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Abstract 

Estimation of sample size is an important and critical procedure in the design of clinical 

trials. A trial with inadequate sample size may not produce a statistically significant result. On the 

other hand, having an unnecessarily large sample size will definitely increase the expenditure of 

resources and may cause a potential ethical problem due to the exposure of unnecessary number 

of human subjects to an inferior treatment. A poor estimate of the necessary sample size is often 

due to the limited information at the planning stage. Hence, the adjustment of the sample size mid-

trial has become a popular strategy recently. In this work, we introduce two methods for sample 

size re-estimation for trials with a binary endpoint utilizing the interim information collected from 

the trial: a blinded method and a partially unblinded method. The blinded method recalculates the 

sample size based on the first stage’s overall event proportion, while the partially unblinded 

method performs the calculation based only on the control event proportion from the first stage. 

We performed simulation studies with different combinations of expected proportions based on 

fixed ratios of response rates. In this study, equal sample size per group was considered. The study 

shows that for both methods, the type I error rates were preserved satisfactorily. 
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Chapter 1 - Introduction 

 1.1 The importance of sample size 

Sample size estimation plays a crucial role for a successful clinical trial. Conducting a 

clinical trial usually consumes a great deal of time and resources. Hence it is of great importance 

that the design of the trial should give a good chance of successfully detecting a treatment effect 

if one exists. Generally, the larger the number of patients involved in a trial, the higher the chance 

to identify a significant difference between treatments. However, if the study involves 

unnecessarily large number of participants, it will not only increase the research budget, but also 

cause potential ethical problems. Therefore, it is often necessary to take an interim look at the data 

to check how good the sample size estimation at the planning stage was, and whether the study 

can be terminated early or more patients need to be recruited.  

 

 1.2 Blinding & unblinding 

For studies with a continuous endpoints, the sample size calculation typically requires the 

knowledge of the treatment effects, which is the difference between the different group means, 

and the nuisance parameter, which is the standard deviation or variance. For a study with binary 

endpoints, the sample size calculation needs information on the treatment effect, which is the 

difference between the proportions of events (such as the disappearance of tumor) that have 

occurred in different treatment groups, as well as either the proportion of events in the control 

group or the proportion of events among all participants without regard to treatment group 

(Proschan, 2005). During an ongoing trial, investigators may want to re-estimate the sample size 

based on the information from interim data and adjust it accordingly if necessary. Here, we 

consider the case of comparing two treatments based on a binary response variable. 
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When performing sample size re-estimation, people often take an interim look at the data 

through three different approaches. In terms of the degree of blinding involved, the three methods 

can be termed: ‘complete unblinding’, ‘partial unblinding’, and ‘no unblinding’. The ‘partial 

unblinding’ means that researchers know only the participants’ group membership (group 1 or 

group 2, say), but don’t know the treatments corresponding to these groups (Gould, 2001). The 

‘no unblinding’ method ignores that the participants come from different treatment groups and 

looks at the overall event proportions.  

Sample size re-estimation in clinical trials has a long history which can date back to Stein 

(Stein, 1945), who developed a method about the t-test that can be used in both one-sample and 

two-sample trials whose power is independent of variance. There were several approaches of 

sample size re-estimation strategies that have been developed in the literature with different two-

stage schemes. Gould & Shih (1992) and Wittes & Brittain (1990) have discussed methods of 

blinded sample size re-estimation which assumed that the real treatment effect is not exposed to 

the decision makers who do the sample size re-estimation. They found that the blinded methods 

were reasonably comparable in performance with methods that use unblinding estimates. In a 

simulation study that investigated the performance of both blinded and unblinded sample size re-

estimation methods, Wittes, Schabenberger, Zucker, Brittain, & Proschan (1999) observed some 

slight violations of the type I error when the sample size was relatively small. Others have shown 

that when the sample size is re-calculated with an unblinded variance estimate, an inflation of the 

type I error rate may occur (Wittes & Brittain, 1990; Birkett & Day, 1994). Therefore, in our study, 

we consider only the ‘partial unblinding’ and ‘no unblinding’ methods when performing sample 

size re-estimation. We expect that the type I error rate can be preserved well since the blinding 

assessment does not provide information about true treatment effects. 
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 1.3 Power & type I error rate 

For a trial with a binary endpoint, the sample size depends not only on the information of 

treatment effects (i.e., a clinically relevant difference) and the overall event rate or event rate in 

control group, but also on the value of the significance level and power (Friede & Kieser, 2004). 

In hypothesis testing, two mutually exclusive statements (H0 and HA) are evaluated in terms 

of a population parameter. There are four possible results for hypothesis testing (Table 1.1): H0 is 

correctly not rejected when it is true, H0 is wrongly rejected when it is actually true, H0 is wrongly 

not rejected when it is actually false, and H0 is correctly rejected when it is false.   

 

Table 1.1 Possible results in hypothesis testing. 

Hypothesis testing H0 is not rejected H0 is rejected 

H0 is true 
Correct  

Probability = 1- α 

Type I error 

Probability = α 

H0 is false 
Type II error 

Probability = β 

Correct 

Probability = 1- β 

 

A type I error occurs when incorrectly rejecting a true H0. The probability of committing 

this kind of error is α. We call α the significance level or type I error rate. A type II error occurs 

when failing to reject H0 when it is false. The probability of committing a type II error is β. The 

power of a test is then the probability that it correctly rejects a false null hypothesis, i.e. the 

complement of a type II error (i.e. 1- β).  A trial designer generally wants the power to be as large 

as reasonably possible.   



4 

 1.4 Test of statistical superiority 

In clinical studies, the randomized clinical trial (RCT) is generally considered as the best 

method to compare effects of therapies (Armitage, Berry, & Matthews, 2008). Often the aim of an 

RCT is to investigate whether a new therapy is superior to a control therapy (i.e. either an approved 

therapy or a placebo). In this situation, we refer to the study as a superiority trial. Let 𝑝𝑇 be the 

proportion of successful outcomes for treatment group (i.e. the proportion of patients who are 

receiving the new intervention and get cured) and let 𝑝𝐶 be the proportion of successful outcomes 

for control group (i.e. the proportion of patients who are receiving the control treatment and get 

cured). To test whether the effect of new treatment is superior to that of control, the following 

hypotheses are usually considered:  

𝐻𝑂:  𝑝𝑇 ≤ 𝑝𝐶 +𝛿 

𝐻𝐴:  𝑝𝑇 > 𝑝𝐶 +𝛿. 

Here 𝛿 (𝛿 > 0) is the superiority margin (i.e. the clinically meaningful difference between 

the two proportions). If 𝐻𝑂 is rejected in favor of 𝐻𝐴, the new treatment is assumed to be clinically 

superior to the control. When 𝛿 = 0, the hypotheses become: 

𝐻𝑂:  𝑝𝑇 ≤ 𝑝𝐶  

𝐻𝐴:  𝑝𝑇 > 𝑝𝐶. 

This is often referred to as a test of statistical superiority and the treatment is considered to 

be statistically superior to control when 𝐻𝑂 is rejected. 

Besides the superiority test, sometimes the investigators are also interested in the testing 

for difference (i.e.  𝑝𝑇  𝑝𝐶), non-inferiority (i.e. 𝑝𝑇 - 𝑝𝐶 is greater than or equal to the non-

inferiority margin), and equivalence (i.e. | 𝑝𝑇 −𝑝𝐶| is a clinically unimportant). In our study, we 

will focus on superiority trials only. 
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 1.5 Example 

In this work, we perform the simulation studies with different combinations of expected 

proportions, based on fixed ratios of response rates. Now let’s take one of those scenarios as an 

example to illustrate the research problem. We consider a trial to compare a new drug (test drug) 

to an approved standard drug (control drug) with respect to the proportion of patients who have 

been cured (or whose symptoms have improved) over a certain time period. The proportion 

expected for the control group (i.e. the proportion of patients who are taking the standard drug and 

get cured) is assumed to be 0.60. The goal of the sample-size estimation is to find the sample size 

needed to achieve 80% power to detect a 25% increase for the test group over control (i.e. 𝑝𝑇 / 𝑝𝐶 

= 1.25). Based on these assumptions, the initial sample size was calculated to be 120/arm, or 240 

patients in total. After 120 patients (60/arm, or half of the initial sample size) have been evaluated, 

we stop the trial and re-calculate the sample size using the accumulated information so far. If the 

initial sample size is large enough, the trial will continue to complete with the remaining planned 

number of patients. Otherwise, the sample size will be increased and the trial will continue until 

enough patients have been recruited to provide the required power (80%). The methods of sample 

size evaluation, the corresponding test statistics, and a simulation study will be discussed in detail 

in the following chapters.  



6 

Chapter 2 - Statistical Methods 

 2.1 Initial sample size estimation 

We consider a clinical trial that compares two treatments based on a binary outcome. We 

denote the proportions of treatment success by pT for the treatment group and pC for the control 

group, respectively. At the planning stage, we estimate the initial sample size for the trial based on 

our assumptions. Conventionally, point estimates of pT and pC are assumed – here they are denoted 

as pT
*and pC

*, respectively. As before, let’s assume that the proportion of successes for the control 

group is 0.60 (i.e. pC
*=0.60) and that we desire 80% power to detect a 25% increase for the test 

group over control (i.e. 𝑝𝑇
* / 𝑝𝐶

* = 1.25).  Therefore, the expected proportion of events for the test 

group is 0.75 (i.e. pT
*=0.75).  The initial sample size depends on several quantities: the overall 

proportion of successes disregarding treatment groups, i.e., p*= (𝑝𝑇
* + 𝑝𝐶

*)/2, the difference 

between treatment groups (𝑝T*- 𝑝C*), the type I error rate (e.g., α = 0.05), and the desired power 

(e.g. 1- β = 0.80). For a test of statistical superiority, the sample size (n) required for achieving 

100(1- β)% power is calculated by the following formula (c.f., Proschan, 2005): 

𝑛 =
(𝑧𝛼√2𝑝∗(1 − 𝑝∗) + 𝑧𝛽√𝑝𝐶

∗(1 − 𝑝𝐶
∗) + 𝑝𝑇

∗(1 − 𝑝𝑇
∗))

2

(𝑝𝑇
∗ −  𝑝𝐶

∗)2
.                   (1) 

Based on the assumptions given above, we need 120 patients per arm (or 240 in total) to 

detect a 25% increase of the events rates in the test group, with the 80% power at 5% level of 

significance.  
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 2.2 Two methods of sample size re-estimation  

Investigators sometimes look at the interim results in the trial to see whether they need to 

change the sample size or not. In our study, the total initial sample size is N = 2n (n patients in 

each treatment group). We will conduct an interim analysis when the outcome data are available 

from n patients (n/2 from each group), i.e. when the trial is halfway completed. Since unblinding 

the data may cause bias and hence inflate the type I error rate, we conduct two different methods 

for performing the sample size re-estimation: blinded method, and partially unblinded. The 

partially unblinded method uses only the observed event rates in the control group to re-calculate 

the sample size, while the blinded method looks at the observed overall event rate without regard 

to treatment group. 

To illustrate these two methods, consider the example above used to explain the initial 

sample size estimation.  It was initially estimated that 240 patients in total are needed for the trial. 

After the trial is halfway completed, we analysis the outcome data from the 120 patients (60 for 

each group). We denote the count of the successes up to this point (i.e. the number of patients 

cured) as x11 and x21 for test and control groups respectively. For the partially unblinded method, 

look at the control data only and suppose that x21 = 29 was observed. Hence the control proportion 

is: 

𝑝𝐶 =
𝑥21

𝑛/2
=

29

60
= 0.483 

and                                                  𝑝𝑇 = 1.25 ∗ 𝑝𝐶 = 1.25 ∗ 0.483 = 0.604 

hence                                               𝑝 =
𝑝𝐶+𝑝𝑇

2
=

0.483+0.604

2
= 0.544. 
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The formula for the new sample size is:  

                                                         𝑛∗ =
(𝑧𝛼√2𝑝(1−𝑝)+𝑧𝛽√𝑝𝐶(1−𝑝𝐶)+𝑝𝑇(1−𝑝𝑇))

2

(𝑝𝑇− 𝑝𝐶)2  .                     (2) 

Based on interim data, 𝑛∗ = 209 per treatment arm. 

For the blinded method, we look at the entire data via the overall event rate. Suppose the 

observed counts of the successes for test and control groups combined are x11 + x21 = 63, 

respectively. Hence the overall proportion is: 

                                             𝑝 =
𝑥11+𝑥21

𝑛
=

63

120
= 0.525 

hence                                               𝑝𝐶 = 2 ∗
𝑝

2.25
= 2 ∗

0.525

2.25
= 0.467 

and                                                   𝑝𝑇 = 1.25 ∗ 𝑝𝐶 = 1.25 ∗ 0.467 = 0.583. 

Therefore, using equation (2), the new sample size is  𝑛∗ = 226 per treatment arm. 

If the initial sample size is large enough to provide the desired power (i.e. n ≥ n*), the trial 

will continue until all the planned number of patients (n) are recruited. Otherwise, if n < n*, we 

will increase the sample size and the trial will continue until enough patients (n*) have been 

recruited that the desired power is achieved. Therefore, the final new sample size for each arm of 

the trial is 

𝑛𝑛𝑒𝑤 = 𝑀𝑎𝑥(𝑛, 𝑛∗). 

We can see that compared to the originally planned 240 patients, the new sample sizes 

calculated by both methods have increased (418 for partially unblinded method and 452 for blinded 

method). In the simulation study, we will use the same calculation procedures to re-estimate the 

sample sizes for all the scenarios with different combinations of expected proportions. 
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2.3 Two - proportion Z-test 

In this work, we want to test whether there is a superiority of the success rates of the test 

group against that of the control group, and the following hypotheses are considered: 

𝐻𝑂:  𝑝𝑇 ≤ 𝑝𝐶 

𝐻𝐴:  𝑝𝑇 > 𝑝𝐶. 

The test statistic for testing the null hypothesis is: 

𝑍 =
𝑝𝑇 − 𝑝𝐶

√𝑝 ∗ (1 − 𝑝) ∗ (
1
𝑛1

+
1

𝑛2
)

=
𝑝𝑇 − 𝑝𝐶

√𝑝 ∗ (1 − 𝑝) ∗
2

𝑛𝑛𝑒𝑤

               (3) 

where n1 and n2 are the sample sizes of test and control groups, respectively, with n1 = n2 = nnew, 

and p is the overall proportion of successes. If we denote the count of the successes (i.e. the number 

of patients cured) as x1 and x2, for test and control groups, respectively, we have: 

𝑝 =
𝑥1 + 𝑥2

𝑛1 + 𝑛2
=

𝑥1 + 𝑥2

2 ∗ 𝑛𝑛𝑒𝑤
 

Since the superiority test is a right-tailed Z-test, an extreme value on the right side of the 

sampling distribution would cause the rejection of the null hypothesis. At the 5% significance level 

(α = 0.05), we reject the null hypothesis H0 if Z ≥ Zα = Z0.05 = 1.645, and we fail to reject H0 when 

Z < 1.645 (Figure 2.1). 

 

Figure 2.1 Rejection region of the superiority test at 5% significance level 
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Chapter 3 - Simulation Design 

In this work, the simulation studies are conducted to generate data, calculate the sample 

size, and evaluate the type I error rate for the superiority test. The simulations were performed 

within SAS/STAT® software version 9.4 (SAS Institute, 2013). 

Simulations were performed with different combinations of expected proportions and two 

different ratios of response rates given in Table 3.1. 

 

Table 3.1 Scenarios for the simulation studies. 

Scenario 
Expected proportion of successes 

for control group, pC
* 

Expected proportion of successes 

for test group, pT
* 

𝑝𝑇
* / 𝑝𝐶

* 

1 0.4 0.5 1.25 

2 0.6 0.75 1.25 

3 0.7 0.875 1.25 

4 0.4 0.46 1.15 

5 0.6 0.69 1.15 

6 0.7 0.805 1.15 

 

Six scenarios were considered: 3 expected proportions of successes for the control group 

(pC
* = 0.4, 0.6 and 0.7) combined with 2 ratios of response rates (𝑝𝑇

* / 𝑝𝐶
* = 1.15 and 1.25). These 

assumptions are used for the calculation of the initial sample sizes. Within each scenario, we set 

the true success rate for the control group at pC = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8, and each 

value was used to generate the binary data through the simulation process. The set of the 

combinations was chosen to encompass the range of values typically encountered in a real trial. 
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Since we have 96 settings for the simulation study (6 scenarios × 8 true pC’s × 2 methods), 

macros were created to efficiently perform the simulations with the specified setting of parameters. 

The complete SAS code for implementing the simulations is given in Appendix B. 

For each selected setting, the simulation process is as follows: 

1. Calculate the initial sample size (n) by Equation (2), based on the pre-specified 

expected effect: pC
* and 𝑝𝑇

* / 𝑝𝐶
*. 

2. Choose a proportion of n to determine the time for the interim analysis, in our study, 

we perform the sample size re-estimation when n/2 of the patients are recruited into the 

study. 

3. Begin the trial by simulating the binary data using the half of the original planned 

sample size: x11, x21 ~ Bin (n/2, pC). 

4. Use the interim data to re-calculate the sample size (n*) by Equation (3), and use the 

maximum of n and n* as the final new sample size (nnew). 

5. Resume the trial to obtain the binary data for the remaining observations: x12 , x22 ~ 

Bin (nnew − n/2, pC).  

6. Calculate the Z-statistics (by Equation (1)) based on the simulated data and conduct the 

superiority test. The estimated type I error rate is: 

𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒̂ =
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝐻0 

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑢𝑛𝑠
                          (4) 

The simulation contains 5000 runs for each setting.  
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Chapter 4 - Simulation Results 

Results from all simulations are given in Appendix A (Tables A.1 to A.6).  From Table 

A.1 to A.6, we can see that for each selected setting of pC
* and 𝑝𝑇

* / 𝑝𝐶
*, when the true response 

rates in control group (pC) is much lower than anticipated (pC
*), and hence the true overall success 

rate, p, is lower than p*, the interim re-estimation yields an impractically large increase in the 

sample size; the mean of nnew is as large as 7 to 40 times the original planned sample size. In these 

cases, 100% of the sample sizes were increased. As the true pC increased to no larger than pC
*, the 

new sample size required to achieve the desired power is decreased, but was still larger than the 

original planned sample size (n). And when the true pC is greater than pC
*, the re-estimation 

procedure may call for a reduction of the sample size (results are not shown in the tables because 

we used the maximum of n and n*) as the final sample size. This pattern is seen in the results from 

both methods. 

The trends of the mean of the re-estimated sample sizes along with different levels of true 

pC for 6 scenarios are shown in Figures 4.1 to Figure 4.6. Within each figure, the trend line in red 

is for the sample sizes that are re-estimated by the blinded method, and the trend line in blue is for 

the sample sizes that are re-estimated by the partially unblinded method. The dash line shows the 

initial sample size (n) that was calculated at the design stage. 
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Figure 4.1 The mean of the new sample size for pC
* = 0.4 and 𝑝𝑇

* / 𝑝𝐶
* = 1.25 

 

 

Figure 4.2 The mean of the new sample size for pC
* = 0.6 and 𝑝𝑇

* / 𝑝𝐶
* = 1.25 
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Figure 4.3 The mean of the new sample size for pC
* = 0.7 and 𝑝𝑇

* / 𝑝𝐶
* = 1.25 

 

 

Figure 4.4 The mean of the new sample size for pC
* = 0.4 and 𝑝𝑇

* / 𝑝𝐶
* = 1.15 
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Figure 4.5 The mean of the new sample size for pC
* = 0.6 and 𝑝𝑇

* / 𝑝𝐶
* = 1.15 

 

 

Figure 4.6 The mean of the new sample size for pC
* = 0.7 and 𝑝𝑇

* / 𝑝𝐶
* = 1.15 
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From Figures 4.1 to 4.6, we can see that the mean of the new sample size estimated by the 

blinded method is always higher than the mean of the new sample size estimated by the partially 

unblinded method. This may be due to the fact that when we use the blinded method, we look at 

only the overall data, and in most of the cases, it results a lower overall success rate (the SAS 

output is not shown). The final sample size was reported to be negatively correlated with the 

overall success rate (Gould, 1992). Hence the blinded method yields a larger sample size than the 

partially unblinded method. 

Now consider the effect of the sample size re-estimation process on the type I error rate 

where the true type I error rates were estimated using Equation (4). The margin of error (MoE) 

was computed for 95% confidence limits of the desired type I error rate (0.05) and the values 0.05 

± MoE were added to the figures as dashed lines. Estimated type I error rates within the dashed 

lines are said to hold their nominal level. Estimated type I error rates below both dashed lines are 

said to be conservative (which decreases power) and those above both dashed lines are said to be 

liberal (i.e. have inflated type I error rates). The results of the type I error rates are shown in the 

Tables A.1 to A.6, and also in Figures 4.7 to 4.12. Figures 4.7 to 4.12 show the observed type I 

error rates for different settings. Within each figure, the trend line in red is the observed type I 

error rates for the blinded method, and the trend line in blue is the observed type I error rates for 

the partially unblinded method. The dash lines are confidence limits described above. 

The simulation results show that for 88 of the 96 parameter the observed type I error rates 

were contained within the 95% confidence limits around 0.05. The other 8 are very slightly higher 

or lower than the nominal level. Hence, it appears that the sample size re-estimation in the interim 

stage has no meaningful effect on the type I error rate. The figures show also show that there is no 

difference between the type I error rates of two re-estimation methods. 
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Figure 4.7 The observed type I error rate for pC
* = 0.4 and 𝑝𝑇

* / 𝑝𝐶
* = 1.25 

 

 

Figure 4.8 The observed type I error rate for pC
* = 0.6 and 𝑝𝑇

* / 𝑝𝐶
* = 1.25 
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Figure 4.9 The observed type I error rate for pC
* = 0.7 and 𝑝𝑇

* / 𝑝𝐶
* = 1.25 

 

 

Figure 4.10 The observed type I error rate for pC
* = 0.4 and 𝑝𝑇

* / 𝑝𝐶
* = 1.15 
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Figure 4.11 The observed type I error rate for pC
* = 0.6 and 𝑝𝑇

* / 𝑝𝐶
* = 1.15 

 

 

Figure 4.12 The observed type I error rate for pC
* = 0.7 and 𝑝𝑇

* / 𝑝𝐶
* = 1.15 
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Chapter 5 - Conclusion and Discussion 

In this study, we investigated two methods for sample size re-estimation for clinical trials 

with a binary endpoint: one blinded method and one partially unblinded method. We performed a 

simulation study to estimate the type I error rates associated with sample size re-estimation for 

hypotheses of statistical superiority under the assumption of fixed ratios of success rates together 

with different combinations of expected success rates and true success rates. The simulation results 

show that the appropriateness of the initial sample size estimation depends on how close the 

assumed response rate, pC
*, is to the true response rate, pC.  When the true pC is lower than pC

*, the 

sample size needs to be increased, whereas when the true pC is higher than pC
*, there could be a 

reduction in the sample size without a loss of desired power. Since in the real trial, the control 

success rate is often overestimated in the design stage (Proschan, 2005), the sample size without 

re-estimation is typically not adequate resulting in an underpowered trial. Therefore, the interim 

re-estimation and adjustment of the sample size is very helpful to make sure the trial is successful. 

The re-estimated final sample size is sometimes considerably larger than is practical. In these 

cases, researchers often set an upper limit for the final sample size (for example, nnew ≤ 2n).  When 

the number of patients recruited attains that limit, the researcher may consider terminating the trial 

and accept lower power (Gould, 1992; Gould, 1995). In our study, we did not use this constraint. 

The results of the simulation also show that the mean of the new sample size estimated by 

the blinded method is higher than the mean of the new sample size estimated by the partially 

unblinded method. One possible reason for that is that when we look at the overall data without 

regard to treatment group, it mostly results a lower overall interim success rate and final sample 

sizes are negatively correlated with this overall success rate (Gould, 1992). 
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The two sample-size re-estimation methods studied here both appear to preserve the type I 

error rate well. Previous studies have shown that recalculating the sample size with the unblinded 

data may inflate the type I error rate (Wittes & Brittain, 1990; Birkett & Day, 1994). However, the 

information we used to perform the sample size re-estimation does not provide any information 

about the true treatment effects, and intuitively, should not affect the type I error rate. 

Additionally, we choose the “halfway” point in the trial as the interim time for the sample 

size re-estimation. This was because if the re-estimation is conducted too early, we may not have 

adequate information and the estimation may still be imprecise; otherwise, if the re-estimation is 

performed too late, it may not be very useful to the conduct of the trial. In future work, we suggest 

trying different interim times for the sample size re-estimation to see what effect the timing of the 

interim examination has on the sample size re-estimation process, especially if a reduction in 

sample size is allowed. 

Preserving the power of a trial to test the specified HA is another usual reason for 

conducting sample size re-estimation. Some studies conducted the interim power evaluations to 

investigate the effect of sample size re-estimation process on the power (Gould, 1992; Gould, 

2001; Kieser & Friede, 2003). The blinded approach appears to preserve the power well. In our 

design, we chose not to evaluate the power because the sample size was never decreased by the 

re-estimation process. Nonetheless, an interesting future project would be to study the actual gain 

in power by re-estimating the sample size with interim data.  
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Appendix A - Tables of Simulation Results 

Table A.1 Simulation results for scenario 1 -- pC
* = 0.4 and 𝑝𝑇

* / 𝑝𝐶
* = 1.25 

tpc Method Count_nnew 

increase 

% n increase Type1_err_rate Mean of 

nnew 

0.1 pool 5000 100 0.0532 2337 

0.2 pool 5000 100 0.0526 1019 

0.3 pool 5000 100 0.052 591 

0.4 pool 4800 96 0.0476 379 

0.5 pool 200 4 0.0454 306 

0.6 pool 0 0 0.0488 305 

0.7 pool 0 0 0.0502 305 

0.8 pool 0 0 0.0494 305 

0.1 ctrl 5000 100 0.0474 2127 

0.2 ctrl 5000 100 0.0472 893 

0.3 ctrl 4985 99.7 0.0528 503 

0.4 ctrl 2648 52.96 0.047 331 

0.5 ctrl 37 0.74 0.0492 305 

0.6 ctrl 0 0 0.0558 305 

0.7 ctrl 0 0 0.0558 305 

0.8 ctrl 0 0 0.0542 305 

 

Note. The variables denote: 

         tpc: true event rates for the control group  

         Method: “pool” -- blinded method; “ctrl” -- partially unblinded method  

         Count_nnew increase: the number of times that the sample size is increased  

         % n increase: the percentage of times that the sample size is increased  

         Type1_err_rate: the type I error rate  

         Mean of nnew: the mean of nnew 
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Table A.2 Simulation results for scenario 2 -- pC
* = 0.6 and 𝑝𝑇

* / 𝑝𝐶
* = 1.25 

tpc Method Count_nnew 

increase 

% n increase Type1_err_rate Mean of 

nnew 

0.1 pool 5000 100 0.0528 2501 

0.2 pool 5000 100 0.0528 1049 

0.3 pool 5000 100 0.0492 602 

0.4 pool 5000 100 0.0496 384 

0.5 pool 4999 99.98 0.0478 255 

0.6 pool 4710 94.2 0.0468 169 

0.7 pool 1218 24.36 0.0474 124 

0.8 pool 3 0.06 0.0478 120 

0.1 ctrl 4990 99.8 0.0514 2469 

0.2 ctrl 5000 100 0.05 951 

0.3 ctrl 5000 100 0.0504 524 

0.4 ctrl 4994 99.88 0.0466 321 

0.5 ctrl 4613 92.26 0.0446 203 

0.6 ctrl 2173 43.46 0.0514 138 

0.7 ctrl 164 3.28 0.0542 121 

0.8 ctrl 1 0.02 0.0532 120 

 

Note. The variables denote: 

         tpc: true event rates for the control group  

         Method: “pool” -- blinded method; “ctrl” -- partially unblinded method  

         Count_nnew increase: the number of times that the sample size is increased  

         % n increase: the percentage of times that the sample size is increased  

         Type1_err_rate: the type I error rate  

         Mean of nnew: the mean of nnew 

  



25 

Table A.3 Simulation results for scenario 3 -- pC
* = 0.7 and 𝑝𝑇

* / 𝑝𝐶
* = 1.25 

tpc Method Count_nnew 

increase 

% n increase Type1_err_rate Mean of 

nnew 

0.1 pool 4992 99.84 0.0472 2762 

0.2 pool 5000 100 0.0536 1094 

0.3 pool 5000 100 0.0508 617 

0.4 pool 5000 100 0.0486 391 

0.5 pool 5000 100 0.0456 258 

0.6 pool 4998 99.96 0.0506 170 

0.7 pool 4711 94.22 0.0468 109 

0.8 pool 1910 38.2 0.0496 73 

0.1 ctrl 4865 97.3 0.0564 2590 

0.2 ctrl 4997 99.94 0.0466 1050 

0.3 ctrl 5000 100 0.0492 554 

0.4 ctrl 4998 99.96 0.0454 334 

0.5 ctrl 4944 98.88 0.041 209 

0.6 ctrl 4305 86.1 0.0482 129 

0.7 ctrl 2178 43.56 0.046 84 

0.8 ctrl 305 6.1 0.0514 68 

 

Note. The variables denote: 

         tpc: true event rates for the control group  

         Method: “pool” -- blinded method; “ctrl” -- partially unblinded method  

         Count_nnew increase: the number of times that the sample size is increased  

         % n increase: the percentage of times that the sample size is increased  

         Type1_err_rate: the type I error rate  

         Mean of nnew: the mean of nnew 
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Table A.4 Simulation results for scenario 4 -- pC
* = 0.4 and 𝑝𝑇

* / 𝑝𝐶
* = 1.15 

tpc Method Count_nnew 

increase 

% n increase Type1_err_rate Mean of nnew 

0.1 pool 5000 100 0.0538 5760 

0.2 pool 5000 100 0.0534 2546 

0.3 pool 5000 100 0.0566 1482 

0.4 pool 4785 95.7 0.0582 953 

0.5 pool 0 0 0.0594 840 

0.6 pool 0 0 0.057 840 

0.7 pool 0 0 0.0586 840 

0.8 pool 0 0 0.0588 840 

0.1 ctrl 5000 100 0.0472 5395 

0.2 ctrl 5000 100 0.0504 2342 

0.3 ctrl 5000 100 0.051 1342 

0.4 ctrl 2386 47.72 0.0514 878 

0.5 ctrl 0 0 0.0558 840 

0.6 ctrl 0 0 0.0552 840 

0.7 ctrl 0 0 0.0558 840 

0.8 ctrl 0 0 0.056 840 

 

Note. The variables denote: 

         tpc: true event rates for the control group  

         Method: “pool” -- blinded method; “ctrl” -- partially unblinded method  

         Count_nnew increase: the number of times that the sample size is increased  

         % n increase: the percentage of times that the sample size is increased  

         Type1_err_rate: the type I error rate  

         Mean of nnew: the mean of nnew 
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Table A.5 Simulation results for scenario 5 -- pC
* = 0.6 and 𝑝𝑇

* / 𝑝𝐶
* = 1.15 

tpc Method Count_nnew 

increase 

% n increase Type1_err_rate Mean of nnew 

0.1 pool 5000 100 0.0536 5898 

0.2 pool 5000 100 0.053 2580 

0.3 pool 5000 100 0.0524 1497 

0.4 pool 5000 100 0.0534 959 

0.5 pool 5000 100 0.0512 639 

0.6 pool 4758 95.16 0.0502 425 

0.7 pool 63 1.26 0.0494 349 

0.8 pool 0 0 0.0488 349 

0.1 ctrl 5000 100 0.0478 5615 

0.2 ctrl 5000 100 0.0486 2390 

0.3 ctrl 5000 100 0.0496 1361 

0.4 ctrl 5000 100 0.0454 854 

0.5 ctrl 4974 99.48 0.0466 553 

0.6 ctrl 2295 45.9 0.0472 375 

0.7 ctrl 7 0.14 0.056 349 

0.8 ctrl 0 0 0.054 349 

 

Note. The variables denote: 

         tpc: true event rates for the control group  

         Method: “pool” -- blinded method; “ctrl” -- partially unblinded method  

         Count_nnew increase: the number of times that the sample size is increased  

         % n increase: the percentage of times that the sample size is increased  

         Type1_err_rate: the type I error rate  

         Mean of nnew: the mean of nnew 
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Table A.6 Simulation results for scenario 6 -- pC
* = 0.7 and 𝑝𝑇

* / 𝑝𝐶
* = 1.15 

tpc Method Count_nnew 

increase 

% n increase Type1_err_rate Mean of nnew 

0.1 pool 5000 100 0.0526 6039 

0.2 pool 5000 100 0.0536 2608 

0.3 pool 5000 100 0.0518 1507 

0.4 pool 5000 100 0.0534 965 

0.5 pool 5000 100 0.05 642 

0.6 pool 5000 100 0.0528 425 

0.7 pool 4746 94.92 0.0488 274 

0.8 pool 223 4.46 0.0496 209 

0.1 ctrl 5000 100 0.0484 5922 

0.2 ctrl 5000 100 0.0478 2444 

0.3 ctrl 5000 100 0.0484 1381 

0.4 ctrl 5000 100 0.0464 864 

0.5 ctrl 5000 100 0.0472 558 

0.6 ctrl 4904 98.08 0.0484 355 

0.7 ctrl 2311 46.22 0.0506 231 

0.8 ctrl 31 0.62 0.0538 208 

 

Note. The variables denote: 

         tpc: true event rates for the control group  

         Method: “pool” -- blinded method; “ctrl” -- partially unblinded method  

         Count_nnew increase: the number of times that the sample size is increased  

         % n increase: the percentage of times that the sample size is increased  

         Type1_err_rate: the type I error rate  

         Mean of nnew: the mean of nnew 
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Appendix B - Simulation SAS Code 

Below is the SAS code used in the simulation studies. 
 

/*Scenario 1 -- pc=0.4,pt/pc=1.25*/ 

 

%let group=group1; 

%let groupname='group1'; 

%let filepath='/home/dannicong0/www/'; 

%let rtffile='/home/dannicong0/www/group1.rtf'; 

 

libname dannic &filepath; 

 

%macro simulation(truepc=,try=); 

data D1; 

  pc=0.4; 

  pt=0.5; 

  p=(pc+pt)/2; 

  n=((1.645*sqrt(2*p*(1-p))+0.84*sqrt(pc*(1-pc)+pt*(1-pt)))/(pt-pc))**2; /*the initial 

sample size for each arm: n=305*/ 

run; 

 

data simu1; 

  call streaminit(52571); 

  do sim=1 to 5000; 

  n1=153; 

  n2=153; 

    x11=rand('binomial',&truepc,n1); 

    x21=rand('binomial',&truepc,n2); 

    output; 

  end; 

run; 

/*method 1-fix ratio: 1.25, use phatctrlpool*/ 

data simu2; 

  set simu1; 

  phatpool=(x11+x21)/(n1+n2); 

  pchat=2*phatpool/2.25; 

  pthat=1.25*pchat; 

  diff=pthat-pchat; 

run; 

 

data simu3; 

  set simu2; 

  nstar=((1.645*sqrt(2*phatpool*(1-phatpool))+0.84*sqrt(pchat*(1-pchat)+pthat*(1-

pthat)))/diff)**2;  

  nnew1=ceil(max(nstar,305)); 

run; 

 

data addition1; 

  set simu3; 

  ad1=nnew1-153; 

run; 

/*Average of new sample size*/ 

ods output summary=means1; 

proc means data = simu3;  

  var nnew1;  

run; 

 

PROC SQL; 

create table pool_mean as 

SELECT &truepc as tpc,'pool' as method, nnew1_Mean as mean 
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FROM means1; 

QUIT; 

 

/*generate new data for method 1*/ 

 

data simu21; 

set addition1; 

  call streaminit(52477); 

  x12=rand('binomial', &truepc,ad1); 

  x22=rand('binomial', &truepc,ad1); 

  x1=x11+x12; 

  x2=x21+x22; 

run; 

 

/*Calculate Z-statistic*/ 

data simu211; 

  set simu21; 

  p1hat=x1/nnew1; 

  p2hat=x2/nnew1; 

  phat=(x1+x2)/(2*nnew1); 

  z=(p1hat-p2hat)/sqrt(phat*(1-phat)*2/nnew1); 

run; 

 

data simu2111; 

  set simu211; 

  if z GT 1.645 then y=1; 

  if z LT 1.645 then y=0; 

  if nnew1>305 then flag_nnew1=1; 

  else if nnew1<=305 then flag_nnew1=0; 

  keep sim y flag_nnew1; 

run; 

 

Proc summary data = simu2111; 

 var y flag_nnew1; 

 output out=summation_pool sum=; 

run;  

 

data summation_pool; 

 set summation_pool; 

 rename _freq_=freq flag_nnew1=count_nnew; 

 keep _freq_ y flag_nnew1; 

run; 

 

PROC SQL; 

create table pool_type1 as 

SELECT &truepc as tpc,'pool' as method, *, y/freq as type1_err_rate  

FROM summation_pool; 

QUIT; 

 

/*method 2- fixed ratio:1.25, use phatctrl*/ 

data simu4; 

  set simu1; 

  pchat=x21/n2; 

  pthat=1.25*pchat; 

  phatpool=(pchat+pthat)/2; 

  diff=pthat-pchat; 

run; 

data simu5; 

  set simu4; 

  nstar=((1.645*sqrt(2*phatpool*(1-phatpool))+0.84*sqrt(pchat*(1-pchat)+pthat*(1-

pthat)))/diff)**2;  

  nnew2=ceil(max(nstar,305)); 

run; 
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data addition2; 

  set simu5; 

  ad2=nnew2-153; 

run; 

 

/*Average of new sample size*/ 

ods output summary=means2; 

proc means data = simu5;  

  var nnew2;   

run; 

 

PROC SQL; 

create table ctrl_mean as 

SELECT &truepc as tpc,'ctrl' as method, nnew2_Mean as mean 

FROM means2; 

QUIT; 

 

/*generate new data for method 2*/ 

 

data simu22; 

set addition2; 

  call streaminit(52101); 

  x12=rand('binomial', &truepc,ad2); 

  x22=rand('binomial',&truepc,ad2); 

  x1=x11+x12; 

  x2=x21+x22; 

run; 

 

/*Calculate Z-statistic*/ 

data simu221; 

  set simu22; 

  p1hat=x1/nnew2; 

  p2hat=x2/nnew2; 

  phat=(x1+x2)/(2*nnew2); 

  z=(p1hat-p2hat)/sqrt(phat*(1-phat)*2/nnew2); 

run; 

 

data simu2211; 

  set simu221; 

  if z GT 1.645 then y=1; 

  if z LT 1.645 then y=0; 

  if nnew2>305 then flag_nnew2=1; 

  else if nnew2<=305 then flag_nnew2=0; 

  keep sim y flag_nnew2; 

  run; 

   

Proc summary data = simu2211; 

 var y flag_nnew2; 

 output out=summation_ctrl sum=; 

run;  

data summation_ctrl; 

 set summation_ctrl; 

 rename _freq_=freq flag_nnew2=count_nnew; 

 keep _freq_ y flag_nnew2; 

run; 

 

PROC SQL; 

create table ctrl_type1 as 

SELECT &truepc as tpc, 'ctrl' as method, *, y/freq as type1_err_rate  

FROM summation_ctrl; 

QUIT; 
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data result; 

 set pool_type1 ctrl_type1; 

run; 

data means; 

 set pool_mean ctrl_mean; 

run; 

data dannic.result_&try; 

set result; 

run; 

data dannic.means_&try; 

set means; 

run; 

 

%mend simulation; 

options nomprint; 

%simulation(truepc=0.1, try=m1); 

%simulation(truepc=0.2, try=m2); 

%simulation(truepc=0.3, try=m3); 

%simulation(truepc=0.4, try=m4); 

%simulation(truepc=0.5, try=m5); 

%simulation(truepc=0.6, try=m6); 

%simulation(truepc=0.7, try=m7); 

%simulation(truepc=0.8, try=m8); 

 

data dannic.type1err_temp_&group; 

set dannic.result_m1 dannic.result_m2 dannic.result_m3 dannic.result_m4  

 dannic.result_m5 dannic.result_m6 dannic.result_m7 dannic.result_m8; 

run; 

data dannic.means_temp_&group; 

set dannic.means_m1 dannic.means_m2 dannic.means_m3 dannic.means_m4 

 dannic.means_m5 dannic.means_m6 dannic.means_m7 dannic.means_m8; 

run; 

  

proc sql; 

create table dannic.type1err_&group as 

select &groupname as grpnm, * 

from dannic.type1err_temp_&group; 

quit; 

proc sql; 

create table dannic.means_&group as 

select &groupname as grpnm, * 

from dannic.means_temp_&group; 

quit; 

 

ods rtf file=&rtffile; 

proc print data = dannic.type1err_&group;run; 

proc print data=dannic.means_&group;run; 

ods rtf close; 

 

 

/*Scenario 2 -- pc=0.6,pt/pc=1.25*/ 

 

%let group=group2; 

%let groupname='group2'; 

%let filepath='/home/dannicong0/www/'; 

%let rtffile='/home/dannicong0/www/group2.rtf'; 

 

libname dannic &filepath; 

 

%macro simulation(truepc=,try=); 

data D1; 

  pc=0.6; 

  pt=0.75; 
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  p=(pc+pt)/2; 

  n=((1.645*sqrt(2*p*(1-p))+0.84*sqrt(pc*(1-pc)+pt*(1-pt)))/(pt-pc))**2; /*the initial 

sample size for each arm: n=120*/ 

run; 

 

data simu1; 

  call streaminit(52571); 

  do sim=1 to 5000; 

  n1=60; 

  n2=60; 

    x11=rand('binomial',&truepc,n1); 

    x21=rand('binomial',&truepc,n2); 

    output; 

  end; 

run; 

 

/*method 1-fix ratio: 1.25, use phatctrlpool*/ 

data simu2; 

  set simu1; 

  phatpool=(x11+x21)/(n1+n2); 

  pchat=2*phatpool/2.25; 

  pthat=1.25*pchat; 

  diff=pthat-pchat; 

run; 

 

data simu3; 

  set simu2; 

  nstar=((1.645*sqrt(2*phatpool*(1-phatpool))+0.84*sqrt(pchat*(1-pchat)+pthat*(1-

pthat)))/diff)**2;  

  nnew1=ceil(max(nstar,120)); 

run; 

 

data addition1; 

  set simu3; 

  ad1=nnew1-60; 

run; 

 

/*Average of new sample size*/ 

ods output summary=means1; 

proc means data = simu3;  

  var nnew1;  

run; 

 

PROC SQL; 

create table pool_mean as 

SELECT &truepc as tpc,'pool' as method, nnew1_Mean as mean 

FROM means1; 

QUIT; 

 

/*generate new data for method 1*/ 

data simu21; 

set addition1; 

  call streaminit(52477); 

  x12=rand('binomial', &truepc,ad1); 

  x22=rand('binomial', &truepc,ad1); 

  x1=x11+x12; 

  x2=x21+x22; 

run; 

 

/*Calculate Z-statistic*/ 

data simu211; 

  set simu21; 

  p1hat=x1/nnew1; 
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  p2hat=x2/nnew1; 

  phat=(x1+x2)/(2*nnew1); 

  z=(p1hat-p2hat)/sqrt(phat*(1-phat)*2/nnew1); 

run; 

 

data simu2111; 

  set simu211; 

  if z GT 1.645 then y=1; 

  if z LT 1.645 then y=0; 

  if nnew1>120 then flag_nnew1=1; 

  else if nnew1<=120 then flag_nnew1=0; 

  keep sim y flag_nnew1; 

run; 

 

Proc summary data = simu2111; 

 var y flag_nnew1; 

 output out=summation_pool sum=; 

run;  

 

data summation_pool; 

 set summation_pool; 

 rename _freq_=freq flag_nnew1=count_nnew; 

 keep _freq_ y flag_nnew1; 

run; 

 

PROC SQL; 

create table pool_type1 as 

SELECT &truepc as tpc,'pool' as method, *, y/freq as type1_err_rate  

FROM summation_pool; 

QUIT; 

 

/*method 2- fixed ratio:1.25, use phatctrl*/ 

data simu4; 

  set simu1; 

  pchat=x21/n2; 

  pthat=1.25*pchat; 

  phatpool=(pchat+pthat)/2; 

  diff=pthat-pchat; 

run; 

 

data simu5; 

  set simu4; 

  nstar=((1.645*sqrt(2*phatpool*(1-phatpool))+0.84*sqrt(pchat*(1-pchat)+pthat*(1-

pthat)))/diff)**2;  

  nnew2=ceil(max(nstar,120)); 

run; 

 

data addition2; 

  set simu5; 

  ad2=nnew2-60; 

run; 

 

/*Average of new sample size*/ 

ods output summary=means2; 

proc means data = simu5;  

  var nnew2;   

run; 

 

PROC SQL; 

create table ctrl_mean as 

SELECT &truepc as tpc,'ctrl' as method, nnew2_Mean as mean 

FROM means2; 

QUIT; 
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/*generate new data for method 2*/ 

 

data simu22; 

set addition2; 

  call streaminit(52101); 

  x12=rand('binomial', &truepc,ad2); 

  x22=rand('binomial',&truepc,ad2); 

  x1=x11+x12; 

  x2=x21+x22; 

run; 

 

/*Calculate Z-statistic*/ 

data simu221; 

  set simu22; 

  p1hat=x1/nnew2; 

  p2hat=x2/nnew2; 

  phat=(x1+x2)/(2*nnew2); 

  z=(p1hat-p2hat)/sqrt(phat*(1-phat)*2/nnew2); 

run; 

 

data simu2211; 

  set simu221; 

  if z GT 1.645 then y=1; 

  if z LT 1.645 then y=0; 

  if nnew2>120 then flag_nnew2=1; 

  else if nnew2<=120 then flag_nnew2=0; 

  keep sim y flag_nnew2; 

  run; 

   

Proc summary data = simu2211; 

var y flag_nnew2; 

output out=summation_ctrl sum=; 

run;  

 

data summation_ctrl; 

 set summation_ctrl; 

 rename _freq_=freq flag_nnew2=count_nnew; 

 keep _freq_ y flag_nnew2; 

run; 

 

PROC SQL; 

create table ctrl_type1 as 

SELECT &truepc as tpc, 'ctrl' as method, *, y/freq as type1_err_rate   

FROM summation_ctrl; 

QUIT; 

 

data result; 

 set pool_type1 ctrl_type1; 

run; 

 

data means; 

 set pool_mean ctrl_mean; 

run; 

 

data dannic.result_&try; 

set result; 

run; 

 

data dannic.means_&try; 

set means; 

run; 
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%mend simulation; 

options nomprint; 

%simulation(truepc=0.1, try=m1); 

%simulation(truepc=0.2, try=m2); 

%simulation(truepc=0.3, try=m3); 

%simulation(truepc=0.4, try=m4); 

%simulation(truepc=0.5, try=m5); 

%simulation(truepc=0.6, try=m6); 

%simulation(truepc=0.7, try=m7); 

%simulation(truepc=0.8, try=m8); 

 

data dannic.type1err_temp_&group; 

set dannic.result_m1 dannic.result_m2 dannic.result_m3 dannic.result_m4  

 dannic.result_m5 dannic.result_m6 dannic.result_m7 dannic.result_m8; 

run; 

data dannic.means_temp_&group; 

set dannic.means_m1 dannic.means_m2 dannic.means_m3 dannic.means_m4 

 dannic.means_m5 dannic.means_m6 dannic.means_m7 dannic.means_m8; 

run; 

  

proc sql; 

create table dannic.type1err_&group as 

select &groupname as grpnm, * 

from dannic.type1err_temp_&group; 

quit; 

proc sql; 

create table dannic.means_&group as 

select &groupname as grpnm, * 

from dannic.means_temp_&group; 

quit; 

 

ods rtf file=&rtffile; 

proc print data = dannic.type1err_&group;run; 

proc print data=dannic.means_&group;run; 

ods rtf close; 

 

/*Scenario 3 -- pc=0.7,pt/pc=1.25*/ 

 

%let group=group3; 

%let groupname='group3'; 

%let filepath='/home/dannicong0/www/'; 

%let rtffile='/home/dannicong0/www/group3.rtf'; 

 

libname dannic &filepath; 

 

%macro simulation(truepc=,try=); 

data D1; 

  pc=0.7; 

  pt=0.875; 

  p=(pc+pt)/2; 

  n=((1.645*sqrt(2*p*(1-p))+0.84*sqrt(pc*(1-pc)+pt*(1-pt)))/(pt-pc))**2; /*the initial 

sample size for each arm: n=67*/ 

run; 

 

data simu1; 

  call streaminit(52571); 

  do sim=1 to 5000; 

  n1=34; 

  n2=34; 

    x11=rand('binomial',&truepc,n1); 

    x21=rand('binomial',&truepc,n2); 

    output; 
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  end; 

run; 

 

/*method 1-fix ratio: 1.25, use phatctrlpool*/ 

data simu2; 

  set simu1; 

  phatpool=(x11+x21)/(n1+n2); 

  pchat=2*phatpool/2.25; 

  pthat=1.25*pchat; 

  diff=pthat-pchat; 

run; 

 

data simu3; 

  set simu2; 

  nstar=((1.645*sqrt(2*phatpool*(1-phatpool))+0.84*sqrt(pchat*(1-pchat)+pthat*(1-

pthat)))/diff)**2;  

  nnew1=ceil(max(nstar,67)); 

run; 

 

data addition1; 

  set simu3; 

  ad1=nnew1-34; 

run; 

 

/*Average of new sample size*/ 

ods output summary=means1; 

proc means data = simu3;  

  var nnew1;  

run; 

 

PROC SQL; 

create table pool_mean as 

SELECT &truepc as tpc,'pool' as method, nnew1_Mean as mean 

FROM means1; 

QUIT; 

 

/*generate new data for method 1*/ 

data simu21; 

set addition1; 

  call streaminit(52477); 

  x12=rand('binomial', &truepc,ad1); 

  x22=rand('binomial', &truepc,ad1); 

  x1=x11+x12; 

  x2=x21+x22; 

run; 

 

/*Calculate Z-statistic*/ 

data simu211; 

  set simu21; 

  p1hat=x1/nnew1; 

  p2hat=x2/nnew1; 

  phat=(x1+x2)/(2*nnew1); 

  z=(p1hat-p2hat)/sqrt(phat*(1-phat)*2/nnew1); 

run; 

 

data simu2111; 

  set simu211; 

  if z GT 1.645 then y=1; 

  if z LT 1.645 then y=0; 

  if nnew1>67 then flag_nnew1=1; 

  else if nnew1<=67 then flag_nnew1=0; 

  keep sim y flag_nnew1; 

run; 
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Proc summary data = simu2111; 

 var y flag_nnew1; 

 output out=summation_pool sum=; 

run;  

 

data summation_pool; 

 set summation_pool; 

 rename _freq_=freq flag_nnew1=count_nnew; 

 keep _freq_ y flag_nnew1; 

run; 

 

PROC SQL; 

create table pool_type1 as 

SELECT &truepc as tpc,'pool' as method, *, y/freq as type1_err_rate  

FROM summation_pool; 

QUIT; 

 

/*method 2- fixed ratio:1.25, use phatctrl*/ 

data simu4; 

  set simu1; 

  pchat=x21/n2; 

  pthat=1.25*pchat; 

  phatpool=(pchat+pthat)/2; 

  diff=pthat-pchat; 

run; 

 

data simu5; 

  set simu4; 

  nstar=((1.645*sqrt(2*phatpool*(1-phatpool))+0.84*sqrt(pchat*(1-pchat)+pthat*(1-

pthat)))/diff)**2;  

  nnew2=ceil(max(nstar,67)); 

run; 

 

data addition2; 

  set simu5; 

  ad2=nnew2-34; 

run; 

 

/*Average of new sample size*/ 

ods output summary=means2; 

proc means data = simu5;  

  var nnew2;   

run; 

 

PROC SQL; 

create table ctrl_mean as 

SELECT &truepc as tpc,'ctrl' as method, nnew2_Mean as mean 

FROM means2; 

QUIT; 

 

 

/*generate new data for method 2*/ 

data simu22; 

set addition2; 

  call streaminit(52101); 

  x12=rand('binomial', &truepc,ad2); 

  x22=rand('binomial',&truepc,ad2); 

  x1=x11+x12; 

  x2=x21+x22; 

run; 

 

/*Calculate Z-statistic*/ 
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data simu221; 

  set simu22; 

  p1hat=x1/nnew2; 

  p2hat=x2/nnew2; 

  phat=(x1+x2)/(2*nnew2); 

  z=(p1hat-p2hat)/sqrt(phat*(1-phat)*2/nnew2); 

run; 

 

data simu2211; 

  set simu221; 

  if z GT 1.645 then y=1; 

  if z LT 1.645 then y=0; 

  if nnew2>67 then flag_nnew2=1; 

  else if nnew2<=67 then flag_nnew2=0; 

  keep sim y flag_nnew2; 

  run; 

   

Proc summary data = simu2211; 

 var y flag_nnew2; 

 output out=summation_ctrl sum=; 

run;  

 

data summation_ctrl; 

 set summation_ctrl; 

 rename _freq_=freq flag_nnew2=count_nnew; 

 keep _freq_ y flag_nnew2; 

run; 

 

PROC SQL; 

create table ctrl_type1 as 

SELECT &truepc as tpc, 'ctrl' as method, *, y/freq as type1_err_rate  

FROM summation_ctrl; 

QUIT; 

 

data result; 

 set pool_type1 ctrl_type1; 

run; 

 

data means; 

 set pool_mean ctrl_mean; 

run; 

 

data dannic.result_&try; 

set result; 

run; 

 

data dannic.means_&try; 

set means; 

run; 

 

%mend simulation; 

options nomprint; 

%simulation(truepc=0.1, try=m1); 

%simulation(truepc=0.2, try=m2); 

%simulation(truepc=0.3, try=m3); 

%simulation(truepc=0.4, try=m4); 

%simulation(truepc=0.5, try=m5); 

%simulation(truepc=0.6, try=m6); 

%simulation(truepc=0.7, try=m7); 

%simulation(truepc=0.8, try=m8); 

 

data dannic.type1err_temp_&group; 

set dannic.result_m1 dannic.result_m2 dannic.result_m3 dannic.result_m4  
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 dannic.result_m5 dannic.result_m6 dannic.result_m7 dannic.result_m8; 

run; 

data dannic.means_temp_&group; 

set dannic.means_m1 dannic.means_m2 dannic.means_m3 dannic.means_m4 

 dannic.means_m5 dannic.means_m6 dannic.means_m7 dannic.means_m8; 

run; 

  

proc sql; 

create table dannic.type1err_&group as 

select &groupname as grpnm, * 

from dannic.type1err_temp_&group; 

quit; 

proc sql; 

create table dannic.means_&group as 

select &groupname as grpnm, * 

from dannic.means_temp_&group; 

quit; 

 

ods rtf file=&rtffile; 

proc print data = dannic.type1err_&group;run; 

proc print data=dannic.means_&group;run; 

ods rtf close; 

 

/*Scenario 4 -- pc=0.4,pt/pc=1.15*/ 

 

%let group=group4; 

%let groupname='group4'; 

%let filepath='/home/dannicong0/www/'; 

%let rtffile='/home/dannicong0/www/group4.rtf'; 

 

libname dannic &filepath; 

 

%macro simulation(truepc=,try=); 

data D1; 

  pc=0.4; 

  pt=0.46; 

  p=(pc+pt)/2; 

  n=((1.645*sqrt(2*p*(1-p))+0.84*sqrt(pc*(1-pc)+pt*(1-pt)))/(pt-pc))**2; /*the initial 

sample size for each arm: n=840*/ 

run; 

 

data simu1; 

  call streaminit(52571); 

  do sim=1 to 5000; 

  n1=420; 

  n2=420; 

    x11=rand('binomial',&truepc,n1); 

    x21=rand('binomial',&truepc,n2); 

    output; 

  end; 

run; 

 

/*method 1-fix ratio: 1.15, use phatctrlpool*/ 

data simu2; 

  set simu1; 

  phatpool=(x11+x21)/(n1+n2); 

  pchat=2*phatpool/2.15; 

  pthat=1.15*pchat; 

  diff=pthat-pchat; 

run; 
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data simu3; 

  set simu2; 

  nstar=((1.645*sqrt(2*phatpool*(1-phatpool))+0.84*sqrt(pchat*(1-pchat)+pthat*(1-

pthat)))/diff)**2;  

  nnew1=ceil(max(nstar,840)); 

run; 

 

data addition1; 

  set simu3; 

  ad1=nnew1-420; 

run; 

 

 

/*Average of new sample size*/ 

ods output summary=means1; 

proc means data = simu3;  

  var nnew1;  

run; 

 

PROC SQL; 

create table pool_mean as 

SELECT &truepc as tpc,'pool' as method, nnew1_Mean as mean 

FROM means1; 

QUIT; 

 

/*generate new data for method 1*/ 

data simu21; 

set addition1; 

  call streaminit(52477); 

  x12=rand('binomial', &truepc,ad1); 

  x22=rand('binomial', &truepc,ad1); 

  x1=x11+x12; 

  x2=x21+x22; 

run; 

 

/*Calculate Z-statistic*/ 

data simu211; 

  set simu21; 

  p1hat=x1/nnew1; 

  p2hat=x2/nnew1; 

  phat=(x1+x2)/(2*nnew1); 

  z=(p1hat-p2hat)/sqrt(phat*(1-phat)*2/nnew1); 

run; 

 

data simu2111; 

  set simu211; 

  if z GT 1.645 then y=1; 

  if z LT 1.645 then y=0; 

  if nnew1>840 then flag_nnew1=1; 

  else if nnew1<=840 then flag_nnew1=0; 

  keep sim y flag_nnew1; 

run; 

 

Proc summary data = simu2111; 

 var y flag_nnew1; 

 output out=summation_pool sum=; 

run;  

 

data summation_pool; 

 set summation_pool; 

 rename _freq_=freq flag_nnew1=count_nnew; 

 keep _freq_ y flag_nnew1; 

run; 
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PROC SQL; 

create table pool_type1 as 

SELECT &truepc as tpc,'pool' as method, *, y/freq as type1_err_rate  

FROM summation_pool; 

QUIT; 

 

/*method 2- fixed ratio:1.15, use phatctrl*/ 

data simu4; 

  set simu1; 

  pchat=x21/n2; 

  pthat=1.15*pchat; 

  phatpool=(pchat+pthat)/2; 

  diff=pthat-pchat; 

run; 

 

data simu5; 

  set simu4; 

  nstar=((1.645*sqrt(2*phatpool*(1-phatpool))+0.84*sqrt(pchat*(1-pchat)+pthat*(1-

pthat)))/diff)**2;  

  nnew2=ceil(max(nstar,840)); 

run; 

 

data addition2; 

  set simu5; 

  ad2=nnew2-420; 

run; 

 

/*Average of new sample size*/ 

ods output summary=means2; 

proc means data = simu5;  

  var nnew2;   

run; 

 

PROC SQL; 

create table ctrl_mean as 

SELECT &truepc as tpc,'ctrl' as method, nnew2_Mean as mean 

FROM means2; 

QUIT; 

 

/*generate new data for method 2*/ 

data simu22; 

set addition2; 

  call streaminit(52101); 

  x12=rand('binomial', &truepc,ad2); 

  x22=rand('binomial',&truepc,ad2); 

  x1=x11+x12; 

  x2=x21+x22; 

run; 

 

/*Calculate Z-statistic*/ 

data simu221; 

  set simu22; 

  p1hat=x1/nnew2; 

  p2hat=x2/nnew2; 

  phat=(x1+x2)/(2*nnew2); 

  z=(p1hat-p2hat)/sqrt(phat*(1-phat)*2/nnew2); 

run; 

 

data simu2211; 

  set simu221; 

  if z GT 1.645 then y=1; 

  if z LT 1.645 then y=0; 
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  if nnew2>840 then flag_nnew2=1; 

  else if nnew2<=840 then flag_nnew2=0; 

  keep sim y flag_nnew2; 

  run; 

   

Proc summary data = simu2211; 

 var y flag_nnew2; 

 output out=summation_ctrl sum=; 

run;  

 

data summation_ctrl; 

 set summation_ctrl; 

 rename _freq_=freq flag_nnew2=count_nnew; 

 keep _freq_ y flag_nnew2; 

run; 

 

PROC SQL; 

create table ctrl_type1 as 

SELECT &truepc as tpc, 'ctrl' as method, *, y/freq as type1_err_rate  

FROM summation_ctrl; 

QUIT; 

 

data result; 

 set pool_type1 ctrl_type1; 

run; 

 

data means; 

 set pool_mean ctrl_mean; 

run; 

 

data dannic.result_&try; 

set result; 

run; 

 

data dannic.means_&try; 

set means; 

run; 

%mend simulation; 

options nomprint; 

%simulation(truepc=0.1, try=m1); 

%simulation(truepc=0.2, try=m2); 

%simulation(truepc=0.3, try=m3); 

%simulation(truepc=0.4, try=m4); 

%simulation(truepc=0.5, try=m5); 

%simulation(truepc=0.6, try=m6); 

%simulation(truepc=0.7, try=m7); 

%simulation(truepc=0.8, try=m8); 

 

data dannic.type1err_temp_&group; 

set dannic.result_m1 dannic.result_m2 dannic.result_m3 dannic.result_m4  

 dannic.result_m5 dannic.result_m6 dannic.result_m7 dannic.result_m8; 

run; 

data dannic.means_temp_&group; 

set dannic.means_m1 dannic.means_m2 dannic.means_m3 dannic.means_m4 

 dannic.means_m5 dannic.means_m6 dannic.means_m7 dannic.means_m8; 

run; 

  

proc sql; 

create table dannic.type1err_&group as 

select &groupname as grpnm, * 

from dannic.type1err_temp_&group; 

quit; 

proc sql; 
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create table dannic.means_&group as 

select &groupname as grpnm, * 

from dannic.means_temp_&group; 

quit; 

 

ods rtf file=&rtffile; 

proc print data = dannic.type1err_&group;run; 

proc print data=dannic.means_&group;run; 

ods rtf close; 

 

/*Scenario 5 -- pc=0.6,pt/pc=1.15*/ 

 

%let group=group5; 

%let groupname='group5'; 

%let filepath='/home/dannicong0/www/'; 

%let rtffile='/home/dannicong0/www/group5.rtf'; 

 

libname dannic &filepath; 

 

%macro simulation(truepc=,try=); 

data D1; 

  pc=0.6; 

  pt=0.69; 

  p=(pc+pt)/2; 

  n=((1.645*sqrt(2*p*(1-p))+0.84*sqrt(pc*(1-pc)+pt*(1-pt)))/(pt-pc))**2; /*the initial 

sample size for each arm: n=349*/ 

run; 

 

data simu1; 

  call streaminit(52571); 

  do sim=1 to 5000; 

  n1=175; 

  n2=175; 

    x11=rand('binomial',&truepc,n1); 

    x21=rand('binomial',&truepc,n2); 

    output; 

  end; 

run; 

 

/*method 1-fix ratio: 1.15, use phatctrlpool*/ 

data simu2; 

  set simu1; 

  phatpool=(x11+x21)/(n1+n2); 

  pchat=2*phatpool/2.15; 

  pthat=1.15*pchat; 

  diff=pthat-pchat; 

run; 

 

data simu3; 

  set simu2; 

  nstar=((1.645*sqrt(2*phatpool*(1-phatpool))+0.84*sqrt(pchat*(1-pchat)+pthat*(1-

pthat)))/diff)**2;  

  nnew1=ceil(max(nstar,349)); 

run; 

 

data addition1; 

  set simu3; 

  ad1=nnew1-175; 

run; 

 

/*Average of new sample size*/ 

ods output summary=means1; 

proc means data = simu3;  
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  var nnew1;  

run; 

 

PROC SQL; 

create table pool_mean as 

SELECT &truepc as tpc,'pool' as method, nnew1_Mean as mean 

FROM means1; 

QUIT; 

 

/*generate new data for method 1*/ 

data simu21; 

set addition1; 

  call streaminit(52477); 

  x12=rand('binomial', &truepc,ad1); 

  x22=rand('binomial', &truepc,ad1); 

  x1=x11+x12; 

  x2=x21+x22; 

run; 

 

/*Calculate Z-statistic*/ 

data simu211; 

  set simu21; 

  p1hat=x1/nnew1; 

  p2hat=x2/nnew1; 

  phat=(x1+x2)/(2*nnew1); 

  z=(p1hat-p2hat)/sqrt(phat*(1-phat)*2/nnew1); 

run; 

 

data simu2111; 

  set simu211; 

  if z GT 1.645 then y=1; 

  if z LT 1.645 then y=0; 

  if nnew1>349 then flag_nnew1=1; 

  else if nnew1<=349 then flag_nnew1=0; 

  keep sim y flag_nnew1; 

run; 

 

Proc summary data = simu2111; 

 var y flag_nnew1; 

 output out=summation_pool sum=; 

run;  

 

data summation_pool; 

 set summation_pool; 

 rename _freq_=freq flag_nnew1=count_nnew; 

 keep _freq_ y flag_nnew1; 

run; 

 

PROC SQL; 

create table pool_type1 as 

SELECT &truepc as tpc,'pool' as method, *, y/freq as type1_err_rate  

FROM summation_pool; 

QUIT; 

 

/*method 2- fixed ratio:1.15, use phatctrl*/ 

data simu4; 

  set simu1; 

  pchat=x21/n2; 

  pthat=1.15*pchat; 

  phatpool=(pchat+pthat)/2; 

  diff=pthat-pchat; 

run; 
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data simu5; 

  set simu4; 

  nstar=((1.645*sqrt(2*phatpool*(1-phatpool))+0.84*sqrt(pchat*(1-pchat)+pthat*(1-

pthat)))/diff)**2;  

  nnew2=ceil(max(nstar,349)); 

run; 

 

data addition2; 

  set simu5; 

  ad2=nnew2-175; 

run; 

 

/*Average of new sample size*/ 

ods output summary=means2; 

proc means data = simu5;  

  var nnew2;   

run; 

 

PROC SQL; 

create table ctrl_mean as 

SELECT &truepc as tpc,'ctrl' as method, nnew2_Mean as mean 

FROM means2; 

QUIT; 

 

/*generate new data for method 2*/ 

data simu22; 

set addition2; 

  call streaminit(52101); 

  x12=rand('binomial', &truepc,ad2); 

  x22=rand('binomial',&truepc,ad2); 

  x1=x11+x12; 

  x2=x21+x22; 

run; 

 

/*Calculate Z-statistic*/ 

data simu221; 

  set simu22; 

  p1hat=x1/nnew2; 

  p2hat=x2/nnew2; 

  phat=(x1+x2)/(2*nnew2); 

  z=(p1hat-p2hat)/sqrt(phat*(1-phat)*2/nnew2); 

run; 

 

data simu2211; 

  set simu221; 

  if z GT 1.645 then y=1; 

  if z LT 1.645 then y=0; 

  if nnew2>349 then flag_nnew2=1; 

  else if nnew2<=349 then flag_nnew2=0; 

  keep sim y flag_nnew2; 

  run; 

   

Proc summary data = simu2211; 

 var y flag_nnew2; 

 output out=summation_ctrl sum=; 

run;  

 

data summation_ctrl; 

 set summation_ctrl; 

 rename _freq_=freq flag_nnew2=count_nnew; 

 keep _freq_ y flag_nnew2; 

run; 
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PROC SQL; 

create table ctrl_type1 as 

SELECT &truepc as tpc, 'ctrl' as method, *, y/freq as type1_err_rate 

FROM summation_ctrl; 

QUIT; 

 

data result; 

 set pool_type1 ctrl_type1; 

run; 

 

data means; 

 set pool_mean ctrl_mean; 

run; 

 

data dannic.result_&try; 

set result; 

run; 

 

data dannic.means_&try; 

set means; 

run; 

 

%mend simulation; 

options nomprint; 

%simulation(truepc=0.1, try=m1); 

%simulation(truepc=0.2, try=m2); 

%simulation(truepc=0.3, try=m3); 

%simulation(truepc=0.4, try=m4); 

%simulation(truepc=0.5, try=m5); 

%simulation(truepc=0.6, try=m6); 

%simulation(truepc=0.7, try=m7); 

%simulation(truepc=0.8, try=m8); 

 

data dannic.type1err_temp_&group; 

set dannic.result_m1 dannic.result_m2 dannic.result_m3 dannic.result_m4  

 dannic.result_m5 dannic.result_m6 dannic.result_m7 dannic.result_m8; 

run; 

data dannic.means_temp_&group; 

set dannic.means_m1 dannic.means_m2 dannic.means_m3 dannic.means_m4 

 dannic.means_m5 dannic.means_m6 dannic.means_m7 dannic.means_m8; 

run; 

  

proc sql; 

create table dannic.type1err_&group as 

select &groupname as grpnm, * 

from dannic.type1err_temp_&group; 

quit; 

proc sql; 

create table dannic.means_&group as 

select &groupname as grpnm, * 

from dannic.means_temp_&group; 

quit; 

 

ods rtf file=&rtffile; 

proc print data = dannic.type1err_&group;run; 

proc print data=dannic.means_&group;run; 

ods rtf close; 

 

/*Scenario 6 -- pc=0.7,pt/pc=1.15*/ 

 

%let group=group6; 

%let groupname='group6'; 
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%let filepath='/home/dannicong0/www/'; 

%let rtffile='/home/dannicong0/www/group6.rtf'; 

 

libname dannic &filepath; 

 

%macro simulation(truepc=,try=); 

data D1; 

  pc=0.7; 

  pt=0.805; 

  p=(pc+pt)/2; 

  n=((1.645*sqrt(2*p*(1-p))+0.84*sqrt(pc*(1-pc)+pt*(1-pt)))/(pt-pc))**2; /*the initial 

sample size for each arm: n=208*/ 

run; 

 

data simu1; 

  call streaminit(52571); 

  do sim=1 to 5000; 

  n1=104; 

  n2=104; 

    x11=rand('binomial',&truepc,n1); 

    x21=rand('binomial',&truepc,n2); 

    output; 

  end; 

run; 

 

/*method 1-fix ratio: 1.15, use phatctrlpool*/ 

data simu2; 

  set simu1; 

  phatpool=(x11+x21)/(n1+n2); 

  pchat=2*phatpool/2.15; 

  pthat=1.15*pchat; 

  diff=pthat-pchat; 

run; 

 

data simu3; 

  set simu2; 

  nstar=((1.645*sqrt(2*phatpool*(1-phatpool))+0.84*sqrt(pchat*(1-pchat)+pthat*(1-

pthat)))/diff)**2;  

  nnew1=ceil(max(nstar,208)); 

run; 

 

data addition1; 

  set simu3; 

  ad1=nnew1-104; 

run; 

 

/*Average of new sample size*/ 

ods output summary=means1; 

proc means data = simu3;  

  var nnew1;  

run; 

 

PROC SQL; 

create table pool_mean as 

SELECT &truepc as tpc,'pool' as method, nnew1_Mean as mean 

FROM means1; 

QUIT; 

 

/*generate new data for method 1*/ 

data simu21; 

set addition1; 

  call streaminit(52477); 

  x12=rand('binomial', &truepc,ad1); 
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  x22=rand('binomial', &truepc,ad1); 

  x1=x11+x12; 

  x2=x21+x22; 

run; 

 

/*Calculate Z-statistic*/ 

data simu211; 

  set simu21; 

  p1hat=x1/nnew1; 

  p2hat=x2/nnew1; 

  phat=(x1+x2)/(2*nnew1); 

  z=(p1hat-p2hat)/sqrt(phat*(1-phat)*2/nnew1); 

run; 

 

data simu2111; 

  set simu211; 

  if z GT 1.645 then y=1; 

  if z LT 1.645 then y=0; 

  if nnew1>208 then flag_nnew1=1; 

  else if nnew1<=208 then flag_nnew1=0; 

  keep sim y flag_nnew1; 

run; 

 

Proc summary data = simu2111; 

 var y flag_nnew1; 

 output out=summation_pool sum=; 

run;  

 

data summation_pool; 

 set summation_pool; 

 rename _freq_=freq flag_nnew1=count_nnew; 

 keep _freq_ y flag_nnew1; 

run; 

 

PROC SQL; 

create table pool_type1 as 

SELECT &truepc as tpc,'pool' as method, *, y/freq as type1_err_rate 

FROM summation_pool; 

QUIT; 

 

/*method 2- fixed ratio:1.15, use phatctrl*/ 

data simu4; 

  set simu1; 

  pchat=x21/n2; 

  pthat=1.15*pchat; 

  phatpool=(pchat+pthat)/2; 

  diff=pthat-pchat; 

run; 

 

data simu5; 

  set simu4; 

  nstar=((1.645*sqrt(2*phatpool*(1-phatpool))+0.84*sqrt(pchat*(1-pchat)+pthat*(1-

pthat)))/diff)**2;  

  nnew2=ceil(max(nstar,208)); 

run; 

 

data addition2; 

  set simu5; 

  ad2=nnew2-104; 

run; 

 

/*Average of new sample size*/ 

ods output summary=means2; 
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proc means data = simu5;  

  var nnew2;   

run; 

 

PROC SQL; 

create table ctrl_mean as 

SELECT &truepc as tpc,'ctrl' as method, nnew2_Mean as mean 

FROM means2; 

QUIT; 

 

/*generate new data for method 2*/ 

data simu22; 

set addition2; 

  call streaminit(52101); 

  x12=rand('binomial', &truepc,ad2); 

  x22=rand('binomial',&truepc,ad2); 

  x1=x11+x12; 

  x2=x21+x22; 

run; 

 

/*Calculate Z-statistic*/ 

data simu221; 

  set simu22; 

  p1hat=x1/nnew2; 

  p2hat=x2/nnew2; 

  phat=(x1+x2)/(2*nnew2); 

  z=(p1hat-p2hat)/sqrt(phat*(1-phat)*2/nnew2); 

run; 

 

data simu2211; 

  set simu221; 

  if z GT 1.645 then y=1; 

  if z LT 1.645 then y=0; 

  if nnew2>208 then flag_nnew2=1; 

  else if nnew2<=208 then flag_nnew2=0; 

  keep sim y flag_nnew2; 

  run; 

   

Proc summary data = simu2211; 

 var y flag_nnew2; 

 output out=summation_ctrl sum=; 

run;  

 

data summation_ctrl; 

 set summation_ctrl; 

 rename _freq_=freq flag_nnew2=count_nnew; 

 keep _freq_ y flag_nnew2; 

run; 

 

PROC SQL; 

create table ctrl_type1 as 

SELECT &truepc as tpc, 'ctrl' as method, *, y/freq as type1_err_rate  

FROM summation_ctrl; 

QUIT; 

 

data result; 

 set pool_type1 ctrl_type1; 

run; 

 

data means; 

 set pool_mean ctrl_mean; 

run; 
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data dannic.result_&try; 

set result; 

run; 

 

data dannic.means_&try; 

set means; 

run; 

 

%mend simulation; 

options nomprint; 

%simulation(truepc=0.1, try=m1); 

%simulation(truepc=0.2, try=m2); 

%simulation(truepc=0.3, try=m3); 

%simulation(truepc=0.4, try=m4); 

%simulation(truepc=0.5, try=m5); 

%simulation(truepc=0.6, try=m6); 

%simulation(truepc=0.7, try=m7); 

%simulation(truepc=0.8, try=m8); 

 

data dannic.type1err_temp_&group; 

set dannic.result_m1 dannic.result_m2 dannic.result_m3 dannic.result_m4  

 dannic.result_m5 dannic.result_m6 dannic.result_m7 dannic.result_m8; 

run; 

data dannic.means_temp_&group; 

set dannic.means_m1 dannic.means_m2 dannic.means_m3 dannic.means_m4 

 dannic.means_m5 dannic.means_m6 dannic.means_m7 dannic.means_m8; 

run; 

  

proc sql; 

create table dannic.type1err_&group as 

select &groupname as grpnm, * 

from dannic.type1err_temp_&group; 

quit; 

proc sql; 

create table dannic.means_&group as 

select &groupname as grpnm, * 

from dannic.means_temp_&group; 

quit; 

 

ods rtf file=&rtffile; 

proc print data = dannic.type1err_&group;run; 

proc print data=dannic.means_&group;run; 

ods rtf close; 
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