝜀𝑖𝑗 ((

𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

) 
(1.9) 

 

where 𝑟𝑖𝑗 is the interatomic distance, 𝜀𝑖𝑗 is the interaction strength parameter and 𝜎𝑖𝑗 is the size 

parameter defining the distance below which the total potential becomes repulsive. Both 𝜀𝑖𝑗 and 

𝜎𝑖𝑗 depend on the chemical nature of the two atoms involved. 

Due to the rapid decay of the attractive 1/r6 term the potential becomes negligible with 

increasing 𝑟𝑖𝑗 (within a few 𝜎 lengths), though the potential never actually reaches zero. A common 

practice to avoid evaluating non-bonded interactions which do not significantly contribute to the 

potential energy is to use a distance cutoff beyond which you do not calculate interactions.  

 

 1.5 Biomolecular Force Fields 

There are numerous force fields which have been used to simulate proteins over the last 

couple of decades. The historical discussion of protein force fields dates back to early 1980s where 

molecular dynamics and Monte Carlo simulations of proteins were starting to develop. The 

advancement of protein force fields was not unique and they were gradually developed based on 

force fields which have been used in organic chemistry. Of particular importance were the 
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Empirical Conformational Energy Program for Peptides (ECEPP) potentials from Scheraga and 

co-workers18,19 and the Consistent Force Field (CFF) developments from the Lifson group.20-23 

They initiated the development of potential energy functions in the general area of organic 

chemistry.24,25 

 

 1.5.1 The Amber Force Fields 

In early 1980s, enough experience had accumulated with earlier parameterizations to begin 

fairly systematic projects to develop a new generation of force fields. The earliest of these efforts 

were still done at a time when the limited power of computers made it attractive to not include all 

hydrogen atoms as explicit force centers. The importance of hydrogen bonding, however, led many 

investigators to adopt a compromise whereby polar hydrogens were explicitly represented but 

hydrogens bonded to carbon were combined into united atoms. A widely used force field at this 

level was developed in 1984 in the Kollman group26 and incorporated into the Amber molecular 

mechanics package, which was at an early stage of development as well.27 The key ideas in this 

initial work were to be used repeatedly in later efforts by this group. Charges were derived from 

quantum chemistry calculations at the Hartree-Fock STO-3G level, via fitting of partial atomic 

charges to the quantum electrostatic potential; these are generally called electrostatic potential 

(ESP) charges. The van der Waals terms were adapted from fits to amide crystal data by Lifson’s 

group28,29 and from liquid-state simulations pioneered by Jorgensen.30 Force constants and 

idealized bond lengths and angles were taken from crystal structures and adapted to match normal 

mode frequencies for a number of peptide fragments. Finally, torsion force constants were adjusted 

to match torsional barriers extracted from experiment or from quantum chemistry calculations. 

Since it is only the total potential energy, as a function of torsion angle, that needs to agree with 



12 

the target values, and since these barriers have significant electrostatic and van der Waals 

interactions between the end atoms, the k values are closely coupled to the non-bonded potentials 

used and are hardly transferable from one force field to another. 

Three problems with this polar hydrogen only approach, along with improvements in the 

speed of available computers, led many researchers to move to an all-atom approach. First, 

aromatic rings such as benzene have a significant quadrupolar charge distribution, with an 

effective positive charge near the hydrogens and an effective negative charge nearer to the middle 

of the ring. This effect can be crucial in determining the ways in which aromatic side chains in 

proteins interact with other groups. For example, ‘‘T-shaped’’ geometries between rings are 

stabilized relative to ‘‘stacked’’ geometries that optimize van der Waals interactions.31 Also 

important are π-cation interactions, where positive groups are found directly above the centers of 

aromatic rings.32,33 Second, the forces that affect the pseudo rotation between conformations, or 

‘‘pucker’’ of five-membered aliphatic rings34 are difficult to describe when only the heavy atoms 

are available as force centers. This affects only proline residues in proteins, but analogous 

problems involving ribose and deoxyribose in nucleic acids led momentum toward all-atom force 

fields. Finally, it is difficult with united atom models to make comparisons between computed and 

observed vibrational frequencies. An extension of the 1984 force field to an all-atom model was 

published in 1986, as a collaboration between the Kollman and Case groups.35 Both the 1984 and 

1986 parameter sets were primarily developed based on experience with gas phase simulations. 

The continued increase in the speed of computers led the Kollman group to decide in the 

early 1990s that a new round of force-field development was warranted; this came to be known as 

the ‘‘Cornell et al.’’ or ff94 force field.36 In addition to improvements in the parameters, a more 

serious attempt was made to explicitly describe the algorithm by which the parameters were 



13 

derived, so that consistent extensions could be made to molecules other than proteins.37 This goal 

was not really achieved until the development almost a decade later of the antechamber program 

that completely automates all of the steps in the creation of an Amber-like force field for an 

arbitrary molecule or fragment. 

A key motivation for this development was a desire to produce potentials suitable for 

condensed phase simulations, since the earlier work had concentrated in large part on gas phase 

behavior. In particular, the ways in which the optimized potentials for liquid simulations (OPLS) 

had been parameterized to reproduce the densities and heats of vaporization of neat organic liquids 

was very influential, along with recognition of the importance of having a balanced description of 

solute-solvent versus solvent-solvent interactions. A second point arose from the ability to use 

larger basis sets and fragment sizes to determine atomic charges that mimic the electrostatic 

potentials outside the molecule found from quantum mechanical calculations. Earlier work had 

established that fitting charges to the potentials at the Hartree-Fock 6-31G* level tended to 

overestimate bond-dipoles by amounts comparable to that in empirical water models such as 

SPC/E or TIP3P; such over polarization is an expected consequence of electronic polarization in 

liquids. Hence, the use of fitted charges at the HF/6-31G* level appeared to offer a general 

procedure for quickly developing charges for all twenty amino acids in a way that would be 

roughly consistent with the water models that were expected to be used. Tests of this idea, with 

liquid-state simulations of amides and simple hydrocarbons, gave encouraging results. 

The actual implementation of this scheme for developing charges had to deal with two 

complications, which continue to plague force field developers to the present day. First, the 

effective charges of the more buried atoms are often underdetermined, so that charges for atoms 

in similar environments in different molecules might vary significantly. In effect, there are many 
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combinations of atomic charges that will fit the electrostatic potential almost equally well. There 

are a variety of ways to overcome this problem, often involving statistical techniques based on 

singular-value decomposition, but Bayly et al.38,39 chose to use a hyperbolic restraint term to limit 

the absolute magnitude of charges on non-hydrogen atoms. This is called restrained electrostatic 

potential (RESP) fit and weakly favors solutions with smaller charges for buried atoms, yielding 

fairly consistent charge sets with little degradation in the quality of the fit to the electrostatic 

potential outside the molecule. 

A second and more fundamental problem with the RESP procedure is that the resulting 

charges depend on molecular conformation, often in significant ways. This is a manifestation of 

electronic polarizability, which can only be described in a very averaged way if fixed atomic 

charges are to be used. Any real solution to this problem must involve a more complex model. The 

compromise chosen for the ff94 force field was to fit charges simultaneously to several 

conformations, in the hopes of achieving optimal averaged behavior. 

Once the charges and the internal parameters for bonds and angles were available, the 

Lennard-Jones parameters could be established primarily by reference to densities and heats of 

vaporization in liquid-state simulations. Only a small number of sets of 6-12 parameters were 

necessary to achieve reasonable agreement with experiment. A key expansion from earlier work 

was the notion that parameters for hydrogens should depend in an important way on the 

electronegativity of the atoms they are bonded to.40,41 

As with many other force-field projects, the final parameters to be fit were the ‘‘soft’’ 

torsional potentials about single bonds. It makes some sense to address these after the charges and 

Lennard-Jones parameters have been developed, since the energy profile for rotation about torsion 

angles depends importantly on the non-bonded interactions between the moving groups at the ends, 
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as well as on whatever intrinsic torsional potential is assigned. The question of how best to partition 

torsional barriers into bonded versus non-bonded interactions is a thorny one, and many developers 

of force fields have adopted a strictly empirical approach, fitting k, n, and δ so that the total profile 

matches some target extracted from quantum mechanics or from experiment. 

A key set of torsional parameters are those for the ϕ and ψ backbone angles, since these 

affect every amino acid residue and heavily influence the relative energies of helices, sheets, and 

turns in proteins. The ff94 parameters were fit to representative points on the dipeptide maps for 

glycine and alanine, computed at the MP2 level with a triple-ζ + polarization (TZP) basis set. This 

is not an unreasonable choice for a target function, but it has a number of intrinsic difficulties. 

First, the α-helix region near ϕ, ψ = -60, -40 is not a minimum for a gas-phase dipeptide, so fitting 

just a representative point can lead to errors in the surface as a whole, compared to the full 

MP2/TZP surface. More importantly, the use of a gas phase dipeptide model as a target ignores 

both the non-local electronic structure contributions that would be seen in larger fragments42 and 

the polarization effects inherent in a condensed phase environment.43 Some account of the longer-

range effects was provided in subsequent parameterizations, referred to as ff9644 and ff99,45 in 

which the ϕ and ψ and potentials were fit to tetrapeptide as well as dipeptide quantum mechanical 

conformational energies. These later fits provided potential surfaces that were significantly 

different from those in ff94, but it was hard to tell if physical realism was really being improved. 

In recent years it has become computationally feasible to test protein potentials by carrying 

out converged or nearly converged simulations on short peptides and comparing the resulting 

conformational populations to those derived from experiment.46-48 The experimental estimates, 

obtained mainly from circular dichroism or from NMR, are often only qualitative, but this can be 

enough to identify obvious errors in computed ensembles. For example, the ff94 parameters appear 
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to over-stabilize helical peptide conformers in many if not all instances. Computed melting 

temperatures for polyalanine helices are too high,49 and helical conformers can predominate in 

simulations of sequences that experimentally form other structures, such as β-hairpins. At least 

two modifications of the ff94 ϕ and ψ potentials have been proposed and tested on large-scale 

peptide simulations.50,51 It will be of interest to see how these ideas develop as a new generation 

of long time-scale peptide simulations becomes feasible. 

 

 1.5.2 The CHARMM Force Fields 

As with Amber, the CHARMM (Chemistry at HARvard using Molecular Mechanics)52 

program was originally developed in the early 1980s and initially used an extended atom force 

field with no explicit hydrogens. By 1985, this had been replaced by the CHARMM19 parameters, 

in which hydrogen atoms bonded to nitrogen and oxygen are explicitly represented, while 

hydrogens bonded to carbon or sulfur are treated as part of extended atoms.53,54 Key to the 

parameterization of this model were fits to quantum calculations at the HF/6-31G level of 

hydrogen bonded complexes between water and the hydrogen bond donors or acceptors of the 

amino acids or fragments. This involves a series of supermolecular calculations of the model 

compound, such as formamide or N-methylacetamide and a single water molecule at each of 

several interaction sites. Before making the fits, the interaction energies are scaled by a factor of 

1.16, which is the ratio of the water dimerization energy predicted by the TIP3P model to that 

predicted at the HF/6-31G level. As in the Amber parameterizations described above, the goal here 

was to obtain a balanced interaction between solute-water and water-water energies when the latter 

are represented by TIP3P. For peptides, it was found that fitting the peptide-water interactions in 

this way led to peptidepeptide hydrogen bonds that were also larger than HF/6-31G values by a 
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factor very close to 1.16; in other cases, explicit fitting to solute-solute hydrogen bonded dimers 

may be needed for parameter generation.55 

As with the contemporaneous Amber 1984 united-atom parameterization, the 

CHARMM19 values were developed and tested primarily on gas phase simulations. However, the 

CHARMM19 potential seems to do well in solvated simulations and continues to be used for 

peptide and protein simulations; this is in contrast to the 1984 Amber force field, which is no 

longer widely used. In addition, the CHARMM19 values have often been used in conjunction with 

a distance-dependent dielectric constant as a rough continuum solvation model. 

In the early 1990s, the CHARMM development group also recognized the need to refine 

parameters more explicitly pointed to obtaining a good balance of interaction energies in explicit 

solvent simulations. The resulting CHARMM22 protein force field was first included in the 

corresponding version of CHARMM, released in 1992, and was fully described a few years 

later.56,57 The key approach from CHARMM19 was carried over by deriving charge models 

primarily from fits to solute-water dimer energetics. In addition to fitting the dimer interaction 

energies, charges for model compounds were adjusted to obtain dipole moments somewhat larger 

than experimental or ab initio values. This has the same goal as the RESP procedure described 

earlier: bonds are expected to be more polarized in condensed phases than in the gas phase. The 

use of empirical charges that yield enhanced dipoles both reflects this behavior and allows a 

reasonably balanced set of interactions with the TIP3P water model, which has a similarly 

enhanced dipole moment. 

Once the charges were determined by these dimer studies, the Lennard-Jones parameters 

were refined to reproduce densities and heats of vaporization of liquids as well as unit cell 

parameters and heats of sublimation for crystals. As with the Amber parameterization, generally 
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only small adjustments from earlier values were required to fit the empirical data. Nevertheless, 

because of the steep dependence of these forces, such adjustments may be crucial for a  

well-balanced and successful set of parameters. 

As with the Amber ff94 force field, the torsional parameters were finally adjusted to target 

data derived from vibrational spectra and from ab initio calculations. The torsional potentials for 

the ϕ and ψ torsions were initially fit to HF/6-31+G* calculations on an analog of the alanine 

dipeptide in which the terminal methyl groups are replaced by hydrogen. These were then refined 

in an iterative procedure to improve the agreement with experiment of the backbone angles in 

simulations of myoglobin. In principle at least, this latter adjustment provides a way of correcting 

the ab initio dipeptide energy map for effects caused by the protein environment. As with the 

Amber parameterization, the question of how best to obtain good backbone torsional potentials is 

a vexing one, and studies are continuing, both at the dipeptide level and with solvated simulations 

of oligopeptides. Most recently, an extensive reworking of the nucleic acid parameters has resulted 

in the CHARMM27 force field.58 However, the CHARMM27 protein parameters are essentially 

identical to those from the CHARMM22 force field. 

One feature of the CHARMM parameterizations is the enforcement of neutral groups, 

which are small sets of contiguous atoms whose atomic charges are constrained to sum to zero. 

For example, charges for the C and O atoms of the peptide group form a small neutral group. These 

groups can be useful when truncating long-range electrostatic interactions: if an entire group is 

either included or ignored, then there is never any splitting of dipoles. Ignoring charged side chains, 

each atom would then feel the electrostatic effects of a net neutral environment. The same behavior 

occurs with solvent molecules, if the interactions of a given water molecule are always treated as 

a group. Although it was long deemed plausible that such a group-based truncation scheme would 



19 

yield better results than an atom based scheme, this is probably not the case for most biomolecular 

simulations in water.59-62 In any event, such considerations are now much less important than in 

earlier times, since many current simulations use Ewald or fast multipole schemes to handle long-

range electrostatics, where nothing is gained by having small neutral groups. 

 

 1.5.3 The OPLS Force Fields 

A third main development in the early 1980s involved potentials developed by Jorgensen 

and co-workers to simulate liquid state properties, initially for water and for more than fourty 

organic liquids. These were called OPLS (Optimized Potentials for Liquid Simulations) and placed 

a strong emphasis on deriving non-bonded interactions by comparison to liquid-state 

thermodynamics.63 Indeed, the earliest applications of OPLS potentials were to rigid molecule 

Monte Carlo simulations of the structure and thermodynamics of liquid hydrogen fluoride.64 The 

reproduction of densities and heats of vaporization provides some confidence in both the size of 

the molecules and in the strengths of their intermolecular interactions. These early models treated 

hydrogens bonded to aliphatic carbons as part of an extended atom but represented all other 

hydrogens explicitly. 

The initial applications to proteins65-67 used a polar-hydrogen–only representation, taking 

the atom types and the valence (bond, angle, dihedral) parameters from the 1984 Amber force 

field. This was called the AMBER/OPLS force field, and for some time was reasonably popular. 

As with Amber and CHARMM, an all-atom version (OPLS-AA) was developed later, but with 

much the same philosophy for derivation of charges and van der Waals parameters from 

simulations on pure liquids.68-70 Torsional parameters were developed in a consistent way by fits 

to HF/6-31G* energy profiles,71 along with some recent modifications, especially for charged side 
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chains.72 Bond stretching and angle bending terms were standardized but were largely taken from 

the 1986 Amber all-atom force field. The parameter choices were intended to be ‘‘functional group 

friendly,’’ so that they could be easily transferred to other molecules with similar chemical 

groupings. Although the parameters were principally derived with reference to condensed phase 

simulations, comparisons to gas-phase peptide energetics also show good results.73 

 

 1.5.4 Other Biomolecular Force Fields 

There are several other protein potentials that have been widely used. The GROMOS force 

fields74 were developed in conjunction with the program package of the same name.75, 76 The  

all-atom CEDAR and GROMACS force fields are largely derived from GROMOS. The Merck 

Molecular Force Field (MMFF) was developed by Halgren, 77-83 and has been aimed more at  

drug-like organic compounds than at proteins. MMFF was not derived for use in bulk phase 

simulations and performs poorly when used to model organic liquids.84 This deficiency is not 

inherent in the buffered 14-7 function85 used in MMFF’s van der Waals term, because this same 

functional form can be reparameterized to fit liquid data.86 The DISCOVER force field87 has seen 

use primarily in conjunction with the commercial INSIGHT modeling package. The MM3 and 

MM4 potentials for amides88, 89 are an offshoot of Allinger’s highly respected molecular mechanics 

parameterizations and have been applied primarily to peptides. These MM methods use atomic 

charges only at formally charged groups, and rely on bond dipole moments to provide for most 

electrostatic interactions. A series of potentials refined over many years in Levitt’s group90-93 are 

incorporated in the ENCAD (ENergy Calculation And Dynamics) program and have been notably 

used to study protein folding and unfolding. 94 The ENCAD potential is unique in its use of  

group-based, rather than atom based, neighbor exclusion of short-range electrostatic interactions. 
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It also uses pairwise non-bonded potentials shifted to zero energy at short range, and specifically 

parameterized to reflect these small cutoff distances. 

 

 1.6 Weaknesses of the Available Force Fields 

Although there are quite a few state-of-the-art force fields, still there are some problems 

associated with them. A possible avenue for improvement involves the solvation interactions. It is 

believed that part of the force field inaccuracies can be traced to the approximate treatment of 

polarization effects using effective partial atomic charges, which leads to an imbalance between 

the solute-solute and solvent-solvent interactions due to an underestimation of the solute-solvent 

interactions.95-99 Most effective charge distributions for molecules are provided by gas phase 

quantum mechanical calculations, rather than the more appropriate condensed phase calculations 

which are more expensive. Gas phase calculations only provide the permanent multipole moments 

with no solvation interactions involved. Unfortunately, the ignored solvation effect can lead to 

significant changes to the charge distribution which should not be ignored. Hence, most empirical 

force fields provide only an approximate representation of the molecular polarity in condensed 

phases. This severely limits the reliability and predictability of molecular properties in biological 

systems. Therefore, a simple and highly accurate description of the charge distribution in solution 

is required. 

One of the possible developments in force field design is the use of explicit polarization 

approaches to achieve more accurate results. In principle, this should provide more realistic and 

accurate results than non-polarizable force fields. However, the additional computational cost and 

difficulty of finding a unique method to treat pair-wise polarizable interactions has been 

problematic. 83,100-105 Thus, non-polarizable force fields are still the most popular and widely used 
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approach. In contrast, non-polarizable force field developers have tried to simply rescale charge 

distributions in order to distinguish between the gas and condensed phases, but it has been 

suggested that the electronic rearrangements occurring in the solvation process are far more 

complicated than provided by simple scaling from the gas phase. 

 

 1.7 Kirkwood-Buff (KB) Theory 

The Kirkwood-Buff (KB) theory of solutions was proposed by Kirkwood and Buff in 

1951.106 It can be applied to any kind of solutions over the entire range of compositions. It is an 

exact theory with no approximations, which makes it more valid than other theories.107 Moreover, 

the KB theory provides a direct relationship between molecular distributions at the atomic level 

and bulk thermodynamic properties such as partial molar volume, chemical potential and 

compressibility. Furthermore, Ben-Naim later developed the inversion procedure of KB theory,108 

providing information about the affinity between a pair of species in the solution mixture from 

experimental thermodynamic properties. With time, the KB theory has become more popular and 

it has been widely used by many scientists to a variety of processes.95, 109-152 In addition, many 

chemists and physicists are continually developing KB theory and applying it to study solution 

mixtures.110, 115, 116, 121-148, 153-169 

The relative distribution of particles in a system can be expressed using radial distribution 

functions. A radial distribution function (rdf), g(r), provides the probability of finding a particle at 

a distance r around a central particle. It describes how the solution density varies as a function of 

the distance. In a closed system with N particles in a volume V and at a temperature T, the 

probability that particle 1 is in dr1 at r1 and particle 2 is in dr2 at r2 can be expressed using 

Boltzmann distribution as,170-172 
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𝑃(𝑟1, 𝑟2) =

∬ … ∫ 𝑒−𝛽𝑈𝑁𝑑𝑟3𝑑𝑟4 … 𝑑𝑟𝑁

𝑍𝑁
 

(1.10) 

 

where β = 1/kT, UN is the potential energy of N particles, and ZN is known as the configurational 

integral. Consequently, the probability that any particle is in dr1 at r1, and any particle is in dr2 at 

r2, can be written as, 

 
𝜌(𝑟1, 𝑟2) =

𝑁!

(𝑁 − 2)!
 𝑃(𝑟1, 𝑟2) 

(1.11) 

 

Moreover, the probability of finding a particle anywhere in the system could be generally 

expressed as, 

 1

𝑉
∫ 𝜌(𝑟1) 𝑑𝑟1 = 𝜌 =

𝑁

𝑉
 

(1.12) 

 

Therefore, g(r) can be introduced as, 

 𝜌(𝑟1, 𝑟2) = 𝜌2𝑔(𝑟1, 𝑟2) (1.13) 

 

which is provided by combining equations (1.10), (1.11), (1.12) and (1.13), 

 

 
𝑔(𝑟1, 𝑟2) =

𝑉2𝑁!

𝑁2(𝑁 − 2)!

∬ … ∫ 𝑒−𝛽𝑈𝑁𝑑𝑟3𝑑𝑟4 … 𝑑𝑟𝑁

𝑍𝑁
 

(1.14) 

 

Figure 1.2 shows a typical radial distribution function (rdf) obtained from a simulation. It 

starts from zero at short distances due to the strong repulsion between two particles. Then it 

typically displays a series of fluctuations around g(r) = 1, which are generally known as solvation 

shells. The first peak, which is also the largest one, indicates that one is more likely to find a 
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particle at this distance, compared to other distances, with respect to that expected for a random 

bulk solution distribution. As the distance r increases, the distribution of components approaches 

unity, which indicates a random bulk solution distribution. On the other hand, radial distribution 

functions can also be obtained from experiments using X-ray diffraction studies of solutions. 

 

 

Figure 1.2 An example of a rdf as a function of the distance. 

 

The integration of a radial distribution function between two different species i and j 

provides a property called the Coordination Number which is given by, 

 
𝐶𝑁(𝑖, 𝑗) = 𝜌𝑗 ∫ 𝑔𝑖𝑗(𝑟)4𝜋𝑟2 𝑑𝑟

𝑅

0

 
(1.15) 

 

to a distance R from the central molecule. 

The radial distribution function provides insight into the liquid structure. The 

corresponding integrals over g(r), which are called Kirkwood-Buff Integrals (KBIs), are useful to 
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express thermodynamic properties of solution mixtures, such as compressibilities, partial molar 

volumes and derivatives of the chemical potentials.95, 126, 128-130 Hence, combinations of KBIs 

provide a link between thermodynamic properties and molecular distribution functions for  

multi-component systems and KBIs are expressed by,  

 
𝐺𝑖𝑗 = 4𝜋 ∫ [𝑔𝑖𝑗

𝜇𝑉𝑇(𝑟) − 1]
∞

0

𝑟2𝑑𝑟 
(1.16) 

 

where Gij is the KBI between species i and j, gij
μVT

 is the corresponding radial distribution function 

in the μVT ensemble, r is the corresponding center of mass-to-center of mass distance. Thus, the 

theory may be used to compute the thermodynamic quantities of the pair correlation function. 

Furthermore, a property called the excess coordination number, Nij can be defined from the 

KBIs according to, 

 𝑁𝑖𝑗 = 𝜌𝑗𝐺𝑖𝑗 (1.17) 

 

where ρj is the number density (molar concentration) of species j. 

 
𝜌𝑗 =

𝑁𝑗

𝑉
 

(1.18) 

 

 

A value of Nij greater than zero indicates an excess of species j in the vicinity of species i over a 

random distribution, while a negative value corresponds to a depletion of species j surrounding i. 

In other words, a positive Nij can be interpreted as net favorable (attractive) interactions between 

species i and j, and a negative Nij is related to net unfavorable (repulsive) interactions. Generic 

examples of Gij and Nij are illustrated in Figure 1.3 and Figure 1.4, respectively. They provide a 

sensitive test of the relative distribution of the different species in solution.130 
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Figure 1.3 An example of a KB integral as a function of integration distance. 

 

In the KB theory of solutions thermodynamic properties of a solution mixture can be 

derived from radial distribution functions, and vice versa. Hence, KBIs can be determined either 

from experimental or simulated data. For solution mixtures with water and solute at constant 

pressure (p) and temperature (T), the chemical potentials (μi), partial molar volumes (𝑉𝑖), and 

isothermal compressibilities (κT) can be obtained experimentally. Then the experimental data can 

be used to determine KBIs.144 KB theory can also be applied to biomolecular systems, as well as 

cosolvent systems to analyze the free energy of molecular binding and characterize the preferential 

interactions and other thermodynamic properties. In a system of a biomolecule and cosolvent with 

primary solvent of water (1), the preferential binding parameters can be obtained from equilibrium 

dialysis experiments and also expressed using KBIs.123 
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Figure 1.4 An example of excess coordination number as a function of composition. 

 

 1.8 Kirkwood-Buff Derived Force Field 

The key to an accurate biomolecular simulation is to develop high quality force fields for 

proteins. It has been observed that currently available force fields tend to over stabilize secondary 

structure;173 some are alpha-helix heavy and some may be biased towards beta-sheet. Significant 

effort to develop and improve force fields has been performed,174-181 but current force fields can 

still be improved. In particular, they struggle to reproduce some common physical properties.95, 96, 

126, 129 

KB theory is a powerful tool that can be used to evaluate the ability of a force field to 

correctly represent relative molecular distribution in solutions. It is an exact theory of solution 

mixtures and valid for the analysis of both experimental and theoretical solvation quantities with 

no limitations to the size or character of molecules. The quality of a force field used for simulation 

can be easily determined by comparing KBIs derived from simulated data to those extracted from 
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the experimental data. In addition, the KBIs are more sensitive to the parameters from force fields 

than many other thermodynamic properties, 95, 126, 128-130 which provides a solid basis for judging 

the accuracy of a particular force field. For instance, the KB integrals are directly related to the 

molecular affinity information which is a consequence of the interactions among the atoms. 

However, many existing force fields perform poorly in their ability to reproduce the 

experimental KB integrals.153 This indicates that currently used force fields do not correctly 

reproduce the solution distributions,153 and this can lead to inaccurate simulation results. 

Therefore, it is necessary to develop an improved force field which can truly represent the correct 

molecular distributions in a solution mixture, and thereby maintain a reasonable balance between 

solute-solute interactions and solute-solvent interactions. This is the aim of the Kirkwood-Buff 

derived force field (KBFF) approach. During the past several years the Smith group has been 

developing Kirkwood-Buff derived force fields as a central aspect of their work. The only major 

difference to other similar biomolecular force fields is the origin of the effective charge 

distributions. Other parameters are similar to most common force fields. Moreover, standard bond 

lengths and bond angles are obtained from experimental data for crystal structures, and other 

bonded parameters are taken directly from the GROMOS96.182 The general non-bonded form of 

the KB force field contains a Lennard-Jones (LJ) 6-12 potential and a Coulomb interaction. The 

molecular charge is explored thoroughly during the parameterization process, while the van der 

Waals parameters for hydrocarbons were taken from elsewhere.182 It has been shown that 

simulation results from the KBFF models perform fairly well and can be even better than other 

common force fields with similar computational cost. 183-185 

Below is a list of recent publications regarding our force fields development using the 

Kirkwood-Buff theory of solutions. 
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Table 1.1 KBFF models which have been published. 

Solute Solvent Reference 

Acetone water Weerasinghe and Smith 

Urea water Weerasinghe and Smith 

NaCl water Weerasinghe and Smith 

GdmCl water Weerasinghe and Smith 

Methanol water Weerasinghe and Smith 

Amides water Kang and Smith 

Thiols and sulfides methanol Bentenitis et al. 

Aromatics, Heterocycles methanol, water Ploetz and Smith 

Alkali halides water Gee et al. 

 

Here we continue this research to provide a full force field capable of simulations of peptides and 

proteins in a variety of solutions. 

 

 1.9 Summary and Organization of the Dissertation 

Molecular dynamic simulations have played a key role in the study of biological systems 

and provide information at the atomic level which is not available experimentally. Kirkwood-Buff 

theory can be used to interpret experimental and computational data and to provide a bridge 

between them. Here, we use KB theory and computer simulations for a variety of applications. 

In Chapter 2 we have provided a rigorous framework for the analysis of experimental and 

simulation data concerning open and closed multicomponent systems using the KB theory of 

solutions. The results are illustrated using computer simulations for various concentrations of the 
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solutes Gly, Gly2 and Gly3 in both open and closed systems, and in the absence or presence of 

NaCl as a cosolvent.  

In Chapter 3 we have attempted to quantify the interactions between amino acids in 

aqueous solutions using the KB theory of solutions. The results are illustrated using computer 

simulations for various concentrations of the twenty zwitterionic amino acids at ambient 

temperature and pressure.  

In Chapter 4 amino acids were studied at higher temperatures and pressures and the results 

are discussed in terms of the preferential (solute over solvent) interactions between the amino 

acids.  

In Chapter 5 we have described our most recent efforts towards a complete force field for 

peptides and proteins. The results are illustrated using molecular dynamic simulations of several 

tripeptides, selected peptides and selected globular proteins at ambient temperature and pressure 

followed by replica exchange molecular dynamic simulations of a few selected peptides. 
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Chapter 2 - Theory and Simulation of Multicomponent Osmotic 

Systems 

 2.1 Abstract 

Most cellular processes occur in systems containing a variety of components many of 

which are open to material exchange. However, computer simulations of biological systems are 

almost exclusively performed in systems closed to material exchange. In principle, the behavior 

of biomolecules in open and closed systems will be different. Here, we provide a rigorous 

framework for the analysis of experimental and simulation data concerning open and closed 

multicomponent systems using the Kirkwood-Buff (KB) theory of solutions. The results are 

illustrated using computer simulations for various concentrations of the solutes Gly, Gly2 and Gly3 

in both open and closed systems, and in the absence or presence of NaCl as a cosolvent. In addition, 

KB theory is used to help rationalize the aggregation properties of the solutes. Here one observes 

that the picture of solute association described by the KB integrals, which are directly related to 

the solution thermodynamics, and that provided by more physical clustering approaches are 

different. It is argued that the combination of KB theory and simulation data provides a simple and 

powerful tool for the analysis of complex multicomponent open and closed systems. 
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 2.2 Introduction 

Most biological processes occurring under cellular conditions involve systems that are 

open to some form of matter exchange. In contrast, most in vitro experiments study systems closed 

to matter exchange. It is therefore important to determine any differences in behavior expected 

under different thermodynamic constraints between otherwise similar systems. While the 

properties of closed systems have been studied in detail, the study of open systems is less common 

and yet can provide a wealth of thermodynamic information. Furthermore, the use of computer 

simulations to help understand biological systems is now common practice. However, simulations 

of open systems of biological interest remain quite rare. The main aim of the current work is to 

illustrate how simulation data can be combined with a rigorous theory of solutions (for both open 

and closed systems) to provide insights into the behavior of biologically relevant solutes and 

cosolvents. 

The thermodynamics of open systems have been studied in detail. 1-6 The usual way to treat 

binary osmotic systems of a solute (2) in a primary solvent (1) employs a virial expansion for the 

osmotic pressure (Π) in terms of the solute number density (ρ2) such that, 

 
𝛽Π = ∑

1

𝑛
𝐵𝑛𝜌2

𝑛

𝑛≥1

 
(2.1) 

 

where β=1/RT, B1 = 1, and several terms (2-5) are typically required in the sum. We note 

that the above osmotic virial coefficients (Bn) differ slightly from the usual values (Bn’ = Bn/n) in 

an effort to simplify some of the results shown below. In the presence of an additional cosolvent 

(such as NaCl) equilibrium dialysis or isopiestic distillation techniques provide an alternative to 

the virial expansion approach. 7,8 The above equation can be directly applied to fit the experimental 

data using the Bn’s as fitting constants. Experimental data concerning protein-protein interactions 
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can be obtained from B2, however higher order osmotic virial coefficients are not normally 

required due to the low protein concentrations involved. 9-11 This is not the case for smaller and/or 

more soluble solutes. 

Most statistical thermodynamic theories attempt to relate the virial coefficients to the 

underlying solute molecular distribution functions. 1,3,12 One of the more versatile approaches is 

provided by the Kirkwood-Buff (KB) theory of solutions. 12,13 KB theory provides thermodynamic 

expressions for various properties of both open and closed systems in terms of integrals over 

molecular distribution functions, commonly referred to as KB integrals (KBIs). In contrast to the 

traditional McMillan-Mayer (MM) approach, the resulting KB related expressions can easily be 

applied at any concentration in any multicomponent system. Furthermore, the combined use of KB 

theory and molecular simulation appears quite natural as the KBIs can be obtained directly from 

the simulation data at the composition of interest. 14   

The application of KB theory to open systems has been widely recognized.4,12,15,16 

However, only recently have specific applications to evaluate either experimental or simulation 

data appeared. Kirkwood and Buff recognized the possible uses of their theory for osmotic systems 

in their original paper. 12 O’Connell and coworkers have since used KB theory to probe the exact 

relationships between osmotic virial coefficients and other thermodynamic properties of solution 

mixtures. 15 More recently, KB theory has been used to directly rationalize osmotic pressure data, 

16 and to reinterpret light scattering data which can also provide estimates of the second virial 

coefficient for proteins. 17 Just in the last decade a considerable effort has focused on understanding 

equilibrium dialysis, and other closely related experimental data, in terms of cosolvent preferential 

binding. 14,18-22 Finally, KB theory has also been applied to the study of reactive and association 

equilibria in a variety of ensembles.23-26 Here, we extend these previous approaches to: i) provide 
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a simple analysis of experimental osmotic pressure data; ii) indicate how one can obtain valuable 

information concerning solute-solute distributions; iii) compare and contrast similar properties in 

both open and closed systems; and iv) illustrate how one can use KB theory to probe association 

equilibria describing the aggregation of solutes. 

The application of KB theory to open systems can be further illustrated using computer 

simulation data. The simulation of open systems by Monte Carlo methods is quite straight-forward. 

27,28 Molecular dynamics simulations of open systems are more problematic due to technical issues 

surrounding particle creation and annihilation.29 The simplest methods involve the application of 

semi-permeable physical boundaries (virtual membranes) between various regions of the system 

which directly mimic the experimental situation.30-32 A similar approach is adopted here for the 

study of small Glyn (n = 1-3) solutes with and without NaCl as a cosolvent. 

 

 2.3 Theory 

 2.3.1 General Background 

In the following sections we will consider solutions containing a principle solvent (1), a 

solute (2), and in some cases an additional cosolvent (3). The equilibrium concentration of each 

species is expressed in terms of number densities (molarities), ρi = Ni/V, or dimensionless 

molalities, mi = ρi/ρ1, and each species has an associated chemical potential, µi. Temperature will 

be assumed to be constant throughout. The osmotic system(s) of interest involve a central fixed 

volume of interest (V) which is separated from a large bulk solvent region by a barrier permeable 

(open) to the solvent, and in some applications the cosolvent, but not to the solute. The bulk solvent 

is held at a constant chemical potential (µ1) defined by the solvent at a particular temperature and 

a fixed outside pressure (PO). Here, we use pure water at a temperature T = 298.15 K and a pressure 
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PO = 1 bar throughout. The pressure generated inside the central fixed volume region (PI) in the 

presence of the solute then provides the osmotic pressure via Π = PI – PO. The osmotic pressure, 

the virial coefficients, and the integrals defined below are then a function of T, µ1(PO), and ρ2. In 

the presence of a cosolvent the dependence extends to include ρ3, when the barrier is impermeable 

(closed) to the cosolvent, or µ3 when the barrier is permeable (open) to the cosolvent. However, in 

the following sections we have not included all of these dependencies in an effort to simplify the 

notation used.   

 

 2.3.2 Kirkwood-Buff Theory of Binary Osmotic Systems  

In this section we outline how KB theory can be used to understand osmotic systems. One 

of the advantages of using KB theory is that the solution thermodynamics can be formulated in 

terms of integrals which have a well defined physical significance. This is also true of the MM 

theory of solutions, but there one is restricted to an interpretation in terms of distributions at infinite 

dilution in the primary solvent.13 This restriction is not required by KB theory, although MM 

theory is obtained, as expected, under infinite dilution conditions. The following integrals are 

required,12  

 
𝐺𝛼𝛽 =

1

𝑉
∬[𝑔𝛼𝛽

(2)
(𝑟1, 𝑟2) − 1]𝑑𝑟1𝑑𝑟2 

𝐺𝛼𝛽𝛾 =
1

𝑉
∭[𝑔𝛼𝛽𝛾

(3) (𝑟1, 𝑟2, 𝑟3) − 𝑔𝛼𝛽
(2)(𝑟1, 𝑟2) − 𝑔𝛼𝛾

(2)(𝑟1, 𝑟3) − 𝑔𝛽𝛾
(2)

(𝑟2, 𝑟3)

+ 2]𝑑𝑟1𝑑𝑟2𝑑𝑟3 

 

(2.2) 

and correspond to integrals over the orientationally averaged two body g(2) and three body g(3) 

distribution functions between the centers of mass of species α, β and γ, defined in the Grand 

Canonical ensemble, and integrated over all relative center of mass positions r1 of particle 1 of 
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species α, etc. They clearly resemble the integrals appearing in the treatment of imperfect gases or 

the MM theory of solutions.33 The key difference is that the solute integrals G22 and G222 are 

composition dependent in KB theory. Hence, the distributions (g22, etc) are for pairs of solute 

molecules after averaging over all other solute and solvent degrees of freedom at the composition 

of interest. The physical interpretation of the G22 integral in open systems is quite simple. A 

positive value indicates a tendency for the solute to self-associate, while a negative value indicates 

a preference for solute solvation. We will see that G222 provides a measure of triplet solute 

correlations and determines how G22 changes with composition. Alternatively, one can express the 

above integrals in terms of particle-particle number fluctuations, 

 
𝜌2(1 + 𝜌2𝐺22) =

< 𝛿𝑁2𝛿𝑁2 >

𝑉
= 𝐹22 

(2.3) 

            

and, 

 
𝜌2(1 + 3𝜌2𝐺22 + 𝜌2

2𝐺222) =
< 𝛿𝑁2𝛿𝑁2𝛿𝑁2 >

𝑉
= 𝐹222 

(2.4) 

             

where δN2 = N2 - < N2 > and the angular brackets denote an ensemble average for a local region 

within the solution mixture. Here, N2 is the instantaneous number of solute molecules observed in 

a small local fixed volume of the solution open to all species. KB theory relates the properties 

(particle number fluctuations) of systems open to all species, to the properties of semi-open 

(osmotic) or closed (isothermal isobaric) systems under the same average thermodynamic 

conditions. We note that one does not have to use the commonly employed superposition 

approximation for the triplet distributions, or invoke additive potentials, when using KB theory. 

The evaluation of G22 and other Gij values for various solutes represents the major focus of this 

work. 
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The application of KB theory to binary osmotic systems provides expressions for 

derivatives of the osmotic pressure in terms of the above integrals and the solute number density. 

The first derivative is given by,12  

 
𝛽 (

𝜕Π

𝜕𝜌2
)

𝜇1

=
1

1 + 𝜌2𝐺22
 

(2.5) 

           

Clearly, ideal osmotic behavior requires either a small solute concentration or G22 = 0 for all 

compositions. A tendency for solute self association (G22 > 0) would result in a lower than ideal 

(βΠid = ρ2) osmotic pressure as the solute concentration is increased, and vice versa. An expression 

for the second derivative has also been provided and can be written,26  

 
𝛽 (

𝜕2Π

𝜕𝜌2
2 )

𝜇1

= −
𝐺22 + 𝜌2(𝐺222 − 𝐺22

2 )

(1 + 𝜌2𝐺22)3
 

(2.6) 

             

Both derivative expressions apply at any solute concentration. Taking derivatives of the right hand 

side of Equation (2.5) and equating with the right hand side of Equation (2.6) provides an 

expression for the derivative of G22 with respect to solute concentration at constant T and solvent 

chemical potential (all such derivatives will be indicated with a prime), 

 
𝐺22

′ =
𝐺222 − 2𝐺22

2

1 + 𝜌2𝐺22
 

(2.7) 

             

Hence, if G222 = 2G22
2 for all compositions the value of G22 will be independent of composition, 

whereas one requires G222 = 0 for ideal systems. However, when G222 > 2G22
2 then G22 will tend 

to increase with composition and vice versa. When G22 is independent of composition one finds 

that 𝛽Π = 𝐺22
−1ln(1 + 𝜌2𝐺22). 

Given a set of osmotic virial coefficients one can directly express the composition 

dependence of G22 (G22’) and G222 according to,  
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𝐺22 = −

𝑌𝑛

𝜌2(1 + 𝑌𝑛)
    𝐺222 =

𝑌𝑛(1 + 𝑌𝑛)(1 + 2𝑌𝑛) − 𝜌2𝑌𝑛
′

𝜌2
2(1 + 𝑌𝑛)3

      𝑌𝑛 = ∑ 𝐵𝑛𝜌2
𝑛−1

𝑛≥2

 
(2.8) 

            

The above expressions describe the composition dependence of the experimental or simulated 

solute self-association, and represent the principle quantities of interest in this study. Expansion of 

the above expressions in a power series in the solute number density leads to, 

 𝐺22 ≈ −𝐵2 − [𝐵3 − 𝐵2
2]𝜌2 − [𝐵4 − 2𝐵2𝐵3 + 𝐵2

3]𝜌2
2 − ⋯ 

𝐺222 ≈ −[𝐵3 − 3𝐵2
2] − [2𝐵4 − 9𝐵2𝐵3 + 3𝐵2

3]𝜌2 − ⋯ 

(2.9) 

             

and provide the limiting values of G22 and G222 for an infinitely dilute solute, 

 𝐺22
∞ = −𝐵2            𝐺222

∞ = 3𝐵2
2 − 𝐵3 (2.10) 

           

together with the derivative of G22, 

 𝐺22
∞ ′

= 𝐺222
∞ − 2(𝐺22

∞ )2 = 𝐵2
2 − 𝐵3 (2.11) 

           

The above expressions are necessarily equivalent to those of MM theory, except for the fact that 

we have not inferred the superposition approximation for the triplet potential of mean force to 

simplify and evaluate B3. The above relationships lead to the following osmotic pressure 

expansion,  

 𝛽Π = 𝜌2 −
1

2
𝐺22

∞ 𝜌2
2 −

1

3
[𝐺222

∞ − 3(𝐺22
∞ )2]𝜌2

3 + ⋯ (2.12) 

         

which provides the B2 and B3 coefficients in terms of KB integrals, and is in agreement with 

previous results.12 Hence, MM theory is obtained from KB theory when the required derivatives 

are obtained at infinitely dilute solute concentrations. 

The above expressions can be used to analyze experimental or simulated osmotic pressure 

data for any type of solute. It should be noted, however, that the G22 integral diverges (∝  𝜌2
−1/2

) 
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for low concentration salt solutions.34 KB theory can still be applied to study salt solutions, but 

with less interpretive power as provided for non-ionic systems. For both ionic solutes and 

cosolvents we then distinguish between the traditional salt concentration (ρs) and the total ion 

concentration (ρ2 or ρ3).
35 Before leaving this section we note that KB theory can be used to provide 

an expansion in terms of solute molality,25,36,37 but the expressions then involve the G21 integrals 

and become somewhat more complicated to interpret. 

 

 2.3.3 Kirkwood-Buff Theory of Ternary Osmotic Systems 

Ternary osmotic systems are more complicated and yet just as important. In particular, the 

effects of osmolytes (or molecular crowding) on protein folding and association under cellular 

(open) conditions requires a detailed knowledge of osmotic systems and their behavior.38-40 Here, 

we provide expressions to illustrate the effects of a cosolvent (3) on the osmotic pressure displayed 

by a solute (2) in a primary solvent (1), which depend on whether the system is open or closed 

with respect to cosolvent. The following expressions then hold,25  

 𝑅𝑇𝑑ln𝜌1 = (1 + 𝑁11)𝑑𝜇1 + 𝑁12𝑑𝜇2 + 𝑁13𝑑𝜇3 

𝑅𝑇𝑑ln𝜌2 = 𝑁21𝑑𝜇1 + (1 + 𝑁22)𝑑𝜇2 + 𝑁23𝑑𝜇3 

𝑅𝑇𝑑ln𝜌3 = 𝑁31𝑑𝜇1 + 𝑁32𝑑𝜇2 + (1 + 𝑁33)𝑑𝜇3 

𝑑P = 𝜌1𝑑𝜇1 + 𝜌2𝑑𝜇2 + 𝜌3𝑑𝜇3 

(2.13) 

            

where we have written Nij = ρj Gij, and the last expression corresponds to the Gibbs-Duhem 

equation at constant T. These differentials can be applied toward the analysis of systems in any 

ensemble where T is held constant. Several different cases will be considered. 

If the system is open to both the solvent and the cosolvent then one has dµ1 = dµ3 = 0 and 

dP = dΠ, which on insertion into the above expressions provide, 
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𝛽 (

𝜕Π

𝜕𝜌2
)

𝜇1,𝜇3

=
1

1 + 𝑁22
 

(2.14) 

            

In this situation there is no explicit dependence of the osmotic pressure on the KB integrals 

involving either the solvent or cosolvent. However, the value of G22 will depend implicitly on the 

cosolvent concentration. The difference between the G22 values in the presence and absence of the 

cosolvent can be obtained from,   

 
(

𝜕Π

𝜕𝜌2
)

𝜇1,𝜇3

− 𝛽 (
𝜕Π

𝜕𝜌2
)

𝜇1

≈ −[𝑁22(𝜌3) − 𝑁22(0)] 
(2.15) 

           

which is valid for low solute concentrations. If G22(ρ2) > G22(0) then the presence of the cosolvent 

tends to increase the self association of the solute and is characterized by a lower solute osmotic 

pressure in the presence of the cosolvent compared to that in pure solvent (for the same solute 

concentration). The above conditions are the same as found in equilibrium dialysis experiments. 

Here, one can quantify the relative binding of the cosolvent (G23) and solvent (G21) to the solute 

via the preferential binding parameter,36,37 

 
Γ23 = (

𝜕𝑚3

𝜕𝑚2
)

𝜇1,𝜇3

=
𝑁23 − 𝑚3𝑁21

1 + 𝑁22 − 𝑁12
 

(2.16) 

            

where mi = ρi/ρ1 is the (dimensionless) molality of i. This property is particularly useful when 

describing the effects of cosolvents on molecular association as demonstrated below. 

If the system is only open to the solvent and the cosolvent then one has dµ1 = dρ3 = 0 and 

dP = dΠ, which on insertion into the above expressions provide, 

 
𝛽 (

𝜕Π

𝜕𝜌2
)

𝜇1,𝜌3

=
1 + 𝑁33 − 𝑁23

(1 + 𝑁22)(1 + 𝑁33) − 𝑁23𝑁32
 

(2.17) 
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where N23 can be considered as a measure of the solute-cosolvent affinity. When species 2 and 3 

are both proteins this provides insight into mixed protein-protein interactions that can be extracted 

from experimental osmotic data. In either case, the above expression reduces to Equation (2.5) 

when G23 = 0. Equation (2.17) is much more complicated in comparison to Equation (2.5) or (2.14). 

However, one can extract information on the cosolvent and solute association via,  

 
𝛽 (

𝜕Π

𝜕𝜌2
)

𝜇1,𝜌3

− 𝛽 (
𝜕Π

𝜕𝜌2
)

𝜇1,𝜇3

≈ −𝑁23 
(2.18) 

             

which is valid for low solute and cosolvent concentrations. 

 

 2.3.4 Solute Association Equilibria in Osmotic and Closed Systems 

The previous analysis indicates how one can obtain information concerning G22 for solutes. 

It should be noted that this is the most relevant property describing solute-solute association that 

relates to the thermodynamics of the solution. It involves both the direct binding between solute 

molecules, together with more subtle and/or long range changes in the solute-solute distribution 

with respect to a random bulk distribution (see Equation 2.2). Hence, solute-solute association 

could increase without inferring the formation of well defined dimers, etc. However, a much more 

physical picture of solute-solute association is provided by spectroscopic studies, where 

information may be provided concerning the concentration of specific tightly bound dimers. KB 

theory can also be used to study these types of association equilibria.23-26 The results for binary 

and ternary systems are presented here and compared to equivalent results for closed systems. 

If we consider a solute which can exist as a monomer (M) and an aggregate (A) consisting 

of n monomers, then one can define an equilibrium constant for the association reaction nM → A 

such that 𝐾 = 𝜌𝐴/𝜌𝑀
𝑛   under the equilibrium conditions µA = nµM. We note that the equilibrium 
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constant defined here is not dimensionless. One could include a standard concentration in the 

definition of the equilibrium to make K dimensionless. However, we will only be concerned with 

changes in the equilibrium constant (KB theory is mute on the value of K itself), and hence this 

factor will disappear. Previous studies indicate that,25  

 𝑅𝑇𝑑ln𝐾 = (𝑁𝐴1 − 𝑛𝑁𝑀1)𝑑𝜇1 + (𝑁𝐴2 − 𝑛𝑁𝑀2)𝑑𝜇2 + (𝑁𝐴3 − 𝑛𝑁𝑀3)𝑑𝜇3 (2.19) 

            

for a ternary system. The above differential complements the expressions in Equation (2.13) and 

involves KB integrals describing the correlation between each solute form and the primary 

components of the solution. The relationships between the solute KB integrals (independent of 

solute form) and the integrals for solute specific forms are given by,25  

 𝛿2𝑗 + 𝑁2𝑗 = 𝑓𝐴𝑁𝐴𝑗 + 𝑓𝑀𝑁𝑀𝑗 

𝑁𝑀2 = 1 + 𝑁𝑀𝑀 + 𝑛𝑁𝑀𝐴 

𝑁𝐴2 = 𝑛 + 𝑛𝑁𝐴𝐴 + 𝑁𝐴𝑀 

(2.20) 

             

where δij is the Kronecker delta function and the monomer and aggregate fractions are given by 

𝑓𝑀 = 𝜌𝑀/𝜌2  and 𝑓𝐴 = 𝑛𝜌𝐴/𝜌2, respectively. More details can be found in the original 

literature.25,26  

Using Equations (2.13) and (2.19) for binary systems (ρ3 = 0) one finds the following 

expressions for the effect of increasing solute concentration on the solute association equilibrium 

in open, 

 
𝑅𝑇 (

𝜕ln𝐾

𝜕Π
)

𝜇1

= 𝐺𝐴2 − 𝑛𝐺𝑀2 

(
𝜕ln𝐾

𝜕𝜌2
)

𝜇1

=
𝐺𝐴2 − 𝑛𝐺𝑀2

1 + 𝑁22
 

(2.21) 

             

and closed, 
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(

𝜕ln𝐾

𝜕𝜌2
)

𝑃

=
(𝐺𝐴2 − 𝑛𝐺𝑀2) − (𝐺𝐴1 − 𝑛𝐺𝑀1)

1 + 𝑁22 − 𝑁12
 

(2.22) 

          

systems. After taking derivatives of Equation (2.19) with respect to pressure one can then eliminate 

the Gi1 terms to provide, 

 
(

𝜕ln𝐾

𝜕𝜌2
)

𝑃

=
𝐺𝐴2 − 𝑛𝐺𝑀2 + Δ𝑉∗

1 + 𝑁22 − 𝜌2𝑅𝑇𝜅𝑇
≈

𝐺𝐴2 − 𝑛𝐺𝑀2 + Δ𝑉∗

1 + 𝑁22
 

(2.23) 

            

where Δ𝑉∗ is the change in volume for the process, which can be expressed in terms of KBIs but 

is simpler to interpret in this form. The above expressions demonstrate that the change in the 

association equilibrium differs in open and closed systems (possessing the same average 

thermodynamic properties) by terms in both the numerator and denominator. The compressibility 

term in the denominator will typically be small (10-3) and can be neglected, and the difference 

between the ensembles is related to the magnitude of Δ𝑉∗.  In open systems an increase in solute 

concentration increases the equilibrium constant if association of the solute, in any form, is larger 

to the aggregate than n times the monomer. In closed systems the effect of water association is 

also directly present and can be represented in terms of the volume change associated with the 

aggregation process. Hence, open systems will resist (compared to closed systems) any processes 

which result in an increase in volume by a term related to ΠΔ𝑉∗. 

Ternary systems are more complicated and involve additional KB integrals. Furthermore, 

component 3 may be held at constant chemical potential or fixed concentration, and one can follow 

the equilibrium by varying either the solute or cosolvent concentration. If the cosolvent 

concentration is held fixed and the solute concentration varied one finds (in addition to Equation 

2.17) that, 
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𝑅𝑇 (

𝜕ln𝐾

𝜕Π
)

𝜇1,𝜌3

=
(𝐺𝐴2 − 𝑛𝐺𝑀2)(1 + 𝑁33) − (𝑁𝐴3 − 𝑛𝑁𝑀3)𝐺23

1 + 𝑁33 − 𝑁23
 

(
𝜕ln𝐾

𝜕𝜌2
)

𝜇1,𝜌3

=
(𝐺𝐴2 − 𝑛𝐺𝑀2)(1 + 𝑁33) − (𝑁𝐴3 − 𝑛𝑁𝑀3)𝐺23

(1 + 𝑁22)(1 + 𝑁33) − 𝑁23𝑁32
 

(2.24) 

             

These expressions also describe the effect of varying the cosolvent concentration for a fixed solute 

concentration after a simple index change (2 ↔ 3). 

The previous expressions are greatly simplified if we restrict ourselves to situations in 

which the solute concentration is negligible (a common biological situation) and the cosolvent 

concentration is varied.  Then we find for open systems, 

 
𝑅𝑇 (

𝜕ln𝐾

𝜕Π
)

𝜇1,𝜌2

∞

= 𝐺𝐴3 − 𝑛𝐺𝑀3 

(
𝜕ln𝐾

𝜕𝜌3
)

𝜇1,𝜌2

∞

=
𝐺𝐴3 − 𝑛𝐺𝑀3

1 + 𝑁33
 

(2.25) 

             

while for closed systems we have, 

 
(

𝜕ln𝐾

𝜕𝜌3
)

𝑃,𝑚2

∞

=
(𝐺𝐴3 − 𝑛𝐺𝑀3) − (𝐺𝐴1 − 𝑛𝐺𝑀1)

1 + 𝑁33 − 𝑁13
=

𝜌3
−1(Γ𝐴3

∞ − 𝑛Γ𝑀3
∞ )

1 + 𝑁33 − 𝑁13
 

(2.26) 

 

and provides the KB expression for the m-value of protein denaturation when A → D, M → N and 

n = 1. Performing the same manipulation as for binary systems one finds, 

 
(

𝜕ln𝐾

𝜕𝜌3
)

𝑃,𝑚2

∞

=
𝐺𝐴3 − 𝑛𝐺𝑀3 + Δ𝑉∗

1 + 𝑁33 − 𝜌3𝑅𝑇𝜅𝑇
≈

𝐺𝐴3 − 𝑛𝐺𝑀3 + Δ𝑉∗

1 + 𝑁33
 

(2.27) 

   

which takes a similar form as before.41 Hence, the change in the equilibrium constant for 

association will be larger (more positive) in closed versus open systems when the volume change 

for association is positive and vice versa. The ease with which the above manipulations can be 
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performed for multicomponent systems in any ensemble represents a particular advantage of the 

KB approach. 

In summary, we have provided a series of expressions which can be applied to understand 

the behavior of open and closed systems. In particular, expressions describing variations in both 

the osmotic pressure and association equilibria in terms of a series of KB integrals have been 

provided. The main difference between equilibria in open and closed systems relates to the volume 

change accompanying the process. Hence, a significant difference between ensembles would only 

be expected for large volume changes and/or osmotic pressures. Finally, we want to be clear 

concerning the exact interpretation of the KBIs. The KBIs are defined in a Grand Canonical 

ensemble open to all species. Hence, Gij = Gij (T, V, µ1, µ2) for binary systems. The KBIs obtained 

from an analysis of the osmotic data correspond to changes in µ2, ρ2 or Π, whichever is more 

convenient to use. The KBIs will not be the same as those obtained from isothermal isobaric (PO) 

data, even if the solute and solvent compositions are identical, but will correspond to the KBIs 

obtained from an isothermal isobaric analysis at the same composition and the higher pressure of 

PO + Π. These differences may or may not be important depending on the exact application.6,15  

The primary use for the above expressions is two-fold. First, one can apply the expressions 

provided in Equations (2.5) - (2.7), (2.14), (2.17) to help interpret the experimental data concerning 

osmotic pressure changes, or Equations (2.21), (2.23), (2.25) and (2.27) to help interpret changes 

in equilibrium constants, in terms of the distribution functions between molecules provided in 

Equation (2.2). Hence, one can develop a link between the experimental thermodynamic data and 

the relative distributions of the various species in solution. Second, one can reverse the whole 

process and relate the solution distributions, obtained from theory or simulation, to compare with 
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available experimental data or to make predictions concerning the thermodynamic behavior of the 

solutions.  

 

 2.4 Methods 

 2.4.1 Molecular Dynamics Simulations 

All molecular dynamics simulations were performed using the KBFF models 

(http://kbff.chem.k-state.edu),35,42,43 together with the SPC/E water model,44 as implemented in the 

GROMACS 4.0.5 package.45 All simulations were performed at 300 K and the pressure of interest 

(P = PO = 1 bar or P = PO + Π) using the weak coupling technique to modulate the temperature and 

pressure with relaxation times of 0.1 and 0.5 ps,46 respectively. A time-step of 2 fs was used and 

the bond lengths were constrained using the Lincs (solutes) and Settle (water) algorithms.47,48 The 

particle mesh Ewald technique was used to evaluate electrostatic interactions with a grid resolution 

of 0.1 nm.49 A real space convergence parameter of 3.5 nm-1 was used in combination with twin 

range cutoffs of 1.0 and 1.5 nm, and a nonbonded update frequency of 10 steps. Random initial 

configurations of molecules in a cubic box were used to study the closed systems. Initial 

configurations of the different solutions were generated from a cubic box (L≈6.0 nm) of 

equilibrated water molecules by randomly replacing waters with solutes until the required 

concentration was attained. The steepest descent method was then used to perform 100 steps of 

energy minimization. This was followed by extensive equilibration, which was continued until the 

rdfs displayed no drift with time (typically 5 ns). Total simulation times were in the 25-50 ns range, 

and the final 25-30 ns were used for calculating ensemble averages. Configurations were saved 

every 0.1 ps for the calculation of various properties. Errors (±1σ) in the simulation data were 

estimated by using five block averages.  
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 2.4.2 Osmotic Simulations 

There are several simulation techniques available to study osmotic systems. Here, we take 

a very simple physical approach. Simulations of systems extended in the z direction  

(6 x 6 x 24 nm) were performed which included a series of Lennard-Jones (LJ) particles to act as 

two semi permeable walls separating the bulk solution from a central semi open region of interest. 

The LJ “walls” were separated by a z distance of 12 nm and all solutes were placed in the central 

region between the two walls. The parameters for the LJ particles were taken to be 0.3 nm and 

0.02 kJ/mol, and each wall was constructed of 20x20 particles separated by 0.3 nm in both the x 

and y directions. The walls were held fixed during the simulations and all interactions between the 

LJ particles and between the LJ particles and the solvent were excluded. Periodic boundary 

conditions were applied in all directions. Anisotropic pressure coupling was used to keep the x and 

y box lengths fixed and to maintain a fixed pressure in the z direction. All other simulation 

conditions were the same as for the closed systems. The osmotic pressure was then obtained by 

determining the pressure on the walls provided by the non-diffusible components.32 

Several technical issues can arise with such a system setup. First, the presence of the walls 

could affect the solute distribution and/or the pressure profile for the central region. This issue is 

discussed in the Results Section. Second, the use of a finite bulk solvent region acting as the 

chemical potential bath leads to a drop in the pure solvent pressure, as the solvent moves into the 

central (low µ1) region, when one simply couples Pzz = PT to a barostat at 1 bar. Hence, the outside 

pressure displayed by the pure solvent region will be less than 1 bar and therefore the system, 

while providing the same solvent chemical potential inside and outside the open region, will 

correspond to different constant solvent chemical potentials for each solute concentration. This 

makes it difficult to follow the equilibrium line where µ1 is held constant, at 1 bar for instance, as 
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performed experimentally. Fortunately, this is easy to correct if we note that the total or reference 

pressure (PT), the inside pressure (PI), and the outside pressure (PO) are related by, 

 𝑃T𝑉T = 𝑃O𝑉O + 𝑃I𝑉I (2.28) 

 

Hence, given the measured osmotic pressure, Π = 𝑃I − 𝑃O, one can then determine the outside 

(and thereby inside) pressure according to,  

 𝑃O = 𝑃T + Π(𝑉I/𝑉T) (2.29) 

 

To ensure that the solvent chemical potential remains at the same constant value as the solute 

concentration is increased, one needs to adjust the reference pressure to raise the outside pressure 

to the desired value of 1 bar. The above equation can be used to predict the value of PT that is 

consistent with PO = 1 bar, assuming the osmotic pressure is independent of PT, and the whole 

processes can be iterated (2-3 cycles) to consistency. The same process was performed for the 

NaCl simulations where µ1 and µ3 were held constant, except that the target outside pressure was 

the osmotic pressure obtained from the NaCl solute simulations. While these adjustments are 

usually small they can also be important.6,15  

 

 2.4.3 Analysis of the Simulation Data 

The primary analysis involved the determination of the KBIs from the simulations. This 

was achieved in two ways. The first involved the usual integration of the corresponding rdf. The 

KBIs are defined in systems open to all components and hence one cannot integrate over the full 

volume. Hence, the integration was truncated at a distance R from the central particle, where R is 

the distance at which the rdf approaches unity.50 This also provides a distance dependent KBI 

which can be used to determine contributions from various solvation shells,  
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𝐺𝑖𝑗(𝑅) = ∫ [𝑔𝑖𝑗

(2)
(𝑟12) − 1]𝑑𝑟12

𝑅

0

 
(2.30) 

            

For this work we used a final value of R = 1.5nm. KBIs were only determined from the closed 

systems at the equivalent state point. The main advantage of this approach is that the rdfs and KBIs 

provide information concerning the “structure” of the solution surrounding the central i particle. 

The second approach involves the direct application of Equation (2.3) and the determination of the 

appropriate particle number fluctuations. The closed systems were analyzed by considering a series 

of reference volumes centered on a randomly chosen origin and then averaging over these volumes. 

The reference volumes were chosen as cubes of length 3 nm and approximately 10,000 origins 

were used. The advantage of this approach lies in the large number of origins which can be used, 

which greatly improves the statistical significance but with the loss of structural information. The 

determination of G222 was performed using the particle number fluctuations and Equation (2.4). 

A more physical analysis of solute association was also performed. The most prominent 

interaction between the Glyn solutes involved direct association between the N and C terminal 

groups, as evidenced by the atom based rdfs. Hence, a solute dimer, (and trimer, etc) was defined 

by considering the contact distance between the nitrogen and the midway point between both 

oxygens of the carboxylate groups. If this distance was less than 0.5 nm, the first minimum in the 

rdf between these two groups, then the two solutes were considered to be associated. An iterative 

procedure was then applied to determine the number of solutes in each solute cluster. 
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 2.5 Results and Discussion 

In this section we analyze both the experimental and simulated data for binary mixtures of 

water containing various concentrations of NaCl, Gly, Gly2 and Gly3 as solutes. In addition, 

simulated data for ternary mixtures of water with a solute and cosolvent are also examined. In 

performing the osmotic simulations one has little control over the exact concentration of the 

diffusible components. Hence, while we will constantly refer to systems at 3 m Gly or 6 m NaCl, 

etc, it should be remembered that these are approximate concentrations (to within 10%). The exact 

concentrations can be found in the various tables. Furthermore, the statistical noise associated with 

KBIs increases as the concentrations of the components decreases.51 Therefore, in many situations 

we have chosen to analyze only the simulations at high solute and cosolvent concentrations, and 

to use the highest possible concentrations of both solute and cosolvent. 

Before continuing with the present analysis it is important to ensure there were no 

significant artifacts in the osmotic simulations. This is unlikely due to the fact that there is no 

significant desolvation process for the solutes at the walls, although effects on solute-solute 

distributions are still possible. The pressure and density profiles for the 6m NaCl osmotic system 

are displayed in Figure 2.1. The pressure profile, P(z), was determined using the approach outlined 

in previous work on surface tension.52 However, here we approximated the pressure contributions 

using a simple Coulomb plus LJ potential truncated at 1.5 nm for the molecular virial, primarily 

due to the excessive cost involved with calculating the contributions using the full Ewald potential. 

Hence, the pressures do not exactly match the pressure determined during the simulation. 

Nevertheless, it seems clear that neither the density nor pressure profiles indicate any surface 

effects beyond a few molecular diameters.  



60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Pressure and concentration profiles obtained from the simulation of the 6m NaCl 

osmotic system at 300 K. The top panel shows a snapshot from the simulation with water 

molecules removed. The LJ spheres comprising the “walls” are displayed in red. The sodium 

ions (blue) and chloride ions (green) are confined to the central inside region. The central 

panel displays the pressure profile in units of bar. The lower panel displays the molar 

concentrations of water (black) and ions (red). 
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The experimental and simulated osmotic pressures are displayed in Figure 2.2. The force 

fields used here performed reasonably well at low solute concentrations, but displayed some 

deviation from experiment at higher solute concentrations. It also appears that, even if the force 

fields were perfect, the estimated errors are such that one could not distinguish between the real 

experimental data and the ideal data provided by the van’t Hoff curves, using the current simulation 

times. This picture changes somewhat when the focus is shifted to the KBIs as we shall see later. 

 

 

Figure 2.2 Experimental and simulated osmotic pressures at 300 K as a function of solute 

molarity. Data are displayed as Π/Πid where solid lines correspond to the experimental data 

and symbols indicate simulated results. Experimental data taken from 54-58. 
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One of the goals of this work is to investigate the thermodynamics of open (and closed) 

systems in terms of the KBIs. The presence of the walls and the subsequent loss of periodicity 

hinder the determination of the KBIs for the inside region. To circumvent this problem, we have 

performed additional isothermal isobaric simulations at the reference pressure of PO = 1 bar and 

also at a pressure of PO + Π, using the solute and solvent concentrations obtained for the inside 

region. The solute-solute rdfs obtained for all three systems are displayed in Figure 2.3. 

 

 

Figure 2.3 Solute-solute (g22) and solute-solvent (g12) rdfs as a function of ensemble and 

pressure. Data are presented for 3m Gly as a solute, but similar observations are found for 

the Gly2 and Gly3 systems. Curves correspond to the osmotic simulation (black) and closed 

systems with P = PO = 1 bar (red) and P = PO + Π = 53 bar (green). 
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They clearly show that the rdfs are identical within the precision of the simulations. Hence, while 

the KBIs will vary with composition, they appear to be relatively insensitive to pressure, i.e. G22 

(T, m2, PO) ≈ G22 (T, m2, PO + Π). This is to be expected for the relatively low pressures exhibited 

in the current osmotic systems. Consequently, we have obtained all the KBIs presented here from 

the corresponding closed system simulations. 

The experimental and simulated fluctuating quantities are provided in Table 2.1, Table 2.2 

and Figure 2.4. The values of G22 for all solutes start positive and decrease with increasing solute 

concentration. Hence, there is a tendency for solute self-association at low solute concentrations 

which increases as one moves from Gly to Gly2 to Gly3. This behavior has been observed before 

in closed systems where we used the isobaric isothermal results to investigate possible group 

contributions to the observed association behavior.53 A comparison of the closed (isothermal 

isobaric) and open (osmotic) results indicates that the G22 values are essentially the same, to within 

the typical precision of the data, which is to be expected considering the negligible pressure 

dependence exhibited by the rdfs in Figure 2.3. The simulated values of G22 are also provided in 

Table 2.3 and Figure 2.4. There is not perfect agreement with experiment. The trends in G22 with 

composition appear to be correct and one observes a general agreement in sign. Fortunately, unlike 

the raw osmotic pressure data, it does appear possible to distinguish the G22 values from their ideal 

values (G22 = 0). Furthermore, the infinite dilution KBIs obtained from a fit of the simulated 

osmotic pressures appear to be reasonable (see Table 2.1), which is probably a reflection that the 

largest disagreement only occurs for high solute concentrations. This is potentially important for 

applications in force field design as it allows one to determine if one has a correct balance between 

the solute-solute, solute-solvent and solvent-solvent distributions. 
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Figure 2.4 Experimental and simulated KBIs and solute fluctuations for Gly (black), Gly2 

(red) and Gly3 (green) solutes as a function of solute molarity at 300 K. The values of G22 and 

G222 are in units of M-1 and M-2, respectively. The colors correspond to the different solutes 

investigated here. Solid lines correspond to the current analysis of the experimental osmotic 

data, while dashed lines were obtained from an analysis of the corresponding experimental 

isothermal isobaric data. 54-56 The fluctuating quantities F22 and F222 are given by Equations 

2.3 and 2.4 with ideal values of 𝑭𝟐𝟐
𝒊𝒅 = 𝑭𝟐𝟐𝟐

𝒊𝒅 = 𝝆𝟐. Symbols represent the simulated data. 

 

Also displayed in Figure 2.4 are the G222 values. The G222 values quantify the role of triplet 

distributions towards the thermodynamic behavior of the mixture and should be zero for ideal 

solutions. The experimental data suggests that triplet correlations become increasingly important 
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for Gly3 and display a strong dependence on concentration. In contrast, the relatively small 

negative values of G222 for Gly and Gly2 suggest a focus on dimer association for most solute 

concentrations. The particle number fluctuations (Equation 2.3) are also displayed in Figure 2.4. 

The data display both positive and negative deviations from ideal behavior with significant 

deviations even at low solute concentrations. The finite values for F222 also indicate that the number 

fluctuations are not characterized by a symmetric distribution, i.e. they are non-Gaussian. Finally, 

we attempted to determine F222 from our simulations. Even for the highest (most statistically 

reliable) solute concentration the value of F222 was found to be -0.02(30) for 3 m Gly, which is 

essentially meaningless using the current simulation times of 25 ns or so. 

 

Table 2.1 Experimental and simulated binary osmotic virial coefficients and KB integralsa. 

 

System  

B2 B3 B4 𝐺22
∞  𝐺22

∞ ′
 𝐺222

∞  

M-1 M-2 M-3 M-1 M-2 M-2 

Gly Exp -0.104 0.082 -0.011 0.106 -0.071 -0.050 

 MD -0.260 0.075  0.260 -0.007 0.128 

Gly2 Exp -0.361 0.484 -0.142 0.330 -0.354 -0.093 

 MD -0.529 1.051  0.529 -0.774 -0.211 

Gly3 Exp -0.710 1.445  0.973 -0.941 0.067 

        

a Obtained from a fit to Equation 2.1 with B1 = 1 at 298.15 K. Experimental data taken from 54-56.  
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Table 2.2 Summary of the osmotic molecular dynamics simulationsa. 

 

System 

Out In  

ρ1 ρs ρ1 ρ2 ρs Π Πid PT 

T, µ1 

2.0m NaCl 55.2  53.7  1.9 96 95 57 

4.0m NaCl 55.2  51.9  3.6 207 180 116 

6.0m NaCl 55.2  49.7  5.3 325 264 188 

1.0m Gly 55.2  53.3 0.9  21 22 10 

2.0m Gly 55.2  51.3 1.8  37 45 22 

3.0m Gly 55.2  49.3 2.6  52 65 33 

0.3m Gly2 55.2  54.0 0.3  8 7 4 

1.0m Gly2 55.2  51.4 0.9  23 22 10 

1.5m Gly2 55.2  49.8 1.3  41 32 15 

0.3m Gly3 55.2  53.3 0.3  11 7 5 

T, µ1, µ3 

3.0m Gly/6.0m NaCl 49.4 5.5 40.4 2.6 5.8 68 65 369 

1.5m Gly2/6.0m NaCl 47.8 5.6 43.7 1.3 5.5 54 32 358 

0.3m Gly3/6.0m NaCl 49.2 5.5 47.6 0.3 5.2 11 7 333 

T, µ1, ρ3 

3.0m Gly/6.0m NaCl 55.9  41.1 2.6 5.1 348 319 186 

1.5m Gly2/6.0m NaCl 55.4  42.8 1.3 5.2 399 291 205 

0.3m Gly3/6.0m NaCl 55.3  47.9 0.3 5.2 342 267 185 

a Mixtures of Glyn (2) and water (1) in the presence and absence of NaCl (3) at 300 K. Number densities in units of M 

(ρ3 = 2 ρs). Pressures are in units of bar. Typical standard deviations for the measured osmotic pressures were 4 bar. 

The ideal osmotic pressure is given by βΠid = ρ, where ρ is the total number density of all non-diffusable species. PT 

is the total external pressure applied to each system. 
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Table 2.3 Simulated KB integrals and preferential interactionsa. 

 

System 

In KBIs Γ23 Π 

ρ1 ρ2 ρs G22 G22
* G23 G21   

T, µ1 

1.0m Gly 53.3 0.9  246(52) 36  -53(2)  21 

2.0m Gly 51.3 1.8  110(56) -33  -56(5)  37 

3.0m Gly 49.3 2.6  0(23) -91  -51(3)  52 

0.3m Gly2 54.0 0.3  350(37)   -83(1)  8 

1.0m Gly2 51.4 0.9  16(41)   -83(3)  23 

1.5m Gly2 49.8 1.3  -53(44)   -80(5)  41 

0.3m Gly3 53.3 0.3  237(376)   -124(13)  11 

T, µ1, µ3 

3.0m Gly/6.0m NaCl 40.4 2.6 5.8 -155(2) 38 24(1) -53(3) 1.22(5) 68 

1.5m Gly2/6.0m NaCl 43.7 1.3 5.5 -261(90)  -2(8) -80(11) 1.12(12) 54 

0.3m Gly3/6.0m NaCl 47.6 0.3 5.2 -669(214)  -65(9) -117(8) 0.65(13) 11 

a Mixtures of Glyn (2) and water (1) in the presence and absence of NaCl (3) at 300 K. Number densities in units of M 

(ρ3 = 2 ρs). Pressures in units of bar. KBIs in units of cm3/mol. G22* corresponds to the integration of G22 to the first 

minimum in the solute-solute rdf (0.62nm for Gly). 

 

The previous analysis has centered upon the KBIs. We have argued that these are the most 

relevant quantities relating molecular distributions to the corresponding thermodynamics, and can 

provide an interpretation of solute association. However, it is more typical to analyze simulation 

results in terms of molecular association defined by some simple distance criteria. This is also 

likely to be more relevant to spectroscopic data for protein association, for example. To investigate 

the similarities and differences between these two viewpoints we have analyzed the degree of 

association of the solutes in our simulations, and investigated the effect of salt on these 

distributions. A detailed examination of all the solute atom-atom rdfs indicated that the only 

significant interaction leading to dimer or higher aggregate formation was that between the  
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Figure 2.5 The fraction of solute molecules in an aggregate of n solute molecules (top) as a 

function of aggregate size. The equilibrium constants for dimer (middle) and trimer (bottom) 

formation as a function of solute molarity. See text for definitions. The solid curves 

correspond to 3.0m Gly (black), 1.5 m Gly2 (red) and 0.3m Gly3 (green), while the symbols 

and dashed curve represents the same solutes in 6.0m NaCl. 
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zwitterionic N and C terminal groups, and so the first minimum in this rdf was used to define the 

degree of solute aggregation. The results are presented in Table 2.3 and Figure 2.5 and Figure 2.6. 

 

 
Figure 2.6 Solute-solute and solute-ion atom based rdfs. The N terminus to C terminus rdf 

for 3 m Gly in the absence and presence of 6m Nacl (top). The N terminus to chloride (center) 

and the C terminus to sodium (bottom) rdfs for various 3.0 m Gly (black), 1.5 m Gly2 (red) 

and 0.3 m Gly3 (green) concentrations in the presence of 6 m NaCl (bottom). 
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Figure 2.5 displays the fraction of solute molecules observed in aggregates containing n 

solute molecules during the simulations. The predominant solute form was the monomer for all 

solutes at all concentrations. However, as solute concentration increases it becomes more difficult 

to find isolated solute molecules, indicating a potential difficulty one encounters when applying 

such simple models to concentrated solutions. Figure 2.5 also displays the equilibrium constants 

for association (ln Kn) as a function of solute concentration. The equilibrium constant data display 

an increase in solute association with solute concentration for both Gly and Gly2. This is the 

opposite trend to that indicated by the previous analysis on the KBIs. However, both approaches 

agree that solute association (dimer or trimer) increases from Gly to Gly3. Of course, the difference 

between the two approaches can be reconciled when one considers that Kn will increase with solute 

concentration, even if there is no net affinity between the solutes, simply because one has more 

solutes per unit volume. Comparison with Equation 2.21 indicates that solute association with the 

dimer or trimer (GA2) must therefore be larger than n times the solute association with the monomer 

(GM2).  

The addition of salt had a dramatic effect on the solute association. This was demonstrated 

by both a significant drop in G22 as indicated in Table 2.3, and a drop in the equilibrium constants 

as shown in Figure 2.5. However, the underlying story was much more complicated. First, the 

fraction of solute molecules in either the monomer, dimer or trimer form is increased in the 

presence of salt. This appears to result from a decrease in the number of high n aggregates. Second, 

the equilibrium constant drops in the presence of salt primarily because the monomer concentration 

increases. Third, as the total concentration is decreased the fraction of monomer will naturally 

increase. Hence, the monomer fraction is largest for Gly3 at the concentrations displayed in Figure 
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2.5, even though Gly3 displays the largest equilibrium constant for dimer or trimer formation at 

equivalent solute concentrations. 

The change in solute association could be attributable to either a general salt screening of 

the large dipole-dipole interactions between the solutes, or specific binding of anions and/or 

cations with the solutes such that solute association is diminished. To investigate further we present 

the relevant rdfs in Figure 2.6, and have also determined the corresponding preferential interaction 

coefficients between the solutes and NaCl, which are displayed in Table 2.3. The solute-solute N 

to C terminal rdf is changed on addition of NaCl. The first peak is decreased and the second peak 

increased in the presence of NaCl. The increased second solvation shell probability appeared to 

correspond to the binding of multiple Gly solutes with a shared sodium ion via their carboxylate 

groups. This also had an effect (-91 to 36 cm3/mol) on the value of G22 truncated after the first 

solvation shell (denoted as G22*), suggesting an increase in solute-solute contacts at short range, 

which must be compensated by changes at large distances. The first shell coordination numbers 

for the N to C termini were 0.74 and 0.48 for 3 m Gly in the absence and presence of 6m NaCl, 

respectively. The values of Γ23 were all positive indicating a net thermodynamic binding of salt 

ions with the solutes. However, the values of G21 were consistently larger than G23 suggesting that 

the greater effect was due to water exclusion from the solutes rather than ion binding. Interestingly, 

the G21 values were the same in the presence and absence of 6m NaCl. The rdfs between the ions 

and the terminal groups displayed in Figure 2.6 also support a role for ion binding. First shell 

coordination numbers were found to be 1.14 and 0.67 for the chloride and sodium ions, 

respectively, and were essentially the same for all three solutes. However, the net ion first shell 

coordination of 1.81 was significantly higher than that provided by the corresponding 
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thermodynamic quantities (G23 or Γ23). Hence, changes in solute association on the addition of salt 

appear to be distance dependent.  

 

 2.6 Conclusions 

Expressions have been provided for the analysis of binary and ternary open and closed 

systems using the KB theory of solutions and the corresponding KB integrals. The KBIs provide 

an alternative to the cluster integrals in the MM expressions, which are much easier to determine 

from simulations of concentrated solutions. The expressions have been illustrated using both 

experimental and simulation data for small Gly, Gly2 and Gly3 zwitterionic peptide solutes in the 

presence and absence of NaCl. Two measures of solute association were investigated and found to 

provide different viewpoints of the association process. A thermodynamic measure of solute 

association is provided by G22, and this is aided by the additional information concerning triplet 

correlations provided by G222. The experimental and simulation data indicated that solute 

association prevails at low concentrations and increases within the series Gly < Gly2 < Gly3. In 

addition, solute association decreases with increasing solute concentration for all the solutes. A 

more physical measure of solute association was investigated and expressed in terms of 

equilibrium constants for dimer and trimer formation. Here, an increase in the equilibrium 

constants was observed on increasing the solute concentration, in contrast to the thermodynamic 

measure of association. The differences arise as the thermodynamic measure includes changes to 

the solute distribution over all distances, while the physical measure focuses primarily on the first 

solvation shell. The addition of salt to solutions of Glyn solutes reduces the values of G22 and the 

equilibrium constants for association. Further analysis of 3m Gly solutions indicated that this was 

a consequence of the disruption of larger aggregates leading to an increase in the number of 

monomers, dimers, and trimers. The overall global (long range) effect was clearly solute 
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disassociation as indicated by the decrease of G22 in the presence of NaCl, whereas solute 

association increased at the local (first shell) level. This suggests an overall salt screening effect 

that includes a local increase in dimer and trimer formation due to the binding of sodium ions with 

multiple solute carboxylate groups. It should be noted that, while the value of G22 is the most 

thermodynamically relevant quantity, a clear physical interpretation is often difficult as it probes 

changes in the solute-solute distribution over multiple solvation shells. In contrast, the physical 

picture of association is quite clear, but often subjective and not necessarily thermodynamically 

relevant. The present results therefore illustrate the advantages of a combination of KB theory and 

computer simulations data provide for the interpretation of complex solution behavior. 
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Chapter 3 - Interactions of Amino Acids in Aqueous Solutions 

 3.1 Abstract 

Amino acids are the building blocks of proteins. Solvent mediated interactions between 

amino acids determine protein structure, protein association, and protein aggregation. Although an 

understanding of the behavior of proteins in aqueous solutions is important for our understanding, 

design, and optimization of biological systems, the underlying molecular level interactions are 

poorly understood. Here, we have attempted to quantify the interactions between amino acids in 

aqueous solutions using the Kirkwood-Buff (KB) theory of solutions, which provides a link 

between the molecular interactions and the corresponding solution thermodynamics. The results 

are illustrated using computer simulations for various concentrations of the twenty zwitterionic 

amino acids at ambient temperature and pressure. The results are discussed in terms of the 

preferential (solute over solvent) interactions between the amino acids. Here one can observe that 

hydrophobic amino acids remain well solvated in the zwitterionic form, but they are observed to 

associate in the capped form. It is also revealed that the protonation of amino acids with negatively 

charged polar side chains significantly increases self-association. 
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 3.2 Introduction 

Peptide and protein aggregation are directly involved with many age-related diseases and 

aging itself.1-4 A better understanding of protein aggregation would hopefully lead to the prediction 

and even prevention, of these the undesirable conditions. Hence, a number of studies have been 

pursued to understand and predict the misfolding and subsequent aggregation of proteins.4,5 

However, it is still unclear why certain peptides and proteins tend to aggregate. 

In principle, aggregation in a solution mixture results from a shifted balance in the 

intermolecular interactions between solute and solvent. If the solute-solute interactions are larger 

than solute-solvent interactions, self-association is likely to occur, and vice versa: i.e. the tendency 

for aggregation can be predicted using the difference between solute-solute and solute-solvent 

interactions. Hence, it is reasonable to express the difference between solute-solute and solute-

solvent interactions using a quantitative term. The concept of preferential interactions, PI has been 

introduced previously.6 Moreover, KB integrals can play an important role in quantifying these 

PIs.6 Furthermore, Kang and Smith have developed a pairwise preferential interaction model based 

on KB integrals to quantify interactions between some of the functional groups commonly 

observed in peptides.7 In addition, Karunaweera et al. have performed a detailed analysis of 

experimental and simulation data of glycine monomer, dimer and trimer using the KB theory.8 

Proteins are usually large molecules consisting of twenty traditional amino acids as 

building blocks. Therefore, it would be more useful to quantify the interactions between amino 

acids, or even between functional groups, rather than to deal with the protein as a whole and then 

maybe we can use the corresponding results to predict the behavior of peptides and proteins. 

Furthermore, if all twenty traditional amino acids are considered, there are two hundred and ten 

[(20*19/2) + 20] possible combinations. Hence, initially we are going to focus on just the  
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self-interactions of individual amino acids in this study. The main aim is to understand the 

interactions between amino acids in aqueous solutions. In addition, we would also like to 

determine how amino acid interactions vary with composition. Finally, we will try to quantify the 

amino acid interactions in terms of PIs. 

 

 3.3 Methods 

 3.3.1 Thermodynamics of Solutions and KB Theory 

The notation used here follows the common definition where the subscripts 1 and 2 refer 

to the solvent (water) and the solute, respectively. The chemical potential, μ plays an important 

role in thermodynamic changes in a system. Under thermodynamic control, changes in the 

chemical potential of a species in a system reflects how the species can bring about a change in 

the system: both physical and chemical changes. According to statistical mechanics, the chemical 

potential of a species can be expressed as,9 

 𝜇 = 𝑊 + 𝑅𝑇 𝑙𝑛[Λ3𝜌𝑞−1] = 𝜇∗ + 𝑅𝑇 𝑙𝑛[Λ3𝜌] (3.1) 

 

Here, ρ=N/V is the number density (or molar concentration), N is the number of the species in the 

system, V is the volume of the system, q is the internal partition function of a molecule and Λ is 

the thermal de Broglie wavelength of the species. The first term, W quantifies contributions of the 

interactions among molecules to the chemical potential on the addition of a molecule. If there is 

no interaction in the system, W = 0 and only the second term, 𝑅𝑇 𝑙𝑛[Λ3𝜌𝑞−1] will be left, simply 

indicating the chemical potential of an ideal gas at the same temperature and density. Ben-Naim 

has introduced, μ* = W- RT ln q to represent the pseudo chemical potential.9 The pseudo chemical 

potential captures the free energy change for transfer of a molecule from a fixed position in a 
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vacuum to a fixed position in the solution. This will be the same as the work required for the 

corresponding cavity formation.9 Using the pseudo chemical potential, the contribution from the 

entropy of mixing can be eliminated which is not directly related to the intermolecular 

interactions.9 Moreover, expressions for changes or derivatives of the pseudo chemical potential, 

as well as the total chemical potential required in Equation (3.1), can be easily obtained. 

 

 3.3.2 Preferential Interactions 

Using KB theory, it is quite easy to show that for any thermodynamically stable mixture 

of a solute (2) and solvent (1) we can write that,9 

 
−𝛽 (

𝜕𝜇2
∗

𝜕𝜌2
)

𝑇,𝑃

= − (
𝜕 𝑙𝑛 𝑦2

𝜕𝜌2
)

𝑇,𝑃

=
𝐺22 − 𝐺21

1 + 𝜌2(𝐺22 − 𝐺21)
 

(3.2) 

 

where y2 is the molar activity coefficient of the solute. The above expression reduces to the 

numerator in the limit of infinite dilution of the solute (2). The value of G22-G21 at infinite dilution 

is the central quantity of interest in this work. It is defined as the preferential interaction (PI) 

between two infinitely dilute solute molecules in a binary system.7 

 𝑃𝐼 = 𝐺22 − 𝐺21 (3.3) 

 

The PI defined here is the same as previous definitions of preferential solvation, PS10 

except for the infinitely dilute solute restriction. However, it will be used in a different manner. 

The PI at infinite dilution of solute quantifies the interaction between two solute molecules in a 

large excess of solvent. It results from a balance between solute-solute and solute-solvent 

interactions. A positive value for PI indicates a favorable solute-solute interaction which tends 

towards solute association or aggregation where as a negative value indicates a favorable solvation 
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which tends towards solute hydration and low solute self-association. A value of zero indicates a 

balance of the interactions, i.e. an ideal solution. The above expression indicates that if the molar 

activity coefficient decreases with molarity, then the solute must display a tendency towards  

self-association. The approach therefore provides a way to quantify the degree of molecular 

association. 

 

 3.3.3 Molecular Dynamics Simulations 

All molecular dynamics simulations were performed using the KBFF models 

(http://kbff.chem.k-state.edu)11-13 together with the SPC/E water model14 as implemented in the 

GROMACS 4.0.5 package.15 All simulations were performed at 300 K and the pressure of 1 bar 

using the weak coupling technique to modulate the temperature and pressure with relaxation times 

of 0.1 and 0.5 ps,16 respectively. A time-step of 2 fs was used and the bond lengths were 

constrained using the Lincs (solutes) and Settle (water) algorithms.17,18 The particle mesh Ewald 

technique was used to evaluate electrostatic interactions with a grid resolution of 0.1 nm.19 A real 

space convergence parameter of 3.5 nm-1 was used in combination with twin range cutoffs of 1.0 

and 1.5 nm, and a nonbonded update frequency of 10 steps. Random initial configurations of 

molecules in a cubic box were used to study the all systems. Initial configurations of the different 

solutions were generated from a cubic box (L≈6.0 nm) of equilibrated water molecules by 

randomly replacing waters with solutes until the required concentration was attained. The steepest 

descent method was then used to perform 100 steps of energy minimization. This was followed by 

extensive equilibration, which was continued until the rdfs displayed no drift with time (typically 

5 ns). Total simulation times were in the 25-50 ns range, and the final 25-30 ns were used for 
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calculating ensemble averages. Configurations were saved every 0.1 ps for the calculation of 

various properties. Errors (±1σ) in the simulation data were estimated by using five block averages. 

 

 3.4 Results and Discussion 

Although the experimentally reported solubility values of most of the amino acids are 

relatively low according to Table 3.1, here we used a concentration of 1.0 m in order to improve 

the statistics of the results. This is according to the basis that, the lower the concentration, the 

greater the error in the required integrals. On the other hand, when a concentration of 1.0 m is used 

many amino acids are well above the experimental solubility limit (Table 3.1). Hence, there are 

possibilities for phase separations and meta stable states (i.e. an excited state with a longer life 

time than other excited states). Nevertheless, Pettitt and coworkers have simulated urea solutions 

at different concentrations above the solubility limit to examine the structures which are 

responsible for the thermodynamic solution properties and they did not observe nucleation during 

these relatively short simulation times. 20 

 

 3.4.1 The Effect of Concentration on Amino Acid Interactions 

As mentioned above most of the amino acids have relatively low solubility values 

according to Table 3.1. However, the experimentally reported solubility value for proline is quite 

high and that of glycine is relatively high too. Therefore, glycine was simulated at several different 

compositions ranging from 0.5 m to 10.0 m and the resulting radial distribution functions are 

presented in Figure 3.1. The experimental solubility value of glycine is 3.679 m and according to 

Figure 3.1, the rdfs are behaving normally well above the experimental solubility limit. 

Furthermore, as expected the solute-solvent rdf is more prominent than the solute-solute rdf and 
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Table 3.1 Experimental solubility values of amino acids at 298 K.21 

Amino acids Solubility/m 

Gly   3.679 

Ala   1.972 

Val   0.5098 

Leu   0.1898 

Ile   0.2698 

Met   0.4048 

Pro 14.8 

Phe   0.1945 

Trp   0.05989 

Ser   4.529 

Tyr   0.002964 

Cys   0.001058 

Asp   0.04463 

Glu   0.06927 

 

both rdfs converge to unity after 1.5 nm. Hence, those rdfs can be integrated to obtain the respective 

KBIs and they can then be used to calculate the preferential interactions which is the central 

quantity utilized throughout this study. Since rdfs behave normally as the concentration increases, 

it implies that there is no phase separation and therefore, these results would provide reasonable 

information concerning interactions at lower concentrations. Moreover, in reality we will 

encounter such lower concentrations most of the time in biological systems and the insights gained 

here will be quite significant. 
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Figure 3.1 The center of mass to center of mass solute-solute (blue) and solute-solvent (red) 

rdfs of Gly at different compositions at 300 K. 

 

The variation of PIs with the composition are presented in Figure 3.2 and the PIs decrease 

when the concentration is increased. Although the simulated PIs, represented by the blue symbols 

in Figure 3.2, are relatively high compared to the experimental PIs, which are shown by the red 

curve, the simulated PIs follow the same trend as the experimental PIs. Hence, we can claim that 

our models are in reasonable agreement with the experiments. 
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Figure 3.2 PIs of glycine vs composition at 300 K.22-24 

 

 3.4.2 The Differences in Interactions Among Different Classes of Amino Acids 

All twenty traditional amino acids were simulated at a concentration of 1.0 m in their 

zwitterionic form to study the type of interactions which can exist between different classes of 

amino acids. The solute-solute and solute-solvent rdfs of the amino acids with nonpolar side chains 

are presented in Figure 3.3 and all of them converge to unity beyond 1.5 nm except for tryptophan. 

Neither the solute-solute rdf of tryptophan nor the solute-solvent rdf are converged and this will 

be discussed further in this section of the chapter. Moreover, the solute-solute and solute-solvent 

rdfs of the amino acids with uncharged polar side chains are presented in Figure 3.4 and those of 

amino acids with charged polar side chains are presented in Figure 3.5, respectively. In addition, 
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all of these rdfs converge to unity beyond 1.5 nm and they can be integrated to calculate the KBIs 

which then can be used to quantify the interactions between amino acids. 

 

 

Figure 3.3 The center of mass to center of mass solute-solute (blue) and solute-solvent (red) 

rdfs of 1.0 m zwitterionic amino acids with nonpolar side chains at 300 K. 

 

The PIs of the twenty traditional amino acids are summarized in Table 3.2 and are 

expressed as individual PIs and the difference between PI(X) and PI(Gly), ΔPI, where X is the 

respective amino acid except glycine. As expected of hydrophobic amino acids, glycine has a 

moderately positive individual PI that indicates it prefers solute-solute interactions which tends 
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Figure 3.4 The center of mass to center of mass solute-solute (blue) and solute-solvent (red) 

rdfs of 1.0 m zwitterionic amino acids with uncharged polar side chains at 300 K. 

 

 

 

Figure 3.5 The center of mass to center of mass solute-solute (blue) and solute-solvent (red) 

rdfs of 1.0 m zwitterionic amino acids with charged polar side chains at 300 K. 
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Table 3.2 PIs (cm3/mol) of 1.0 m zwitterionic amino acids at 300 K. 

Amino acids PI ΔPI=PI(X)-PI(Gly) 

Gly 148 ± 35 - 

Ala -147 ± 56 -295 ± 66 

Val -447 ± 53 -595 ± 64 

Leu -456 ± 66 -604 ± 75 

Ile -293 ± 17 -441 ± 39 

Met -123 ± 29 -271 ± 45 

Pro -358 ± 45 -506 ± 57 

Phe -87 ± 51 -235 ± 62 

Trp (9282) ± 1503 (9134) ± 1503 

Ser 132 ± 119 -16 ± 124 

Thr -23 ± 73 -171 ± 81 

Asn -44 ± 70 -192 ± 78 

Gln -14 ± 86 -162 ± 93 

Tyr 851 ± 153 703 ± 157 

Cys 159 ± 48 11 ± 59 

Lysh -121 ± 36 -269 ± 50 

Argh -95 ± 38 -243 ± 52 

Hish 240 ± 70 92 ± 78 

Asp 359 ± 86 211 ± 93 

Glu 241 ± 52 93 ± 63 

 

toward solute association or aggregation. However, all the other hydrophobic amino acids which 

have nonpolar side chains except for tryptophan have moderate to relatively high negative 

individual PIs. This implies that they are more solvated which tends toward solute hydration and 

low solute self-association. Moreover, the observed opposite trend is a consequence of the 

interactions between the side chains and the termini of those amino acids. Although we expected 

that they would aggregate since they are hydrophobic, in order to do so the hydrophobic side chains 



89 

would have to intervene with the zwitterion solvation shells and this is unfavorable. Furthermore, 

tryptophan has a very large positive individual PI and it indicates that it is close to being phase 

separated. This abnormal behavior was indicated earlier by the rdfs which were not converged and 

it is confirmed by Figure 3.6 (b). Also shown in Figure 3.6 are two other examples of the types of 

associations encountered, one being a moderate association in glycine, Figure 3.6 (a) and the other 

one being an intermediate association in aspartic acid with an uncharged side chain, Figure 3.6 (c). 

In addition, among the amino acids with charged polar side chains, the ones with negatively 

charged side chains seem to aggregate more than the ones with positively charged side chains. 

 

 

(a)        (b)             (c) 

Figure 3.6 Snap shots of 1.0 m (a) Gly, (b) Trp and (c) Asph during molecular dynamic 

simulations. 

 

Since glycine is the simplest amino acid with no side chain, when the PI of glycine is 

subtracted from a PI of another amino acid, the resulting quantity can be used to help interpret the 

side chain-side chain interactions, although one can argue that there can still be side chain-

zwitterion interactions too. The ΔPI values of all hydrophobic amino acids except for glycine and 

tryptophan reported in Table 3.2 are negative which indicates that the hydrophobic side chains are 

solvated instead of being aggregated. Furthermore, this observation confirms that hydrophobic 

amino acids are more solvated in the zwitterionic form. 
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 3.4.3 The Quantification of Amino Acid Interactions in Terms of Zwitterionic and 

Capped Forms 

In order to investigate whether there is an effect from the type termini of the amino acids, 

i.e. when they are charged (zwitterionic) and uncharged (capped), few amino acids were simulated 

in both forms at a concentration of 1.0 m. The structures of those two forms are shown in Figure 

3.7. 

 

(a)           (b) 

Figure 3.7 Structures of (a) zwitterionic and (b) capped amino acids. R group represents the 

side chain of amino acids. 

 

The solute-solute and solute-solvent rdfs for both zwitterionic and capped forms of amino 

acids with nonpolar side chains are presented in Figure 3.8 and they are converged to unity after 

1.5 nm or close to 2.0 nm. Moreover, the rdfs of amino acids with uncharged polar side chains are 

presented in Figure 3.9 for both zwitterionic and capped forms and all of them are converged to 

unity after 1.5 nm except for capped version of tyrosine which will be discussed later in this 

section. Furthermore, the rdfs of amino acids with charged polar side chains are presented in Figure 

3.10 for both zwitterionic and capped forms and all of them are converged to unity after 1.5 nm. 
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Figure 3.8 The center of mass to center of mass solute-solute (blue) and solute-solvent (red) 

rdfs of 1.0 m zwitterionic and capped amino acids with nonpolar side chains at 300 K. 

 

 

 

Figure 3.9 The center of mass to center of mass solute-solute (blue) and solute-solvent (red) 

rdfs of 1.0 m zwitterionic and capped amino acids with uncharged polar side chains at 300 

K. 
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Figure 3.10 The center of mass to center of mass solute-solute (blue) and solute-solvent (red) 

rdfs of 1.0 m zwitterionic and capped amino acids with charged polar side chains at 300 K. 

 

The PIs for the selected group of amino acids in both zwitterionic and capped forms are 

presented in Table 3.3. Although there are couple of significant changes in PIs when the type of 

the termini changes, in most cases the sign of the PI is the same indicating that the type of the 

interaction will be the same, i.e. it would be an association or a solvation, regardless of the type of 

the termini. The two of the most significant changes in PIs are in valine and tyrosine. In capped 

valine solutions there were no apparent side chain-side chain association where as in capped 

tyrosine solutions there were interactions between the side chain OH and the backbone C terminus 

(Figure 3.11) and these reasons can be attributed to the significant changes in the observed PIs. 
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Table 3.3 PIs (cm3/mol) of 1.0 m zwitterionic vs capped amino acids at 300 K. 

Amino acids Zwitterion Capped 

 PI PI 

Gly 148 ± 35 20 ± 81 

Ala -147 ± 56 -15 ± 105 

Val -447 ± 53 848 ± 274 

Ser 132 ± 119 149 ± 47 

Asn -44 ± 70 -163 ± 35 

Tyr 851 ± 153 (9820) ± 1558 

Lysh -121 ± 36 -249 ± 12 

Asp 359 ± 86 -170 ± 8 

 

 

 

Figure 3.11 A snap shot of capped tyrosine at 300 K. 

 

 3.4.4 The Contribution from Uncharged and Charged Polar Side Chains Toward 

Amino Acid Interactions 

Amino acids with charged polar side chains were simulated in two forms, i.e. with the 

charged side chain which is the normal charged form in which those amino acids exist, and either 

by removing a hydrogen ion from the amino acids with positively charged side chains (lysine and 

histidine), or by adding a hydrogen ion to the amino acids with negatively charged side chains 
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(aspartic acid and glutamic acid) to make the side chain uncharged. The structures of them are 

presented in Figure 3.12. 

 

 

Figure 3.12 Structures of amino acids with charged polar side chains showing their charged 

state and uncharged state. 
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The resulting solute-solute and solute-solvent rdfs for both forms of amino acids are 

presented in Figure 3.13 and all of them converge to unity after 1.5 nm. The PIs for the uncharged 

and charged forms of the side chain for the respective amino acids are presented in Table 3.4 and 

the sign of the PI is the same in all four amino acids, indicating that the type of interaction will not 

change depending on the charge of the side chain. In other words, the charge on the side chain will 

not be able to change an association to a solvation or vice versa. However, the PI for aspartic acid 

with an uncharged side chain is relatively large compared to that with a charged side chain. This 

can be attributed to the interaction between the side chain COOH and the C terminus in the 

backbone (Figure 3.14) of uncharged aspartic acid. 

 

 

Figure 3.13 The center of mass to center of mass solute-solute (blue) and solute-solvent (red) 

rdfs of 1.0 m uncharged and charged amino acid side chains. 
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Table 3.4 PIs (cm3/mol) of 1.0 m uncharged and charged amino acid side chains at 300 K. 

Amino acids Uncharged Charged 

 PI PI 

Lys -188 ± 65 -121 ± 36 

His 71 ± 96 240 ± 70 

Asp 1737 ± 314 359 ± 86 

Glu 737 ± 76 241 ± 52 

 

 

 

Figure 3.14 A snap shot of unchaged aspartic acid at 300 K. 

 

 

 3.5 Conclusions and Future Directions 

In this study we have been able to observe some interesting aspects of amino acid 

interactions in aqueous solutions and they display a variety of behaviors. Moreover, we have been 

able to quantify the amino acid interactions in terms of preferential interactions. Hydrophobic 

amino acids do not associate in the zwitterionic form but they do in the capped form. In addition, 

the protonation of amino acids with negatively charged polar side chains significantly increases 

self-association. Furthermore, in future studies we will attempt to study the interactions of mixed 

amino acids, which will be more representative of the interactions in proteins. In addition, we will 

try to use a fitting equation to obtain the preferential interactions at infinite dilution, which in turn 

will resemble the real life situations in biological systems. 
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Chapter 4 - The Effects of Temperature and Pressure on Amino Acid 

Interactions in Aqueous Solutions 

 4.1 Abstract 

Studies on protein denaturation play a significant role in understanding the forces that 

stabilize protein structures and assemblies. Protein denaturation in closed systems occur due to the 

changes in temperature, pressure and solution composition, while in open systems it is caused by 

the osmotic pressure or stress. Experimentally, the thermodynamics of protein denaturation is well 

established and there exist substantial amount of data on protein denaturation. However, it is quite 

difficult to relate this thermodynamic data to specific interactions with either the native or 

denatured structures of proteins. Therefore, computer simulations have been extensively used to 

study protein denaturation and in principle, an atomic level picture of interactions and structural 

changes can be revealed from them. Here, we have attempted to quantify the effects of temperature 

and pressure on amino acids interactions and the results are discussed in terms of the preferential 

(solute over solvent) interactions between the amino acids. If we can classify the variations in these 

interactions, they might lead to valuable insights toward protein denaturation since amino acids 

are the building blocks of proteins. It is observed that amino acid association or solvation is residue 

specific at high temperature whereas amino acid association is always decreased at high pressure. 
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 4.2 Introduction 

The mechanisms of protein folding and unfolding have been the subject of intensive 

experimental and theoretical studies for several decades. However, the details of this process at an 

atomic level have proved elusive to traditional experimental and theoretical methods. The initiation 

of molecular dynamics simulations over the last fifteen years has shed some light on this process. 

In an effort to obtain atomic level information about the protein folding/unfolding process, 

researchers have been employing computer simulation methods in close collaboration with 

experiments for couple of decades. The overall results have been in very good agreement with 

experiment. In order to unfold a protein, some simulations are performed at very high 

temperatures, typically about 500 K, or 227 ºC. Such drastic measures have been necessary 

because of the large difference in the experimental timescale for unfolding and that achievable 

with available computer power. However, as the power of computers increases, the timescale 

accessible to computer simulations can be extended, allowing the denaturation of proteins to be 

simulated at much more reasonable temperatures. 

In 1895 Royer showed that high pressure kills bacteria and it is one of the initial studies on 

effects of high pressure on biological systems.1 Thereafter, in 1914 Bridgman reported the 

coagulation of egg white at pressures of 10 kbar.2 There have been rapid development during the 

last couple of decades in experimental techniques, especially with regards to integration of imaging 

and spectroscopic methods, such as NMR,3,4 SANS,5 and SAXS6,7 with high pressure. As a 

consequence, extensive research has been performed on pressure effects on various proteins, 

protein complexes, and other biomolecules8,9,10 as well as on viruses,11,12 bacteria,13 and cells.14,15 

Experimentally it has been shown that proteins unfold when their aqueous solution is subjected to 

several kilobars of hydrostatic pressure5,6,16-24 which leads to water swollen denatured states. This 
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unfolding behavior of proteins at high pressure, contradicts the fact that the globular folded 

conformations of proteins are mechanically compressed at high pressures. Moreover, according to 

the Le Chatelier’s principle25, since unfolding occurs spontaneously at high pressures, the volume 

change accompanying such a process must be negative. Indeed, experiments show that volume of 

unfolding of many globular proteins is negative, even though small, usually it is only about 1-3% 

of the protein volume.26 Hence, the partial molar volume of unfolded states is lower than that of 

the folded states, despite the fact that unfolded states are water swollen.6,27,28 Furthermore, 

according to experiments, pressure unfolding is a slow process which depends on the protein and 

the pressure applied and it can take seconds to minutes to hours.29 It is certain that even with the 

rapid development of super computers and computing power, direct MD simulations of protein 

unfolding by pressure in water are computationally impracticable. However, with the efforts to 

understand how pressure affects fundamental interactions that drive protein folding in water, 

significant new insights have been obtained.30-34 For example, Hummer et al.32 predicted that at 

room temperature, when the pressure is increased, the hydrophobic interactions between methane 

like solutes at the pair level are weakened, by using a statistical mechanical theory. Afterwards, 

this observation was confirmed by extensive simulations of hydrophobic solutes in water.35-37 

With the above prospects in mind, in this study we try to investigate the effects of 

temperature and pressure on the interactions of amino acids which are the building blocks of 

proteins. Moreover, we will try to quantify the interactions of amino acids in terms of preferential 

interactions. 
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 4.3 Methods 

 4.3.1 Preferential Interactions 

Using KB theory it is quite easy to show that for any thermodynamically stable mixture of 

a solute (2) and solvent (1) we can write that,38 

 
−𝛽 (

𝜕𝜇2
∗

𝜕𝜌2
)

𝑇,𝑃

= − (
𝜕 𝑙𝑛 𝑦2

𝜕𝜌2
)

𝑇,𝑃

=
𝐺22 − 𝐺21

1 + 𝜌2(𝐺22 − 𝐺21)
 

(4.1) 

 

where y2 is the molar activity coefficient of the solute. The above expression reduces to the 

numerator in the limit of infinite dilution of the solute (2). The value of G22-G21 at infinite dilution 

is the central quantity of interest in this work. It is defined as the preferential interaction (PI) 

between two infinitely dilute solute molecules in a binary system.39 

 𝑃𝐼 = 𝐺22 − 𝐺21 (4.2) 

 

A positive value for PI indicates a favorable solute-solute interaction which tends towards 

solute association or aggregation where as a negative value indicates a favorable solvation which 

tends towards solute hydration and low solute self-association. A value of zero indicates a balance 

of the interactions, i.e. an ideal solution. 

 

 4.3.2 Molecular Dynamics Simulations 

Molecular dynamics simulations were performed according to the same simulation details 

as described in section 3.3.3. The only differences are that a temperature of 375 K and a pressure 

of 10000 bar were used to study the effect of temperature and pressure, respectively. 
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 4.4 Results and Discussion 

As explained in section 3.4, although the experimentally reported solubility values of most 

of the amino acids are relatively lower, we used a concentration of 1.0 m in this study as well to 

improve the statistics of the results. 

 

 4.4.1 The Effect of Temperature on Amino Acid Interactions 

 4.4.1.1 The Quantification of Interactions Among Amino Acids with Nonpolar Side 

Chains 

Amino acids with nonpolar side chains were simulated at a concentration of 1.0 m in their 

zwitterinic form at 300 K and 375 K to study the effect of temperature on their interactions. The 

solute-solute rdfs of those amino acids at both temperatures mentioned above are presented in 

Figure 4.1 and there are slight differences among them, whereas the solute-solvent rdfs are 

essentially the same and hence they are not shown here. Moreover, all of these rdfs are converged 

to unity beyond 1.5 nm except for tryptophan and they can be integrated to calculate the KBIs 

which can then be used to quantify the interactions between amino acids in terms of PIs. Neither 

the solute-solute rdf of tryptophan nor the solute-solvent rdf are converged and this will be 

discussed further in this section. 

The variation of PIs with temperature for amino acids with nonpolar side chains are 

summarized in Table 4.1 and they are expressed as individual PIs, the difference of the individual 

PIs at 300 K and 375 K, ΔPI(X) and the difference between ΔPI(X) and ΔPI(Gly), ΔΔPI, where X 

is the respective amino acid. The individual PIs for all amino acids with nonpolar side chains are 

increased at 375 K compared to 300 K except for tryptophan. Therefore, it seems like that all 

amino acids with nonpolar side chains except for tryptophan tend toward more solute association 
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or aggregation and they become less solvated when the temperature is increased. Moreover, 

tryptophan is close to being phase separated with PIs of 9282 (±1503) cm3/mol and  

6894 (±1503) cm3/mol at 300 K and 375 K, respectively. As explained in section 3.4.2, these high 

PIs are indicative of the non-converged rdfs in Figure 4.1. In addition, the ΔPI(X) for all amino 

acids with nonpolar side chains except for tryptophan are positive which confirms that they tend 

toward more solute association or aggregation with increasing temperature. 

 

 

Figure 4.1 Center of mass to center of mass solute-solute rdfs of 1.0 m zwitterionic amino 

acids with nonpolar side chains at 300 K and 375 K. 

 

Since glycine is the simplest amino acid with no side chain, when the PI of glycine is 

subtracted from a PI of another amino acid, the resulting quantity can be used to help interpret the 
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side chain-side chain interactions, although one can argue that still there can be  

side chain-zwitterion interactions too, as explained in section 3.4.2. The ΔΔPI is positive for most 

of the amino acids with nonpolar side chains except for alanine, proline and tryptophan. Hence, 

the side chain-side chain interactions of alanine, proline and tryptophan may be weakened and that 

of other amino acids with nonpolar side chains may be strengthened with increasing temperature. 

 

Table 4.1 Variation of PIs (cm3/mol) of 1.0 m zwitterionic amino acids with nonpolar side 

chains with temperature. 

 300 K 375 K  

 PI PI ΔPI(X)=PI375 K-PI300 K ΔΔPI=ΔPI(X)-ΔPI(Gly) 

Gly 148 ± 35 177 ± 37 29 ± 51 - 

Ala -147 ± 56 -136 ± 29 11 ± 63 -18 ± 81 

Val -447 ± 53 -375 ± 25 72 ± 59 43 ± 78 

Leu -456 ± 66 -298 ± 29 158 ± 72 129 ± 88 

Ile -293 ± 17 -168 ± 16 125 ± 23 96 ± 56 

Met -123 ± 29 -35 ± 28 88 ± 40 59 ± 65 

Pro -358 ± 45 -330 ± 12 28 ± 47 -1 ± 69 

Phe -87 ± 51 3 ± 25 90 ± 57 61 ± 76 

Trp (9282) ± 1503 (6894) ± 673 -2388 ± 1647 -2417 ± 1648 

 

 4.4.1.2 The Quantification of Interactions Among Amino Acids with Uncharged 

Polar Side Chains 

Amino acids with uncharged polar side chains were simulated at a concentration of 1.0 m 

in their zwitterinic form at 300 K and 375 K to study the effect of temperature on their interactions. 
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The solute-solute rdfs of those amino acids at both temperatures mentioned above are presented in 

Figure 4.2 and there are slight differences among them whereas the solute-solvent rdfs are 

essentially the same and hence they are not shown here. Moreover, all of these rdfs are converged 

to unity beyond 1.5 nm and they can be integrated to calculate the KBIs which can then be used to 

quantify the interactions between amino acids in terms of PIs. 

 

 

Figure 4.2 Center of mass to center of mass solute-solute rdfs of 1.0 m zwitterionic amino 

acids with uncharged polar side chains at 300 K and 375 K. 

 

The variation of PIs with temperature for amino acids with uncharged polar side chains are 

summarized in Table 4.2 and they are expressed as individual PIs, the difference of the individual 

PIs at 300 K and 375 K, ΔPI(X) and the difference between ΔPI(X) and ΔPI(Gly), ΔΔPI, where X 

is the respective amino acid. The individual PIs for threonine and asparagine are increased at  

375 K compared to 300 K whereas that of serine, glutamine, tyrosine and cysteine are decreased 

with increasing temperature. Therefore, it seems that threonine and asparagine tend toward more 
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solute association or aggregation and they become less solvated when the temperature is increased. 

On the other hand, serine, glutamine, tyrosine and cysteine seems to be more solvated with 

increasing temperature which tends toward solute hydration and low solute self-association.  

Furthermore, the ΔPI(X) for threonine and asparagine are positive while it is negative for 

serine, glutamine, tyrosine and cysteine. Thus, it is confirmed that threonine and asparagine tend 

toward more solute association or aggregation whereas serine, glutamine, tyrosine and cysteine 

tend toward solute hydration and low solute self-association with increasing temperature. 

Moreover, the ΔΔPI for threonine and asparagine are positive while it is negative for serine, 

glutamine, tyrosine and cysteine. Hence, the side chain-side chain interactions of threonine and 

asparagine may be strengthened and that of serine, glutamine, tyrosine and cysteine may be 

weakened with increasing temperature. 

 

Table 4.2 Variation of PIs (cm3/mol) of 1.0 m zwitterionic amino acids with uncharged polar 

side chains with temperature. 

 300 K 375 K  

 PI PI ΔPI(X)=PI375 K-PI300 K ΔΔPI=ΔPI(X)-ΔPI(Gly) 

Ser 132 ± 119 30 ± 37 -102 ± 125 -131 ± 135 

Thr -23 ± 73 87 ± 31 110 ± 79 81 ± 94 

Asn -44 ± 70 50 ± 37 94 ± 79 65 ± 94 

Gln -14 ± 86 -128 ± 30 -114 ± 91 -143 ± 104 

Tyr 851 ± 153 413 ± 64 -438 ± 166 -467 ± 173 

Cys 159 ± 48 34 ± 35 -125 ± 59 -154 ± 78 
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 4.4.1.3 The Quantification of Interactions Among Amino Acids with Charged Polar 

Side Chains 

Amino acids with charged polar side chains were simulated at a concentration of 1.0 m in 

their zwitterinic form at 300 K and 375 K to study the effect of temperature on their interactions. 

The solute-solute rdfs of those amino acids at both temperatures mentioned above are presented in 

Figure 4.3 and there are slight differences among them whereas the solute-solvent rdfs are 

essentially the same and hence they are not shown here. Moreover, all of these rdfs are converged 

to unity beyond 1.5 nm and they can be integrated to calculate the KBIs which can then be used to 

quantify the interactions between amino acids in terms of PIs. 

 

 

Figure 4.3 Center of mass to center of mass solute-solute rdfs of 1.0 m zwitterionic amino 

acids with charged polar side chains at 300 K and 375 K. 

 

The variation of PIs with temperature for amino acids with charged polar side chains are 

summarized in Table 4.3 and they are expressed as individual PIs, the difference of the individual 
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PIs at 300 K and 375 K, ΔPI(X) and the difference between ΔPI(X) and ΔPI(Gly), ΔΔPI, where X 

is the respective amino acid. The individual PIs for all amino acids with charged polar side chains 

are increased at 375 K compared to 300 K. Hence, it seems that they tend toward more solute 

association or aggregation and become less solvated when the temperature is increased. In 

addition, the ΔPI(X) for all amino acids with charged polar side chains are positive which confirms 

that they tend toward more solute association or aggregation with increasing temperature. 

Moreover, the ΔΔPI for arginine, aspartic acid and glutamic acid are positive while it is negative 

for lysine and histidine. Hence, the side chain-side chain interactions of arginine, aspartic acid and 

glutamic acid may be strengthened and that of lysine and histidine may be weakened with 

increasing temperature. 

 

Table 4.3 Variation of PIs (cm3/mol) of 1.0 m zwitterionic amino acids with charged polar 

side chains with temperature. 

 300 K 375 K  

 PI PI ΔPI(X)=PI375 K-PI300 K ΔΔPI=ΔPI(X)-ΔPI(Gly) 

Lysh -121 ± 36 -95 ± 16 26 ± 39 -3 ± 64 

Argh -95 ± 38 -1 ± 17 94 ± 42 65 ± 66 

Hish 240 ± 70 254 ± 43 14 ± 82 -15 ± 97 

Asp 359 ± 86 444 ± 13 85 ± 87 56 ± 101 

Glu 241 ± 52 405 ± 47 164 ± 70 135 ± 87 
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 4.4.1.4 The Quantification of Amino Acids Interactions in Terms of Zwitterionic and 

Capped Forms 

In order to investigate the effect of temperature on the type of termini, glycine and valine 

were simulated in the zwitterionic form as well as in the capped form at a concentration of 1.0 m 

at 300 K and 375 K. The solute-solute rdfs of the two types of termini at both temperatures 

mentioned above are presented in Figure 4.4 and there are slight differences among them whereas 

the solute-solvent rdfs are essentially the same and hence they are not shown here. Moreover, all 

of these rdfs are converged to unity beyond 1.5 nm and they can be integrated to calculate the KBIs 

which can then be used to quantify the amino acid interactions in terms of PIs. 

 

 

Figure 4.4 Center of mass to center of mass solute-solute rdfs of 1.0 m zwitterionic and 

capped glycine and valine at 370 K and 375 K. 

 

The variation of PIs with temperature for both types of termini are presented in Table 4.4 

and the PIs of glycine and valine for both types of termini are increased with increasing 
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temperature. Hence, it seems that both types of termini of glycine and valine tend toward more 

solute association or aggregation and become less solvated when the temperature is increased. 

Moreover, the changes in valine are significantly larger than the changes in glycine. All PIs of 

glycine are positive which indicates solute association or aggregation. On the other hand, the 

zwitterionic form of valine has negative PIs whereas the capped form has positive PIs which 

indicates solute hydration and solute association, respectively. 

 

Table 4.4 Variation of PIs (cm3/mol) of 1.0 m zwitterionic and capped glycine and valine with 

temperature. 

 300 K 375 K 

 Zwitterion Capped Zwitterion Capped 

 PI PI PI PI 

Gly 148 ± 35 20 ± 81 177 ± 37 156 ± 27 

Val -447 ± 53 848 ± 274 -375 ± 25 1653 ± 138 

 

 4.4.1.5 The Contribution from Charged and Uncharged Polar Side Chains Toward 

Amino Acid Interactions 

In order to investigate the effect of temperature on the charged and uncharged side chains, 

the amino acids with charged polar side chains were simulated at a concentration of 1.0 m at  

300 K and 375 K. The solute-solute rdfs of the amino acids with two types of side chains at both 

temperatures mentioned above are presented in Figure 4.5 and there are slight differences among 

them where as the solute-solvent rdfs are essentially the same and hence they are not shown here. 

Furthermore, all of these rdfs are converged to unity beyond 1.5 nm and they can be integrated to 

calculate the KBIs which can then be used to quantify the amino acid interactions in terms of PIs. 
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Figure 4.5 Center of mass to center of mass solute-solute rdfs of 1.0 m uncharged and charged 

amino acid side chains at 300 K and 375 K. 

 

The variation of PIs with temperature for both types of side chains are presented in Table 

4.5. The PIs of lysine, histidine, aspartic acid and glutamic acid with a charged side chain are 

increased with increasing temperature. Therefore, it seems that charged polar amino acids with 

charged side chains tend toward more solute association or aggregation and become less solvated 

when the temperature is increased. Furthermore, the PI of lysine with an uncharged side chain is 

increased whereas that of histidine, aspartic acid and glutamic acid are decreased with increasing 

temperature. Hence, it seems that lysine with an uncharged side chain tends toward more solute 

association or aggregation and becomes less solvated when the temperature is increased whereas 

histidine, aspartic acid and glutamic acid with an uncharged side chain seems to be more solvated 

with increasing temperature which tends toward solute hydration and low solute self-association. 
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Table 4.5 Variation of PIs (cm3/mol) of 1.0 m uncharged and charged amino acid side chains 

with temperature. 

 300 K 375 K 

 Charged Uncharged Charged Uncharged 

 PI PI PI PI 

Lys -121 ± 36 -188 ± 65 -95 ± 16 -158 ± 27 

His 240 ± 70 71 ± 96 254 ± 43 10 ± 59 

Asp 359 ± 86 1737 ± 314 444 ± 13 1031 ± 100 

Glu 241 ± 52 737 ± 76 405 ± 47 630± 88 

 

 

 4.4.2 The Effect of Pressure on Amino Acid Interactions 

 4.4.2.1 The Quantification of Interactions Among Amino Acids with Nonpolar Side 

Chains 

Amino acids with nonpolar side chains were simulated at a concentration of 1.0 m in their 

zwitterinic form at 1 bar and 10000 bar to study the effect of pressure on their interactions. The 

solute-solute rdfs of those amino acids at both pressures mentioned above are presented in Figure 

4.6 and they indicate general loss of structure when the pressure is increased whereas the solute-

solvent rdfs are essentially the same and hence they are not shown here. Moreover, all of these rdfs 

are converged to unity beyond 1.5 nm except for tryptophan and they can be integrated to calculate 

the KBIs which can then be used to quantify the interactions between amino acids in terms of PIs. 

Neither the solute-solute rdf of tryptophan nor the solute-solvent rdf are converged and this will 

be discussed further in this section. 
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Figure 4.6 Center of mass to center of mass solute-solute rdfs of 1.0 m zwitterionic amino 

acids with nonpolar side chains at 1 bar and 10000 bar. 

 

The variation of PIs with pressure for amino acids with nonpolar side chains are 

summarized in Table 4.6 and they are expressed as individual PIs, the difference of the individual 

PIs at 1 bar and 10000 bar, ΔPI(X) and the difference between ΔPI(X) and ΔPI(Gly), ΔΔPI, where 

X is the respective amino acid. The individual PIs for all amino acids with nonpolar side chains 

are decreased at 10000 bar compared to 1 bar except for proline. Therefore, all amino acids with 

nonpolar side chains except for proline seem to be more solvated with increasing pressure which 

tends toward solute hydration and low solute self-association. However, proline seems to tend 

toward more solute association or aggregation and it becomes less solvated when the pressure is 

increased. Moreover, tryptophan is close to being phase separated with PIs of  
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9282 (±1503) cm3/mol and 5174 (±598) cm3/mol at 1 bar and 10000 bar, respectively. As 

explained earlier these high PIs are indicative of the non-converged rdfs in Figure 4.6. 

Furthermore, the ΔPI(X) for all amino acids with nonpolar side chains are negative except 

for proline, which confirms that they tend toward solute hydration and low solute self-association 

with increasing pressure. On the other hand, it is confirmed that proline tend toward more solute 

association or aggregation and it becomes less solvated when the pressure is increased. Moreover, 

the ΔΔPI for all amino acids with nonpolar side chains are positive except for tryptophan. Hence, 

the side chain-side chain interactions of them may be strengthened and that of tryptophan may be 

weakened with increasing pressure. 

 

Table 4.6 Variation of PIs (cm3/mol) of 1.0 m zwitterionic amino acids with nonpolar side 

chains with pressure. 

 1 bar 10000 bar  

 PI PI ΔPI(X)=PI10000 bar-PI1 bar ΔΔPI=ΔPI(X)-ΔPI(Gly) 

Gly 148 ± 35 -193 ± 42 -341 ± 55 - 

Ala -147 ± 56 -392 ± 25 -245 ± 61 96 ± 82 

Val -447 ± 53 -481 ± 42 -34 ± 68 307 ± 87 

Leu -456 ± 66 -482 ± 28 -26 ± 72 315 ± 90 

Ile -293 ± 17 -306 ± 23 -13 ± 29 328 ± 62 

Met -123 ± 29 -333 ± 30 -210 ± 42 131 ± 69 

Pro -358 ± 45 -334 ± 48 24 ± 66 365 ± 86 

Phe -87 ± 51 -325 ± 29 -238 ± 59 103 ± 80 

Trp (9282) ± 1503 (5174) ± 598 -4108 ± 1618 -3767 ± 1619 
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 4.4.2.2 The Auantification of Interactions Among Amino Acids with Uncharged 

Polar Side Chains 

Amino acids with uncharged polar side chains were simulated at a concentration of 1.0 m 

in their zwitterinic form at 1 bar and 10000 bar to study the effect of pressure on their interactions. 

The solute-solute rdfs of those amino acids at both pressures mentioned above are presented in 

Figure 4.7 and they indicate general loss of structure when the pressure is increased whereas the 

solute-solvent rdfs are essentially the same and hence they are not shown here. Moreover, all of 

these rdfs are converged to unity beyond 1.5 nm and they can be integrated to calculate the KBIs 

which can then be used to quantify the interactions between amino acids in terms of PIs. 

 

 

Figure 4.7 Center of mass to center of mass solute-solute rdfs of 1.0 m zwitterionic amino 

acids with uncharged polar side chains at 1 bar and 10000 bar. 

 

The variation of PIs with pressure for amino acids with uncharged polar side chains are 

summarized in Table 4.7 and they are expressed as individual PIs, the difference of the individual 
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PIs at 1 bar and 10000 bar, ΔPI(X) and the difference between ΔPI(X) and ΔPI(Gly), ΔΔPI, where 

X is the respective amino acid. The individual PIs for all amino acids with uncharged polar side 

chains are decreased at 10000 bar compared to 1 bar. As a result, they seem to be more solvated 

with increasing pressure which tends toward solute hydration and low solute self-association. In 

addition, the ΔPI(X) for all amino acids with uncharged polar side chains are negative which 

confirms that they tend toward solute hydration and low solute self-association with increasing 

pressure. Moreover, the ΔΔPI for threonine, asparagine and glutamine are positive while it is 

negative for serine, tyrosine and cysteine. Hence, the side chain-side chain interactions of 

threonine, asparagine and glutamine may be strengthened whereas that of serine, tyrosine and 

cysteine may be weakened with increasing pressure. 

 

Table 4.7 Variation of PIs (cm3/mol) of 1.0 m zwitterionic amino acids with uncharged polar 

side chains with pressure. 

 1 bar 10000 bar  

 PI PI ΔPI(X)=PI10000 bar-PI1 bar ΔΔPI=ΔPI(X)-ΔPI(Gly) 

Ser 132 ± 119 -281 ± 69 -413 ± 138 -72 ± 148 

Thr -23 ± 73 -323 ± 21 -300 ± 76 41 ± 94 

Asn -44 ± 70 -267 ± 37 -223 ± 79 118 ± 96 

Gln -14 ± 86 -312 ± 22 -298 ± 89 43 ± 104 

Tyr 851 ± 153 13 ± 82 -838 ± 174 -497 ± 182 

Cys 159 ± 48 -184 ± 46 -343 ± 66 -2 ± 86 
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 4.4.2.3 The Quantification of Interactions Among Amino Acids with Charged Polar 

Side Chains 

Amino acids with charged polar side chains were simulated at a concentration of 1.0 m in 

their zwitterinic form at 1 bar and 10000 bar to study the effect of pressure on their interactions. 

The solute-solute rdfs of those amino acids at both pressures mentioned above are presented in 

Figure 4.8 and they indicate general loss of structure when the pressure is increased whereas the 

solute-solvent rdfs are essentially the same and hence they are not shown here. Moreover, all of 

these rdfs are converged to unity beyond 1.5 nm and they can be integrated to calculate the KBIs 

which can then be used to quantify the interactions between amino acids in terms of PIs. 

 

 

Figure 4.8 Center of mass to center of mass solute-solute rdfs of 1.0 m zwitterionic amino 

acids with charged polar side chains at 1 bar and 10000 bar. 

 

The variation of PIs with pressure for amino acids with charged polar side chains are 

summarized in Table 4.8 and they are expressed as individual PIs, the difference of the individual 
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PIs at 1 bar and 10000 bar, ΔPI(X) and the difference between ΔPI(X) and ΔPI(Gly), ΔΔPI, where 

X is the respective amino acid. The individual PIs for all amino acids with charged polar side 

chains are decreased at 10000 bar compared to 1 bar. Hence, they seem to be more solvated with 

increasing pressure which tends toward solute hydration and low solute self-association. 

Moreover, the ΔPI(X) for all amino acids with charged polar side chains are negative which 

confirms that they tend toward solute hydration and low solute self-association with increasing 

pressure. Furthermore, the ΔΔPI for lysine and arginine are positive while it is negative for 

histidine, aspartic acid and glutamic acid. Hence, the side chain-side chain interactions of lysine 

and arginine may be strengthened whereas that of histidine, aspartic acid and glutamic acid may 

be weakened with increasing pressure. 

 

Table 4.8 Variation of PIs (cm3/mol) of 1.0 m zwitterionic amino acids with charged polar 

side chains with pressure. 

 1 bar 10000 bar  

 PI PI ΔPI(X)=PI10000 bar-PI1 bar ΔΔPI=ΔPI(X)-ΔPI(Gly) 

Lysh -121 ± 36 -252 ± 10 -131 ± 37 210 ± 66 

Argh -95 ± 38 -233 ± 12 -138 ± 40 203 ± 68 

Hish 240 ± 70 -162 ± 29 -402 ± 76 -61 ± 93 

Asp 359 ± 86 -96 ± 19 -455 ± 88 -114 ± 104 

Glu 241 ± 52 -117 ± 13 -358 ± 54 -17 ± 77 
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 4.4.2.4 The Quantification of Amino Acids Interactions in Terms of Zwitterionic and 

Capped Forms 

In order to investigate the effect of pressure on the type of termini, glycine and valine were 

simulated in the zwitterionic form as well as in the capped form at a concentration of 1.0 m at  

1 bar and 10000 bar. The solute-solute rdfs of the two types of termini at both pressures mentioned 

above are presented in Figure 4.9 and there are slight differences among them where as the solute-

solvent rdfs are essentially the same and hence they are not shown here. Moreover, all of these rdfs 

are converged to unity beyond 1.5 nm and they can be integrated to calculate the KBIs which can 

then be used to quantify the amino acid interactions in terms of PIs. 

 

 

Figure 4.9 Center of mass to center of mass solute-solute rdfs of 1.0 m zwitterionic and 

capped glycine and valine at 1 bar and 10000 bar. 

 

The variation of PIs with pressure for both types of termini are presented in Table 4.9 and 

the PIs of glycine and valine for the zwiterionic form are decreased whereas that for the capped 

form are increased with increasing pressure. Therefore, it indicates that the zwitterionic form seem 
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to be more solvated with increasing pressure which tends toward solute hydration and low solute 

self-association. On the other hand, the capped form tends toward more solute association or 

aggregation when the pressure is increased. Moreover, the most significant change is observed in 

the zwitterionic form of glycine where it changes from a moderate positive value at 1 bar to a 

moderate negative value at 10000 bar indicating a transformation from a solute association or 

aggregation to a solute hydration and low solute self- association. 

 

Table 4.9 Variation of PIs (cm3/mol) of 1.0 m zwitterionic and capped glycine and valine with 

pressure. 

 1 bar 10000 bar 

 Zwitterion Capped Zwitterion Capped 

 PI PI PI PI 

Gly 148 ± 35 20 ± 81 -193 ± 42 62 ± 74 

Val -447 ± 53 848 ± 274 -481 ± 42 1080 ± 177 

 

 4.4.2.5 The Contribution from Uncharged and Charged Polar Side Chains Toward 

Amino Acid Interactions 

In order to investigate the effect of pressure on the charged and uncharged side chains, the 

amino acids with charged polar side chains were simulated at a concentration of 1.0 m at 1 bar and 

10000 bar. The solute-solute rdfs of the amino acids with two types of side chains at both pressures 

mentioned above are presented in Figure 4.10 and there are slight differences among them where 

as the solute-solvent rdfs are essentially the same and hence they are not shown here. Furthermore, 

all of these rdfs are converged to unity beyond 1.5 nm and they can be integrated to calculate the 

KBIs which can then be used to quantify the amino acid interactions in terms of PIs. 
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Figure 4.10 Center of mass to center of mass solute-solute rdfs of 1.0 m uncharged and 

charged amino acid side chains at 10000 bar. 

 

The variation of PIs with pressure for both types of side chains are presented in Table 4.10. 

Not only the PIs of lysine, histidine, aspartic acid and glutamic acid with charged side chains but 

also the PIs of them with uncharged side chains, are decreased with increasing pressure. Therefore, 

it seems that charged polar amino acids with charged side chains as well as uncharged side chains 

seems to be more solvated with increasing pressure which tends toward solute hydration and low 

solute self-association. 
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Table 4.10 Variation of PIs (cm3/mol) of 1.0 m uncharged and charged amino acid side chains 

with pressure. 

 1 bar 10000 bar 

 Charged Uncharged Charged Uncharged 

 PI/(cm3/mol) PI/(cm3/mol) PI/(cm3/mol) PI/(cm3/mol) 

Lys -121 ± 36 -188 ± 65 -252 ± 10 -418 ± 56 

His 240 ± 70 71 ± 96 -162 ± 29 -224 ± 31 

Asp 359 ± 86 1737 ± 314 -96 ± 19 -146 ± 69 

Glu 241 ± 52 737 ± 76 -117 ± 13 -80 ± 65 

 

 

 4.5 Conclusions 

In this study we have been able to quantify the amino acid interactions in terms of PIs at 

relatively higher temperatures and pressures. The amino acids with nonpolar side chains except 

for tryptophan and all the amino acids with charged polar side chains tend toward more solute 

association or aggregation whereas amino acids with uncharged polar side chains except threonine 

and asparagine tends toward solute hydration and low solute self-association when the temperature 

is increased. On the other hand, all the amino acids except for proline tends toward solute hydration 

and low solute self-association when the pressure is increased. Thus, at a higher pressure a general 

increase in solvation was observed which agrees with the swollen structures of experiments. The 

amino acids used in this study were in the zwitterionic form in most of the instances. However, in 

proteins they are connected to each other via peptide bonds and do not exist as zwitterions. 

Therefore, at this point we will not be able to provide any insights into temperature and pressure 

denaturation of proteins. Nevertheless, as pointed out in chapter 3 when we study the mixed amino 
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acids in the future we will be able to provide some insights toward temperature and pressure 

denaturation of proteins. 
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Chapter 5 - Development of Torsional Potentials for the KBFF 

Model of Peptides and Proteins 

 5.1 Abstract 

Computer simulations have become a significant tool for studying the structure and 

dynamics of biological macromolecules since experimental methods cannot reveal those properties 

under most circumstances. However, the accuracy of simulation data is determined by the quality 

of the force field which is being used. Although there are many state of the art force fields which 

are widely used, it is common to find discrepancies in the conformational preferences of different 

amino acid residues. Therefore, not only there is room for improvement of those established force 

fields, but also there are opportunities to develop new force fields as well. Recently, we have 

developed a series of force fields with the intention of simulating biological systems by attempting 

to accurately reproduce experimental Kirkwood-Buff integrals which are observed for solution 

mixtures. Here, we describe our most recent efforts towards a complete force field for peptides 

and proteins. The results are illustrated using molecular dynamic simulations of several tripeptides, 

selected peptides and globular proteins at ambient temperature and pressure followed by replica 

exchange molecular dynamic simulations of a few selected peptides. It is observed that the side 

chain torsional potentials of KBFF are in good agreement with the experimental data whereas the 

backbone potentials need further improvement. 
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 5.2 Introduction 

Accurate empirical force fields are required to study the behavior of proteins and peptides 

via computer simulations.1,2 There are several state of the art force fields which are currently 

available such as CHARMM193 and 22,4 OPLS,5 AMBER,6 and GROMOS.7 Moreover, all of 

them are specifically designed to the study biological systems. Although these force fields have 

been extensively used to study a wide variety of biological systems in some detail, still there are 

several inherent shortcomings which reduce their accuracy. Mainly there are two issues and one 

of them is related to the degree of sampling achieved during a simulation. The simulation time 

should be long enough to enable the sampling of all relevant molecular conformations and this 

essentially determines the precision of the simulation results. The other issue is the accuracy of the 

force field. An inaccurate energy function may bias the simulation towards incorrect behavior and 

hence it will significantly affect the accuracy of the data.8 

Furthermore, larger molecules such as proteins, which have many potential conformations, 

are more susceptible to sampling problems compared to smaller molecules which may not be 

severely affected by sampling limitations. Many approaches to improve the degree of sampling in 

molecular simulations have been developed and they consist of techniques related not only to 

software issues but also to hardware issues as well.8-11 With current approaches and computers one 

can perform simulations of reasonably large systems on the microsecond timescale when applying 

enhanced sampling.8-11 Unfortunately, many of these longer MD simulations are not accurate when 

existing force fields are used.9,12 Therefore, continuous improvements in the accuracy of force 

field are still required. Some studies have focused on developing more accurate polarizable force 

fields,13 but those are computationally expensive. Thus, there is still room to improve existing non-

polarizable force fields. 
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Recently, there have been notable efforts to improve the accuracy of the existing force 

fields in terms of the re-parameterization of the torsional potentials. These potentials which are 

defined by Equation 5.1, determine the conformational preferences observed for the backbone 

(alpha versus beta) of amino acid residues. 

 𝑈 𝑝𝑟𝑜𝑝𝑒𝑟
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙

= Σ𝑘𝜙[1 + cos (𝑛𝜙 − 𝜙𝑠)] (5.1) 

Modifications to the protein backbone and sidechain torsional potentials of the Amber and 

CHARMM force fields have been performed and they have resulted in significant improvements 

in the accuracy of the results.14 Moreover, the Amber99SB force field15 and the CMAP correction 

for CHARMM2216 focused on the backbone torsional potentials. On the other hand, the recently 

developed Amber 99SB ILDN force field17 included improved sidechain dihedral potentials. 

In this study, we present our most recent efforts to develop the torsional potentials of 

peptides and proteins for the KB derived force field, KBFF. Furthermore, in order to improve the 

backbone torsional potentials, we have used the approach used in the implementation of CMAP 

correction for CHARMM22 force field.16 

 

 5.3 Methods 

 5.3.1 Model Systems for Peptides and Proteins 

As mentioned above most of the recent efforts to improve biomolecular force fields have 

centered around the critically important ϕ and ψ degrees of freedom. Moreover, the typical model 

systems which were used in those studies are glycine, alanine and proline dipeptides, which are 

actually single capped amino acids, Ace-X-NMH, where X represents the respective amino acid 

Gly, Ala, Pro, etc. However, a more appropriate model system which is representative of the 

peptides and proteins would be the tripeptides of the form, Ace-AXA-NHM, where A represents 
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Ala and X represents Gly, Ala, Pro, etc. As shown in Figure 5.1, there are two peptide bonds 

surrounding the central ϕ (C-N-Cα-C) and ψ (N-Cα-C-N) dihedral angles in each tripeptide. 

 

 

Figure 5.1 Capped glycine, capped alanine and capped proline tripeptides. 
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 5.3.2 Regular Molecular Dynamics Simulations 

All molecular dynamics simulations were performed using the KBFF models 

(http://kbff.chem.k-state.edu)18,19,20 together with the SPC/E water model21 as implemented in the 

GROMACS 4.0.5 package.22 All simulations were performed at 300 K and the pressure of 1 bar 

using the weak coupling technique to modulate the temperature and pressure with relaxation times 

of 0.1 and 0.5 ps,23 respectively. A time-step of 2 fs was used and the bond lengths were 

constrained using the Lincs (solutes) and Settle (water) algorithms.24,25 The particle mesh Ewald 

technique was used to evaluate electrostatic interactions with a grid resolution of 0.1 nm.26 A real 

space convergence parameter of 3.5 nm-1 was used in combination with twin range cutoffs of 1.0 

and 1.5 nm, and a nonbonded update frequency of 5 steps. All tripeptides were solvated in a cubic 

box of 4.0 nm. 

 

 5.3.2.1 Small Peptides 

Several small peptides with well characterized secondary structure were selected for 

validation and testing of the KBFF and the full list of peptides is shown in Table 5.1. MD 

simulations were performed using the KBFF models. Each peptide was initially solvated in 7.5 nm 

cubic water boxes containing about 13750 water molecules. The net charges of the peptide systems 

were neutralized by adding sodium or chloride ions as required. Each system was initially subject 

to energy minimization, followed by 1 ns of MD simulation in the NPT ensemble, with position 

restraints on the backbone atoms. After this initial equilibration, each system was simulated for 

100ns in the NPT ensemble. The trajectories obtained from these 100ns runs were used for 

subsequent data analysis. 
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Table 5.1 Selected small peptides for the validation and testing of KBFF. 

Peptide Sequence Length T 

AAQAA Ace-AAQAAAAQAAAAQAA-NHM 15 300 K 

pepIII Ace-AETAAAKFLRAHA-NH2 13 300 K 

CLN025 YYDPETGTWY 10 300 K 

Trpzip1 SWTWEGNKWTWK-NH2 12 300 K 

GB1 hairpin GEWTYDDATKTFTVTE 16 300 K 

GB1m3 KKWTYNPATGKFTVQE 16 300 K 

 

 5.3.2.2 Globular Proteins 

MD simulations of globular proteins such as ubiquitin, lysozyme and RNaseA were also 

performed using the KBFF models and the details of the systems are summarized in Table 5.2. 

The net charge of the proteins was neutralized by adding sodium or chloride ions as required. Each 

system was initially subject to energy minimization which was followed by three 1 ns periods of 

MD simulation in the NPT ensemble where the temperature was at 100K, 200 K and 300K while 

applying position restraints to the backbone atoms. After this initial equilibration, each system was 

simulated for 100ns in the NPT ensemble and the trajectories obtained from these 100ns runs were 

used for subsequent data analysis. 

 

 

 

 

 

 



133 

Table 5.2 Selected globular proteins for the validation of KBFF. 

Protein PDB ID Number of 

residues 

Length of the 

cubic box 

Number of water 

molecules 

BPTI 5PTI 58 6.9 nm 10376 

CI-2 2CI2 83 7.6 nm 13428 

GA98 2LHC 56 8.2 nm 18211 

GB98 2LHD 56 6.7 nm 9738 

Lysozyme 4LZT 129 7.9 nm 15982 

NTL9 2HBB 51 7.2 nm 12235 

RNaseA 2AAS 124 7.7 nm 14852 

Ubiquitin 1UBQ 76 7.4 nm 13352 

 

 5.3.3 Replica Exchange Molecular Dynamics Simulations of Small Peptides 

Replica exchange molecular dynamics simulations of the selected small peptides listed in 

Table 5.1 were performed according to the same simulation details as described in section 5.3.2.  

Each peptide was initially solvated in 6.0 nm cubic water boxes containing about 7100 water 

molecules. The net charges of the peptide systems were neutralized by adding sodium or chloride 

ions as required. Each system was initially subject to energy minimization which was followed by 

three 1 ns periods of MD simulation in the NPT ensemble where the temperature was at 100K,  

200 K and 270K while applying position restraints to the backbone atoms. After this initial 

equilibration, 48 replicas of each peptide were generated using a script and those replicas were 

distributed in a temperature range of 270 K to 370 K. Then, each system was simulated for about 

100ns in the NPT ensemble while attempting to exchange between replicas after every 500 steps 
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periodically. The trajectories obtained from these production runs were used for subsequent data 

analysis. 

 

 5.3.4 Crystal Structure Data Bases 

In this study we have considered two crystallographic data bases to obtain the experimental 

torsional (backbone and side chain) angles. These two data bases are the protein data bank and the 

protein coil library.27 The protein data bank is a crystallographic data base which consists of three 

dimensional structural data of large biological molecules such as proteins and nucleic acids. 

Approximately half of the structure of folded proteins is either alpha helix or beta strand. Thus, 

this data base contains more structured conformations and it is dominated by alpha helices. On the 

other hand, the protein coil library is developed by removing alpha helices and beta strands from 

the reported structures in the PDB. Hence, it is composed of non-alpha helix and non-beta stand 

fragments and tends to favor extended conformations. 

Since the PDB contains more structured conformations it seems to be an extreme and 

hence, we decided to use the protein coil library in this study. Recently, a couple of state of the art 

force fields have been improved by using the protein coil library28, 29 and our implementation of it 

will be explained in section 5.4.2. 

 

 5.4 Results and Discussion 

 5.4.1 Side Chain Torsional Potentials 

Our first goal was to establish a set of side chain torsional potentials which would be in 

agreement with the protein coil library and the PDB. The side chain torsional potentials for all the 

residues which have a side chain were fitted to Equation 5.1 and they are presented in Figure 5.2, 
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Figure 5.3 and Figure 5.4. According to those figures there are no major differences between the 

side chain torsional potentials predicted by the protein coil library and the PDB. Moreover, with 

already developed side chain torsional potentials of KBFF model30 we are able to match them quite 

well in some residues while the other residues are in good agreement too. 

 

 

Figure 5.2 Side chain torsional potentials of residues with nonpolar side chains. 
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Figure 5.3 Side chain torsional potentials of residues with uncharged polar side chains. 
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Figure 5.4 Side chain torsional potentials of residues with charged polar side chains. 

 

 5.4.2 Backbone Torsional Potentials 

Once the side chain torsional potentials were finalized our next challenge was to develop 

a set of backbone torsional potentials. The model compounds used in here were the relevant 

tripeptides as described in section 5.3.1. Moreover, glycine, alanine and proline were treated 

separately and all the other amino acid residues were treated together. Glycine was treated 

separately since there are two hydrogen atoms attached to the Cα, alanine was treated separately 

since it has only a methyl group as the side chain and all the other residues except for glycine, 

alanine and proline were treated together since all of them have side chains of moderate sizes. In 
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addition, the CMAP correction used in CHARMM2216 was implemented on all those residues 

except for proline. Since proline has restrictions on phi-psi space which arises due to the five 

membered ring, its phi is restricted to -60º. Hence, a simple one-dimension potential which is 

defined by Equation 5.1 was applied on psi of proline. 

When implementing the CMAP correction on KBFF, the relevant tripeptide was simulated 

without any phi-psi potentials and the resulting base energy map was subtracted from the 

respective energy map produced by the corresponding residue of the protein coil library. Then, 

that difference in energy was fitted to a polynomial to generate the corresponding energy grid. 

Finally, the selected tripeptide was simulated with that CMAP correction. Furthermore, when the 

fitting was done glycine was fitted to glycine, alanine was fitted to alanine and all the other amino 

acid residues except for proline were fitted together to all the amino acid residues from the protein 

coil library except for glycine, alanine and proline. 

All of the twenty tripeptides were simulated for 500 ns at 300 K and the percentage 

conformations are summarized in the third column of Table 5.3. Moreover, the percentage 

conformations of amino acid residues from the PDB and the coil data base are summarized in the 

first and second columns, respectively. As explained earlier the alpha helix percentages of alanine, 

glutamine and glutamic acid are relatively higher in the PDB than in the coil library. Furthermore, 

the percentage conformations obtained using KBFF seems to be in pretty good agreement with the 

coil library over the PDB. Therefore, our decision to use the coil library is justified by these results. 
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Table 5.3 The conformational populations (%) of the tripeptides at 300 K. 

 PDB  Coil Library  KBFF 

 αa β1
a β2

a ϕ>0  α β1 β2 ϕ>0  α β1 β2 ϕ>0 

Gly 61 23 16 0  60 21 19 0  61 22 18 0 

Ala 67 19 14 0  45 16 35 4  53 26 22 0 

Pro 41 1 58 0  34 1 66 0  29 1 70 0 

Val 38 52 11 0  36 35 28 1  24 34 41 2 

Leu 56 30 13 1  47 20 30 3  39 24 34 3 

Ile 43 47 10 0  38 34 27 1  29 34 37 0 

Met 56 31 12 1  41 25 28 6  40 28 30 2 

Phe 45 42 11 2  42 28 24 5  22 36 41 1 

Trp 49 36 14 1  45 23 27 4  17 35 45 4 

Ser 47 33 19 2  44 24 27 4  23 44 33 1 

Thr 45 41 13 0  48 30 21 1  42 23 35 0 

Asn 46 28 16 10  40 21 18 21  48 23 28 0 

Gln 60 26 12 3  47 23 22 8  36 31 33 0 

Tyr 45 42 12 2  44 28 23 5  45 25 28 2 

Cys 43 41 14 2  35 32 27 6  44 23 25 8 

Lys 58 26 13 3  48 21 22 8  29 31 40 0 

Arg 56 28 13 2  45 23 24 8  32 33 34 1 

His 47 35 14 4  45 26 19 10  30 39 29 3 

Asp 51 24 20 5  45 20 25 10  38 20 41 1 

Glu 64 22 12 2  53 17 24 6  47 19 33 0 

a α: ϕ<0º and -150º<ψ<30º, β1: ϕ<-90º and ψ>30º, β2: ϕ>-90º and ψ>30º 
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 5.4.3 Regular Molecular Dynamic Simulations 

 5.4.3.1 Small Peptides 

The variation of root mean square deviation (RMSD) values with time for the selected 

peptides simulated with regular MD are presented in Figure 5.5. It seems like that the selected 

hairpins behaved better than the two helices. Moreover, among the hairpins, CLN025 seems to 

perform quite well with a RMSD value of less than 2 Aº. In addition, the other three hairpins are  

 

 

Figure 5.5 The RMSDs of helices and hairpins at 300 K. 
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not as stable as CLN025. On the other hand, AAQAA was performing quite well up to about  

50 ns and afterwards seems like that it is deviated a bit. Also, pepIII does not look good at the end 

of 100 ns. However, according to the experiments the percentage of helices should be about 50% 

around 280 K. Consequently, the helices may not be that bad since these RMSDs were calculated 

from simulations performed at 300 K. Hopefully, those RMSDs of helices will be improved along 

with the other peptides when they are simulated for longer, which would be helpful in validating 

the KBFF. 

 

 5.4.3.2 Globular Proteins 

The variation of RMSD values with time for the selected globular proteins simulated with 

regular MD are presented in Figure 5.6 and GB98 and CI-2 seem to be the best out of this series 

of proteins with RMSDs of about 2 Aº. Furthermore, BPTI, ubiquitin, lysozyme and NTL9 seems 

to be behaving reasonably up to 100 ns. In addition, GA98 seems to be the most deviated one as 

of now and also RNaseA is not perfect either. Moreover, both GA98 and GB98 have identical 

sequences consisting of fifty-six residues each and they only differ by the forty-fifth residue. Still 

they are structurally different and that might be a reason for the extremes observed in RMSDs, i.e. 

GB98 having a better RMSD whereas GB98 having the most deviated RMSD. Hopefully, all of 

these globular proteins will improve when simulated for another couple of hundred nanoseconds, 

which would be helpful in validating the KBFF. 
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Figure 5.6 The RMSDs of globular proteins at 300 K. 
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 5.4.4 Replica Exchange Molecular Dynamic Simulations of Small Peptides 

In order to achieve better sampling replica exchange molecular dynamic simulations of the 

selected small peptides were performed and the trajectories were analyzed to determine the melting 

curves. They are presented in Figure 5.7 and helices are relatively more stable than the hairpins.  

 

 

Figure 5.7 The melting curves of the selected small peptides.31-36 

 

Moreover, out of the selected two helices AAQAA is overly stable compared to the experiments 

whereas the fraction folded of pepIII is about 40% at the melting temperature. Furthermore, 
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AAQAA is mainly consisting of alanine and the over stability of AAQAA may be due to the high 

helical nature of the current alanine map. 

On the other hand, all the four selected hairpins are relatively unstable compared to the 

experiments and the melting curve of CLN025 is the closest to the experimental melting curve. 

When peptides fold and unfold the degrees of freedom in a hairpin is greater compared to that in 

helices and this may be one of the reasons for hairpins to be unstable. Also, there may be 

unnecessary hydrogen bonds which are created between the OH of the side chains and the  

C terminus of the backbone which causes the unfolded structures of hairpins to be more favored. 

In addition, the instability of hairpins may be due to the competition between alpha turn residues 

and beta non-turn residues. Moreover, the hairpins were relatively unstable with most of the state 

of the art force fields in their early stages.  

Recently, Jiang and coworkers developed a new strategy for protein force field 

parametrization where they have used the backbone and side chain conformational distributions of 

all twenty amino acid residues obtained from protein coil library were used as the target data.28 In 

their study they modified the torsion potentials and some local non-bonded interactions in  

OPLS-AA/L force field and the new force field was named as Residue Specific Force Field 1 

(RSFF1). RSFF1 gave a good balance between alpha helical and beta sheet secondary structures 

and successfully folded a set of alpha helix proteins and beta hairpins. However, it overestimates 

the melting temperature and the stability of native state of these peptides/proteins. 

Moreover, in another study Zhou and coworkers modified the Amber ff99SB force field 

and it was named as Residue Specific Force Field 2 (RSFF2).29 RSFF2 gave melting curves of 

alpha helical peptides and Trp-cage in good agreement with experimental data whereas it 

overestimated the melting temperature and the stability of beta hairpins. 
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As discussed above although there have been improvements still the hairpins are not in 

perfect agreement with experiments. Furthermore, Mercadante and coworkers have used the KB 

derived force field to reproduce the correct conformational ensemble of intrinsically disordered 

proteins and new route for tackling the deficiencies of current protein force fields in describing 

protein solvation.37 Hence, it seems that there are promising signs of KBFF being more reliable. 

 

 5.5 Conclusions and Future Directions 

The side chain torsional potentials of KBFF are in good agreement with both the PDB and 

the protein coil library. Hence, it can be concluded that the side chain torsional potentials are 

finalized for KB derived force field. Moreover, the percentage conformations of most of the 

tripeptides are reproducing the percentage conformations of both the PDB and the protein coil 

library or at least that of the protein coil library. Therefore, it seems that it is more appropriate to 

use the protein coil library to obtain the CMAP corrections of KBFF. Furthermore, the RMSDs of 

most of the selected small peptides and globular proteins are well behaved during regular MD 

simulations. 

However, with REMD simulations, AAQAA is overly stable and pepIII and the selected 

hairpins are relatively unstable with KBFF as of now. The causes for the instability of hairpins 

may be the unnecessary hydrogen bonds created between the OH of the side chains and the  

C terminus of the backbone and the competition between alpha turn residues and beta non-turn 

residues. In the future we are planning to treat each residue separately and attempt to develop a 

residue specific KBFF which will be able to improve folding of peptides and proteins. 
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Appendix A - Experimental Triplet and Quadruplet Fluctuation 

Densities and Spatial Distribution Function Integrals for Pure 

Liquids 

 A.1 Abstract 

Fluctuation Solution Theory has provided an alternative view of many liquid mixture 

properties in terms of particle number fluctuations. The particle number fluctuations can also be 

related to integrals of the corresponding two body distribution functions between molecular pairs 

in order to provide a more physical picture of solution behavior and molecule affinities. Here, we 

extend this type of approach to provide expressions for higher order triplet and quadruplet 

fluctuations, and thereby integrals over the corresponding distribution functions, all of which can 

be obtained from available experimental thermodynamic data. The fluctuations and integrals are 

then determined using the International Association for the Properties of Water and Steam 

Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results 

indicate small, but significant, deviations from a Gaussian distribution for the molecules in this 

system. The pressure and temperature dependence of the fluctuations and integrals, as well as the 

limiting behavior as one approaches both the triple point and the critical point, are also examined. 

 

 A.2 Introduction 

From a theoretical point of view, liquids and liquid mixtures are commonly characterized 

in terms of probability distribution functions. These distribution functions provide a way to 

describe liquid structure, and can be further used to relate this structure to the corresponding 

thermodynamics.1 The Kirkwood-Buff (KB) theory of solutions provides such a link between 
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integrals over the spatial pair distribution functions and the thermodynamic properties of any stable 

multicomponent system.2 These integrals can also be expressed in terms of particle fluctuation 

densities and both quantities can be considered to characterize a liquid or liquid mixtures.3 

Consequently, KB theory, also more generally known as Fluctuation Solution Theory (FST), has 

provided an alternative view of many solution properties in terms of particle number fluctuations 

and distributions.2,4-5 

Many theoretical approaches also employ distribution functions beyond the simple pair 

distribution. The role of triplet and higher distribution functions in liquids is well established.6-9 

However, quantitative information concerning these distributions remains quite limited, especially 

from experimental sources.7-10 In particular, there are no systematic studies of triplet correlations 

over a wide range of temperature and pressure for complex liquids using experimental data. 

Previous work has been primarily restricted to scattering studies that provide the pair distribution 

function, and thereby partial information concerning triplet distributions, via studies of the 

pressure and temperature dependence of the pair distribution. Unfortunately, scattering studies are 

usually limited to molecules of low complexity. 

 Here we describe an extension of traditional FST to generate triplet and quadruplet 

particle number fluctuations, together with the corresponding integrals over the triplet and 

quadruplet spatial distribution functions, in an effort to provide experimental data concerning 

higher distributions in pure liquids at any density. The new expressions are then combined with 

existing relationships to systematically investigate these higher correlations in pure water over a 

range of pressure and temperature. Finally, we compare and contrast this approach with currently 

available experimental methods that attempt to access similar liquid state correlations. The results 

can therefore be used to provide rigorous tests of current theories of solutions, to guide the 
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development of accurate models for computer simulation, and to further relate solution structure 

to solution thermodynamics. 

 

 A.3 Theory 

As is traditional with Fluctuation Solution Theory, one starts with the equations of the 

Grand Canonical Ensemble (GCE) and then uses various thermodynamic transformations to 

provide properties corresponding to either semi-open osmotic systems, or fully closed isothermal 

isobaric systems.11 Hence, all ensemble averages and distribution functions in this type of approach 

correspond to the GCE. The fluctuating quantities are then related to integrals over distribution 

functions. Usually the application is to liquids, but there is no reason the same approach cannot be 

applied to pure gases or even solids. 

The thermodynamic potential and partition function in the GCE - where the set of chemical 

potentials ({µ}), the volume (V) and the absolute temperature (T) are the independent variables - 

can be written,1 
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where 1( )Bk T  , p is the pressure, 1 1 2 2N N   μ N , and Nα is the number of 

molecules of species α. The sum is over the full permutation of molecule numbers, and Q({N},V,T) 

is the canonical partition function for each system of {N} molecules in the same fixed volume. 

The most useful value for the Boltzmann constant (kB) in this work is 0.083143714 bar L mol-1 K-

1. The above partition function applies for any system where Boltzmann statistics are obeyed. Our 
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main focus will be single component liquids. We will, however, retain the full multicomponent 

expressions during the initial derivation and then simplify to a single component later. 

The corresponding differential for the GCE can be written in terms of just the intensive 

variables, 
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where U is the internal energy. The ensemble average of a property (X) in the GCE is given by, 
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and Equation A.1 and A.2 lead directly to the following relationships for the internal energy 

density and the particle number densities of each species, 
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for any multicomponent system.1 Here, the prime indicates that all chemical potentials except for 

the one of interest are held constant. 

One can continue to take derivatives with respect to the chemical potentials in the GCE to 

provide,6 
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where X X X    denotes a fluctuation in the value of X. The particle number fluctuations 

can also be expressed in terms of density fluctuations, but this becomes increasingly more 

awkward for the higher moments of the distribution. The most appropriate intensive properties are 

the fluctuations per unit volume, or fluctuation densities, as displayed above. The fluctuation 

densities provide quantitative measures of the correlation between particles in an open system.  

The above expressions are restricted to open systems. The next step is to provide a 

connection to equivalent closed systems, which are of more common interest. The intensive GCE 

averages are a function of the intensive thermodynamic variables associated with the GCE and 

therefore one can write the following general differential, 
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where X is an intensive property. It should be noted that there is no volume derivative in the above 

expressions as it can be shown that this derivative is zero when X is intensive, i.e. intensive 

properties only depend on the intensive variables.6 If we restrict ourselves to the study of 

isothermal changes, the results relate to particle number fluctuations only. Energy fluctuations will 
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be included fully at a later date. However, some preliminary results are invoked at the end of the 

Results section (see A.3.6). 

Taking derivatives of Equation A.6 with respect to pressure provides a series of useful 

relationships. When 1 lnX p V     one obtains the common relationship between the partial 

molar volumes (V
), 
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Using X   in Equation A.6 provides, 
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and corresponds to the Kirkwood-Buff theory of solutions expression for the isothermal 

compressibility,2 
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This well-known relationship can be used to extract particle-particle number (or density) 

fluctuations in pure liquids. Here, we wish to go beyond these pair correlations to examine the 

triplet and higher fluctuations (correlations). Finally, using X B  and X C  in Equation 

A.6 provides, 
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The above expressions describe the pressure dependence of the two and three body particle number 

fluctuations. Obviously, one could continue indefinitely. However, it is unclear if reliable 

estimates for higher distributions can be obtained from experiment. This represents a particular 

aim of the current work. 

It is clear from the above expressions that if the multivariate particle number probability 

distribution for the liquid was simply Gaussian in nature, the C’s and D’s would then be zero and 

the B’s would therefore be independent of pressure. This is clearly not the case, as noted 

previously.12 The expressions in Equation A.5 correspond to the cumulants of the multivariate 

particle number probability distribution expressed in terms of the central moments. Alternatively, 

they can be viewed as the mean, covariance, coskewness, and excess cokurtosis of the same 

distribution. We note that there are several different definitions of skewness and excess kurtosis in 

the literature. The definition of skewness and excess kurtosis referred to here are those provided 

by andVC VD 
 expressions, respectively. 

Before discussing a real system of common interest, we note that the fluctuating quantities 

can be related to a series of corresponding distribution functions (see section A.7.1). For single 

component systems the relationships between the fluctuating quantities and the corresponding 

distribution functions are provided by,  
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which involve integrals over the n-body spatial distribution functions 
( )

... 1 2( , ,...)ng r r  that are similar 

in form to the integrals appearing in the theory of imperfect gases or the McMillan-Mayer theory 

of (osmotic) solutions,1 
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The integrals can also be expressed in terms of particle number fluctuations, 
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if desired. Hence, if one can obtain the fluctuating quantities in terms of experimental data then 

the corresponding integrals over the center of mass based two, three, and four body distribution 

functions can also be obtained. 

The integrals over the spatial distribution functions are valid for any liquid density and are 

obtained after averaging over the positions (and orientations) of all the other molecules in the 

system. Hence, they can be used for regions of the phase diagram where many expansions do not 

usually apply. Furthermore, any orientational effects of the molecules do not appear (directly) in 

the associated integrals. This means the integrals for molecular systems adopt a much simpler form 

than observed for many low density expansions. They cannot be used to probe the detailed nature 

of the interaction energy between molecules, as required in many integral equation theories, but 

they are valid for both pairwise additive and non-additive potentials. 
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The fluctuation densities and corresponding integrals provide alternative, but 

complimentary, descriptions of the correlation between particles within the system. The above 

integrals and probability distributions are often used to provide insight into the “structure” of 

liquids and liquid mixtures.4 It should be noted that, because the distribution functions are defined 

for the GCE, the corresponding integrals are not those expected for closed systems (where 

G     ), and the distribution functions tend towards unity in an exact manner when all 

molecules become widely separated. 

The pressure dependence of the G’s can be obtained by taking derivatives of Equation A.11 

and comparing with Equation A.10. One finds, 
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where the prime indicates an isothermal derivative with respect to pressure (a notation that will be 

used throughout this article). The first relationship in Equation A.14 is the integrated form of the 

well-known expression for the pressure dependence of the pair correlation function.13-14 

In summary, we have provided an extension of the traditional FST approach to investigate 

the fluctuations and distribution integrals for real solutions using experimental data. In doing so, 

we are not attempting to provide a low density expansion valid for solutions. Furthermore, no 

attempt is made to link the results to the underlying pair interactions from which they came. We 

are providing access to the experimental fluctuations and integrals over distribution functions that 

characterize the liquid and give rise to the thermodynamic properties at a particular state point, 

regardless of the density. The relationship between the present approach and existing previous 

studies of higher distribution functions will be discussed further in Section IV. 
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 A.3 Results 

 Some of the expressions presented here for pure systems have appeared previously. 

For instance, the expression for the compressibility given by Equations A.8 and A.11 is well 

known.2 It is also known that the pressure dependence of the pair or radial distribution function 

(rdf) is related to the triplet distribution.13 However, we have found no relevant quantitative 

experimental data in the literature concerning the fluctuations (beyond the compressibility) for 

molecular liquids over a range of pressures and temperatures. 

Using the results from Equations A.8 and A.10 the fluctuating quantities for pure gases and 

liquids can be expressed in terms of pressure derivatives of the density and are given by, 
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Expressions for the fluctuations in terms of derivatives of the molar volume or the isothermal 

compressibility are given in section A.7.2. The above expressions essentially correspond to the 

familiar Kirkwood-Buff inversion procedure,15 that provides fluctuating quantities in terms of 

experimental observables. Once the fluctuating quantities have been obtained, the integrals over 

the distribution functions can also be extracted using the relationships outlined in Equation A.11. 

However, to obtain reliable values for the derivatives an accurate equation of state (EOS) is 

required. 

The results obtained for pure water as a function of pressure and temperature are 

determined here using the IAPWS-95 EOS as implemented in the National Institute of Standards 

and Technology (NIST) Standard Reference Database 10: NIST/American Society of Mechanical 
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Engineers Steam Properties Database version 2.22.16-17 The source code provides a series of 

thermodynamic properties as a function of pressure (or density) and temperature via a subroutine 

call. First and second derivatives of the density are provided directly by the EOS. The third 

derivatives were obtained numerically via a finite difference approach using the second derivatives 

and a value of dp = ±10-20 bar. Calculations were performed in quadruple precision. 

 

A.3.1 Density and Pressure Expansions 

 Before presenting the results for water, it is informative to clarify the uses and exact 

meaning of the integrals presented here, especially as similar quantities are also found in the 

literature. In Section II we provided expressions that relate a series of fluctuating quantities to a 

series of corresponding pressure derivatives. Consequently, one of the most obvious uses for the 

fluctuations is to rationalize changes in the density as a function of pressure along a particular 

isotherm. A simple Taylor series expansion provides, 
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in terms of the pressure change op p p    from a reference pressure po. The pressure derivatives 

appearing in the above expression are given by the fluctuating quantities appearing in Equation 

A.15,  
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or via integrals over the distribution function according to, 
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The above derivative expressions are valid at any liquid or gas density, but should be evaluated at 

the reference pressure/density for use in Equation A.16. In the case of gases, where ρ1 will be very 

small, the derivatives may simplify further. 

Expressions for the equivalent virial coefficients (Bn) can also be obtained from Equation 

A.16 using a series reversion approach – although to obtain the fourth virial coefficient one 

requires an additional density derivative. This provides the following expansion, 
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for which the B’s are given by, 
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Again, the virial coefficient expressions in Equation A.20 appear more complicated than the 

traditional expressions as they are valid for any reference pressure (away from a first order 

transition). The traditional virial EOS is provided when po and ρ1 are zero. Hence, the more 

common virial EOS is actually a limiting case of FST. Clearly, the expansion provided in Equation 

A.16 and A.18 is simpler in form for finite reference pressures (densities).  
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 One can also develop expansions for G11 using Equation A.14. This further 

illustrates how the structure of the liquid or gas changes with pressure or density. The pressure 

derivatives are then, 

 

2

11 111 11

2 3

11 1111 111 11 11

( 2 )

( 7 8 )

G G G

G G G G G





  

   

  (A.21) 

while the corresponding density derivatives are given by, 
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where we have used the chain rule to write 11 1 11 1/ /G G      , etc. 

 

A.3.2 Gas Phase Fluctuations and Distribution Function Integrals 

While our primary focus is the liquid phase – as this has traditionally been the more difficult 

system to study – a brief discussion of the results for the gas region are in order (the gas phase 

diagrams containing results up to 1250 K are provided in the Supplemental Materials). The two 

body fluctuations (B11/ρ1) generally increase with decreasing temperature and increasing pressure. 

The skewness of the distributions (C111/ρ1) is always positive (an excess of particles in the volume 

is favored over a depletion) and the excess kurtosis (D1111/ρ1) is always positive (the actual 

distribution is more peaked than a normal distribution). The magnitude of C111/ρ1 and D1111/ρ1 

follow the same pressure and temperature trends as B11/ρ1. The pair distribution integral ρ1G11 is 

positive and generally increases with decreasing temperature and increasing pressure, while the 

triplet distribution integral ρ1
2G111 is positive over most of the gas phase region investigated here, 
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but can take on negative values at high pressure and high temperature near the supercritical region. 

The quadruplet distribution integral ρ1
3G1111 can adopt either positive (as one approaches the 

critical point) or negative (for low pressures and higher temperature) values. As expected, the gas 

phase approaches ideal behavior at low pressure and high temperature, where B11 = C111 = D1111 = 

ρ1, which corresponds to the known Poisson distribution for the particle number fluctuations.18 All 

the G’s would be zero for a perfect gas, but are finite for real gases even at low pressures. 

Figure A.1 displays the two virial coefficient forms described above as obtained at 298.15 

K. In addition, we have included the following related virial coefficients, 
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These correspond to the traditional (low density) forms of the virial coefficients. However, the 

integrals used in Equation A.23 can be applied to finite densities and do not form part of an 

expansion. They are, however, useful as integrals that correspond to particle correlations at a finite 

density, after averaging over all other molecules in the system, where one can apply the Kirkwood 

Superposition Approximation to the (orientationally averaged) potential of mean force between 

the molecules at that particular finite density. The first three virial coefficients decrease with an 

increase in pressure (or density). This is in agreement with the fact that G11 and G111 are positive 

over the pressures studied. The data for Bi* also indicate that the presence of additional water 

molecules in the gas phase serves to decrease the effective pair and triplet correlations – as would 

be expected. 
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Figure A.1 The (a) first, (b) second, and (c) third virial coefficients for water vapor at 298.15 

K for pressures up to the saturation pressure. Black dotted lines: Bi from Equation A.20. 

Red dotted lines: *

iB  from Equation A.23. Black solid lines: the traditional (zero pressure 

and density) virial coefficient values provided by the IAPWS-95 EOS. Units for the B2 

coefficients are in M -1 while the B3 coefficients are in M -2. 

 

A.3.3. Liquid Phase Fluctuations and Distribution Function Integrals 

The results for liquid water are displayed in Figure A.2 and Figure A.3 as dimensionless 

quantities. In the Supplemental Materials we also provide Figure A.2 and Figure A.3 as the raw 

quantities, but they essentially exhibit the same overall trends. Figure A.2 indicates that the 

fluctuation cumulants alternate in sign for the liquid region. As expected, the two body fluctuations 

(B11/ρ1) generally increase with increasing temperature and decreasing pressure. The skewness of 

the distributions (C111/ρ1) is always negative (a depletion of particles in the volume is favored over 

an excess) and the excess kurtosis (D1111/ρ1) is always positive (the actual distribution is more 
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peaked than a normal distribution). The underlying distributions tend to a normal distribution (B11 

is constant, C111 = D1111 = 0) as the pressure increases and the temperature decreases. Figure A.3 

indicates that the integrals (Gαβ..) alternate in sign and increase in magnitude as the pressure 

decreases and/or temperature increases. As expected, B11/ρ1 and ρ1G11 tend to large positive values 

as the critical point is approached, as do the values of D1111/ρ1 and ρ1
3G1111, whereas the values of 

C111/ρ1 and ρ1
2G111 become very large and negative in this region. 

The alternating signs of the fluctuation quantities appears to be an inherent characteristic 

of liquids and is determined by the expressions found in Equations A.8 and A.10. Hence, one 

observes 1   > 0 as B11 > 0, 11B  < 0 as C111 < 0 and 111C  > 0 as D1111 > 0. These patterns indicate 

that all the fluctuating quantities decrease in magnitude as the pressure increases. The fluctuating 

quantities and corresponding integrals are displayed in Figure A.4 and Table A.1 for selected 

isobars, isotherms and state points.  
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Figure A.2 Liquid phase fluctuation cumulants (a) B11/ρ1, (b) C111/ρ1, and (c) D1111/ρ1. The 

triple point is indicated by a black dot and the critical point by a red “.” The horizontal 

dashed line is the maximum valid pressure for the IAPWS-95 Equation of State. Only the 

liquid phase was contoured. Data outside of the ranges depicted on the color bars were 

removed, due to the divergence of these properties at the critical point. 
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Figure A.3 Liquid phase distribution function integrals (a) ρ1G11, (b) ρ1
2G111, and (c) ρ1

3G1111. 

The triple point is indicated by a black dot and the critical point by a red “.” The horizontal 

dashed line is the maximum valid pressure for the IAPWS-95 Equation of State. Only the 

liquid phase was contoured. Data outside of the ranges depicted on the color bars were 

removed, due to the divergence of these properties at the critical point.  
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Figure A.4 Liquid phase (a) fluctuation cumulants and (b) distribution function integrals for 

selected isotherms [left column of panels (a) and (b)] and isobars [right column of panels (a) 

and (b)]. 
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Table A.1 Fluctuations and integrals for water at various state points. 

Property Ambient 

T = 298.15 K 

p = 1 bar 

Triple Point 

[(l) approach,  

along Ttp] 

Triple Point 

[(g) approach, 

along ptp] 

Triple Point 

[(g) approach,  

along Ttp] 

ρ1 
 55.34456 55.49695  2.694692  10-4 2.694697  10-4 

B11/ρ1 0.062076 0.064150 1.0012 1.0012 

C111/ρ1 -0.01419 -0.01483 1.004 1.004 

D1111/ρ1 0.00561 0.00327 1.01 1.01 

ρ1G11 -0.937924 -0.935850 0.001218 0.001218 

ρ1
2G111 1.7996 1.7927 0.000252 0.000252 

ρ1
3G1111 -5.226 -5.202 0.00025 0.00025 

According to the IAPWS-95 EOS.  

Triple point (tp) values are estimated by approaching the tp from three directions. 

Units: ρ1 is in M and all other properties are dimensionless. 

Triple Point: = 273.16 K, 0.00611655 bar, 0.0180190 M -1 (liquid), 3,710.98 M -1 (vapor) 

 

A.3.4 Moelwyn-Hughes Isotherms 

 The IAPWS-95 EOS for water, while very accurate, is quite complicated and 

similar quality expressions for other liquids are relatively few in number. In an effort to provide a 

more accessible analysis of pure liquids, while maintaining a significant degree of accuracy, we 

have investigated a simple relationship accredited to Moelwyn-Hughes.19 The Moelwyn-Hughes 

isotherm can be developed from the semi-empirical observation that the bulk modulus is 

proportional to pressure for a variety of substances. Hence,  
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  (A.24) 

where µ is a constant for a fixed temperature. The relationship holds over a reasonable range of 

temperatures and pressures. The value of µ can also provide details regarding the intermolecular 
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potential. For instance, it can be shown that µ =1 for ideal gases, µ = 8 for a Lennard-Jones 6-12 

potential, and µ = 6-11 for typical real liquids.19-20 

 Assuming the Moelwyn-Hughes isotherm is obeyed one can integrate to obtain an 

expression for the compressibility as a function of a pressure change, 
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and integrate again to obtain the density as a function of a pressure change, 
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A further integration provides the change in chemical potential as a function of a pressure change, 

but that is not needed in the present study. Here, we use the above expressions to provide the 

fluctuating quantities and integrals. First, we note that Equation A.8 implies, 

 1 2

11 1( , ) ( , ) ( , )TB p T p T p T     (A.27) 

and hence Equation A.25 and Equation A.26 provide the value of B11 and G11 anywhere along the 

isotherm. Using the expression provided in Equation A.24 and then comparing with the derivative 

of Equation A.27 obtained using the expressions given in Equation A.8 and Equation A.10 

provides, 
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  (A.28) 

where we have dropped the explicit dependencies on pressure and temperature for clarity. A further 

pressure derivative, assuming µ is constant, then provides, 
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  (A.29) 

Hence, using this approach all the cumulants and integrals over distribution functions can be 

related to B11 and/or G11 through a single constant, µ. 

 The relatively simple forms for the fluctuations shown above allow us to 

characterize a series of possible situations. First, when µ = 1 we obtain results consistent with the 

Poisson distribution observed for ideal gases. When µ = 2 the moments describe a Gaussian 

distribution for the particle number fluctuations where B11 is independent of pressure and C111 = 

D1111 = 0 – the G’s being non zero. An intermediate case where µ = 3/2 would result in B11 > 0, 

C111 < 0, and D1111 = 0. For real liquids, where µ = 6 – 11,20 we find that B11 > 0, C111 < 0, and 

D1111 > 0. This is the pattern observed in Figure A.2. Unfortunately, a clear pattern does not emerge 

for the G’s from the above equations, although one is observed experimentally (see Figure A.3). 

The optimal value of µ does depend slightly on temperature. Therefore, to account for isothermal 

changes at temperatures greater (+) or less (-) than To = 298.15 K, we have fitted the dependence 

of µ on temperature according to the relationship, 
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  (A.30) 

where oT T T   . The parameters for Equation A.30 were obtained from the IAPWS-95 EOS by 

first fitting a series of bulk modulus versus pressure (psat < p ≤ 5 bar) isotherms using Equation 

A.25 with po = 1 bar, and then fitting the resulting µ(T) values to Equation A.30. The parameters 

are then μ(To) = 5.68, a+ = 1.5810-2, b+ = 2.110-5, a- = 1.2710-2, b- = 7.310-5, and  
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c- = -1.210-5. The results from this approach are compared to the more exact results provided by 

the IAPWS-95 EOS in Figure A.5. The results at 298.15 K and 1 bar are in very good agreement 

with those reported in Table A.1, with the exception of the value for D1111/ρ1. 

Figure A.5 indicates that the distribution function integrals are very well reproduced by the 

Moelwyn-Hughes approximation over a range of pressures and isotherms, even though the slope 

of the bulk modulus vs pressure (µ) is changing over this range. The fluctuation cumulants are 

more problematic. The pair fluctuations are well reproduced, while the triplet fluctuations are well 

reproduced at low pressures and start to deviate from reality as the pressure increases. The 

quadruplet fluctuations are poorly reproduced at low pressures, primarily due to the assumption 

that µ is independent of pressure, but are very well reproduced at higher pressures. All the data is 

well reproduced for the 318 K isotherm as the value of µ is independent of pressure for this 

temperature. Interestingly, this isotherm is very close to the compressibility minimum observed 

for liquid water at relatively low pressures. 
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Figure A.5 Properties of liquid water according to the Moelwyn-Hughes isotherms (dotted 

lines) provided by Equations A.24-A.30 compared to the values given by the IAPWS-95 EOS 

(solid lines). The density (ρ1) is displayed in units of M. 

 

A.3.5 Linear Density Approximation 

A further simplification can be achieved when the density varies linearly with pressure. 

This is often observed or assumed. For instance, the simulated compressibility of a solution often 

involves a simple finite difference density calculation.21 In this case, one can use Equation A.26 

with µ = 1. However, linear behavior of any kind (slope) will satisfy Equation A.24 with µ = 1. To 

distinguish these possibilities, and to simplify the resulting expressions, we define a new positive 

constant µL by,  

 1( ) ( , ) ( , ) ( )L o T oT p T p T T      (A.31) 
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such that 1 1( ) ( )o Lp p p      for linear behavior. Hence, µL = µ = 1 for an ideal gas (ρ1 = βp 

and κT = p-1 for any p and T), but not necessarily for a liquid where µL will typically be much 

smaller than unity (0.06 for water at 298 K and 1 bar). It is relatively easy to show, using Equation 

A.15 with 1 1 0    , that the fluctuating quantities are then given by, 
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which are all positive quantities. The corresponding integrals are provided by, 
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and will alternate in sign if µL < 1. Both of these expressions suggest the general relationships, 
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  (A.34) 

where κi is the ith cumulant of the particle number distribution. 

Unfortunately, it is immediately clear that this is a poor approximation for the fluctuating 

quantities. The value of B11 is reasonably well reproduced for small deviations from the reference 

state. However, this provides the wrong sign and magnitude for C111 indicating that the higher 

fluctuations are sensitive probes of the density variations. Thus, a linear density approximation, 
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while adequate for obtaining the compressibility (B11), is probably insufficient to obtain the higher 

order fluctuations in most cases. 

 

A.3.6 Temperature Related Effects 

 The previous discussion has focused on pressure effects at constant T. However, 

many interesting observations occur as a function of T. FST can also be extended to include 

derivatives with respect to T.11,22-24 Temperature effects naturally introduce energy fluctuations. 

The density maximum observed for water indicates a value of zero for the thermal expansion. FST 

provides the following expression for the thermal expansion coefficient (αP) of a pure liquid,24 
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  (A.35) 

in terms of the fluctuations in an excess energy 1 1E N H   , where E is the instantaneous internal 

energy of the volume of interest and H1 is the average molar enthalpy of the solution. The subscript 

ε indicates a substitution of N1 by ε in the previous expressions for B11 (and later C111). When the 

thermal expansion is zero the following condition must hold, 

 1 1 1 1 1 1 1N E N N H N N U         (A.36) 

where the approximation should be reasonable for liquids under ambient conditions. Hence, the 

density maximum is characterized by the absence of a correlation between the particle number and 

the internal energy, i.e. E = N1 H1 ≈ N1 U1. 

 The condition for the well-known minimum in the compressibility of water, located 

at 315±5 K between 1 and 8 bar,25-30 can also be phrased in terms of fluctuations. This requires the 

temperature derivatives developed in our previous work and provided in section A.7.3.11 The 

simplest result obtained from Equation A.8 is,  
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Therefore, a minimum in the compressibility term is characterized by, 

 1 1 1 1 1 1N N N N N N         (A.38) 

which indicates that the triplet correlation is then simply related to the corresponding pair 

correlations. This can also be expressed in terms of density and energy fluctuations by dividing 

throughout by V 3. 

 

A.3.7. Behavior of the Fluctuations Approaching the Critical Point 

 As mentioned previously, the fluctuation densities tend to ±∞ at the critical point 

for this second order transition. The critical point is characterized by the fact that,31 
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Hence, many of the derivatives required in order to obtain the fluctuations from Equation A.15 

become very large in this region. The correlation length is therefore very long and the integrals 

described here also become large. However, pressure varies smoothly as a function of T along the 

critical isochore. Using the thermodynamic identity, 
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  (A.40) 

the above expressions indicate that, while the thermal expansion and compressibility diverge as 

one approaches the critical point, their ratio remains finite. It also indicates that the same behavior 
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with respect to T or p will be exhibited along the critical isochore. Furthermore, the approach to 

the critical point along the critical isotherm or isobar will also be the same. 

Even though the fluctuations appear to diverge at the critical point, one can still investigate 

this divergence in terms of the traditional scaling laws and also obtain relationships between the 

triplet and pair correlations under these circumstances. To do this we examine the behavior of B11, 

which is closely related to the isothermal compressibility and bulk modulus, and tends to infinity 

at the critical point. Analysis of the derivative of B11 with respect to either T or p provides 

expressions in terms of both the particle-particle and particle-energy fluctuations (see A.7.3 for the 

isochoric expressions), 

 

1

11 111 111

2

11 11

11 111

1 11

1111

11

ln

ln

ln

ln

ln

ln

T

p

C C BB

T B B

B Cp

p B

CB

T B

 













  
   

   

 
 

 

 
 

 

  (A.41) 

The expressions found in Equations A.41 are valid anywhere away from a first order phase 

boundary. These derivatives tend to infinity at the critical point, but they do so in a well-defined 

manner. To see this we need to examine the critical exponent associated with the limiting behavior 

of B11. A series of related critical exponents can be defined by, 
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  (A.42) 

where ΔT = T – Tc and Δp = p – pc. We note that γ is the traditional exponent describing the 

divergence of the compressibility along the critical isochore.32 Then, we can relate the two sets of 

derivatives via, 
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  (A.43) 

This strongly suggests that the divergence of the fluctuating quantities is related in a simple manner 

– as one moves from the pair fluctuations to the triplet and quadruplet, the divergence increases 

by a factor of ΔT -1 or Δp-1 each time. Hence, the ratio of C111/B11 and D1111/C111 quantities diverge 

in the same manner, as do the ratios of integrals G111/G11 and G1111/G111. The following limiting 

behavior is therefore observed along the critical isochore, 
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while along the critical isotherm or isobar one finds, 
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From the relationship provided in Equation A.40, it is clear that γT = γp. The value of both constants 

can be obtained from the Taylor expansion provided in Equation A.16. If we rewrite the expansion 

for the critical isotherm using po = pc as, 
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Then the relationships provided in Equations A.17 and A.45 indicate that all the terms in the square 

brackets are finite and constant when approaching the critical point. In fact, the general 

relationship, 
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would then hold where the derivatives are dominated by the first term in the square brackets of 

Equation A.17. It is known that 
1 p


    as one approaches the critical point and so 

1 1

1( )cp p
    , and consequently 

1 1

11B p    , or γT = γp = 1 – δ-1. The IAPWS-95 EOS state is 

a classical EOS for water that provides a value of γ = 1. The IAPWS-95 EOS has nonanalytic 
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terms and the value of β is set at 0.3,17 close to the renormalization group theory value (0.326),32 

and hence a value of δ close to the renormalization group theory value (4.8)32 would be expected. 

We have examined the limiting behavior of the fluctuations in Table A.2. The results are in 

agreement with the EOS and a value of δ ≈ 5. It should be noted that the analysis of critical 

exponents provided in Table A.2 does not shed any new light on the experimental data, as these 

exponents result from the EOS, but they do provide support for the results presented in Equations 

A.41 and A.43 to A.45. It should also be noted that the uncertainties in the properties generally 

increase as the critical region is approached and that the IAPWS-95 isothermal compressibility has 

an unphysical indentation in a region from Tc to Tc + 2 K for densities ±0.5% from ρc. Hence, the 

properties in Table A.2 may not be entirely representative of real experimental data in this region.17 

The scaling relations illustrated in Equations A.44 and A.45 also suggest quantities for 

which limiting fluctuation ratio values can be obtained at the critical point and can therefore be 

used to characterize the distribution. Specifically, these quantities are ratios of particle and/or 

energy fluctuations of the same order (pair/pair, triplet/triplet, etc.). It should also be noted that the 

terms preceded by delta functions in Equation  S.5 become negligible as we approach the critical 

point and hence the behavior of B11, C111, and D1111 is determined by the behavior of G11, G111, 

and G1111, respectively. The estimated values for these quantities are provided in Table A.2. 

Examination of the critical exponents in Table A.2 also suggests that the following ratio of 

moments should be constant at the critical point, 
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where ρ = N1/V is an instantaneous density. The above ratio is also the ratio of the fourth 

standardized central moment to the square of the third standardized central moment. 
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Table A.2 Critical point behavior   

Estimated finite critical point quantities for water 
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ρ1,c, ∂p/∂T -1.80     

ρ1,c, T > Tc -1.8 0.149 ND -2.0 ND 

Tc, p > pc -1.7   -1.7 2.2 

pc, T < Tc -1.7   -1.7 2.2 

      

Critical exponents from the IAPWS-95 EOS 

 1

11B  1

111C


 
1

1111D  1

1B 


 

1

11C 


 

ρ1,c, T > Tc 1.01 2.02 ND 1.00 2.00 

Tc, p > pc 0.81 1.81 2.80 0.81 1.83 

pc, T < Tc 0.83 1.84 2.83 0.84 1.85 

Tc = 647.096 K, pc = 220.64 bar, ρ1,c = 17.87 M, βc = 0.186 mol/kJ, and βcpc/ρ1,c = 

0.229. 

Values of Δp ≈ m bar and ΔT ≈ m K were used to determine the critical exponenets. 

ND, could not be determined accurately. 
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 A.4 Discussion 

The fluctuations investigated here using FST are the same properties that cause radiation 

to scatter when it impinges on a liquid.33 The measured distribution of scattered radiation intensity, 

I(Q), provides information on the distribution of the atomic positions in the liquid.34-35 Several 

steps and corrections must be taken to go from I(Q) to the structure factor, S(Q).36-38 The resulting 

S(Q) is a sum of weighted averages of m(m+1)/2 partial structure factors, Sαβ(Q), where m is the 

number of distinct atomic species.36,39 For water there are three partial structure factors, SOO(Q), 

SOH(Q), and SHH(Q).36,38 If each Sαβ(Q) can be de-convoluted, the site-site rdfs can be obtained by 

Fourier transformation.36,38,40-41 So far, it has only been possible to obtain the complete set of site-

site rdfs for a very small set of all the molecules that make up chemical space.10,37,39,42 

Even knowing 
 2

g  for a liquid does not “close the book” on its structure.43 The structure 

of monatomic liquids is fully defined by the relative probability of finding n = 1, 2, … N, of the N 

molecules in the system at various separation radii.8,43-50 These relative probabilities are trivial for 

n = 1, 
 1

g  = 1, and obtainable for n = 2, 
 2

g , for monatomic liquids as described above. For 

molecular systems, a complete description of the structure would additionally require knowledge 

of the relative probability of finding, triplets, etc., of the molecules’ constituent atoms at various 

separation radii and the angular relative probability distributions that describe the molecular 

orientations.39,41,43,51 Experimental studies that provide 
 2

g  do not provide the complete angular 

distributions.41,43,52-53 As a workaround, Soper and coworkers obtain angular distributions from 

computer simulations.41,51,54 Indeed, the full set of site-site and angular dependent distribution 

functions are required for integral equation studies of molecules, but FST does not require this 

exhaustive level of detail regardless of the type of molecule under study. All that is needed in the 
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FST approach is the center of mass based, not the site-site and/or the angular dependent, 

distributions for any type of molecule. From this input information, a thermodynamic and 

microstructural description of the system can be obtained. 

In addition to the sequence of positional distribution functions, the sequence of interatomic 

potentials is also relevant to this discussion.7 In most studies, all that is considered is the two-body 

correlations and/or potential.13,43,46,50 Largely, this is because there has been no experimental 

determination of three-body distribution functions for (three-dimensional) fluids.8,39,42,47-49,55 

However, several examples where knowledge of the triplet correlations are important have been 

discussed by von Grunberg,47-48 Abascal,56 Winter,49 and Rice.42 Higher-order potential terms are 

included in some atomic and homonuclear diatomic fluid theories, where accurate pair potentials 

can be obtained.13,43,53,57 In contrast, molecular potentials are generally “effective” potentials, 

meaning that a pair potential is adjusted to reproduce target data to circumvent the need for the 

correct combinations of pair plus higher potentials.43  

Attempts to measure higher distribution functions directly, despite the experimental 

limitations with the conventional scattering methods, have led to interesting video microscopy 

studies of quasi two-dimensional, colloidal systems.42,47-48 Additionally, indirect experimental 

measurements of integrals over the triplet distribution function may be obtained for fluids for 

which 
 2

g
 is known. However, this approach is not applicable to molecular fluids without making 

approximations.8 The isothermal pressure derivative of S(Q) involves the pressure or density 

derivative of 
 2

g , which can be written as an integral over 
 3

g .14 For example, the pressure 

derivative of 
 2

11g  is given by,8 
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where r and s are interatomic vectors connecting atoms at positions 1 and 2 and positions 1 and 3, 

respectively. The above expression is consistent with Equation A.14. It should be noted that neither 

 3

111g  itself nor an integral over 
 3

111g  by itself are obtained, but instead an integral over 
   3 2

111 11g g . 

Nevertheless, the integral has been useful for the few systems for which the rdfs are obtainable. 

These relationships, first provided by Buff and coworkers and by Schofield,22,58-61 and have been 

used extensively by Egelstaff and others to test theories and models for 
 3

g .8-9,13-14,22,49,55,58-62 and 

are described below. 

Our work is similar to the S(Q→0) limit of Egelstaff’s (and others’) work, which is focused 

on S(Q) and therefore only technically valid for monatomic liquids.8 Egelstaff did make very brief 

mention of this S(0) limit. For example, most similar to our work, he compared the pressure 

derivative of the bulk modulus for argon at its triple point from experiment with various models 

for g(3).13 Similar analysis was performed for gaseous krypton at a state point near its critical point.9 

Ram and Egelstaff assessed the pressure of room temperature krypton versus density.53,63 They 

compared experiment and simulation using an accurate pair potential and attributed deviations in 

the agreement to higher order interactions.53,63  

Gray, Gubbins, and Egelstaff have derived general expressions for thermodynamic 

derivatives of properties that are a function of the phase variables averaged over the GCE to derive 

the thermodynamic derivatives of dynamic correlation functions in a systematic fashion.14  They 

discussed using derivatives of radiation scattering functions to study higher-order correlations and 

to test models or theories of fluids and used examples taken from other studies of the derivative of 

the Van Hove self-scattering function for hydrogen gas at 85 K and 120 atm and of the pressure 

derivative of the distinct Van Hove scattering function for nitrogen gas at room temperature and 
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200 atm.14 They briefly noted that their equations could also be extended to mixtures and would 

then be considered generalizations of KB theory.14  

Several other works are also directly dependent upon scattering data. Buff and Brout22 and 

Schofield58 developed recursion relationships between the density derivatives of correlation 

functions of all orders and integrals over higher order correlation functions, but no real applications 

were provided. In a later study, Buff and Brout used the concentration derivative of the rdf for 

argon at 91.8 K and 2 atm to assess the quality of the superposition approximation and also 

obtained G111 from a similar route to that described here.59 Egelstaff, Page, and Heard assessed the 

isothermal pressure derivative of S(Q) for liquid rubidium near its triple point and argon near its 

critical point, and also assessed the isothermal pressure derivative of the centers-S(Q) for liquid 

carbon tetrachloride (reliant upon approximations since this is polyatomic) at an intermediate state 

point at 296 K.8 They compared their findings to integral equation theory results using various 

models for g(3).8 Gläser and coworkers presented a neutron diffraction investigation of the S(Q) of 

liquid cesium close to its liquid-vapor critical point to obtain the isothermal density derivative of 

S(Q).62 Soper and coworkers measured the isothermal density derivative of S(Q) of dense fluid 

helium by neutron diffraction to test a model for g(3).55 Finally, Egelstaff64 additionally assessed 

the second derivative of S(Q) with respect to pressure for liquid neon at 35 K and ρ = 1.119 g/cm3, 

which is related to integrals over the quadruplet correlation function, and Ballentine65 has further 

considered the long wavelength limit.  

Most notably, Gorbaty and coworkers determined the pair correlation function of liquid 

water at pressures up to 7.7 kbar.66 No attempt to connect to three body correlations was reported. 

Soper also measured the rdf in water and ice over a range of temperatures and pressures, but 

connections to the integrals over the three body correlation function were, again, not reported.37 
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 A.5 Conclusions 

 We have illustrated how triplet and quadruplet fluctuation densities, or integrals 

over triplet and quadruplet distribution functions, can be obtained from existing experimental data 

for pure liquids. The results should help to provide a deeper understanding of liquids and liquid 

mixtures. The only other experimental technique that we know of which provides such data for 

solutions is that of solution scattering studies.13 However, these are limited to triplet correlations 

and to relatively simple pure liquids and very simple mixtures. No such limitation is found with 

the current approach. It appears that the experimental extraction of these correlations is viable for 

the triplet distributions, while the quadruplet distributions are somewhat more problematic, but 

also seem obtainable. Fortunately, while the current approach does not provide the experimental 

values of 
 3

g  or 
 4

g  as a function of intermolecular distance (no currently available approach 

does), the thermodynamics of the solution are directly related to integrals over these distribution 

functions, which are provided by the current approach. For simple liquids, it has already been 

shown that this type of integral is useful.8-9,13-14,22,49,55,58-62 Using FST, integrals over 
 3

g  and 

 4
g  may now be obtained without the need for scattering experiments, albeit with a loss of spatial 

resolution. They may be obtained for any liquid (or solution) where the required bulk 

thermodynamic data has been determined. Thus, we believe the field may now begin to assess how 

important the 
 3

g  and 
 4

g  distributions are for describing the thermodynamic properties of any 

system of interest.   
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 A.6 Supplementary Information 

A.6.1 Distribution functions and fluctuation densities 

 In the grand canonical ensemble the probability that any nα molecules of species α, and nβ 

molecules of species β, etc. are within d{r} at {r} is given by ( )ρ ({ }) { }n r d r  where,1 
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 

!
{ }

!

n s

s s s

N
r d r

N n
 


   (S.1) 

Here, the product involves the different species (s) present in the solution, while ns is the number 

of molecules of each species in the (n) particle distribution. We require integrals up to and 

including the four body distribution for a general mixture of any number of components. These 

involve integrals over the following spatial probability density distributions, 
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By analogy with the theory of imperfect gases we define the following integrals,1-2 
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where we have removed the spatial dependencies for clarity. Similar integrals arise during the 

expansion of the partition function (see Equation A.1) employed in gas and solution theory. The 

first two integrals also appeared in the original KB paper.2 The above integrals can be expressed 

in terms of spatial probability distributions via their definitions, 
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A combination of Equations S.3 and S.4, followed by some minor rearrangement, provides the 

integrals given in the main text as Equation A.12. Furthermore, a combination of Equations S.2 

and S.3 provides the G’s in terms of fluctuating quantities, 
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These expressions can then be rearranged to provide the equivalent fluctuating quantities given in 

the main text. It should be noted that when all the particles are of a different type (all delta functions 

are zero) then the integrals are simply the cumulants of the multivariate particle distribution. 

A.6.2 Fluctuating quantities and distribution function integrals from experimental data 

The fluctuating quantities were expressed in terms of density derivatives in the main text. 

They can also be expressed in terms of derivatives of the molar volume (V1 = 1 / ρ1) and are then 

given by, 
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where the prime again indicates an isothermal derivative with respect to pressure. The 

corresponding fluctuations can also be expressed in terms of pressure derivatives of the 

compressibility and are then given by the expressions, 
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The most convenient choice will depend on the EOS used to fit the experimental or simulated data. 

A.6.3 Energy fluctuations 

Here, we provide expressions for the triplet fluctuations involving the excess energy of the 

region of interest. Previously we have shown that,11,67 
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which is also evident from Equation A.6. Using the expression for B11 provided in Equation A.15 

allows one to derive an expression for the particle-particle-excess energy triplet fluctuation density 

in terms of experimental data for pure components. The result is, 
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whereas the FST expression for the second density derivative is, 
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These expressions are used to obtain C11ε from the EOS. 
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The same type of approach can also be used to provide derivatives along a particular 

isochore. From Equation A.6 with 11X B  we find, 
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Using the fact that, 
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where we have also used Equation A.40 leads to, 
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which provides the first expression in Equation A.41.   



191 

 

 A.7 References 

1. T. L. Hill, Statistical Mechanics: Principles and Selected Applications. McGraw-Hill Book 

Company, Inc.: New York (1956). 

2. J. G. Kirkwood and F. P. Buff, J. Chem. Phys. 19, 774 (1951). 

3. A. Ben-Naim, In Fluctuation Theory of Solutions: Applications in Chemistry, Chemical 

Engineering and Biophysics, P. E. Smith; E. Matteoli; J. P. O' Connell, Eds. Taylor & 

Francis: Boca Raton (2013) pp 35-63. 

4. A. Ben-Naim, Molecular Theory of Solutions. Oxford University Press: New York (2006). 

5. P. E. Smith, E. Matteoli, and J. P. O' Connell, Fluctuation Theory of Solutions: 

Applications in Chemistry, Chemical Engineering and Biophysics. Taylor & Francis: Boca 

Raton (2013). 

6. C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids. Vol. 1: Fundamentals. Oxford 

University Press: New York (1984). 

7. P. A. Egelstaff, J. Phys. (Paris) 46, 1 (1985). 

8. P. A. Egelstaff, D. I. Page, and C. R. T. Heard, J. Phys. C: Solid State Phys. 4, 1453 (1971). 

9. D. J. Winfield and P. A. Egelstaff, Can. J. Phys. 51, 1965 (1973). 

10. P. A. Egelstaff, In Molecular Liquids: New Perspectives in Physics and Chemistry, J. J. C. 

Teixeira-Dias, Ed. Springer: Netherlands Vol. 379 (1992) pp 29-44. 

11. E. A. Ploetz and P. E. Smith, In Adv. Chem. Phys., John Wiley & Sons, Inc.: (2013) pp 

311-372. 

12. R. F. Greene and H. B. Callen, Phys. Rev. 83, 1231 (1951). 

13. P. A. Egelstaff, Annu. Rev. Phys. Chem. 24, 159 (1973). 

14. K. E. Gubbins, C. G. Gray, and P. A. Egelstaff, Mol. Phys. 35, 315 (1978). 

15. A. Ben-Naim, J. Chem. Phys. 67, 4884 (1977). 

16. A. H. Harvey, A. P. Peskin, and S. A. Klein NIST Standard Reference Database 10: 

NIST/ASME Steam Properties, Version 2.22; U.S. Department of Commerce: Gaithersburg 

(2008). 

17. W. Wagner and A. Pruss, J. Phys. Chem. Ref. Data 31, 387 (2002). 



192 

18. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part I. 3rd ed.; Pergamon Press: 

Oxford. Translated from the Russian by J. B. Sykes and M. J. Kearsley Vol. 5 of Course 

of Theoretical Physics (1980). 

19. E. A. Moelwyn-Hughes, Physical Chemistry. 2nd Ed. Pergamon Press: Oxford (1961). 

20. D. P. Kharakoz, Biophys. J. 79, 511 (2000). 

21. H. B. Yu and W. F. van Gunsteren, J. Chem. Phys. 121, 9549 (2004). 

22. F. P. Buff and R. Brout, J. Chem. Phys. 23, 458 (1955). 

23. P. G. Debenedetti, J. Chem. Phys. 86, 7126 (1987). 

24. E. A. Ploetz and P. E. Smith, J. Chem. Phys. 135, 044506 (2011). 

25. H. L. Pi, J. L. Aragones, C. Vega, E. G. Noya, J. L. F. Abascal, M. A. Gonzalez, and C. 

McBride, Mol. Phys. 107, 365 (2009). 

26. G. S. Kell, J. Chem. Eng. Data 20, 97 (1975). 

27. R. J. Speedy and C. A. Angell, J. Chem. Phys. 65, 851 (1976). 

28. T. S. Carlton, J. Phys. Chem. B 111, 13398 (2007). 

29. F. Mallamace, C. Corsaro, and H. E. Stanley, Sci. Rep. 2, 993 (2012). 

30. M. Vedamuthu, S. Singh, and G. W. Robinson, J. Phys. Chem. 99, 9263 (1995). 

31. A. Munster, Classical Thermodynamics. Stonebridge Press: Bristol (1970). 

32. W. Wagner, (Gibbs Award Lecture) From the Beginning to this Day: My First Naive Ideas 

and the Research Results Achieved. In 15th International Conference on the Properties of 

Water and Steam, R. Span; I. Weber, Eds. VDI - The Association of German Engineers 

and GET - Society for Energy Technology: Berlin, (2008). 

33. P. A. Egelstaff, Brookhaven Symposia in Biology, 126 (1976). 

34. G. Allen and J. S. Higgins, Rep. Prog. Phys. 36, 1073 (1973). 

35. P. A. Egelstaff, In Molecular Liquids: New Perspectives in Physics and Chemistry, J. J. C. 

Teixeira-Dias, Ed. Springer: Netherlands Vol. 379 (1992) pp 1-27. 

36. B. Tomberli, C. J. Benmore, P. A. Egelstaff, J. Neuefeind, and V. Honkimaki, J. Phys.: 

Condens. Matter 12, 2597 (2000). 

37. A. K. Soper, Chem. Phys. 258, 121 (2000). 

38. P. A. Egelstaff, Phys. Chem. Liq. 40, 203 (2002). 

39. G. W. Neilson and A. K. Adya, Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 93, 101 

(1997). 



193 

40. P. A. Egelstaff, In Methods in the Determination of Partial Structure Factors of Disordered 

Matter by Neutron and Anomalous X-ray Diffraction, J. B. Suck; P. Chieux; D. Raoux; C. 

Riekel, Eds. World Scientific Publishing Co: Singapore (Singapore) (1993) pp 1-15. 

41. A. K. Soper, J. Chem. Phys. 101, 6888 (1994). 

42. H. M. Ho, B. H. Lin, and S. A. Rice, J. Chem. Phys. 125, 184715 (2006). 

43. P. A. Egelstaff, Adv. Chem. Phys. 53, 1 (1983). 

44. P. Linse, J. Chem. Phys. 94, 8227 (1991). 

45. W. J. McNeil, W. G. Madden, A. D. J. Haymet, and S. A. Rice, J. Chem. Phys. 78, 388 

(1983). 

46. J. A. Krumhansl and S. S. Wang, J. Chem. Phys. 56, 2034 (1972). 

47. K. Zahn, G. Maret, C. Russ, and H. H. von Grunberg, Phys. Rev. Lett. 91, 115502 (2003). 

48. C. Russ, K. Zahn, and H.-H. von Grunberg, J. Phys.: Condens. Matter 15, S3509 (2003). 

49. M. A. Schroer, M. Tolan, and R. Winter, Phys. Chem. Chem. Phys. 14, 9486 (2012). 

50. P. A. Egelstaff, Pure Appl. Chem. 51, 2131 (1979). 

51. A. K. Soper, J. Mol. Liq. 78, 179 (1998). 

52. L. Van Hove, Phys. Rev. 95, 249 (1954). 

53. P. A. Egelstaff, Methods Exp. Phys. 23, 405 (1987). 

54. A. K. Soper and C. J. Benmore, Phys. Rev. Lett. 101, 065502 (2008). 

55. W. Montfrooij, L. A. de Graaf, P. J. van den Bosch, A. K. Soper, and W. S. Howells, J. 

Phys.: Condens. Matter 3, 4089 (1991). 

56. S. Jorge, E. Lomba, and J. L. F. Abascal, J. Chem. Phys. 116, 730 (2002). 

57. J. A. Barker, R. A. Fisher, and R. O. Watts, Mol. Phys. 21, 657 (1971). 

58. P. Schofield, Proc. Phys. Soc. 88, 149 (1966). 

59. F. P. Buff and R. Brout, J. Chem. Phys. 33, 1417 (1960). 

60. F. P. Buff and F. M. Schindler, J. Chem. Phys. 29, 1075 (1958). 

61. F. P. Buff, J. Chem. Phys. 23, 419 (1955). 

62. R. Winter, F. Hensel, T. Bodensteiner, and W. Glaser, J. Phys. Chem. 92, 7171 (1988). 

63. J. Ram and P. A. Egelstaff, Phys. Chem. Liq. 14, 29 (1984). 

64. P. A. Egelstaff and S. S. Wang, Can. J. Phys. 50, 684 (1972). 

65. L. E. Ballentine and A. Lakshmi, Can. J. Phys. 53, 372 (1975). 

66. A. V. Okhulkov, Y. N. Demianets, and Y. E. Gorbaty, J. Chem. Phys. 100, 1578 (1994). 



194 

67. Y. F. Jiao and P. E. Smith, J. Chem. Phys. 135, 014502 (2011). 

 

  



195 

Appendix B - Copyright Clearance 

 



196 

 

 

 



197 

 

 



198 

 

 

 



199 

 


	Abstract
	Copyright
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Chapter 1 -  Introduction
	1.1 Computational Chemistry
	1.2 Molecular Dynamics
	1.2.1 Time Evolution
	1.2.2 Periodic Boundary Conditions
	1.2.3 Control of Temperature and Pressure

	1.3 Replica Exchange Molecular Dynamics
	1.4 Force Fields
	1.4.1 Bonded Interactions
	1.4.2 Non-bonded Interactions

	1.5 Biomolecular Force Fields
	1.5.1 The Amber Force Fields
	1.5.2 The CHARMM Force Fields
	1.5.3 The OPLS Force Fields
	1.5.4 Other Biomolecular Force Fields

	1.6 Weaknesses of the Available Force Fields
	1.7 Kirkwood-Buff (KB) Theory
	1.8 Kirkwood-Buff Derived Force Field
	1.9 Summary and Organization of the Dissertation
	1.10 References

	Chapter 2 -  Theory and Simulation of Multicomponent Osmotic Systems
	2.1 Abstract
	2.2 Introduction
	2.3 Theory
	2.3.1 General Background
	2.3.2 Kirkwood-Buff Theory of Binary Osmotic Systems
	2.3.3 Kirkwood-Buff Theory of Ternary Osmotic Systems
	2.3.4 Solute Association Equilibria in Osmotic and Closed Systems

	2.4 Methods
	2.4.1 Molecular Dynamics Simulations
	2.4.2 Osmotic Simulations
	2.4.3 Analysis of the Simulation Data

	2.5 Results and Discussion
	2.6 Conclusions
	2.7 References

	Chapter 3 -  Interactions of Amino Acids in Aqueous Solutions
	3.1 Abstract
	3.2 Introduction
	3.3 Methods
	3.3.1 Thermodynamics of Solutions and KB Theory
	3.3.2 Preferential Interactions
	3.3.3 Molecular Dynamics Simulations

	3.4 Results and Discussion
	3.4.1 The Effect of Concentration on Amino Acid Interactions
	3.4.2 The Differences in Interactions Among Different Classes of Amino Acids
	3.4.3 The Quantification of Amino Acid Interactions in Terms of Zwitterionic and Capped Forms
	3.4.4 The Contribution from Uncharged and Charged Polar Side Chains Toward Amino Acid Interactions

	3.5 Conclusions and Future Directions
	3.6 References

	Chapter 4 -  The Effects of Temperature and Pressure on Amino Acid Interactions in Aqueous Solutions
	4.1 Abstract
	4.2 Introduction
	4.3 Methods
	4.3.1 Preferential Interactions
	4.3.2 Molecular Dynamics Simulations

	4.4 Results and Discussion
	4.4.1 The Effect of Temperature on Amino Acid Interactions
	4.4.1.1 The Quantification of Interactions Among Amino Acids with Nonpolar Side Chains
	4.4.1.2 The Quantification of Interactions Among Amino Acids with Uncharged Polar Side Chains
	4.4.1.3 The Quantification of Interactions Among Amino Acids with Charged Polar Side Chains
	4.4.1.4 The Quantification of Amino Acids Interactions in Terms of Zwitterionic and Capped Forms
	4.4.1.5 The Contribution from Charged and Uncharged Polar Side Chains Toward Amino Acid Interactions

	4.4.2 The Effect of Pressure on Amino Acid Interactions
	4.4.2.1 The Quantification of Interactions Among Amino Acids with Nonpolar Side Chains
	4.4.2.2 The Auantification of Interactions Among Amino Acids with Uncharged Polar Side Chains
	4.4.2.3 The Quantification of Interactions Among Amino Acids with Charged Polar Side Chains
	4.4.2.4 The Quantification of Amino Acids Interactions in Terms of Zwitterionic and Capped Forms
	4.4.2.5 The Contribution from Uncharged and Charged Polar Side Chains Toward Amino Acid Interactions


	4.5 Conclusions
	4.6 References

	Chapter 5 -   Development of Torsional Potentials for the KBFF Model of Peptides and Proteins
	5.1 Abstract
	5.2 Introduction
	5.3 Methods
	5.3.1 Model Systems for Peptides and Proteins
	5.3.2 Regular Molecular Dynamics Simulations
	5.3.2.1 Small Peptides
	5.3.2.2 Globular Proteins

	5.3.3 Replica Exchange Molecular Dynamics Simulations of Small Peptides
	5.3.4 Crystal Structure Data Bases

	5.4 Results and Discussion
	5.4.1 Side Chain Torsional Potentials
	5.4.2 Backbone Torsional Potentials
	5.4.3 Regular Molecular Dynamic Simulations
	5.4.3.1 Small Peptides
	5.4.3.2 Globular Proteins

	5.4.4 Replica Exchange Molecular Dynamic Simulations of Small Peptides

	5.5 Conclusions and Future Directions
	5.6 References
	Appendix A -  Experimental Triplet and Quadruplet Fluctuation Densities and Spatial Distribution Function Integrals for Pure Liquids
	A.1 Abstract
	A.2 Introduction
	A.3 Theory
	A.3 Results
	A.3.1 Density and Pressure Expansions
	A.3.2 Gas Phase Fluctuations and Distribution Function Integrals
	A.3.3. Liquid Phase Fluctuations and Distribution Function Integrals
	A.3.4 Moelwyn-Hughes Isotherms
	A.3.5 Linear Density Approximation
	A.3.6 Temperature Related Effects
	A.3.7. Behavior of the Fluctuations Approaching the Critical Point

	A.4 Discussion
	A.5 Conclusions
	A.6 Supplementary Information
	A.6.1 Distribution functions and fluctuation densities
	A.6.2 Fluctuating quantities and distribution function integrals from experimental data
	A.6.3 Energy fluctuations

	A.7 References

	Appendix B -  Copyright Clearance



