

FLEET MANAGEMENT SYSTEM

by

ABHISHEK CHALLA

B. Tech., Jawaharlal Nehru Technological University, 2013

A REPORT

Submitted in partial fulfillment of the requirements for

MASTER OF SCIENCE

Department of Computer Science

College of Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2016

 Approved by:

Major Professor

 Dr. Daniel Andresen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/77979434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright

ABHISHEK CHALLA

2016

Abstract

Web services have become quintessential in web application development. RESTful web services

are one way of providing interoperability between computer systems on the internet. REST-

compliant web services allow requesting systems to access and manipulate textual representations

of web resources using a uniform and predefined set of stateless operations. These services, which

are online APIs, can be accessed from various applications and the results can be used to offer

specific functionality to users.

This project consists of an Android app, a Server application and a Client application. The Server

application exposes a REST API (Web Services developed using REpresentational State Transfer

(REST) protocol) using, which the consuming client applications can make use of various

functionalities as services across the network.

The Android app would be installed in the smart phone present in each vehicle of the fleet, this

app would send live location data to the database using the REST API. The manager uses the client

application to track the vehicles in real time, the manager can also choose to track a particular

vehicle. The API could also be used to integrate the services with other systems.

This project serves to a wide variety of users, from small local businesses owning tens or hundreds

of vehicle to parents who would like to track the location of their children in real time. This project

aims to help the managers/owners better control and track the vehicles. Also, the exposed API

could be used by other developers to customize or extend this application. This project is easy to

install, use and hence friendly for users with even minimal computer skills.

iv

Table of Contents

FLEET MANAGEMENT SYSTEM ... i

List of Figures ... v

Acknowledgements .. vi

Chapter 1 - Project Description ... 1

1.1 Introduction ... 1

1.2 Motivation ... 2

Chapter 2 - Background .. 3

Chapter 3 - Setup and Software Requirements ... 8

Chapter 4 - Requirements Analysis .. 9

4.1 Functional Requirements .. 9

Chapter 5 - System Design ... 10

5.1 Use Case Diagram .. 10

5.2 Class Diagram ... 12

5.3 Data Flow Diagram ... 14

Chapter 6 - Implementation .. 15

6.1 Output Screens .. 15

Chapter 7 - Testing.. 23

7.1 Unit Testing .. 23

7.2 Integration Testing .. 23

7.3 Performance Testing ... 25

Chapter 8 - Conclusion ... 30

Chapter 9 - Future Work ... 31

References ... 32

v

List of Figures

Figure 1: Spring Architecture [4] .. 3

Figure 2: Request processing workflow in SpringMVC [5] ... 4

Figure 3: Use case diagram ... 11

Figure 4.1 Android Class Diagram ... 13

Figure 4.2 Class Diagram ... 13

Figure 4.3 Data Flow Diagram ... 14

Figure 5.1 Welcome Page .. 15

Figure 5.2 Registration Page ... 16

Figure 5.3 Registration successful .. 17

Figure 5.4 Login successful .. 17

Figure 5.5 Log file showing periodic updates .. 18

Figure 5.6 Admin Home ... 19

Figure 5.7 Admin Login ... 19

Figure 5.8 Web Vehicle Registration.. 20

Figure 5.9 Map Displaying the Vehicles. ... 21

Figure 5.10 Updating the vehicle using an API-key ... 21

Figure 5.11 Table depicting the API ... 22

Figure 6 Integration Testing.. 24

Figure 7.1 table depicting the throughput for different configurations. 26

 Figure 7.2 Response Time Graph for Test Plan 1 .. 26

Figure 7.3 Throughput graph for Test Plan 1 ... 27

Figure 7.4 Response Time Graph for Test Plan 2 ... 27

Figure 7.5 Throughput Graph for Test Plan 2... 28

Figure 7.6 Response Time Graph for Test Plan 3 ... 28

Figure 7.7 Throughput Graph for Test Plan 3... 29

Figure 8 Table Lines of Code ... 30

vi

Acknowledgements

I would like to thank my Major professor, Dr. Daniel Andresen for the consistent support,

guidance and constructive feedback. It has been a pleasure to have been associated with him. I also

thank Dr. Mitchell L Neilsen and Dr. Torben Amtoft, for taking time off their busy schedules to

serve on my committee. It would have been really difficult without their support.

I would like to thank my parents Mr. Ashok Challa and Mrs. Satyavathi Challa for having

the faith in me and for their love and blessings, without which I could not have achieved any of

this. Special thanks to my sister Ms. Varsha Challa for being my support system. I would also like

to thank all my friends who have been a part of my ups and downs.

1

Chapter 1 - Project Description

1.1 Introduction

This project consists of a server application, a client application, and an Android app. The server

application exposes a REST API which provides all the functionalities to manage a Fleet of

vehicles. This API is developed using the Spring MVC architecture and uses the Hibernate

framework to perform CRUD (Create, Read, Update and Delete) operations on the underlying

MySQL database. This API responds to the different types of HTTP requests and communicates

using the JSON format. Basic authentication is provided using the Spring Security module for the

admin. The REST requests are secured using an API-key.

The Android app is installed in the smart device available in each of the vehicles belonging to the

fleet. This app is responsible to register the vehicles using the IMEI of the smart device or a user

defined Vehicle Id. Once the Vehicle is registered this app is responsible to send the current

location data (co-ordinates) to the database using the API in a timely manner.

The Client application retrieves the current / last known location data of all the vehicles registered

with the system using the API. Then the data is rendered on a Map using the Google Maps API.

The manager can track the real – time location data of all the vehicles registered in the fleet.

2

 1.2 Motivation

The motivation to develop this project “Fleet Management System” is driven by two reasons.

The first and the foremost reason is my strong interest to learn the popular frameworks used in the

industry to develop web applications, such as Spring MVC, Spring Security, Spring REST, and

Hibernate. I also wanted to hone my mobile development skills by building an Android

application. The reason to stick to Java and Android is their wide usage and acceptance across the

globe.

The second reason is to create an application/ API which can be used in multiple ways. It is a

common scenario where a business manager would like to track the location of all the vehicles

owned by the firm. This application could be used by many businesses like delivery trucks, taxi

services and public transport. Also this API can be consumed by developers who want to develop

their own applications, such as an application to track all the vehicles belonging to a group of

friends who are on a trip.

3

Chapter 2 - Background

In order to better understand the working and implementation of this project we need to

understand the frameworks and technologies used for developing this project. In this chapter I

would like to describe in brief about the choices I have made and the advantages they have.

2.1 Spring Framework

 Spring is a popular framework for developing enterprise java applications. It is one of the

most widely used frameworks in the industry to develop web and enterprise applications. It is an

open source platform and was initially written by Rod Johnson. The below figure depicts the

architecture of the Spring framework. The core container can be considered as the heart of this

framework.

Figure 1: Spring Architecture [4]

4

2.1.1 Spring MVC

 The MVC or Model View Controller is a popular design pattern used for developing web

application. By using this design pattern to develop a web application we can separate the

application logic from the presentation logic, thus making it easier and flexible to change and

manipulate individual components with finer granularity. Spring supports this architecture with

the help of a module called the Spring MVC module. In brief Model is responsible for the structure

and maintenance of data, usually represented using a Plain Old Java Object (POJO), View is

responsible for displaying the model data to the user with all the required formatting, the Controller

is responsible for manipulating and processing the data, it could also be used to interact between

the view and the model.

The sequence of events which happen when a request is sent to the Spring MVC application

are as follows, the request is first received by the Dispatcher Servlet, this Dispatcher Servlet now

consults the Handler Mapping and invokes the corresponding method in the associated Controller

pertaining to the request. The Controller handles this request by performing the defined

functionality by using the service methods and manipulating the data, once the result is achieved,

the method returns a Model and View Object which contains the model data and the view name to

be rendered back to the Dispatcher Servlet. Now the Dispatcher Servlet delegates the responsibility

to render the view by passing the view name to the View Resolver, it also passes the model object

with all the data required by the View. Finally, the View renders the resultant data with all the

required formatting.

Figure 2: Request processing workflow in SpringMVC [5]

5

2.1.2 Spring Security

 The Spring Security module is responsible for providing the set of Security related

functionalities and standards for the enterprise applications developed using this framework. This

module addresses the two key areas of concern for the security of web applications, i.e.

Authentication and Authorization. Authentication is the process of identifying and validating the

true users using the system. Authorization is the process which controls what users can access

what functionalities within the application.

2.1.3 Spring REST

 The “REST (REpresentational State Transfer) is an architectural style, and an approach to

communications that is often used in the development of Web services” [1]. “A web service is a

software system designed to support interoperable machine-to-machine interaction over a

network” [2]. The REST architectural style describes six constraints, they are: Uniform Interface,

Stateless, Cacheable, Client-Server, Layered System and Code on Demand. Spring started

providing support for RESTful web services from Spring 3.0, RESTful functionality can be added

to any Spring application using the Controller from Spring MVC.

The main advantages brought about by the Spring REST are

 RESTful web services are light weight and bring better performance.

 Responses from the RESTful web services could be presented in standard formats such as

JSON and XML and hence can be consumed easily by any application or website.

 RESTful web services support a uniform interface since resources are accessed using the

URL.

2.1.4 Dependency Injection

The main and the most popular feature of Spring is Dependency Injection. We inject a

dependency from outside the class, thus making that class free from any dependency. It is the

Spring’s flavor of handling the general concept of Inversion of Control(IoC). While writing

complex enterprise applications it is ideal to have minimal dependencies in the code so that the

project would be flexible for changes and developer will not have to change the same code at

multiple places for a tiny feature or requirement modification.

6

By minimizing the dependencies between classes and making them independent we can

promote and foster code reuse of these classes and also these classes can be tested independently

while performing unit testing. This Dependency Injection (DI) enables us to get rid of tight

coupling in the code.

A minimal example to explain DI, consider a class A having a reference of class B within

it. Now the class A is dependent on B, if the class A want to have B` instead, then we have to

change the code in A or check all the places in the project where a B object is used and if there are

no conflicts then change the functionality of B. Instead of going through all this hassle, we can just

have a super type reference in class A and leave the instantiation to the Spring IoC container.

2.2 Hibernate

 Hibernate is an Object Relational Mapping framework. It is an implementation of the Java

Persistence API. It is used as an alternative to the JDBC approach for storing data in the database.

By using this framework, we can save the state of the object to a database and when needed create

the object back from the database. By using this framework, we need not write explicit prepared

statements to store the data of an object, instead we can just use the save method on the entity type

objects to save the data to the database. This makes the development process very easy and saves

a lot of time for the developer. Another advantage of using this framework is the seamless mapping

between the classes and the database tables making the design more consistent with the class names

and their underlying structure. This framework provides support to most of the features of the

RDBMS such as joins, and association mappings. Spring also has inbuilt support for the Hibernate

framework.

 Apart from making the development process easier and faster Hibernate also offers

additional advantages such as, the business logic access and deals with the objects rather than using

prepared statements and dealing with the database tables, makes transaction management easier.

2.3 Android

 Android is the most used mobile OS in the world. It’s an open source and Linux based

operating system. Its syntax is very similar to Java and hence a lot of developers find it easy to

start with. Android uses an underlying Linux kernel which acts as an interface between the

hardware components of the device and the upper levels of the Android operating system. This

7

kernel basically consists of the hardware drivers for the various components such as camera,

display, touchpad. The Hardware Abstraction Layer provides standard interfaces that expose

device hardware capabilities to the higher-level Java API framework. Many core Android system

components and services, such as ART and HAL, are built from native code that require native

libraries written in C and C++ [6]. Android Runtime(ART) is written to run multiple virtual

machines on low-memory devices by executing DEX files, a bytecode format designed especially

for Android. The highest level is the system applications/ apps which are run on this OS and

provide the basic functionalities required by the user.

2.4 JavaScript

 JavaScript is a high-level, interpreted programming language. It can be used for sending

HTTP requests from a web page and then gather back the results. I have used JavaScript in my

project for this reason. Apart from this I have also used it for form validations. The main purpose

was however to provide location data for simulating live data.

2.5 JSP

Java Server Pages (JSP) is the technology which is used for developing web pages that

have both static and dynamic content. These pages can have embedded java code in them and thus

makes them a better and flexible choice compared to servlets. The major benefit of using JSP is

that multiple authors with various skill set can work on it together and achieve the required result.

A UI developer need not have the knowledge of the java code and at the same time the java

developer controlling the logic in the JSP need not understand the presentation code.

2.5.1 Advantages of JSP:

 JSP pages easily combine static templates, including HTML or XML fragments, with

code that generates dynamic content.

 “JSP pages are compiled dynamically into servlets when requested, so page authors can

easily make updates to presentation code”. [7]

 Java Server Pages are built on top of the Java Servlets API, so like Servlets, JSP also has

access to all the powerful Enterprise Java APIs, including JDBC, JNDI, EJB, JAXP etc.

8

Chapter 3 - Setup and Software Requirements

The following are the tools, frameworks and software’s I have used for the development of this

project:

 Eclipse Mars IDE with support for Java EE.

 Android Studio.

 MySQL database.

 Apache Tomcat Server.

 REST client: Postman.

 Spring core.

 Spring Security.

 Spring MVC.

 Spring REST.

 Hibernate ORM framework.

9

Chapter 4 - Requirements Analysis

Requirement Analysis is the first step in the process of developing any application. This step is

necessary to have a contract between the user and the developer to stay even on the expectations.

An exhaustive list is always good to start with, however, it is not really feasible in the real world.

Hence the Requirements document gets updated based on the user needs, time and budget.

Following are the list of functional requirements I have decided to implement for this project and

hence this serve as a boundary to the scope of this project. I have come up with these requirements

based on my vision for the application. I wanted an app that would allow me to track the vehicles

on a map in real time and also an API. Hence these are the complete set of requirements fulfilling

the description.

4.1 Functional Requirements

For the web application:

 The admin should be able to login.

 The admin should be able to perform Vehicle registration.

 The admin should be able to view all the vehicles on a map.

 The application should expose a service for vehicle registration.

 The application should have a service to get the details of a vehicle.

 The application should have a service to get the details of all the vehicles.

 The application should have a service to update the location of a vehicle.

 When a vehicle loses connectivity, the last known location would be displayed on the

map.

For Android Application:

 The user should be able to register to the system.

 The user should be able to login.

 The user should be able to view his information on the screen after login.

 The user should be able to send live location data at a fixed interval to the server.

 The user should be able to logout.

 The app should be able to run on the background.

10

Chapter 5 - System Design

Once the requirements are finalized, the next phase in the development is the System Design. Good

System design forms a good foundation for a sound and stable project. The design of a system is

usually depicted in the form of various UML diagrams. These are standardized diagrams and

follow rules such that all the developers can stay on the same level when discussing about abstract

concepts such as design.

 5.1 Use Case Diagram

Use case diagrams represent the way various actors interact with the system. Use cases

provide a means to capture and depict the requirements. Use cases are simple and descriptive

diagrams and hence easily understood by both the end users and the domain experts. These help

for the smooth communication between the end user and the developer teams. The below use case

diagram depicts the two roles Android App User and the WebApp User / Admin. The Android

App user can interact with the system and achieve the following functions, they are, Register the

Vehicle by entering all the required information, Login to the application, send and update the

location data on a periodic basis, View the personal information.

The Web app user can use the Admin portal to login as an admin, the admin can view the

location of all the registered vehicles on the map. The admin can explicitly register a vehicle. The

admin can access all the services such as, retrieving the details of all the vehicles in the required

format, retrieving the details of a single vehicle by id.

The below figure – 3 depicts the use case diagram for the project. It shows the two types

of actors and all the different use cases using which the actors interact with the system.

11

Figure 3: Use case diagram

12

5.2 Class Diagram

A class diagram is a static structure diagram that describes the structure of a system by showing

the system's classes, their attributes, operations (or methods), and the relationships between the

classes.

The class diagram for this project contains these classes.

 Vehicle class- This a model class, it is of the type Plain Old Java Object. This class has the

attributes pertaining to a Vehicle in the real world and all the accessor methods used for

using them.

 KeyGen class- The KeyGen class has the method to generate an API-key for each

registered vehicle, the android app needs to save this and include it in the header every time

it wants to send an update request. By doing this, we are providing an additional layer of

security, and blocking all the false request hitting the server.

 RegistrationDao class- This class is responsible for having all the logic required to retrieve

and store data back to the database. Hence, this type of classes are called as the Data Access

Objects. I am using the Hibernate framework to deal with the database and hence this class

has the corresponding annotations to let the framework identify the elements. For each

method in the class a session is created, a transaction is performed and the session is closed.

 VehicleController class- This is the heart of the application. This class is responsible for

responding to all the requests and hence is called the Controller class. Each method within

this class is designed in such a way that it responds to a Http request. Each method is

annotated with the type of Http request it needs to handle, the type of data it would return,

the url it should respond to and then return the manipulated data.

13

Figure 4.1 Android Class Diagram

 Figure 4.2 Class Diagram

14

5.3 Data Flow Diagram

A data flow diagram shows us how the data is passed between the different users/ modules of a

system. I have come up with a higher level data flow diagram for the application.

Figure 4.3 Data Flow Diagram

The Android App sends out an update location details request to the web application, the

application handles this request and stores the details in the database. The Map requests the details

of all the vehicles and the locations using the getAllVehicleDetailsAsJson request, the web app

handles the request, by retrieving the details from the database and sending them over to the Map.

15

Chapter 6 - Implementation

The fleet management system consists of a web application which exposes an API to register and

track the vehicles. I have also implemented an Android app which uses the functionalities provided

by this web application. I also have a web page which displays the location of the vehicles on the

map and update the location of each vehicle on a periodic basis. This is the higher level

implementation of the project. In this chapter I would like to describe my application with the help

of some output screens.

6.1 Output Screens

Below are the output screens for the Android application.

 Figure 5.1 Welcome Page

16

The first output screen i.e. figure 5.1 shows us the welcome page of the Android app, it has two

buttons to navigate to the Vehicle registration page and the Login page. This page is displayed to

the user upon the launch of the app.

 Figure 5.2 Registration Page

The second output screen - figure 5.2, shows the registration page, it has all the fields required

for the user to register, once the user enters all the values and if they are valid, then the user will

be shown a message that the registration is successful. Now the user is redirected to the home

page. This is shown in figure 5.3.

17

 Figure 5.3 Registration successful

 Figure 5.4 Login successful

18

The user can proceed to login with the credentials created, if the user attempts to login with valid

credentials, then the user can successfully login to the system and the web application will send

the user an API-key which has to be stored, and sent along as a header ever time with the update

location request. This will help us to avoid any malicious update requests. Once the user logs in,

he will be redirected to a page with the vehicle info shown in figure 5.4, the user can now choose

to stay on this page or move to a different app, no matter what our app would be run on the

background and keeps updating the data base in a timely manner. Once the user has reached the

destination he can choose to logout and that is when the updates would be stopped.

Figure 5.5 Log file showing periodic updates

The figure 5.5 shows us a console log, which shows that the alarm manager is invoking the vehicle

location update service at regular intervals, which is in turn sending a put request to the server.

Thus it could be observed that the Android app is sending periodic updates with the current location

the web server. The Android app sends out requests when it is active and also when moved to the

background, i.e. even when another app is currently operating. In the above figure, a request is

being sent every one minute, as I have configured the Android app in such a way. This could be

easily changed by re-configuring the Alarm Manager within the Android app.

19

The web application has spring security enabled for admin role, so the user has to provide the

admin credentials to access any page within the system. Once the user provides the valid

credentials, the user would be redirected to the admin home page. Figure 5.7 depicts the Admin

Login page, the user accessing any path within the project would be first redirected to this page,

upon successful Login the user would be redirected to the Admin Home displayed in figure 5.6.

Here the user can choose to perform the web vehicle registration, View vehicles on map or logout

 Figure 5.6 Admin Home

Figure 5.7 Admin Login

20

If the user chooses to perform web vehicle registration he would be redirected to a page which

would look like, figure 5.8. This page has all the fields necessary for the registration of the vehicle.

If an Admin would like to register a vehicle from the back end, he can do so by making use of this

page.

 Figure 5.8 Web Vehicle Registration

If the user wants to view the vehicles on the map, he can do that by clicking on the displayMap

and this page shows us all the vehicles currently registered in the system, on the map. The map is

refreshed every 2 seconds to reflect any changes. I have made use of google maps API to display

the vehicles using a marker and label on the map. This is achieved by using the getAllVehicles

service provided by the server. This is displayed in figure 5.9.

21

 Figure 5.9 Map Displaying the Vehicles.

Once the user is done monitoring he can choose to logout. The user can also access all the services

provided by the server, such as getAllVehcleDetailsAsJson which would give the vehicle id and

location of all the vehicles, in the JSON format. The user can also get the details of a particular

vehicle by specifying the vehicle id. Figure 5.10 depicts an update request performed using the

Postman REST client. The API-key is passed through the header. The response shows a success

message.

Figure 5.10 Updating the vehicle using an API-key

22

I have tried to keep the user interface as simple and clean as possible. I believe that a simple and

compact user interface is a key factor for the usability of the application. If an interface is simple

to use it will be usable by more number of people and hence serves the purpose. I have installed

the Android application in my device and checked the look and feel. I have also asked for feedback

from my friends. I have taken into consideration the inputs from them and made the corresponding

changes.

The main motivation was to have a user interface using which all the functionality can be accessed

and also to expose a comprehensive API implementing the most required and useful functionality.

This will help other developer to build systems using this API.

URL Method Type Description

/VehicleRegistration GET Displays the form for vehicle

registration

/admin GET Displays login page for admin

/saveVehicle POST The passed vehicle is saved

/isVehicleExists/{VehicleID} GET Returns true if vehicle exists

/validateLogin/{vehicleID}/{password} GET Returns the API-Key if the

credentials match

/getAllVehicleDetails GET Returns the location details of

all the Vehicles

/getVehicleDetails/{vehicleID} GET Returns the details of the

required vehicle

/updateVehicle PUT Updates the location of the

vehicle, provided the correct

API-Key is passed

Figure 5.11 Table depicting the API

23

Chapter 7 - Testing

Once the development phase is completed, the next important phase is the Testing phase. Any

application should be thoroughly tested so that the user can be assured of a functioning and reliable

product. Hence testing is a non-trivial activity and should be performed with enough time and

effort. Testing cannot establish that a product functions properly under all conditions but can only

establish that it does not function properly under specific conditions. Our goal is to attain the

expected outcomes in the most scenarios. Various types of testing need to be performed such as,

unit test cases to test each class, integration testing to check how all the modules are binding,

performance testing to evaluate the performance of the system and finally user acceptance testing

to see if the user has received what he has accepted.

 7.1 Unit Testing

Testing the application at class level or method level helps us to understand if each of the building

blocks are functioning as expected, so that there would not be a problem when each of these

individual elements collaborate to perform the higher level functionalities of the system. Unit

testing could be performed by sending mock requests to each of the methods in the controller class.

A basic example test method would have the following code

 mockMvc.perform(get ('/')). andExpect (status (). isOk ());

So using the mock objects and passing test data we can test each of the methods in the controllers.

All the exported services have been tested using the above said procedure. The same procedure

has been followed to test the data access methods in the DAO classes. The keyGen class has been

tested using a Junit test case.

 7.2 Integration Testing

Once all the modules are put together we can test the higher level functionalities of the system,

this phase is called the integration testing.

24

Test Case Expected results Actual Result

Admin Login with valid user

id and password.

User redirected to admin

page.

Pass

Admin login with invalid user

id and password.

Error message is displayed. Pass

Admin clicks on Vehicle

Registration hyper link.

Redirected to Vehicle

Registration page.

Pass

Admin enters all the required

fields with valid data.

Vehicle is successfully

registered.

Pass

Admin does not enter all the

fields for vehicle registration.

Error message is displayed. Pass

Admin clicks on View

vehicles on Map hyperlink.

The map is displayed with

markers for all the vehicles.

Pass

Admin should be able to

update the vehicle location

with valid API-key.

The co-ordinates are updated

successfully.

Pass

Admin tries to update the

location of the vehicle

without a valid API-key.

The co-ordinates are not

updated. Error code is

returned.

Pass

Admin attempts to retrieve

the details of all the vehicles.

Receives the location details

of all the vehicle.

Pass

Admin attempts to retrieve

the details of all the vehicles

in json format.

Receives the location details

of all the vehicle in json

format.

Pass

Android user registers with

valid data.

User registered Successfully. Pass

Android user attempts login

with valid data.

Successfully logs into the

system.

Pass

Android user attempts login

with invalid data.

Error message is displayed. Pass

 Figure 6 Integration Testing

25

 7.3 Performance Testing

It is important that we need to test the application for performance. Good performance ensures that

the user has good availability of the services even under the load. I have used Apache JMeter tool

for load and performance testing. This tool simulates a group of users sending requests to the

application server and returns various statistics that show the performance of the server in the form

of table data and corresponding graphs.

A Test Plan in JMeter has the configurations required for running a test, in test plan we specify the

thread group or the number of users, the number of times to loop, the ramp up time, the url to hit,

the path to the exact resource, the port number, the parameters to be passed to the request, headers

if any, the type of request and the type of content. Once all the parameters are configured we can

execute this test plan whenever we want.

I have performed performance testing to the most important service in my project, i.e., the service

to retrieve the data of all the vehicles. I have chosen this service as it requires the most database

resources and deals with relatively more amount of data. I have used a laptop with 8GB RAM and

ran an instance of the project in the tomcat server. I have used one of the campus computers to

perform load testing, by sending the request over the Wi-Fi. The data transferred per request is

11.14 Kb.

Test plan 1 simulates a thread group of 100 users, a ramp up period of 1 seconds and a loop count

of 10. From the response time graph for test plan 1 we can observe that the response time increases,

and through put remains about constant. This test plan simulates 1000 requests and tries to send

out the 1000 requests by the end of 1 second.

Test plan 2 has a thread group of 200 users, a ramp up period of 1 second and a loop count of 10.

From the response time graph for test plan 2 we can see that the response time spiked at the middle.

The deviation in the through put is less, so the performance is acceptable. This test plan simulates

a bigger number than the first test plan, it simulates 2000 request and has a ramp-up period of 1

second.

Test plan 3 has a thread group of 500 users, a ramp up period of 1 seconds and a loop count of 10.

26

Response time graph has ups and downs, I think this is attributed to the concurrent operations on

the database. The through put is 3200 pm. This test pan sends out even more requests compared to

the previous test plan. This plan simulates a total of 5000 requests and has a ramp up period of 1

second.

No. of Users Ramp up period Loop Count Throughput

100 1 10 3043.831/minute

200 1 10 2906.132/minute

500 1 10 3211.991/minute

 Figure 7.1 table depicting the throughput for different configurations.

 Figure 7.2 Response Time Graph for Test Plan 1

27

 Figure 7.3 Throughput graph for Test Plan 1

 Figure 7.4 Response Time Graph for Test Plan 2

28

Figure 7.5 Throughput Graph for Test Plan 2

Figure 7.6 Response Time Graph for Test Plan 3

29

 Figure 7.7 Throughput Graph for Test Plan 3

30

Chapter 8 - Conclusion

The fleet management system could be used by anyone who owns a fleet of vehicles and would

like to track each of the vehicles in real time. This way it is easy to keep track of the progress and

have up to date information of each vehicle. This application also exposes an API that could be

used by any developer to make use of the underlying features and develop his/her own application.

For example, if a developer wants to develop an application, which tracks and shows each vehicle

of a group of friends who are on a trip together going to the same destination, he can use the API

and show all the vehicles of the group on a map. This project also avoids malicious updates by

making use of a unique key for each of the user, which needs to be sent in the header. Thus, this

project is a complete application, which could be used by a wide variety of users for various

purposes. Developing this application has given me a good grip on web application development,

as this project has end to end functionality and also has integration with an Android app. I have

gained the required experience with the popular frameworks used in the industry for web

application development such as Spring and Hibernate, thus making me confident to start my

career as a Developer.

Language Lines of Code

Java 1600

XML 250

JavaScript 300

Total 2150

Figure 8 Table Lines of Code

The above table depicts the breakdown of the lines of code in my project with respect to the

language.

31

Chapter 9 - Future Work

There is a lot of scope to extend this project, a dedicated desktop application could be built to track

the vehicles and it can have filters to select different vehicles. The project could be hosted on an

online server and made available to a wider user base. The UI could be improved to make the

application look more elegant and rich. Add the functionality to store the trips made by each

vehicle on a particular day. Perform analysis on the old data and generate reports, which could be

useful for the business.

32

References

[1] Representational state transfer (12/14)

http://searchsoa.techtarget.com/definition/REST

[2] Web services Glossary (02/02)

https://www.w3.org/TR/ws-gloss/

[3] Hibernate Architecture (2004)

https://docs.jboss.org/hibernate/orm/3.5/reference/en-US/html/architecture.html

[4] Spring Framework Architecture (2004)

https://www.tutorialspoint.com/spring/spring_architecture.htm

[5] Spring Model View Controller

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html

[6] Android Platform Architecture (2010)

https://developer.android.com/guide/platform/index.html

[7] Advantages of using JSP

http://www.xyzws.com/jspfaq/what-are-advantages-of-using-jsp/9

http://searchsoa.techtarget.com/definition/REST
https://www.w3.org/TR/ws-gloss/
https://docs.jboss.org/hibernate/orm/3.5/reference/en-US/html/architecture.html
https://www.tutorialspoint.com/spring/spring_architecture.htm
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
https://developer.android.com/guide/platform/index.html
http://www.xyzws.com/jspfaq/what-are-advantages-of-using-jsp/9

