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Abstract 

Wheat breeders are in a race for genetic gain to secure the future nutritional needs of a 

growing population. Multiple barriers exist in the acceleration of crop improvement. Emerging 

technologies are reducing these obstacles. Advances in genotyping technologies have significantly 

decreased the cost of characterizing the genetic make-up of candidate breeding lines. However, 

this is just part of the equation. Field-based phenotyping informs a breeder’s decision as to which 

lines move forward in the breeding cycle. This has long been the most expensive and time-

consuming, though most critical, aspect of breeding. The grand challenge remains in connecting 

genetic variants to observed phenotypes followed by predicting phenotypes based on the genetic 

composition of lines or cultivars. 

In this context, the current study was undertaken to investigate the utility of UAS in 

assessment field trials in wheat breeding programs. The major objective was to integrate remotely 

sensed data with geospatial analysis for high throughput phenotyping of large wheat breeding 

nurseries. The initial step was to develop and validate a semi-automated high-throughput 

phenotyping pipeline using a low-cost UAS and NIR camera, image processing, and radiometric 

calibration to build orthomosaic imagery and 3D models. The relationship between plot-level data 

(vegetation indices and height) extracted from UAS imagery and manual measurements were 

examined and found to have a high correlation. Data derived from UAS imagery performed as 

well as manual measurements while exponentially increasing the amount of data available. The 

high-resolution, high-temporal HTP data extracted from this pipeline offered the opportunity to 

develop a within season grain yield prediction model. Due to the variety in genotypes and 

environmental conditions, breeding trials are inherently spatial in nature and vary non-randomly 

across the field. This makes geographically weighted regression models a good choice as a 



  

geospatial prediction model. Finally, with the addition of georeferenced and spatial data integral 

in HTP and imagery, we were able to reduce the environmental effect from the data and increase 

the accuracy of UAS plot-level data. 

The models developed through this research, when combined with genotyping 

technologies, increase the volume, accuracy, and reliability of phenotypic data to better inform 

breeder selections.  This increased accuracy with evaluating and predicting grain yield will help 

breeders to rapidly identify and advance the most promising candidate wheat varieties. 
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Abstract 

Wheat breeders are in a race for genetic gain to secure the future nutritional needs of a 

growing population. Multiple barriers exist in the acceleration of crop improvement. Emerging 

technologies are reducing these obstacles. Advances in genotyping technologies have significantly 

decreased the cost of characterizing the genetic make-up of candidate breeding lines. However, 

this is just part of the equation. Field-based phenotyping informs a breeder’s decision as to which 

lines move forward in the breeding cycle. This has long been the most expensive and time-

consuming, though most critical, aspect of breeding. The grand challenge remains in connecting 

genetic variants to observed phenotypes followed by predicting phenotypes based on the genetic 

composition of lines or cultivars. 

In this context, the current study was undertaken to investigate the utility of UAS in 

assessment field trials in wheat breeding programs. The major objective was to integrate remotely 

sensed data with geospatial analysis for high throughput phenotyping of large wheat breeding 

nurseries. The initial step was to develop and validate a semi-automated high-throughput 

phenotyping pipeline using a low-cost UAS and NIR camera, image processing, and radiometric 

calibration to build orthomosaic imagery and 3D models. The relationship between plot-level data 

(vegetation indices and height) extracted from UAS imagery and manual measurements were 

examined and found to have a high correlation. Data derived from UAS imagery performed as 

well as manual measurements while exponentially increasing the amount of data available. The 

high-resolution, high-temporal HTP data extracted from this pipeline offered the opportunity to 

develop a within season grain yield prediction model. Due to the variety in genotypes and 

environmental conditions, breeding trials are inherently spatial in nature and vary non-randomly 

across the field. This makes geographically weighted regression models a good choice as a 



  

geospatial prediction model. Finally, with the addition of georeferenced and spatial data integral 

in HTP and imagery, we were able to reduce the environmental effect from the data and increase 

the accuracy of UAS plot-level data. 

The models developed through this research, when combined with genotyping 

technologies, increase the volume, accuracy, and reliability of phenotypic data to better inform 

breeder selections.  This increased accuracy with evaluating and predicting grain yield will help 

breeders to rapidly identify and advance the most promising candidate wheat varieties. 
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Chapter 1 - Introduction 

A plant phenotype is a set of structural, morphological, physiological, and performance-related 

traits of a given genotype in a defined environment (Granier & Vile 2014).  The phenotype results 

from the interactions between a plant's genes and environmental factors.  Plant phenotyping 

involves a broad range of plant measurements such as growth development, canopy architecture, 

physiology, disease and pest response and yield. Traditional phenotyping methods often rely on 

simple tools like rulers and other measuring devices, along with significant amounts of manual 

work, to extract the desired trait data. Compared to advanced genotyping methods such as the latest 

sequencing technologies, traditional phenotyping methods are time-consuming, labor-intensive, 

and cost-inefficient. This limits our ability to quantitatively understand how genetic traits are 

related to plant growth, environmental adaptation, and yield. 

 

Great interest in plant high-throughput phenotyping (HTP) techniques has arisen, in the past 

several years. HTP is an assessment of plant phenotypes on a scale and scope not achievable with 

traditional methods such as visual scoring and manual measurements (Dhondt et al. 2013).  HTP 

techniques use sensor systems and automated computer algorithms to extract phenotypic traits for 

large genetic mapping populations using non-destructive and non-invasive sampling methods. To 

be useful to breeding programs, HTP methods must be amenable to plot sizes, experimental 

designs and field conditions in these programs.  This requires evaluating a large number of lines 

within a short time span, methods that are lower cost and less labor intensive than current 

techniques, and accurately assessing and making selections in large populations consisting of 

thousands to tens-of-thousands of plots (Sanchez, A et al. 2014; Haghighattalab et al. 2016).  Use 

of information technologies such as remote sensing and computational tools are necessary to 
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rapidly identify the growth responses of genetically distinct plants in the field and link these 

responses to individual genes.  

 

The extraction of data via HTP platforms requires a series of discrete steps that must be reliably 

executed in sequence. Such a set of steps is referred to as a "pipeline".  

 

In recent years, most focused has been done on automation of data acquisition using a robotic 

vehicle with imaging systems and sensors. Less well-developed are data pipelines that automate 

data storage, processing, and analysis of the data extracted from these phenotyping platforms 

(White et al. 2012). Therefore, a slow manual collection of small amounts of data will get replaced 

by a slow manual management of large amounts of automatically-collected data unless we develop 

an automatic data analysis pipeline.  

 

To address this challenge, we describe here and the chapters that follow a semi-automated HTP 

analysis pipeline using an unmanned aerial vehicle (UAV) platform, which will improve the 

capability of breeders to assess great numbers of lines in field trials. Then we will use remote 

sensing and geographic information (GIS) techniques to predict grain yield using the information 

extracted from UAS imagery, and finally, we will adjust the data, using the geostatistical 

approaches, for the spatial variation in the field.  

 

This dissertation focuses on the areas in which plant phenotyping can be improved and how remote 

sensing and GIS can be incorporated into breeding programs. Some of the problems and panaceas 

investigated are: 1.) Development of a semi-automated HTP analysis pipeline using a low cost 
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unmanned aerial system (UAS) platform, and 2.) within-season grain yield prediction using spatio-

temporal unmanned aerial systems imagery 3.) spatial adjustment of HTP data extracted from UAS 

imagery of field trial in wheat breeding nurseries. 

 

 Pipeline Development 

Multispectral remote sensing plays a key role in precision agriculture due to its ability to represent 

crop growth condition on a spatial and temporal scale as well as its cost effectiveness. 

 

In recent years, there has been increased interest in ground-based and aerial HTP platforms, 

particularly for applications in breeding and germplasm evaluation activities (Deery et al. 2014; 

Fiorani & Schurr 2013; Walter et al. 2015).  Ground-based phenotyping platforms include 

modified vehicles using proximal sensing sensors (Busemeyer et al. 2013; Sanchez, A et al. 2014; 

Crain et al. 2015).   

 

One of the emerging technologies in aerial based systems is UAV, which has undergone a 

remarkable development in recent years and is now a robust sensor-bearing platform for various 

agricultural and environmental applications (Dunford et al. 2009; Chapman et al. 2014).  UAVs 

can cover an entire research site in a very short time, giving a rapid evaluation of the whole field 

and individual plots while minimizing the environment effects such as wind, cloud cover, and solar 

radiation.  UAVs with sensors enable measuring with high spatial and temporal resolution, and 

capable of generating useful information for plant breeding programs. 
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With the introduction of HTP through UAV equipped with sensors, breeding programs can rapidly 

and reliably collect phenotypic data with minimal labor costs. This lowering of labor cost 

constraints allows for breeders to increase the number of lines assessed, thereby increasing the 

chance of achieving greater numbers of superior lines. 

 

Recent advances in platform design, as well as the ability to the production of thousands of imagery 

and geo-referencing, and mosaicking the images, and extracting useful information from the 

imagery requires a workflow to execute HTP with UAS as a conventional tool in plant breeding.  

Additionally, developing efficient and easy-to-use pipelines to process HTP data and disseminate 

associated algorithms are necessary when dealing with big data.  The primary objective of chapter 

2 was to develop and validate a pipeline for processing data obtained by consumer grade digital 

cameras using a low-cost UAS to evaluate small plot field-based research typical of plant breeding 

programs.  

 

 

 Grain Yield Prediction 

The primary objective of chapter 3 was to determine whether an accurate remote sensing based 

method could be developed to monitor plant growth and estimate grain yield using aerial spatio-

temporal imagery in small plot wheat nurseries.  

Multispectral sensors significantly help in exploring the relationships between crop biophysical 

data with crop production and yield. Many empirical relationships have been established in the 

past between spectral vegetation indices and crop growth rates through ground sampling or by 

using crop growth yield models.  These relationships are then used by the crop growers, and 
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breeders to estimate the expected yield of crops within season, to make crop management and 

production related decisions for maximizing field productivity and market gains. 

 

To examine the value of UAS in plant breeding and the data derived from the imagery, chapter 3 

looks at how HTP measurements can be collected throughout the growing season, how 

geostatistical methods can be used to add value to data taken at multiple times throughout the 

growing season and predict grain yield. The purpose of this research is to evaluate the performance 

of geographically weighted models in predicting grain yields at plot level in breeding nurseries.  

 

 Spatial Adjustment 

The introduction of geographic information system (GIS), global positioning systems (GPS) and 

remote sensing in agriculture, has resulted in more accurate and efficient mapping of field 

variability.  

The phenotypes are determined by the genetics of each entry in the nursery but also influenced by 

the spatial variation across the field along with the variation of genotypic values. To improve the 

accuracy of selections, breeder needs to account for non-heritable environmental variation in the 

form of spatial field effects. To improve the accuracy of selections, breeder needs to account for 

environmental variation in the form of spatial field effects. These variations are caused by multiple 

environmental factors that can vary across a field such as soil fertility, soil type, moisture holding 

capacity, and also many human-made variations such as irrigation system, the direction of 

cultivation/harvesting, and previous crop cycles (Funda et al. 2007; Bos 2008; Sarker & Singh 

2015). 
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The goal of chapter 4 is to evaluate the use of moving grid, integrate with spatial information 

extracted from UAS images to adjust for environmental variation in high throughput phenotypic 

data and yield of a large wheat breeding nursery. 

 

 The eye in the sky 

Aerial and NIR imagery have been used for more than 50 years to monitor crop growth. In recent 

years, the application of unmanned aerial systems for crop studies and precision agriculture has 

been gaining importance due to the improvements in the spatial and spectral resolution of the 

sensors, and also the smaller size of the cameras to be mounted on these platforms.  

Recent studies have shown the potential of UAS in monitoring of plant growth for different 

crops such as wheat, corn, cotton, sorghum, rice, and so on (Swain et al. 2010; Haghighattalab et 

al. 2016; Neely et al. 2016; Hunt et al. 2008; Lelong et al. 2008). 

 

The pipeline developed in this study is applicable to any crop types. GW regression as described 

in chapter 3 can also be used to predict grain yield for any other crops, and also can be used to 

predict grain yield from multiyear data set as long as data is provided from the same exact 

location. The spatial adjustment technique developed and explained in chapter 4, can be applied 

to any breeding field with spatial variation. 
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Chapter 2 - Application of Unmanned Aerial Systems for High 

Throughput Phenotyping of Large Wheat Breeding Nurseries 

 

This chapter has been published as following journal article: 

Haghighattalab A, González Pérez L, Mondal S, Singh D, Schinstock D, Rutkoski J, 

Ortiz-Monasterio I, Singh RP, Goodin D, Poland J: Application of unmanned aerial systems for 

high throughput phenotyping of large wheat breeding nurseries. Plant Methods 2016, 12:1–15 
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 ABSTRACT 

 

Background:  Low cost unmanned aerial systems (UAS) have great potential for rapid 

proximal measurements of plants in agriculture.  In the context of plant breeding and genetics, 

current approaches for phenotyping a large number of breeding lines under field conditions 

require substantial investments in time, cost, and labor.  For field-based high-throughput 

phenotyping (HTP), UAS platforms can provide high-resolution measurements for small plot 

research, while enabling the rapid assessment of tens-of-thousands of field plots.  The objective 

of this study was to complete a baseline assessment of the utility of UAS in assessment field 

trials as commonly implemented in wheat breeding programs.  We developed a semi-automated 

image-processing pipeline to extract plot level data from UAS imagery.  The image dataset was 

processed using a photogrammetric pipeline based on image orientation and radiometric 

calibration to produce orthomosaic images.  We also examined the relationships between 

vegetation indices (VIs) extracted from high spatial resolution multispectral imagery collected 

with two different UAS systems (eBee Ag carrying MultiSpec 4C camera, and IRIS+ quadcopter 

carrying modified NIR Canon S100) and ground truth spectral data from hand-held 

spectroradiometer.   

 

Results:  We found good correlation between the VIs obtained from UAS platforms and 

ground-truth measurements and observed high broad-sense heritability for VIs.  We determined 

radiometric calibration methods developed for satellite imagery significantly improved the 

precision of VIs from the UAS.  We observed VIs extracted from calibrated images of Canon 

S100 had a significantly higher correlation to the spectroradiometer (r = 0.76) than VIs from the 
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MultiSpec 4C camera (r = 0.64).  Their correlation to spectroradiometer readings was as high as 

or higher than repeated measurements with the spectroradiometer per se.  

 

Conclusion:  The approaches described here for UAS imaging and extraction of proximal 

sensing data enable collection of HTP measurements on the scale and with the precision needed 

for powerful selection tools in plant breeding.  Low-cost UAS platforms have great potential for 

use as a selection tool in plant breeding programs.  In the scope of tools development, the 

pipeline developed in this study can be effectively employed for other UAS and also other crops 

planted in breeding nurseries.  

KEY WORDS 

 unmanned aerial vehicles / systems (UAV / UAS) 

 wheat 

 high-throughput phenotyping 

 remote sensing 

 GNDVI 

 Plot extraction 
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 INTRODUCTION 

In a world of finite resources, climate variability, and increasing populations, food 

security has become a critical challenge.  The rates of genetic improvement are below what is 

needed to meet projected demand for staple crops such as wheat [1].  The grand challenge 

remains in connecting genetic variants to observed phenotypes followed by predicting 

phenotypes in new genetic combinations.  Extraordinary advances over the last 5-10 years in 

sequencing and genotyping technology have driven down the cost and are providing an 

abundance of genomic data, but this only comprise half of the equation to understand the 

function of plant genomes and predicting plant phenotypes [2, 3].  High throughput phenotyping 

(HTP) platforms could provide the keys to connecting the genotype to phenotype by both 

increasing the capacity and precision and reducing the time to evaluate huge plant populations.  

To get to the point of predicting the real-world performance of plants, HTP platforms must 

innovate and advance to the level of quantitatively assessing millions of plant phenotypes.  To 

contribute to this piece of the challenge, we describe here a semi-automated HTP analysis 

pipeline using a low cost unmanned aerial system (UAS) platform, which will increase the 

capacity of breeders to assess large numbers of lines in field trials.  

 

A plant phenotype is a set of structural, morphological, physiological, and performance-

related traits of a given genotype in a defined environment [4].  The phenotype results from the 

interactions between a plant’s genes and environmental (abiotic and biotic) factors.  Plant 

phenotyping involves a wide range of plant measurements such as growth development, canopy 

architecture, physiology, disease and pest response and yield.  In this context, HTP is an 

assessment of plant phenotypes on a scale and with a level of speed and precision not attainable 
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with traditional methods [5], many of which include visual scoring and manual measurements.  

To be useful to breeding programs, HTP methods must be amenable to plot sizes, experimental 

designs and field conditions in these programs.  This entails evaluating a large number of lines 

within a short time span, methods that are lower cost and less labor intensive than current 

techniques, and accurately assessing and making selections in large populations consisting of 

thousands to tens-of-thousands of plots.  To rapidly characterize the growth responses of 

genetically different plants in the field and relate these responses to individual genes, use of 

information technologies such as proximal or remote sensing and efficient computational tools 

are necessary.  

 

In recent years, there has been increased interest in ground-based and aerial HTP 

platforms, particularly for applications in breeding and germplasm evaluation activities [6–8].  

Ground-based phenotyping platforms include modified vehicles deploying proximal sensing 

sensors [9–12].  Measurements made at a short distance with tractors and hand-held sensors that 

do not necessarily involve measurements of reflected radiation, are classified as proximal 

sensing.  Proximal, or close-range sensing, is expected to provide higher resolution for 

phenotyping studies as well as allowing collection of data with multiple view-angles, 

illumination control and known distance from the plants to the sensors [13].  However, these 

ground-based platforms do have limitations mainly on the scale at which they can be used, 

limitations on portability and time required to make the measurements in different field 

locations. 
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As a complement to ground-based platforms, aerial-based phenotyping platforms enable 

the rapid characterization of many plots, overcoming one of the limitations associated with 

ground-based phenotyping platforms.  There is a growing body of literature showing how these 

approaches in remote and proximal sensing enhance the precision and accuracy of automated 

high-throughput field based phenotyping techniques [14–16].  One of the emerging technologies 

in aerial based platforms is UAS, which have undergone a remarkable development in recent 

years and are now powerful sensor-bearing platforms for various agricultural and environmental 

applications [17–21].  UAS can cover an entire experiment in a very short time, giving a rapid 

assessment of all of the plots while minimizing the effect of environmental conditions that 

change rapidly such as wind speed, cloud cover, and solar radiation.  UAS enables measuring 

with high spatial and temporal resolution capable of generating useful information for plant 

breeding programs. 

 

Different types of imaging systems for remote sensing of crops are being used on UAS 

platforms.  Some of the cameras used are RGB, multispectral, hyperspectral, thermal cameras, 

and low cost consumer grade cameras modified to capture near infrared (NIR) [2, 9, 21–23].  

Consumer grade digital cameras are widely used as the sensor of choice due to their low cost, 

small size and weight, low power requirements, and their potential to store thousands of images.  

However, consumer grade cameras often have the challenge of not being radiometrically 

calibrated.  In this study, we evaluated the possibility of using traditional radiometric calibration 

methods developed for satellite imagery to address this issue.  
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Radiometric calibration accounts for both variations from photos within an observation 

day along with changes between different dates of image.  The result of radiometric calibration is 

a more generalized and, most importantly, repeatable, method for different image processing 

techniques (such as derivation of VIs, change detection, and crop growth mapping) applied to the 

orthomosaic image instead of each individual image in a dataset.  There are well-established 

radiometric calibration approaches for satellite imagery.  However, these approaches are not 

necessarily applicable in UAS workflows due to several factors such as conditions of data 

acquisition during the exact time of image capture using these platforms.   

Empirical line method is a technique often applied to perform atmospheric correction to 

convert at-sensor radiance measurements to surface reflectance for satellite imagery, although 

this technique can be modified to apply radiometric calibration and convert digital numbers 

(DNs) to reflectance values [24].  The method is based on the relationship between DNs and 

surface reflectance values measured from calibration targets located within the image using a 

field spectroradiometer. The extracted DNs from the imagery are then compared with the field-

measured reflectance values to calculate a prediction equation that can be used to convert DNs to 

reflectance values for each band [25]. 

 

Advances in platform design, production, standardization of image geo-referencing, 

mosaicking, and information extraction workflow are needed to implement HTP with UAS as a 

routine tool in plant breeding and genetics.  Additionally, developing efficient and easy-to-use 

pipelines to process HTP data and disseminate associated algorithms are necessary when dealing 

with big data.  The primary objective of this research was to develop and validate a pipeline for 
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processing data captured by consumer grade digital cameras using a low cost UAS to evaluate 

small plot field-based research typical of plant breeding programs.  

 

 MATERIALS and METHODS 

 Study Area 

The study was conducted at Norman E Borlaug Experiment Station at Ciudad Obregon, 

Sonora, Mexico (Figure 1).  The experiment consisted of 1092 advanced wheat lines distributed 

in 39 trials, each trial consisting of 30 entries.  Each trial was arranged as an alpha lattice with 

three replications.  The experimental units were 2.8m x 1.6m in size consisting of paired rows at 

0.15m spacing, planted on two raised beds spaced 0.8m apart.  The trials were planted later than 

optimal on February 24, 2015 to simulate heat stress with temperatures expected to be above 

optimum for the entire growing season (the local recommended planting date is November 15 to 

December 15).  Irrigation and nutrient levels in the heat trials were maintained at optimal levels, 

as well as weed, insect and disease control.  Grain yield was obtained by using a plot combine 

harvester. 

 

 Platforms and Cameras 

We evaluated two unmanned aerial vehicles (UAV); the IRIS+ (3D Robotics, Inc, 

Berkeley, CA 94710, USA) and eBee Ag (senseFly Ltd., 1033 Cheseaux-Lausanne, 

Switzerland).   

 

The IRIS+ is a low cost quadcopter UAV with a maximum payload of 400 g.  The open-

source Pixhawk autopilot system was programmed for autonomous navigation for the IRIS+ 
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based on ground coordinates and the ‘survey’ option of Mission Planner (Pixhawk sponsored by 

3D Robotics, www.planner.ardupilot.com).  The IRIS+ is equipped with an uBlox GPS with 

integrated magnetometer.  A Canon S100 modified by MaxMax (LDP LLC, Carlstadt, NJ 07072, 

USA, www.maxmax.com) to Blue-Green-NIR (400-760nm) was mounted to the UAV with a 

gimbal designed by Kansas State University.  The gimbal compensates for the UAV movement 

(pitch and roll) during the flight to allow for nadir image collection.   

 

The eBee Ag, designed as a fixed wing UAV for application in precision agriculture has a 

payload of 150 g.  This UAV was equipped with MultiSpec 4C camera developed by Airinov 

(Airinov, 75018 Paris, France, www.airinov.fr/en/uav-sensor/agrosensor/) and customized for 

the eBee Ag. It contains four distinct bands with no spectral overlap (530-810nm): green, red, 

red-edge, and near infrared bands, and is controlled by the eBee Ag autopilot during the flight.   

 

For ‘ground-truth’ validation, spectral measurements were taken using ASD VNIR 

handheld point-based spectroradiometer (ASD Inc., Boulder, CO, http://www.asdi.com/) with a 

wavelength range of 325 nm – 1075 nm, a wavelength accuracy of ±1 nm and a spectral 

resolution of <3 nm at 700 nm with a fiber optics of 25° (aperture) full conical angle.  The 

instrument digitizes spectral values to 16 bits.  Table 1 summarizes the specification for the 

cameras and sensor used in this study. 

 

 Ground Control Points 

In order to geo-reference the aerial images, at the beginning of the season ten ground 

control points (GCPs) were distributed across the field.  The GCPs were 25 cm x 25 cm square 
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white metal sheets mounted on a 50 cm post.  The GCPs were white to provide easy 

identification for the image processing software.  The GCP coordinates were measured with a 

Trimble R4 RTK GPS, with a horizontal accuracy of 0.025 m and a vertical accuracy of 0.035 m.  

These targets were maintained throughout the crop season to enable more accurate geo-

referencing of UAS aerial imagery and overlay of measurements from multiple dates.  

 

 Reflectance Calibration Panel 

For radiometric calibration, spectra of easily recognizable objects (e.g. gray scale 

calibration board) are needed.  A black-gray-white grayscale board with known reflectance 

values was built and placed in the field during flights for further image calibration.  This 

grayscale calibration panel met the requirements for further radiometric calibration including 1) 

the panel was spectrally homogenous, 2) it was near Lambertian and horizontal, 3) it covered an 

area many times larger than the pixel size of the Canon S100, and 4) covered a range of 

reflectance values [25]. 

 

The calibration panel used in this study had 6 levels of gray from 0% being white and 

100% being black, printed on matte vinyl.  This made it possible to choose several dark and 

bright regions in the images to provide a more accurate regression for further radiometric 

calibration analysis.  Photos of the calibration panel were taken in the field before a UAS flight 

using the same Canon S100 NIR camera mounted on the IRIS+.  Using an ASD 

spectroradiometer on a sunny day, the spectral reflectance was measured of the panel at a fixed 

altitude of 0.50 m from different angles.  
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 Field Data Collection  

At the study site, image time series were acquired using IRIS+ and Canon S100 camera 

during the growing season as evenly spaced as possible, depending on the weather condition; 

April 10, April 22, April 28, May 6, and May 18, 2015. 

Field data measurements for the experiment in this study included 1) IRIS+ carrying 

modified NIR Canon S100, and 2) eBee Ag carrying MultiSpec 4C camera, and 3) spectral 

reflectance measurements using handheld ASD spectroradiometer collected on May 6, 2015 

when the trials were at mid grain filling.  We took all field measurements within one hour around 

solar noon to minimize variation in illumination and solar zenith angle [26].  This limited the 

number of plots we could measure using handheld spectroradiometer to 280 plots.  Four spectra 

per plot were taken with the beam of the fiber optics placed at 0.50 m over the top of the canopy 

with a sample area of 0.04 m2.  Due to this very small sampling area, great care was taken in 

data collection to make sure the measured spectral responses were only from the crops. 

 

Both the eBee and IRIS+ were able to image a much larger area in the same time frame.  

Each system was flown using a generated autopilot path that covered the 2 ha experiment area 

with an average of 75% overlap between images (Table 2).   

 

For the IRIS+ with Canon S100, all images were taken in RAW format (.CR2) to avoid 

loss of image information.  The Canon S100 settings were TV mode, which allowed setting of a 

constant shutter speed.  The aperture was set to be auto-controlled by the camera to maintain a 

good exposure level, and ISO speed was set to Auto with a maximum value of 400 to minimize 

noise in the images.  Focus range was manually set to infinity.  We used CHDK 
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(www.chdk.wkia.com) to automate Canon S100’s functionality by running intervalometer scripts 

off an SD card in order to take pictures automatically at intervals during flight.  The CHDK 

script allowed the UAS autopilot system to send electronic pulses to trigger the camera shutter.  

The camera trigger was set at the corresponding distance interval during the mission planning for 

the desired image overlap.   

 

The eBee MultiSpec 4C camera had a predefined setting by Sensefly; ISO and shutter 

speed was set to automatic, maximum aperture was set to f/1.8 and focal distance was fixed at 4 

mm.  

 

 Developing an image processing pipeline for HTP 

In this research, a UAS-based semi-automated data analyses pipeline was developed to 

enable HTP analysis of large breeding nurseries.  Data analysis was primarily conducted using 

Python scripts [27, 28].   The dataset used to develop the image processing pipeline was 

collected on May 6, 2015 with the IRIS+ flights carrying the modified NIR Canon S100 camera.  

In order to analyze hundreds of images taken by a UAS that represent the entire experiment area, 

we developed a semi-automated data analysis pipeline. The developed pipeline completed the 

following steps:  1) Image pre-processing,  2) Georeferencing and orthomosaic generation,  3) 

Image radiometric calibration,  4) Calculation of different VIs and  5) plot-level data extraction 

from the VI maps.  The overall workflow of the developed pipeline is presented in Figure 2, and 

a detailed description of each segment is provided. 
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The RAW images of Canon S100 (.CR2 format) were pre-processed using Digital Photo 

Professional (DPP) software developed by Canon 

(http://www.canon.co.uk/support/camera_software/).  This software to convert RAW to Tiff also 

included lens distortion correction, chromatic aberration, and gamma correction.  For white 

balance adjustment, we used the pictures of grayscale calibration panel taken during the flights.  

After pre-processing the images were exported as a tri-band 16-bit linear TIFF image.   

 

 Image Stitching and Orthomosaic Generation 

We then generated a geo-referenced orthomosaic image using the TIFF images.  There 

are several software packages for mosaicking UAS aerial imagery, all based around the scale-

invariant feature transform algorithm (SIFT) algorithm for feature matching between images 

[29].  While there are slight differences between packages each performs the same operation 

namely loading photos; aligning photos; importing GCP positions; building dense point cloud; 

building digital elevation model (DEM); and finally generating the orthomosaic image.  We used 

the commercial Agisoft PhotoScan package (Agisoft LLC, St. Petersburg, Russia, 191144) to 

automate the orthomosaic generation within a custom Python script.  The procedure of 

generating the orthomosaic using PhotoScan comprises five main stages 1) camera alignment, 2) 

importing GCPs and geo-referencing, 3) building dense point cloud, 4) building DEM and 5) 

generating orthomosaic [30].  

 

For alignment, PhotoScan finds the camera position and orientation for each photo and 

builds a sparse point cloud model; the software uses the SIFT algorithm to find matching points 

of detected features across the photos.  PhotoScan offers two options for pair selection: generic 
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and reference.  In generic pre-selection mode, the overlapping pairs of photos are selected by 

matching photos using the lower accuracy setting.  On the other hand, in reference mode the 

overlapping pairs of photos are selected based on the measured camera locations.  We examined 

both methods to generate the orthomosaic and compared the results. 

 

With aerial photogrammetry the location information delivered with cameras is 

inadequate and the data does not align properly with other geo-referenced data.  In order to do 

further spatial and temporal analysis with aerial imagery, we performed geo-referencing using 

GCPs.  We used 10 GCPs evenly distributed around the orthomosaic image.  Geo-referencing 

with GCPs is the step that still requires manual input. 

 

The main source of error in georeferencing is performing the linear transformation matrix 

on the model.  In order to remove the possible non-linear deformation components of the model, 

and minimizing the sum of re-projection error and reference coordinate misalignment, PhotoScan 

offers an optimization of the estimated point cloud and camera parameters based on the known 

reference coordinates [30]. 

 

After alignment optimization, the next step is generating dense point clouds. Based on the 

estimated camera positions PhotoScan calculates depth information for each camera to be 

combined into a single dense point cloud [30].  PhotoScan allows creating a raster DEM file 

from a dense point cloud, a sparse point cloud or a mesh to represent the model surface as a 

regular grid of height values.  Although most accurate results are calculated based on dense point 

cloud data. 
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The final step is orthomosaic generation.  An orthomosaic can be created based on either 

mesh or DEM data.  Mesh surface type can be chosen for models that are not referenced.  The 

blending mode has two options (mosaic and average) to select how pixel values from different 

photos will be combined in the final texture layer.  Average blending computes the average 

brightness values from all overlapping images to help reduce the effect of the bidirectional 

reflectance distribution function that is strong within low altitude wide-angle photography [31].  

Blending pixel values using mosaic mode does not mix image details of overlapping photos, but 

uses only images where the pixel in question is located within the shortest distance from the 

image center.  We compared these two methods by creating orthomosaic images using both 

mosaic and average mode. 

 

 Radiometric Calibration 

After the orthomosaic was completed, we then performed radiometric calibration to 

improve the accuracy of surface spectral reflectance obtained using digital cameras.  We applied 

empirical line correction to each orthomosaic within the data set using field measurements taken 

with the ASD.  The relationship between image raw DNs and their corresponding reflectance 

values is not completely linear for all the bands for Canon S100 camera and most digital cameras 

(Figure 3).  To relate remote sensing data to field-based measurements we used a modified 

empirical line method [32].  We used the grayscale calibration board combined with reflectance 

measurements from the ASD spectroradiometer to find the relationship between DNs extracted 

form Canon S100 and surface reflectance values measured from grayscale calibration board 
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using a field spectroradiometer.  We then calculated the prediction equations for each band 

separately to convert DNs to reflectance values. 

 

We calculated the mean pixel value of the calibration panel extracted from images for 

each band separately, and plotted against the mean band equivalent reflectance (BER) of field 

spectra [33, 34].  We found a linear relation between the natural logarithm of image raw DN 

values and their corresponding BER, although the relation between image raw DNs and their 

corresponding BER was not completely linear for all bands of Canon S100 (Figure 3). We 

derived the correction coefficient needed to fit uncalibrated UAS multispectral imagery to field-

measured reflectance spectra.  Using the correction coefficient for each band, we then performed 

this correction on the entire image.  

 

With the corrected orthomosaic, a map showing the vegetation indices can be generated.  

The most used VIs derivable from a three-band multispectral sensor are: normalized difference 

vegetation index (NDVI), and green normalized difference vegetation index (GNDVI) (Table 4).  

NDVI is calculated from reflectance measurements in the red and NIR portion of the spectrum 

and its values range from −1.0 to 1.0.  GNDVI is computed similarly to the NDVI, where the 

green band is used instead of the red band and its value ranges from 0 to 1.0. Like NDVI, this 

index is also related to the proportion of photosynthetically absorbed radiation and is linearly 

correlated with Leaf Area Index (LAI) and biomass [22, 35, 36].     
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 Field Plot Extraction 

In order to get useful information about each wheat plot in the field, we need to extract 

plot level data from the orthomosaic VI image.  Individual wheat plot boundaries need to be 

extracted and defined separately from images with an assigned plot ID that defines their genomic 

type.  We examined three approaches for extracting plot boundaries from the orthomosaic image: 

a simple grid based plot extraction, field-map based plot extraction, and image 

classification/segmentation. 

 

To apply a simple grid superimposed on top of the orthomosaic image we used the 

Fishnet function using Arcpy scripting in ArcGIS.  This function creates a net of adjacent 

rectangular cells.  The output is polygon features defining plot boundaries.  Creating a fishnet 

requires two basic pieces of information: the spatial extent of the desired net, and the number of 

rows and columns.  The number of rows and ranges (columns) and height and width of each cell 

in the fishnet can be defined by the user.  The user can also define the extent of the grid by 

supplying both the minimum and maximum x- and y-coordinates.  

 

The next method we evaluated in this study is a field-map based method.  Experimental 

or field data are usually stored in a spreadsheet.  To accomplish this, we reformatted the field 

map in order to represent the plots in the field; the first row of the excel sheet is the length (or 

width, depending on how plots are located in the field) of the plots, and the first column is the 

width (or length).  Each cell in the excel sheet is the plot ID and other information regarding that 

particular plot available in the field map. 
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In this approach, first we created a KML file from the field map (.CSV) using Python 

[27], we generated polygon shapefiles with known size for each plot from KML file, and 

assigned plot ID to each plot using the field map.  To define the geographic extent of the field, 

the python script has inputs for the coordinate of two points in the field: the start point of the first 

plot on the top right and the end point of the last plot on the bottom left.  The script starts from 

the top right and builds the first polygon using the defined plot size, and skips the gap between 

plots and generates the next one until it gets to the last plot on the bottom left.  In this approach 

the plot IDs are assigned automatically and simultaneously from the field map excel sheet.  The 

most important advantage of this approach is that it can be generalized to other crop types as 

long as the field map is provided and the plots are planted in regular distance and have a 

consistent size within a trial. 

 

The third method is to extract wheat plot boundaries from the orthomosaic image 

directly.  To examine this method, we used the April 10 data set instead of May 6.  The reason 

for choosing this set of data was that in this dataset we had the most distinguished features (e.g. 

vegetation vs. bare soil) in the image compared to the image data taken on May 6.  We classified 

the GNDVI image created from the orthomosaic image into four classes: “Wheat”, “Shadow”, 

“Soil”, and a class named “Others” for all the GCP targets in the field.  The class “shadow” 

stands for the shadow projected on the soil surface.  In this supervised classification, we defined 

training samples and signature files for each defined class.  After classifying the image, we 

merged the “Shadow”,” Soil” and “Others” classes together and ended up with two classes: 

“Wheat”, and “Non-wheat”.  The classified image often needs further processing to clean up the 
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random noise and small isolated regions to improve the quality of the output.  With a simple 

segmentation, we extracted wheat plot polygons from the image. 

 

This method works best with high-resolution imagery taken at the beginning of the 

growing season when all the classes are clearly distinguishable from each other on the image.  

Otherwise time consuming post-processing is needed in order to separate the mixed classes. 

 

To analyze the result of VI extraction from the orthomosaic, we used the zonal statistics 

plugin in the open source software QGIS.  We calculated several values of the pixels of 

orthomosaic (such as the average VI values, Min, Max, standard deviation, majority, minority 

and also the median of VI values for each plot and the total count of the pixels that are within a 

plot boundary), using the polygonal vector layer of plot boundaries generated by one of the 

methods above.  We then merged the data from the field map spreadsheet (plot ID, entry 

numbers, trial name, number of rep, number of block, row and column, and other information on 

planting) with the generated plots statistics.  

 

Accuracy evaluation of different types of aerial imagery sensors and platforms 

To evaluate the accuracy and reliability of our low cost UAS and consumer grade 

camera, we calculated correlations between calibrated DN values from the orthomosaic images 

of Canon S100 and MultiSpec 4C camera and band equivalent reflectance (BER) of field spectra.  

For ground-truth evaluation we used the ASD Fieldspectro 2 spectroradiometer to measure 

spectral reference of 280 sample plots after running the UAS within the time window of 1 hour 

around noon.  The ASD spectroradiometer measures a wavelength range of 325 nm – 1075 nm, a 
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wavelength accuracy of ±1 nm and a spectral resolution of <3 nm at 700 nm (Table 1).  Using 

the ASD, the top of canopy reflectance was measured approximately 0.5 m above the plants.  To 

account for the very small field of view of this sensor, we constantly monitored the spectral 

response curves to avoid measuring mixed pixels in our samplings and we averaged four 

reflectance readings within each sample plots.  Reflectance measurements were calibrated at 

every 15 plots using a white (99% reflectance) Spectralon calibration panel.   

 

To evaluate the accuracy of each platform, we calculated the correlations between 

different VIs extracted from Canon S100 and VIs extracted from MultiSpec 4C compared to the 

BER of field spectra.  We calculated BER for each camera separately by taking the average of all 

the spectroradiometer bands that are within the full width at half maximum (FWHM) of each 

instrument (Table 1).  The Pearson correlation between the average VI values of the sample plots 

and field spectra for each platform was calculated.  The resulting correlation coefficients were 

tested using a two-tail test of significance at the p ≤ 0.05 level.  Accuracy assessment was based 

on computing the root mean square error (RMSE) for GNDVI image by comparing the pixel 

values of the reflectance image to the corresponding BER of field spectra at the sample sites not 

selected to generate the regression equations.   

 

 Broad-sense Heritability 

Broad-sense heritability, commonly known as repeatability, is an index used by plant 

breeders and geneticists to measure precision of a trial [37–39].  The ratio of the genetic variance 

to the total phenotypic variance is broad-sense heritability (H2), which varies between 0 and 1.  

A heritability of 0 indicates there is no genetic variation contributing to phenotypic variation, and 



28 

H2 of 1 if the entire phenotypic variation is due to genetic variation and no environmental noise.  

For the purpose of comparing phenotyping tools and approaches, broad-sense heritability 

calculated for measurements on a given set of plots under field conditions at the same point in 

time, is a direct assessment of measurement error as the genetics and environmental conditions 

are constant.  

 

In order to assess the accuracy of the different HTP platforms, we calculated broad-sense 

heritability on an entry-mean basis for each individual trial and phenotypic sampling date on 

May 6, 2015.  To calculate heritability, we performed a two steps process where we first 

calculated the plot average and then fit a mixed model for replication, block and entry as random 

effects.  Heritability was calculated from equation 1 [40].  

𝐻2 =  
𝜎𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐

2

𝜎𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐
2 =  

𝜎𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐
2

𝜎𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐
2 +

𝜎𝑒𝑟𝑟𝑜𝑟
2

𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

 (1) 

Where𝜎𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐
2 is genotypic variance and 𝜎𝑒𝑟𝑟𝑜𝑟

2  is error variance.  

 

 

 RESULTS and DISCUSSION 

 Developing an image processing pipeline for HTP  

To evaluate the potential of UAS for plant breeding programs, we deployed a low cost, 

consumer grade UAS and imaging system at multiple times throughout the growing season.  

Using the aerial imagery collected on May 6, we built a robust pipeline scripted in Python that 

facilitated image analysis and allowed a semi-automated image analysis algorithm to run with 

minimum user support.  The only requirement for manual input in the processing pipeline is to 



29 

validate the GCP positions.  This pipeline was tested on eight temporal datasets collected from 

IRIS+ flights over heat trials during the growing season.   

 

The individual parameters selected during orthomosaic generation and plot extraction can 

have a large impact on the quality of the orthomosaic and subsequent data analysis.  Because of 

the multiple parameter settings that users could choose, we investigated how changing various 

parameters would affect the data quality.  To obtain more accurate camera position estimates, we 

selected higher accuracy at the alignment step.  For pair selection mode, we chose reference 

since in this mode the overlapping pairs of photos are selected based on the estimated camera 

locations (i.e. from the GPS log of the control system).  For the upper limit of feature points on 

every image to be taken into account during alignment stage, we accepted the default value of 

40000.  We imported positions for all of the ten GCPs available on the field to geo-reference the 

aerial images.  The GCPs were also used in the self-calibrating bundle adjustment to ensure 

correct geo-location and to avoid any systematic error or block deformation.  To improve 

georeferencing accuracy, we performed alignment optimization. 

 

Finally, to generate orthomosaic, we tested the two methods of blending: mosaic and 

average.  We found the orthomosaic generated by the mosaic method gives more quality for the 

orthomosaic and texture atlas than the average mode.  On the other hand, mosaic blending mode 

generated artifacts in the image since it uses fewer images by selecting pixels with the shortest 

distance from the image center (Figure 4).  We examined the correlation between orthomosaic 

generated from these two approaches and the ground truth data and found the averaging method 

has slightly higher correlation of 0.68 compared to mosaic method with the correlation of 0.65. 
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The 16 bit orthomosaic TIFF image was generated semi-automatically using python 

scripting in PhotoScan software with a resolution of 0.8 centimeters, matching the ground 

sampling distance (GSD) of the camera.  Due to the short flight times (less than 20 minutes) and 

low flying altitude (30 meters above ground level), we assume there is no need for atmospheric 

corrections [28]. 

 

To convert DNs to reflectance values, a modified empirical approach was implemented 

using pixel values of IRIS+ aerial imagery and field-based reflectance measurements from 

handheld spectroradiometer.  Calibration equations (2, 3, and 4) calculated from non-linear 

relationship between average field spectra and relative spectra response of each band separately 

were determined as: 

 

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒𝐵𝑙𝑢𝑒 = − 𝑒𝑥𝑝 (−𝑙𝑜𝑔 (4.495970𝑒−01 +  (3.191189𝑒−05)  ∗  𝐷𝑁𝐵𝑙𝑢𝑒)))            (2) 

(𝑟2 = 0.98 , P < 0.001) 

 

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒𝐺𝑟𝑒𝑒𝑛 = − 𝑒𝑥𝑝 (−𝑙𝑜𝑔 (4.705485𝑒−01 +  (3.735676𝑒−05)  ∗  𝐷𝑁𝐺𝑟𝑒𝑒𝑛)))        (3) 

(𝑟2 = 0.97, P < 0.001) 

 

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒𝑁𝐼𝑅 = − 𝑒𝑥𝑝 (−𝑙𝑜𝑔 (1.197440𝑒+00 +  (4.712299𝑒−05)  ∗  𝐷𝑁𝑁𝐼𝑅)))               (4) 

(𝑟2 = 0.94, P < 0.001) 

 

We applied each calibration equation to their corresponding band image and converted 

the image raw DNs into reflectance values.  
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 Wheat Plot boundary extraction results 

We evaluated multiple approaches for defining and overlaying plot coordinate boundaries 

for the large field trials.  As breeding trials are regularly containing thousands or tens of 

thousands of plots, an automated or semi-automated approach to generating and overlaying plot 

boundaries is needed.   

 

 Simple-grid based method 

We first implemented a simple overlay grid (Figure 5a) using QGIS open source 

software.  This method, although fast and easy, is not accurate for plot assigning as it does not 

account for within plot gaps (for plots planted in beds), gaps between plots and also gaps 

between each range of wheat plots. It simply generates polygons attached to each other and not 

spaced as needed to correctly capture the actual plot boundaries (Figure 5a).  In the example 

below, it can also be noticed that a boundary polygon may cover part of the neighbor wheat plot, 

which is due to the assumption of a fixed plot boundary size in this method.  To account for the 

gap between plots, beds and also between ranges of plots, we developed a field map based 

method. 

 

 Field-map based method 

To accurately reflect the actual field planting and plot size, we developed a script to 

overlay defined plot sizes with known spacing.  We reformatted the field map using the 

information in the spreadsheet such as: plot ID, and plot’s location based on the block number, 

column and row’s number, and also knowing the plots were planted on beds with a plot size of 

2.8 m length and 1.6 m wide.  This method allows us to eliminate border effect by changing the 
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plot size to 2.3 m by 1.5 m.  In the reformatted field map spreadsheet, the first row of the excel 

sheet is the length of the plots (1.5 m) and the length of the gap between plots in beds (0.15 m) 

and gaps between each bed (0.8 m).  The first column is the width of wheat plots (2.3 m) and the 

width of the gaps between each range (0.5 m).  The cells in the reformatted spreadsheet are filled 

with the plot’s information including plot ID, trial name, and planting date.  From this plot level 

information, we overlay plots of the defined size with plot-to-plot spacing that accurately reflects 

the field configuration (Figure 5b). 

 

 Image Classification Plot Extraction 

To examine an image classification based plot extraction method, we first generated 

GNDVI from the orthomosaic image generated from the April 10 aerial imagery rather than the 

May 6 dataset analyzed in the rest of this study.  The reason for choosing this set of data was that 

in this dataset from earlier in the season had the sharpest contrast between plots and the 

surrounding soil.  We then applied a Maximum Likelihood Classification to the GNDVI image.  

We converted the classified image into polygons to obtain plot shape polygons (Figure 5c).  This 

approach is more reliable if the early season aerial imagery is provided.  The drawback with this 

approach is that it requires post-processing and cleanup of the final result if the classes are not 

quite distinguished and separated from each other in the orthomosaic image.  Frequently, this 

approach did not separate plots properly and manual editing was required (Figure 5c).  As it can 

be seen in the Figure 5c, the two plots slightly merged with each other and it caused the 

classification to classify them as one single plot.  To have more accurate results from image 

classification method, the presence of early season imagery is needed, since this process can 
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have more post-processing and cleanup if the wheat plots and the gaps between plots are not 

visually discrete from each other in the images. 

 

 Plot-level GNDVI Extraction Results 

After generating VI maps, we compared these three plot-level extraction techniques using 

GNDVI values extracted form canon S100 aerial imagery and the corresponding values extracted 

from spectroradiometer in the field.  The field-map based approach for plot polygons generated 

the best correlation to spectroradiometer measurements, while the classification technique had 

the lowest correlation with ground-truth data (Table 3).  The lower reliability of classification 

technique compared to field-map based, could be due to the absence of early season imagery.  In 

generating plot boundaries using field-map based, we also considered a buffer around the 

polygons to avoid any possible mixed plants or border effects for a plot which likely improved 

performance.  We then correlated plot level GNDVI calculated from the spectral reflectance for 

those same plots using different boundary plot extraction methods (Table 3). From the 

comparison of different plot extraction methods with correlation to spectral reflectance we found 

that the boundaries defined using the map-based algorithm were superior to both the simple grid 

and the classification-based approach (Table 3).   

 

 Empirical Line Correction 

Using Python scripting in QGIS, we generated different VI maps from the calibrated 

orthomosaic image and extracted plot boundaries using the field-map based method.  Using the 

zonal statistics plugin, we then calculated statistic values of each plot of wheat in the 

orthomosaic.  For each individual plot, the average VI value was used for further analysis and 
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correlation.  We tested the utility of applying an empirical line correction to improve the 

converting of digital numbers to reflectance values for the cameras.  Using the same field-map 

based plot extraction, the correlation between raw GNDVI values extracted from the 

orthomosaic image and the BER increased from 0.68 to 0.76 after performing empirical line 

method as the radiometric calibration method. 

 

 Comparison of Different Vegetation Indices 

To test the accuracy of VI from the digital cameras by comparison to the ASD 

spectroradiometer, we calculated BER for Canon S100 by taking the average of all the 

spectroradiometer bands that are within the FWHM of this camera (Table 1).  For example, to 

calculate BER GNDVI for Canon S100, we averaged the reflectance values between 490-550 nm 

as green band, and averaged all the values between 680-760 nm as NIR band. 

Among all the calculated VIs for the Canon S100, GNDVI had the highest correlation 

with the spectroradiometer (Table 4, Figure 6).  Since the MultiSpec 4C camera has 4 bands, 

NIR, red-edge, Red and Green, we were able to generate a Red-edge normalized difference 

vegetation index (RENDVI) as well as other VIs.  Using the developed pipeline, we extracted 

wheat plots from the generated orthomosaic for RENDVI by means of the field-map based 

method, which had also proved to be the best method of plot extraction for the MultiSpec 4C 

camera.  The RENDVI plot values had higher correlation with spectroradiometer when 

compared to other VIs extracted from MultiSpec 4C camera (Figure 7).  

Although it needs to be noted that red edge band used in MultiSpec 4C camera is not 

within the red edge region common in remote sensing sensors (680 – 730 nm) and is more of a 

NIR band. Which makes the RENDVI calculated from this camera to be more close to NDVI. 
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We found the correlation between VIs extracted from spectroradiometer and calibrated 

Canon S100 was significantly higher than the one with MultiSpec 4C camera. This could be due 

to lower flight altitude, and slower movements of multi-rotor IRIS+ compare to fixed wing eBee 

Ag, which results in higher resolution imagery captured by IRIS+ / Canon S100.  The MultiSpec 

4C camera is a narrow band multispectral camera that does not have any spectral overlap in its 

band response.  The better spectral performance could be negated by the lower resolution of the 

sensor, higher flight altitude, and faster travel speed of the fixed wing UAV.  It was also clear 

that the modified empirical line correction also played a role in higher correlation of Canon S100 

values with ground truth spectral measurements.   

 

We also calculated the correlation between the spectra readings using the handheld 

spectroradiometer. As we had four readings per plot, we were able to determine the repeatability 

within the spectroradiometer measurements.  We averaged the first two measurements of and last 

two measurements for each plot independently and calculated an overall correlation for 280 

sample plots (Table 5).  Based on this assessment, the UAS imaging had repeatability as good as, 

or better than the spectroradiometer.   

 

 Broad Sense Heritability 

As the Canon S100 and MultiSpec 4C measurements were taken at the same time on the 

same day and on the same plots, the environmental variance and genetic variance can be 

considered as negligible.  Therefore, the broad sense heritability values (H2) can be interpreted 

as a level of precision of sensor measurement, which is the only remaining significant source of 

error variance.  Overall the heritability for VIs was high.  We found VIs derived from the Canon 
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S100 imagery had a higher heritability than the MultiSpec 4C data for nine out of eleven trials 

(Table 6). The trials had lower, but still high, heritability for grain yield.  There were some 

unexpected rains during the crop cycle followed by irrigation issues in the borders of the field, 

however, the heritability for yield was still above 0.60 which is a moderate repeatability for 

breading trials under heat (Table 6). 

 

 CONCLUSION 

We developed a semi-automated pipeline for data analysis of a low cost UAS imagery.  

The raw images of a consumer grade digital camera were pre-processed and used as the input of 

the image-processing pipeline.  During the mosaicking step, we found that the averaging method 

had marginally higher correlation of 0.68 compared to mosaic method with the correlation of 

0.65.  Using a modified empirical line method, we radiometrically calibrated the DN values 

extracted from canon S100 and compared the calibrated digital values with the reflectance values 

of the spectroradiometer to evaluate the comparability of our data.  Our results confirm that 

radiometric calibration is important for consumer grade cameras to convert the DN values to 

reflectance measurements and can improve the value of the image data. 

 

We examined three different ways of wheat plot extraction: simple grid, field-map based, 

and image classification.  We found that the field-map based technique is more accurate and 

fastest compared to other techniques, and had a higher correlation to ground truth data.  The 

advantage of this method is that it is applicable to any crop types as long as the field map is 

provided, and also this method is fully automated in Python.   
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We evaluated two types of UAS; 1) low cost: IRIS+ and 2) commercial grade agriculture-

use: eBee Ag, each carrying different sensors with 1) low cost consumer grade camera: modified 

NIR Canon S100 on the IRIS+ and 2) a more specialized multispectral camera: MultiSpec 4C 

camera on the eBee.  We compared their performance with ground-truth reflectance data and 

found overall good performance to spectroradiometer measurements.  Based on correlation to the 

spectral readings and assessment of heritability, the Canon S100 had better performance than the 

MultiSpec 4C mounted on the fixed wing, which was likely a result of higher resolution of the 

sensor, lower altitude and slower travel speed for the Canon S100 carried on the quadcopter 

IRIS+.   

 

Our study provides strong evidence of the value of UAS for HTP applied to large wheat 

breeding nurseries.  Further work is needed to investigate the strength of the relationship 

between remotely sensed derived plant phenological traits and the wheat biophysical properties 

collected in the field such as plant height, biomass, and yield.  With the overall vision of 

integrating multiple measurements extracted from UAS (plant height, ground cover, etc.) with 

plant growth simulations to maximize the biological utility of the estimated phenotypes new 

avenues will be opened to breeders for predicting yield.  Moreover, the development of new 

sensors and imaging systems undoubtedly will continue to improve our ability to phenotype very 

large experiments or breeding nurseries.  When combined with genomic and physiological 

modeling, the rapid, low-cost evaluation of large field trials in plant breeding with UAS 

platforms has the potential to greatly accelerate the breeding process through more accurate 

selections on larger populations.    
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 TABLES 

 

Table 1 Sensor specification. 

Sensor Platform 

(UAV) 

Sensor 

Resolution 

(MP) 

Focal 

Length 

(mm) 

Full width at half 

maximum 

(FWHM) 

Peak 

wavelength 

Canon S100 IRIS+ 12.1 5.2 Blue:400-495 

Green:490-550 

NIR:680-760 

Blue:460 

Green:525 

NIR:710 

MultiSpec 4C eBee Ag 1.2 

(4 sensors) 

3.6 Green:530-570 

Red:640-680 

RedEdge: 730-740 

NIR:770-810 

Green:550 

Red:660 

RedEdge:735 

NIR:790 

 Spectral 

Resolution 

wavelength 

accuracy 

 
Wavelength Range 

ASD 

spectroradiometer 

<3 nm at 

700 nm 

±1 nm  325 nm – 1075 nm 
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Table 2 Flight information using IRIS+ (multirotor) and eBee Ag (fixed wing) UASs, on May 6, 

2015, at CIMMYT, Cd Obregon, Mexico. * RAW images of Canon S100 were converted to 16 

bits TIFF imagery after pre-processing in Canon Digital Photo Professional software (DPP). 

Camera 
Platform 

(UAS) 

Flight 

Speed 

(m/s) 

Altitude 

(m) 

Percent Overlap 

No. of 

Images 

Image 

format 

Spatial 

Resolution 

(cm)  Side Forward 

Modified 

Canon S100 
IRIS+ 2 30 75% 75% 144 

RAW 

(16 bits 

TIFF)* 

0.8 

MultiSPEC 

4C 
eBee Ag 10 48 75% 75% 40 

10 bits 

TIFF 
5 

 

 

 

 

Table 3 Correlation analysis between mean GNDVI values extracted from raw Canon S100 

digital number values, Calibrated Canon S100 digital number values and corresponding band 

equivalent reflectance (BER) GNDVI values from the spectroradiometer using different plot 

boundary extraction method. 

 

Raw Digital 

Numbers 
Calibrated Digital Numbers 

field-map based field-map based classification simple-grid 

spectroradiometer 

BER 
0.68 0.76 0.58 0.68 
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Table 4 Calculated vegetation indices for each camera, based on their spectral bands and 

correlation between vegetation index values extracted from UAS imagery and band equivalent 

reflectance values from Spectroradiometer.  The values from Canon S100 values are before 

applying modified empirical line correction method. 

INDEX Formula 

Correlation 

Canon S100 MultiSpec 4C 

NDVI 
𝑁𝐼𝑅 −  𝑅𝑒𝑑

𝑁𝐼𝑅 +  𝑅𝑒𝑑
 - 0.33 

GNDVI 
𝑁𝐼𝑅 −  𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 +  𝐺𝑟𝑒𝑒𝑛
 0.68 0.63 

RENDVI 
𝑁𝐼𝑅 −  𝑅𝑒𝑑_𝑒𝑑𝑔𝑒

𝑁𝐼𝑅 +  𝑅𝑒𝑑_𝑒𝑑𝑔𝑒
 - 0.64 

ENDVI 
𝑁𝐼𝑅 +  𝐺𝑟𝑒𝑒𝑛 − 2 ∗ 𝐵𝑙𝑢𝑒

𝑁𝐼𝑅 +  𝐺𝑟𝑒𝑒𝑛 + 2 ∗ 𝐵𝑙𝑢𝑒
 0.54 - 

GIPVI 
𝑁𝐼𝑅 

𝑁𝐼𝑅 +  𝐺𝑟𝑒𝑒𝑛
 0.59 - 

 

  

 

Table 5 Correlation between repeated measurements from Handheld ASD for two different 

vegetation indices.  Four measurements were taken on each of 280 plots. To determine 

repeatability, the first two measurements were averaged and correlated to the average of the 

second two measurements on a per plot basis across all plots.  The VIs presented are band 

equivalent indices for the Canon S100 (Green Normalized Difference Vegetation Index; 

GNDVI) and MultiSpec 4C (Red-edge Normalized Difference Vegetation Index: RENDVI) used 

in this study. 

 Correlation 

Green Normalized Difference Vegetation Index; GNDVI (Canon S100)  0.62 

Red-edge Normalized Difference Vegetation Index; RENDVI 

(MultiSpec 4C) 

 

0.88 
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Table 6 Broad-sense heritability in 11 trials for vegetation indices and grain yield. The VIs 

derived from the Canon S100 had a higher heritability than the MultiSpec 4C for nine out of 

eleven trials (shown in bold font). 

Trial Name 

Broad-sense Heritability (H2) 

Vegetation Indices 

Grain 

Yield 

Canon S100 

(GNDVI) MultiSpec 4C (RENDVI) 

EYTBWBLHT_01 0.89 0.84 0.66 

EYTBWBLHT_02 0.90 0.90 0.91 

EYTBWBLHT_03 0.84 0.90 0.78 

EYTBWBLHT_04 0.87 0.70 0.75 

EYTBWBLHT_05 0.81 0.80 0.82 

EYTBWBLHT_06 0.73 0.66 0.80 

EYTBWBLHT_07 0.83 0.70 0.85 

EYTBWBLHT_08 0.64 0.61 0.86 

EYTBWBLHT_09 0.78 0.64 0.87 

EYTBWBLHT_10 0.66 0.57 0.65 

EYTBWBLHT_11 0.72 0.57 0.74 
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 FIGURES 

 

Figure 1 Location of the study area with late sown heat stress wheat trials in 2015 on the 

Norman E Borlaug Experiment Station at Ciudad Obregon, Sonora. 

 

 

Figure 2 Image processing workflow for the low cost UAS imaging system. The developed 

pipeline steps are as follows: Image pre-processing using DPP software, Orthomosaic Generation 

using Python scripting in PhotoScan, Image radiometric correction using empirical line method 

commonly used for satellite imagery, Extraction of wheat plot boundary, and Calculation of 

different VI’s. *Designates steps done using Python script 
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Figure 3 Empirical observation of non-linear relationship between percent gray values of the 

calibration panel and their corresponding mean reflectance values at the spectral region of Canon 

S100 wavebands (B: 400-495, G: 490-550, NIR: 680-760). 
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Figure 4 An example of artifact in the orthomosaic generated by Mosaic blending method from 

IRIS+ aerial imagery.  The yellow arrows point to two locations in the orthomosaic where 

artifacts from merging different original images are evident.   
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Figure 5 Results of different plot extraction method overlay on a subset of plots from IRIS+ 

calibrated orthomosaic. a) simple-grid plots,  b) field-map based method,  c) image classification 

approach and an example of misclassification; this example confirms the need of post processing 

for image classification method. 
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Figure 6 Linear relation between GNDVI from Canon S100 and BER GNDVI from 

spectroradiometer. Sample plot GNDVI values were extracted from calibrated orthomosaic of 

Canon S100 imagery, IRIS+ and band equivalent GNDVI for Canon S100 camera calculated 

from ASD spectroradiometer readings for 280 sample plots. 
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Figure 7 Scatterplot of the plot-level RENDVI from MultiSpec 4C imagery vs 

spectroradiometer. Plot-level RENDVI were extracted from orthomosaic generated from 

MultiSPEC 4C camera imagery using field-map based plot extraction method, and Band 

equivalent RENDVI for Spec 4C calculated from spectroradiometer reading for 280 sample 

plots. 

 

 

  



54 

Chapter 3 - Application of geographically weighted regression to 

improve grain yield prediction from unmanned aerial system 
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NIR, near infrared; UAV unmanned aerial vehicle; UAS, unmanned aerial system; VI, 

vegetation index 

  

 ABSTRACT 

Phenological data such as plant height are important assessments of the in-season growth 

of crops, though this assessment is generally limited by the availability of spatial and temporal 

data during the growing season. Unmanned aerial systems (UAS) have the potential to provide 

high spatial and temporal resolution for phenotyping tens-of-thousands of small plots under field 

conditions without requiring substantial investments in time, cost, and labor. Thus, there is 

considerable interest in implementing UAS as a rapid screening tool in crop breeding programs. 

 

The primary objective of this research was to determine whether an accurate remote 

sensing based method could be developed to monitor plant growth and estimate grain yield using 

aerial spatio-temporal imagery in small plot wheat nurseries. We used a modified consumer 

grade camera mounted on a low-cost unmanned aerial vehicle (UAV) to obtain blue, green and 

near-infrared imagery. The UAS was deployed multiple times throughout the growing season in 

Elite Yield Trials in irrigated and drought-stressed environments at the International Maize and 

Wheat Improvement Center (CIMMYT) station in Ciudad Obregon, Mexico. We assessed data 

quality and evaluated the potential to predict grain yield on a plot level by examining the 

relationships between information derived from UAS imagery and the final measured grain 

yield. 
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Using geographically weighted (GW) models, we predicted grain yield for both drought 

and irrigated environments. The relationship between measured phenotypic traits derived from 

imagery and grain yield was highly correlated (r=0.74 and r=0.46 (p < .001) for drought and 

irrigated environments respectively). Residuals from GWR were much lower and less spatially 

dependent than the standard method of best linear unbiased estimators suggesting the superiority 

of spatially corrected models. These results show that image based vegetation indices collected 

from high-throughput UAS imagery can be used to predict grain yield and subsequently used for 

selection decisions and to improve genomic prediction models. 

  

 INTRODUCTION 

Wheat is a primary staple crop throughout the world, with a total projected production of 

727 million tons in 2016 (Office of the Chief Economist 2016). Due to the emergence of more 

aggressive pests and diseases, shortage of available water resources, lack of fertile soil, and 

climate change, wheat production is projected to fall behind the increasing demand (Ray et al. 

2013). With limited options to increase the amount of land under production, it is generally 

agreed that increasing crop yield per unit area, rather than expanding cultivated land area, is 

needed to meet the world demand for wheat by 2050 (Muir et al. 2010; Foley et al. 2011). 

Unfortunately, the rate of genetic increase is currently estimated at 1% or less (Reynolds et al. 

2012), while a rate of 2% or more is needed to meet the projected targets (Ray et al. 2013).  

 

Historically, large advances in grain yield have been achieved within breeding programs. 

However, studies have shown that traditional breeding programs cannot currently increase crop 

yield at a sufficient pace to meet growing demands (Reynolds et al. 2009; Tester & Langridge 
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2010). Traditional phenotypic selection involves the use of manual data collection that is time-

consuming, labor-intensive, expensive and often burdensome when making selections in large 

populations. While there have been little changes in phenotypic tools and evaluation methods 

(White et al. 2012), astonishing advances over the last 5-10 years have occurred in sequencing 

technology resulting in many advanced tools and methods to assess genotypes and improve plant 

breeding techniques (Cobb et al. 2013; Elshire et al. 2011; White et al. 2012). The grand 

challenge remains in measuring plant phenotypes with the same speed and precision as possible 

for observing the genome leading to active innovation in field-based high-throughput 

phenotyping (HTP) platforms. 

 

HTP platforms could provide the keys to connecting genotype to phenotype by increasing 

the capacity, efficiency, and precision of evaluating large plant populations. HTP can maximize 

the population sizes screened for desirable traits in breeding nurseries. An increase in population 

size enabled by HTP increases the probability of identifying valuable traits and the genetic basis 

of those traits. This enables breeding programs to achieve a higher capacity for genetic gain 

(Poland 2015; Reynolds & Langridge 2016; Goggin et al. 2015).  

 

HTP is also expected to increase the precision and accuracy with which these traits can 

be measured compared to manual measurements (Goggin et al. 2015; White et al. 2012). The 

emphasis on high dimensionality, the need for automation and more non-destructive sampling 

techniques in general, necessitates that HTP platforms often rely on imaging to measure plant 

phenotypes (Goggin et al. 2015). One emerging technology allowing plant breeders to screen 

large numbers of genotypes reliably is unmanned aerial systems (UAS). The main advantage of 
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UAS over traditional manual approaches is the ability to cover an entire experiment area in a 

very short time, enabling researchers to monitor larger fields with higher temporal resolution and 

higher spatial resolution during the growing season. 

 

Different imaging systems are being used on unmanned aerial vehicle (UAV) 

phenotyping platforms making them capable of generating various measurements useful for plant 

breeding programs (Liebisch et al. 2015; Deery et al. 2014; White et al. 2012). High resolution 

multispectral cameras can be used to produce 3D models of the experiment area resulting in the 

extraction of plant height using a digital elevation model (DEM) (Feng et al. 2015; Rosnell & 

Honkavaara 2012). Other sensors include hyperspectral and thermal cameras that can be used to 

investigate different vegetation indices (VIs) and their relation to crop biomass and yield (Hruska 

et al. 2012).  

 

Several spectral reflectance measurements and VIs have shown a strong relationship to 

plant health and crop growth. From this, remote sensing has proven to be a valuable tool for 

estimating crop yields in advance of harvest at an affordable cost. One of the most common VIs, 

the normalized difference vegetation index (NDVI), has been used by researchers for crop yield 

predictions since the 1980’s (Teal et al. 2006; Singh et al. 2001; Sultana et al. 2014; Wang et al. 

2014). In a study conducted by Salazar et al. (Salazar et al. 2007) a strong correlation was found 

between winter wheat yield and NDVI extracted from satellite imagery during the critical period 

of winter wheat development and productivity occurring during April to May in Kansas. Grain-

yield prediction using remote sensing has been extensively studied in cereal crops, such as 

wheat, using satellite imagery (Prasad et al. 2006; Manjunath et al. 2016; Mkhabela et al. 2011; 
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Salazar et al. 2007) or ground-based platforms (Rischbeck et al. 2016; Raun et al. 2001). 

However, little work has been conducted using proximal sensing, such as UAS imagery 

platforms. 

 

The use of physiological selection criteria to predict grain yield is an indirect breeding 

approach suggested in wheat research (M. a. Babar et al. 2006; Crain et al. 2016; Rutkoski et al. 

2016). VIs have been widely studied as the potential tool to differentiate genotypes for yield 

under different environmental growing conditions such as irrigated and non-irrigated (M. A. 

Babar et al. 2006; Araya et al. 2013; Arnold et al. 1995; You et al. 2013). Additionally, several 

studies have examined how yield-enhancing traits, such as stay-green, can be used as a predictor 

of grain yield using spectral responses (Lopes & Reynolds 2012). Lopes et al. studied temporal 

NDVI data from grain fill to maturity to improve understanding of genotypic stay-green 

variation. In this study, they found that stay-green variables explained 30% of yield variability in 

multiple regression analysis, although the cumulative effect that stay-green variables provide, 

together with other traits may allow for additional insights to be gained about plant health and 

final grain yield. 

 

Data derived from HTP can provide deeper and broader insight about the crop than what 

breeders are accustomed to having available. With the addition of georeferenced and spatial data 

inherent in HTP and imagery, researchers can utilize tools not traditionally used in the area of 

plant breeding. The purpose of this research is to evaluate the performance of geographically 

weighted models in predicting grain yields at plot level in breeding nurseries. The Foundation of 

geostatistical rationale is the understanding that spatial data, information about the locations and 
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shapes of geographic features (wheat plots) and the relationships between them, stored as 

coordinates and topology, will vary across a field (Mitchell 2005). Regression-based models 

mostly ignore this assumption, which could potentially impact the accuracy of prediction models. 

 

A typical linear regression model follows: 

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗𝑗=1,𝑚 + 𝜀𝑖                                                                    (1) 

With 𝑦𝑖 is the ith observation of the dependent variable, 𝑥𝑖𝑗the ith observation of the jth 

independent variables, and 𝜀𝑖  the residual that is identically and independently distributed. 

 

When applied to spatial data, this model assumes a stationary spatial process; spatially 

consistent relationships between the dependent variable and each explanatory variable across the 

field. It should be noted that there are two types of stationarity; strong and weak. Strong 

stationarity requires that the distribution of the regionalized variable Z(x) is independent of 

location x. This implies that the mean, variance, and all other distribution parameters are the 

same, everywhere in the field. Second-order stationarity, also known misleadingly as the ‘weak-

stationarity' assumption, requires that the expected value (i.e. the mean, and the variance) is the 

same at all the locations (Myers., 1989). 

 

Typical linear regression produces one single model for all parts of the study area. Field 

trials, however, are inherently spatial, often varying non-randomly across the field, which could 

impact the accuracy of these models. Geographically weighted regression (GWR) is a local 

statistical approach to model spatially heterogeneous processes, which could be applicable to 

field trials. GWR is used to analyze spatial nonstationarity; when the extent of relationships 
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among variables differs from location to location (Brunsdon et al. 1996; Lu, Charlton, et al. 

2014; Fotheringham et al. 2002). In this approach, unlike other regression models, the spatial 

non-stationary relationship is assumed and is tested, based on Tobler's first law of geography: 

"everything is related to everything else, but near things are more related than distant things” 

(Tobler 1970). GWR allows the relationships to vary over space, and extends the traditional 

regression framework of equation (1) by allowing local variations in rates of change so the 

coefficients in the model are no longer global estimates but are specific to a location i. This is the 

core of GWR, in the linear form: 

𝑦𝑖 = 𝛽𝑖0 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑗𝑗=1,𝑚 + 𝜀𝑖                                                            (2) 

where 𝛽𝑖𝑗 is the value of the jth parameter at location i. Instead of remaining the same 

everywhere, 𝛽𝑗 now varies in terms of the locations (i) (Mennis 2006; Brunsdon et al. 1996; Lu, 

Charlton, et al. 2014; Fotheringham et al. 2002). 

 

In the context of growing interest in UASs applied to precision agriculture studies, we 

evaluated the relationship between the data extracted from UAS imagery, including green NDVI, 

blue NDVI, enhanced NDVI, Green Infrared Percentage Vegetation Index (GNDVI, BNDVI, 

ENDVI, and GIPVI), and plant height during the growing season to grain yield. Using the 

extracted data, we evaluated the application of spatio-temporal UAS imagery to predict within-

season grain yield in a large international wheat breeding program using statistical methods 

based on experimental design and GWR.  

 

 MATERIALS AND METHODS 
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 Study Area 

The study was conducted at Norman E. Borlaug Experiment Station at Ciudad Obregon, 

Sonora, Mexico, in two different growing environments drought and irrigated. The genetic 

materials were advanced breeding lines in the Elite Yield Trials (EYT) of the CIMMYT bread 

wheat breeding program. The experiment consisted of 280 advanced wheat lines distributed in 10 

trials, with each trial consisting of 28 entries and two checks. Each trial was arranged as an alpha 

lattice design with three replications and six blocks. The different environments were based on 

mega-environments which are major wheat growing regions that experience similar growing 

environments, with the chosen environments (irrigated and drought) representing approximately 

32 and 10 million ha worldwide respectively (Braun et al. 1996). The plot size for each 

experimental unit in irrigated trials was 2.8 m long and 1.6 m wide (plot area = 4.48 m2) sown 

on two 0.8 m wide raised beds with two rows per bed, whereas plots in drought trials were 4 m 

long and 1.3 m wide (plot area = 5.2 m2) sown on flat land as 6 rows 18 cm apart with 40 cm 

interplot spacing.  The drought trial was sown at the optimum planting date with minimal 

irrigation throughout the season using drip tape. The irrigated environment represents an optimal 

planting date (mid-November) with optimal flood irrigation throughout the growing season. 

During the crop season, the drought environment received 180mm of irrigation, and the irrigated 

environment received 500mm of water. Fertilizer and pesticide control were similar in both 

environments. 

 

 Platforms and Cameras 

High-throughput phenotypic data from a UAS was collected as previously described by 

Haghighattalab et. al (Haghighattalab, González Pérez, et al. 2016).  We used a consumer grade 
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Canon S100 camera modified by MaxMax (LDP LLC, Carlstadt, NJ 07072, USA, 

www.maxmax.com) to Blue-Green-NIR (400-760nm), which was mounted on a low-cost UAV, 

(IRIS+, 3D Robotics, Inc, Berkeley, CA 94710, USA). The bandwidth of the modified camera, 

based on the wavelength (nm) and quantum efficiency diagram reported by MaxMax are 

summarized in Table 1. For further analysis, we calculated full width at half maximum (FWHM) 

for each band. The FWHM is the range of wavelengths (i.e. bandwidth) where the filter transmits 

half of light at the peak. 

 

 Ground Control Points and Reflectance Calibration Panel 

To geo-reference the aerial images, a total of 13 GCPs were distributed across each field 

at the beginning of the season. The GCPs coordinates were measured with a Trimble R4 RTK 

GPS that has a horizontal accuracy of 2.5 cm and a vertical accuracy of 3.5 cm. These targets 

were maintained throughout the crop season to enable the overlay of measurements from 

multiple dates. The GCPs were designed as coded targets (printed as circles with black and white 

segments) on 25 cm x 25 cm square white metal sheets and mounted on a 50 cm post to provide 

easy identification of GCPs in the image processing software. Six white 30 cm x 30 cm square 

ceramic tiles mounted on 10 cm post were also used to have a variety of heights in GCPs in order 

to increase the accuracy of height extraction analysis. 

 

To enable consistent analysis of extracted data from aerial imagery across multiple days, 

we placed a calibration panel in the field before each flight. This foldable panel consisted of six 

individual 7 mm thick lightweight plywood panels with levels of gray from 0% being white and 

100% being black and were attached using metal hinges. Using a handheld spectroradiometer 
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(ASD Inc., Boulder, CO) on a sunny day, the spectral reflectance of these panels were measured 

at a fixed altitude of 50 cm from five different angles. We also used this panel for white balance 

adjustment of the raw imagery captured by our consumer grade camera. 

 

 Field Data Collection  

Grain harvested by using a small plot combine at the end of the season and total plot 

yield recorded in kg per plot. For the irrigated environment, manual measurements for plant 

height were recorded for the first replicate in each trial, and for all plots in the drought 

environment. These measurements were taken as the distance from the ground to the average top 

of the terminal spikelet for a representative plant, usually from the middle of the plots. Before 

measurement, culms were manually pulled up to the vertical position if they were lodged (Bell et 

al. 1994). 

For each environment, aerial imagery was taken at multiple time points using the UAV 

phenotyping platform (IRIS+ and a modified Canon S100 camera) during the growing season, 

with observation days spaced at approximately seven-day intervals, depending on the weather 

condition. All images were taken in RAW format (.CR2) to avoid loss of image information. An 

overview of each day of UAS observation is summarized in Table 2. 

 

 HTP Image Processing 

For each experiment we collected three sets of observations from heading through 

senescence (Zadoks et al. 1974). We used the semi-automated data analysis pipeline presented in 

Haghighattalab et al. (Haghighattalab, González Pérez, et al. 2016) to analyze each dataset and 

extracted plot level phenomics values. Image processing was primarily conducted using Python 
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scripts, open source software QGIS (http://qgis.osgeo.org) and Agisoft PhotoScan package 

(Agisoft LLC, St. Petersburg, Russia, 191144) (Haghighattalab, Perez, et al. 2016). 

 

To generate plot level values for VIs and plant height, we used the image processing 

developed by Haghighattalab et al. (Haghighattalab, González Pérez, et al. 2016). In summary, 

HTP data processing, for each time point of data collection, included the following steps:  

1) raw image pre-processing  

2) Photo alignment 

3) importing GCPs and geo-referencing 

4) optimize GCP alignment 

5) constructing dense point cloud 

6) classifying data within the dense point as plant or soil 

7) building digital elevation model using classified point cloud 

8) forming orthomosaic image using two different blending methods 

9) generating orthomosaic and DEM 

10) calculation of various VIs, and plant height 

11) plot-level data extraction 

Due to the modified Canon S100 available bandwidth, the calculated VIs were limited to 

GNDVI, BNDVI, ENDVI, and GIPVI. The formulas used to calculate these indices are 

presented in Table 3.  
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 Plant Height Extraction 

PhotoScan generates a dense point cloud based on the estimated camera positions. The 

program also calculates depth information for each photo to be combined into a single dense 

point cloud (Agisoft LLC 2016). We generated dense point cloud with medium accuracy. To 

extract plant height, we produced both the digital terrain model (DTM) and the digital surface 

model (DSM), with plant height being calculated as the difference between the two models 

(equation 3): 

Plant Height=DSM-DTM                                                           (3) 

The generated dense point cloud includes everything that can be seen in the images, 

pixels from the ground, vegetation, and any other artifacts or noise. PhotoScan offers two options 

of dense point cloud classification: 1) automatic classification of the points into two categories – 

ground points and other, 2) manual selection of a group of points to be placed in a particular 

class from the standard list known for LIDAR data, such as vegetation, water, or road surface. 

Three parameters control automatic ground point classification: maximum angle, maximum 

distance, and maximum cell size (Agisoft LLC 2016). Point cloud classification provides ways to 

customize the DEM generation step as the software allows choosing types of objects within the 

scene to be reconstructed and indicate the corresponding point class as a source data for DEM 

generation. For example, DEM reconstruction based on ground points only, allows users to 

export DTM (as opposed to DSM, based on the complete dense point cloud, excluding the 

artifacts and noises) (Agisoft LLC 2016).  

 

In our plot imagery, we reduced the default values for maximum angle and maximum 

distance parameter values since the height for crops are considerably lower than heights of other 
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objects like buildings. To estimate plant height, we allowed automatic classification of ground 

points and then classified the vegetation points manually, generating DTM and DSM for each 

dataset. We defined training sets for classes of ‘ground’, ‘low vegetation’, and ‘high vegetation’ 

by sampling the points. Using the classified point cloud, we extracted the DTM by only using 

ground points, and the DSM by using data assigned to the vegetation points. For a small field, 

the generated classified point cloud can be used to calculate plant height directly. However, the 

point cloud exported from PhotoScan are very large files and for large wheat breeding nurseries, 

as we used in our study, we used the generated DEM. 

 

Using our custom field map based method, we extracted two plot boundaries for each 

field. One plot boundary was buffered to avoid pixels outside the plot, and was used for the DSM 

extraction, as we are only interested in values reflected from wheat plants. The second plot 

boundary was extended to have the DTM values of the ground surrounding the wheat plots. We 

calculated mean, and standard deviation (SD) for DSM, and lower quantile for DTM. We 

calculated height for each plot as the difference between the mean values of DSM and lower 

quantile values of DTM as these values would represent the lowest elevation point in the DTM. 

 

Using the classified DEM, we generated orthomosaic using both blending methods 

(average and mosaic). In the average mode, the brightness values of the final orthomosaic is the 

average of all the overlapping images, while mosaic mode only uses images where the pixel in 

question is located within almost nadir view (Haghighattalab, González Pérez, et al. 2016; 

Agisoft LLC 2016). 
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After calibrating each orthomosaic data set for each environment using empirical line 

method, we generated VI maps using Python scripting in QGIS as described in our developed 

pipeline (Haghighattalab, González Pérez, et al. 2016; Smith & Milton 1999). We calculated 

statistical values for each plot for each day of data that included the minimum, mean, maximum, 

and standard deviation for both blending methods. 

 

 HTP Data Analysis 

 Broad-sense Heritability 

Within environment and trial, we calculated broad-sense heritability, commonly known 

as repeatability (Piepho & Möhring 2007), for extracted VIs measured on individual dates, and 

grain yield. 

To estimate heritability, we performed a two steps process where we first calculated the 

plot-level value for HTP measurements and then fit a mixed model for replication, block, and 

genotype as random effects. 

 

Broad-sense heritability for each trait within trial within environment was calculated 

from equation 4 (Holland et al. 2003).  

𝐻2 =  
𝜎𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐

2

𝜎𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐
2 +

𝜎𝑒𝑟𝑟𝑜𝑟
2

𝑛𝑟𝑒𝑝

                                                                         (4) 

Where 𝜎𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐
2 is genotypic variance, 𝜎𝑒𝑟𝑟𝑜𝑟

2  is error variance, nrep is the number of 

replicates in the trial (nrep=3). The lme4 R package was used for all mixed model analysis 

(Bates et al. 2014). 

 



69 

 Parameter Estimation 

Within each environment and trial, to estimate genetic values for traits measured across 

multiple dates, we estimated best linear unbiased estimates (BLUEs) for each genotype using the 

following mixed model: 

 𝑦𝑖𝑗𝑘 = 𝜇 +  𝑔𝑖 + 𝑟𝑗 + 𝑏𝑘(𝑗) + 𝜖𝑖𝑗𝑘 (
𝑖=1…𝑛𝑙𝑖𝑛𝑒𝑠

𝑗=1…3 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠
𝑘=1…6 𝑏𝑙𝑜𝑐𝑘𝑠

)                        (5) 

Where  𝑦𝑖𝑗𝑘 is the phenotype observation for each trait, μ is the mean value of the 

population; 𝑔𝑖 is the fixed genotype effect of entry i, 𝑟𝑗 is the random effect for the j replicate 

distributed as i.i.d. 𝑟𝑗~𝑁(0, 𝜎𝑗
2), 𝑏,𝑘(𝑗) is the random effect for the m block nested within replicate 

distributed as i.i.d. 𝑏𝑘(𝑗)~𝑁(0, 𝜎𝑘
2), and 𝝐𝑖𝑗𝑘is the residual distributed as i.i.d. 𝜖𝑖𝑗𝑘~𝑁(0, 𝜎𝜖

2). 

We calculated BLUEs for grain yield, DTHD, all the VIs, and plant height. We assessed 

the height measurements by calculating the correlation between manual height measurements 

and extracted UAS imagery measurements. 

 

Because the phenotypic BLUEs were highly correlated we used principal component 

regression to evaluate the relationship between phenotypic values and grain yield. Principal 

component regression is a popular technique that can adequately account for multiple variables 

that may have varying levels of correlation between variables (Mevik & Wehrens 2007). Within 

each environment, we fit a principal component regression model using the multi-temporal and 

multi-VI (ENDVI, BNDVI, GIPVI, GNDVI) to observed grain yield.  The pls R package (Mevik 

et al. 2013) was used for all principal component model development. We validated the 

prediction model using a 10-fold cross validation with the accuracy of prediction reported as the 

correlation of the predicted values compared to the observed values. 
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 Geographically Weighted Modeling 

By mapping yield and vegetation indices from both growing conditions, we were able to 

determine the presence of spatial patterns (Figure 8). This led us to develop a geographically 

weighted model to explore changing spatial relationships between grain yield and measured 

phenotypic traits. An important extension of GWR is its semiparametric construction by 

combining globally fixed and geographically varying coefficients (Equation 6) (Lu, Harris, et al. 

2014). 

𝑦𝑖 = ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑘,𝑖 +  ∑ 𝛾𝑙 + 𝑧𝑙.𝑖 + 𝜀𝑖  𝑙𝑘                                                 (6) 

Where 𝑦𝑖, 𝑥𝑘,𝑖, and 𝜀𝑖  are, respectively, grain yield, kth phenotypic trait, and the 

Gaussian error at location i; (𝑢𝑖, 𝑣𝑖)  is the x-y coordinate of the ith location; and coefficients 

𝛽𝑘(𝑢𝑖, 𝑣𝑖) are varying conditionals on the location. The global term, 𝑧𝑙.𝑖 is the lth phenotypic trait 

with a fixed coefficient 𝛾𝑙 (Nakaya 2016). 

 

In this approach, a moving window weighting technique is used, where local models at 

both sampled and unsampled locations are calibrated. All neighboring observations, for an 

individual sample point, are weighted based on a distance decay kernel function, and the model 

is fit to this weighted data. The key to GW modeling is the weighting matrix, which sets the 

spatial dependency in the data (Lu, Harris, et al. 2014). There are three elements in defining this 

matrix: the distance metric (in our case, the distance between observations is calculated as the 

distance between polygon centroids); the type of kernel weighting function; and the kernel 

weighting function’s bandwidth which controls the size of the moving window (Mennis 2006). 

The scope of these parameters and details on GW modeling are outlined in Fotheringham et al., 
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(2002) (Fotheringham et al. 2002). For GW modeling, we used the GWmodel package in R to 

investigate spatial relationships among the numerous phenotypic observations and grain yield 

(Lu, Harris, et al. 2014). We obtained accuracies of GW prediction model ability for both 

environments using 10-fold cross-validation technique. 

 

 RESULTS and DISCUSSION 

 Image Processing for HTP Data 

To evaluate the potential of UAS for within season grain yield prediction in wheat 

breeding programs, we deployed a low-cost, consumer-grade UAV phenotyping platform at 

multiple times throughout the growing season in two different growing environments (Table 2). 

We processed all the imagery taken at various dates using a semi-automated pipeline 

(Haghighattalab, González Pérez, et al. 2016). Image processing included converting raw 

imagery to TIFF format, georeferencing, point cloud generation, DEM and orthomosaic 

generation, and plot level data extraction. We examined how the choice of mosaic or average 

orthomosaics generation affected the results. Additionally, our pipeline calculated the standard 

summaries for each plot of minimum, maximum, mean, range, and standard deviation of each 

vegetation index. The pipeline made efficient use of the data that was generated. For a regular 

flight 100 photos were taken resulting in 1.35 GB of raw data, processing time averaged 3 hours 

per flight on a 16 GB RAM single core processor. While efficient, this highlights one of the 

needed areas of research to reduce processing time to allow users to collect data and rapidly 

analyze or even process in real-time.  
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 Plant Height Measurements 

To evaluate the suitability of using the UAS phenotyping platform to monitor plant 

height, we calculated the pairwise correlation using manual measurements for the drought and 

irrigated environments compared to the height extracted from UAS (n=900 for drought and 

n=300 for irrigated). Using the initial data, it was apparent that there were outliers in both the 

irrigated and drought environment. Using the SD of the height values calculated from the DEM 

for both environments, we set a minimum height threshold to identify and remove lodged plots. 

After removal of plots with height lower than 60cm for drought environment, and 80cm for 

irrigated environment there was a significant correlation between the DEM and manual 

measurements of height with correlations of r=0.7 and r=0.56 for irrigated and drought 

respectively (Figure 9).  

 

While we found a significant association between manual measurements and UAS height 

measurement, we believe the results for height could be improved with an elevation soil map 

taken before vegetation begins growing. This would be a more accurate DEM map of the area 

and allow for more precise height extractions from the DTM. Additionally, we found that relying 

on the minimum values or the lower quantile values of DTM extracted from each plot of wheat 

are more challenging for irrigated environment since they are planted in bed. In the bed planting, 

while height should be calculated from the center of the bed, digital extraction may include the 

wheat plants between the bed which may be several centimeters in difference compared to the 

ground elevation.  Another option may be to use RGB images which would have higher accuracy 

compare to the images captured by the modified NIR cameras.  
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Reason for lower correlation with manual measurements for drought environment 

compare to irrigated, could be due to the very close values of plant heights in this environment; 

the range of height for drought falls between 68 cm and 84 cm for 900 observed plots, while this 

range for irrigated environment based on the manual measurement was 91 cm-122cm for the 300 

observed plots. With the vertical accuracy of RTK GPS in this study (~3 cm), extracting plant 

heights that were very close to each other in values can be more challenging. 

 

 Grain Yield Prediction using Principal Component Regression 

To evaluate the potential of UAS phenotyping platforms to quantify grain yield we used 

principal component regression (PCR) to develop models for each environment. This technique 

provides a method to adequately address the correlation between variables, as many of the 

measured vegetation indices exhibited high levels of correlation. Using the estimated BLUEs and 

a 10-fold cross validation scheme, the correlation between the predicted grain yield and observed 

grain yield was r=0.48 and r=0.32 for drought and irrigated environments, respectively (Figure 

10).  

 

 Grain Yield Prediction using GWR 

Because plant breeding trials are inherently spatial in nature, we assessed using 

geographically weighted regression to evaluate grain yield. We used a subset of the extracted VIs 

for variables within the GWR model. The GWR model provides basic variable selection for 

accounting for correlated variables that was typical of our VIs. The data were then entered into 

the GW modeling using a variable bandwidth setting that minimizes the AIC. The adaptive 
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bandwidth approach was chosen to account for the spatial variation in the size of the wheat plots, 

and hence the density of plots centroids (Mennis 2006). 

 

Within each environment, we used a 10-fold cross-validation that was repeated 1000 

times to evaluate model prediction to observed grain yield (Figure 3). The average correlation 

between observed and predicted values was r=0.74 and r=0.46 (p < .001) for the drought and 

irrigated environments respectively. In addition to having higher prediction accuracies than 

principal component regression, the root mean squared error was decreased from 0.36 to 0.2 for 

the irrigated environment and 0.39 to 0.14 for the drought environment. 

 

 Environment Prediction 

Using both principal component regression and GWR, we observed similar trends. In 

general, GWR resulted in higher prediction accuracies compared to principal component 

regression, which would be expected as GWR takes into account the neighborhood (local 

environment) around the plot. This higher prediction was observed in both environments for 

GWR. However, both PCR and GWR followed a similar trend of high predictive ability in the 

drought environment with less predictive power in the irrigated environment. Why one 

environment was predictive compared to the other is not clear. We examined the heritability for 

each observed phenotypic trait (VI's and grain yield) for each of the 10 trials in the study area. In 

general, heritability was high for all traits Table 4, suggesting minor environmental fluctuations. 

Grain yield had a larger range of variance for both irrigated and drought (H2=0.37-0.87 for 

irrigated grain yield trials and H2= 0.71-0.96 for drought grain yield trials), which would be 

expected as grain yield is the sum of the entire growing season, while daily VIs would represent 
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a single time point of observations. While the irrigated had a larger range in heritability and 

lower prediction, the differences may be due to the timing of the data collection within the 

environments, or the ability to detect differences in genotypes that are saturating reflectance 

(Esfandiary et al. 2009). While our work shows that UAS phenotyping platform can be used to 

monitor and predict yield performance in drought, more work is needed to transfer this to the 

irrigated (high-yield) environment. 

 

 CONCLUSION 

With the development of new sensors and imaging systems enabling parallel phenotypic 

measurements, HTP can advance the scope of scientific studies and expand our understanding of 

plants. Using a low-cost UAS, we generated spatio-temporal phenotypic data and applied a semi-

automated pipeline to extract information from individual wheat plots during the growing 

season. 

The extracted height from UAS had a high correlation with manual measurements in both 

environments. Although planting systems, on flat or bed, and variation in plant’s height may 

have an effect on estimated readings, our results demonstrate that UAS can be successfully used 

for measuring plant height in wheat. Different VIs and canopy height were related to final grain 

yield. We evaluated several prediction models, with models accounting for spatial variability 

performing the best. In addition to predicting plant yield, our analysis highlights some of the 

flexibility in these methods that end users can use by modifying how data can be extracted and 

classified from the images. For example, dense point cloud classification provides ways to 

customize the DEM generation step as the software allows choosing types of objects within the 
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scene to be reconstructed and indicate the corresponding point class as a source data for DEM 

generation.  

 

Our study provides strong support of the value of UAS for predicting and evaluating 

several physiological traits and using this information for overall yield prediction. Application of 

this technology can enable plant breeders and scientists to enhance their understanding of plants, 

especially using types of data collected by UAS's in genetic studies and genomic prediction 

models. Through the implementation of in-season yield prediction in early generations of the 

breeding program, selection decisions could be made before harvest and only selected lines 

harvested from the field.  Likewise, the incorporation of ‘secondary traits’ as described here has 

been shown to increase the prediction accuracy of genomic models when incorporated in a 

multivariate framework (Rutkoski et al., 2016).  Overall, the rapid measurement of physiological 

and agronomic traits in-season for large breeding nurseries will provide breeders will additional 

tools meet the challenge of increasing genetic gain and delivering superior high-yielding 

varieties.   
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Table 7 Sensor specifications for each instrument used for spectral data collection. 

Sensor Platform 

(UAS) 

Effective 

Pixels (MP) 

Band width 

(nm) 

Full width at half 

maximum (FWHM) 

Canon S100 IRIS+ 12.1 Blue:380-540 

Green:460-570 

NIR:650-780 

Blue:400-495 

Green:490-550 

NIR:680-760 

 Spectral 

Resolution 

Wavelength 

Accuracy 

Wavelength Range 

ASD 

spectroradiometer 

<3 nm at 700 nm ±1 nm 325 nm – 1075 nm 

 

 

 

 

Table 8 Flight information using unmanned aerial system high-throughput phenenotyping 

platform (IRIS+ and modified Canon S100), at CIMMYT, Ciudad Obregon, Mexico, 2016. 

Environment 
No. of 

Flights 

Flight 

Speed 

(m/s) 

Altitude 

(m) 

Percent Overlap 

of each photo 
No. of 

Images 

Spatial 

Resolution (cm)  
Side Forward 

Drought 3 2 30 70% 80% 100 ~0.9 

Irrigated 3 2 25 70% 80% 93 ~0.9 
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Table 9 Vegetation indices calculated for each day of data measurements using a modified 

Canon S100. 

INDEX Formula 

GNDVI 𝑁𝐼𝑅 −  𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 +  𝐺𝑟𝑒𝑒𝑛
 

BNDVI 𝑁𝐼𝑅 −  𝐵𝑙𝑢𝑒

𝑁𝐼𝑅 +  𝐵𝑙𝑢𝑒
 

ENDVI 𝑁𝐼𝑅 +  𝐺𝑟𝑒𝑒𝑛 − 2 ∗ 𝐵𝑙𝑢𝑒

𝑁𝐼𝑅 +  𝐺𝑟𝑒𝑒𝑛 + 2 ∗ 𝐵𝑙𝑢𝑒
 

GIPVI 𝑁𝐼𝑅 

𝑁𝐼𝑅 +  𝐺𝑟𝑒𝑒𝑛
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Table 10 Broad-sense heritability in 10 trials for vegetation indices and grain yield. The VIs 

extracted from Canon S100 at three time points during the growing season for Drought and 

irrigated environment. In irrigated all the VIs derived from the Canon S100 had higher 

heritability than the final grain yield. 

Broad Sense Heritability 𝑯𝟐 

Drought Environment 

 March 2, 2016 March 10, 2015 March 14, 2016  

Trial # 
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N
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I 
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1 0.94 0.93 0.93 0.93 0.94 0.93 0.89 0.89 0.89 0.85 0.94 0.94 0.88 

2 0.91 0.89 0.91 0.91 0.92 0.9 0.88 0.88 0.89 0.85 0.92 0.92 0.71 

3 0.93 0.91 0.94 0.94 0.94 0.95 0.88 0.88 0.86 0.82 0.94 0.94 0.85 

4 0.92 0.91 0.92 0.92 0.91 0.89 0.93 0.93 0.92 0.87 0.95 0.95 0.92 

5 0.89 0.87 0.94 0.94 0.9 0.89 0.91 0.91 0.95 0.93 0.96 0.96 0.96 

6 0.88 0.86 0.93 0.93 0.9 0.85 0.91 0.91 0.94 0.88 0.93 0.93 0.78 

7 0.96 0.95 0.97 0.97 0.93 0.92 0.88 0.88 0.87 0.82 0.94 0.94 0.91 

8 0.95 0.94 0.96 0.96 0.93 0.93 0.9 0.9 0.9 0.88 0.91 0.89 0.89 

9 0.9 0.86 0.96 0.96 0.93 0.91 0.94 0.94 0.89 0.85 0.94 0.94 0.9 

10 0.91 0.89 0.94 0.94 0.93 0.91 0.93 0.93 0.94 0.88 0.96 0.96 0.92 

Mean 0.92 0.90 0.94 0.94 0.92 0.91 0.91 0.91 0.91 0.86 0.94 0.94 0.87 

Range 
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Irrigated Environment 

 March 10, 2016 March 15, 2015 April 8, 2016  

Trial # 
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1 0.98 0.98 0.94 0.94 0.97 0.96 0.92 0.92 0.88 0.85 0.94 0.94 0.48 

2 0.94 0.94 0.91 0.91 0.93 0.93 0.88 0.88 0.93 0.9 0.97 0.97 0.78 

3 0.92 0.92 0.9 0.9 0.91 0.91 0.86 0.86 0.92 0.9 0.94 0.94 0.66 

4 0.93 0.93 0.9 0.9 0.93 0.94 0.82 0.82 0.94 0.9 0.92 0.92 0.84 

5 0.92 0.92 0.87 0.87 0.91 0.91 0.84 0.84 0.9 0.91 0.95 0.95 0.46 
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6 0.85 0.87 0.8 0.8 0.83 0.85 0.78 0.78 0.96 0.91 0.96 0.96 0.87 

7 0.89 0.9 0.75 0.75 0.89 0.92 0.67 0.67 0.96 0.95 0.97 0.97 0.37 

8 0.91 0.9 0.89 0.89 0.92 0.93 0.85 0.85 0.85 0.84 0.9 0.9 0.73 

9 0.95 0.95 0.94 0.94 0.98 0.98 0.91 0.91 0.92 0.93 0.91 0.91 0.86 

10 0.95 0.95 0.91 0.91 0.96 0.96 0.88 0.88 0.86 0.85 0.93 0.93 0.5 

Mean 0.92 0.93 0.88 0.88 0.92 0.93 0.84 0.84 0.91 0.89 0.94 0.94 0.66 

Range 
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 FIGURES 

 

Figure 8 (A) Mapping yield values in drought environment shows the spatial variation across the 

field. (B) The graph of GNDVI values for drought in march 10, 2016. (C) The yield values in 

irrigated environment shows patches of spatial variation across the field, although less variation 

compares to the yield in drought. (D) map of GNDVI values for irrigated in March 10, 2016. 
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Figure 9 (A) Correlation between 900 manual height data collected from the drought 

environment, and the 900 height extracted from UAS (r= 0.35). (B) The correlation improves 

after removing the data points with high standard variations from heights extracted from UAS 

imagery (r= 0.56). (C) Pairwise correlation between 300 manual height data from the first rep of 

each trial in irrigated environment, and corresponding height extracted from UAS (r= 0.34). (D) 

The correlation improves after removing the data points with high standard variations (r= 0.7). 
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Figure 10 Prediction accuracy between predicted grain yield and observed grain yield for 

drought and irrigated environment using principal component regression and geographically 

weighted regression. GWR resulted in higher prediction accuracies compared to principal 

component regression (r=0.74 for drought environment using GWR versus r=0.48 suing PCR, 

and for irrigated environment, r=0.46 using GWR approach versus r=0.32 using PCR analysis) 
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Chapter 4 - Spatial Adjustment of High-Throughput Phenotypic 

Data Extracted from Unmanned Aerial System (UAS) Imagery of 

Field Trial in Wheat Breeding Nurseries 

 

 

 

 

 

 

Abbreviations: 

BNDVI, blue normalized difference vegetation index; DEM, digital elevation model; 

ENDVI, enhanced normalized difference vegetation index; EYT, elite yield trials; GCP, ground 

control point; GNDVI, green normalized difference vegetation index; HTP, high-throughput 

phenotyping; MVNG, moving grid adjustment; NIR, near infrared; UAV unmanned aerial 

vehicle; UAS, unmanned aerial system; UTM, Universal Transverse Mercator; VI, vegetation 

index 
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 ABSTARCT 

Unmanned aerial systems (UASs) have the potential to provide breeders with 

phenological data such as plant height and vegetation indices to help with more accurate 

selections on larger populations. The phenotypes are determined by the genetics of each entry in 

the nursery, but also influenced by the spatial variation across the field along with the variation 

of genotypic values. To improve the accuracy of selections, breeder needs to account for non-

heritable environmental variation in the form of spatial field effects. There has been extensive 

investigation into field design and statistical models to account for field effects, however this 

previous work was generally limited in the overall treatment of the breeding field experiments as 

geospatial entities. The objective of this study is to evaluate the use of geostatistical spatial 

analysis for controlling the heterogeneity in yield data as well as high throughput phenotypic 

data derived from UAS imagery in a large wheat breeding nursery. We analyzed the temporal 

phenotypic data extracted from UAS imagery for two environments during the growing season 

and detected the spatially non-random patterns in the data. To correct the trends observed in the 

field, we modified the R package, mvngGrAd, in a way that the function uses the phenotypic 

information extracted from geo-referenced aerial imagery in a latitude-longitude grid to obtain an 

adjusted phenotypic value of the plot in the center of the moving circular window. The 

adjustment is based on using the mean of all the adjacent plots as a covariate. To find the 

optimum size of the moving windows, we applied a hotspot analysis of each dataset and used the 

Z score values as a guide to have different window sizes for different patches of variation in the 

field. After spatial adjustment, we found an increase in broad-sense heritability for vegetation 

indices obtained from UAS platforms and grain yield in both environments. The heritability 

gains were higher for vegetation indices extracted from UAS imagery at multiple time points for 
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both environments. The analysis implemented in this study enables breeders with collection and 

post-processing of HTP measurements on larger populations and can provide increased accuracy 

for selection in plant breeding.  Overall the use of UAS imaging to improve selection in plant 

breeding has great promise when combined with analysis and statistical methods that fully 

leverage the spatial nature of the breeding trial data.  

  

 INTRODUCTION 

Field phenotyping of large populations is a constraint that limit our capacity to fully 

understand quantitative traits, especially those related to biotic and abiotic stress (White et al. 

2012). However, recent development in field-based high-throughput phenotyping (HTP) 

platforms alleviates the phenotyping bottleneck (Crain et al. 2015; Crain et al. 2016; Andrade-

Sanchez et al. 2014; Deery et al. 2014) and provides opportunities for breeders to leverage this 

technology to improve selection accuracy and increase population size in breeding programs. 

 

New advances in remote sensing technology considerably increase demand on high-

throughput phenotyping mainly due to their ability to phenotype a significant number of 

genotypes in breeding nurseries in a very short time compare to manual measuring methods 

(Fritsche-Neto & Borém 2015). Use of these technologies has led to a boom in precision 

agriculture, but applying these advances to breeding requires a drastic increase in the accuracy, 

processing speed and volume of measurements.  

One of the emerging technologies in HTP platforms is unmanned aerial vehicles (UAV), 

which have undergone a remarkable development in recent years (Baluja et al. 2012; Dunford et 

al. 2009; Chapman et al. 2014; Chao et al. 2010; Gonzalez-Dugo et al. 2013). UAVs use sensor 
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systems and automated computer algorithms to extract phenotypic traits for large genetic 

mapping populations using non-destructive and non-invasive sampling methods. Like most new 

technologies in phenotyping platforms, the main focus for UAVs has been on combining robotic 

vehicles with imaging systems and sensors for automatic data acquisition. And less well-

developed are image processing that evaluates the quality and accuracy of the data before 

handing it to the breeders. 

 

Large breeding nurseries are often affected by spatial variation across the field. These 

variations are caused by multiple environmental factors that can vary across a field such as soil 

fertility, soil type, moisture holding capacity, and also many human-made variations such as 

irrigation system, the direction of cultivation/harvesting, and previous crop cycles (Funda et al. 

2007; Bos & Caligari 2008; Sarker & Singh 2015). The spatial variation in the field, and the 

variations in the quality of growing conditions could favor some plots to be selected as the 

superior phenotypic value, despite not being superior genotype. These spatial variations, be it 

randomly or with a trend, need to be taken into account when using phenotypic data and yield 

values for selection in breeding programs (Bos 2008; Lado et al. 2013).  

Data extracted from unmanned aerial systems (UAS) is not an exception, as it also 

records the characteristics of the plants resulting from the interaction of plant’s genotype with its 

growing condition. Using UASs is aimed at improving and accelerating the selection process. To 

improve the efficiency of UAS data in breeding programs, we need to make sure that the 

coefficient of correlation between the derived phenotypic values and the genotypic values are as 

high as possible, and one way to do so is minimizing the spatial variation in the field data (Bos 

2008). 
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Different strategies exist, including experimental field designs, and post-processing 

(Quinn & J.Keough 2002; Casler 2013). The three main concepts for the field designs that 

experimental designs all have in common are replication to calculate and reduce experimental 

error; control of variation between plots; and randomization, to remove bias from the 

confounding effects of genotype and environment or treatment effects (Es et al. 2007; Rutherford 

2005; Mead 1997).  

There are several row and column designs developed to control the spatial variations in 

the field (Atkinson & Bailey 2001; Quinn & J.Keough 2002; Bos & Caligari 2008; Es et al. 

2007; Gilmour et al. 1997; W. L. Leiser et al. 2012), nevertheless due to the presence of spatial 

variability between plots within a block and also between plants within a plot; these experimental 

designs remain limited (Katsileros et al. 2015). Although a good choice of experimental design 

can reduce the effect of spatial heterogeneity, there is a need to address these variations when 

analyzing the treatments to increase their precision. Correspondingly, model-based approaches 

for analyzing field trials that focus on the need to control spatial variation have been put forward 

(Hu & Spilke 2009; Zas 2006; Lado et al. 2013; Katsileros et al. 2015; Bowman 1993; Hartung 

et al. 2006). 

Many studies have shown the ability of geostatistical approaches in removing spatial 

effects from the raw data. These methods can estimate spatial effects more efficiently and 

decrease the need for check plots. Considering a good spatial model is selected, this makes a 

compelling choice over blocking designs for reducing overall plot numbers (Wu et al. 1998; 

Hartung et al. 2006). 
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Semivariograms and kriging, as a geostatistic approach have been evaluated for the effect 

of modeling the spatial variation (Zas 2006; Hartung et al. 2006). Kriging is based on the 

regionalized variable theory that assumes the spatial variation in the phenomenon is statistically 

homogeneous throughout the field (for example, the same pattern of variation can be observed at 

all locations on the field). This hypothesis of spatial homogeneity is fundamental to the 

regionalized variable theory (McBratney et al. 1981; OLIVER & WEBSTER 1990). This 

characteristic of the Kriging method makes it unsuitable for fields with multiple treatments that 

are expectable to have different patterns of variations. 

 

Another method is nearest neighbor method proposed by Papadakis (1937). This is an 

analysis of covariance to reduce the effects of spatial heterogeneity in yield values (J.S 1937). 

When spatial heterogeneity is present, near neighbors are more similar than far neighbors, i.e., 

data are autocorrelated (Zas 2006). Other modifications have been applied to the Papadakis 

method such as the moving average method based on the use of the arithmetic mean for the two 

neighbors’ plots (Townley-Smith & Hurd 1973). 

 

Linear regression models with moving means as covariate is another option to account 

for spatial correlations. The adjustment using this method is made by calculating the mean of all 

the entries included and using it as a covariate (Lado et al. 2013; Katsileros et al. 2015; Townley-

Smith & Hurd 1973; Bos 2008; Kempton & Gleeson 1997; Cullis et al. 1998). Although this 

method is common in unreplicated plant breeding field trials, it has been reported for analysis of 

replicated trials as adjustment can improve the spatial error in the data, and in some cases is 

superior to methods based on row and columns analysis or blocking analysis based on the 
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experimental design alone (Lado et al. 2013; Bos 2008; Mitchell et al. 1982; Cullis et al. 1998; 

Gilmour et al. 1997; W L Leiser et al. 2012; Townley-Smith & Hurd 1973). 

 

The goal of this study is to integrate geospatial techniques with moving grid method to 

adjust for environmental variations in spatio-temporal high throughput phenotypic data extracted 

from UAS imagery and yield data of a large wheat breeding nursery. 

 

 MATERIALS and METHODS 

 Study Area 

The study was conducted at Norman E Borlaug Experiment Station at Ciudad Obregon, 

Sonora, Mexico, during the wheat growing season in 2016.  The experiment composed of 300 

advanced wheat lines distributed in 10 trials, each trial consisting of 30 entries. The trials were 

grown in each of the following environments: drought and optimally irrigated environment. The 

drought experiment was sown at the optimum planting date with minimal irrigation throughout 

the season. The irrigated environment was sown at optimal planting date (mid-November). Full 

irrigation was maintained throughout the irrigated trial.  Irrigated, and drought trials were sown 

in mid-November. During the growing season, the irrigated environments received 500mm of 

water, and drought received 180mm of irrigation. Nutrient levels were maintained at optimum 

levels, and pesticides were applied as needed. Grain yield was measured by harvesting with a 

small plot combine. 
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 Field Data: Design and Collection  

High-throughput phenotypic data was collected with a consumer grade Canon S100 

camera modified to Blue-Green-NIR (400-760nm) by MaxMax (LDP LLC, Carlstadt, NJ 07072, 

USA, www.maxmax.com) The S100 was held by a custom gimble mounted on a small UAV, 

(IRIS+, 3D Robotics, Inc, Berkeley, CA 94710, USA).   

 

For each environment, aerial imagery was taken three times from heading through 

senescence using this low-cost UAV platform (IRIS+ and a modified Canon S100 camera) with 

observation days spaced at approximately seven to ten-day intervals, depending on the weather 

condition. All images were taken in RAW format (.CR2) to avoid loss of image information. An 

overview of each day of UAS observation is summarized in Table 11.  

 

A total of 13 ground control points (GCPs), per field, were distributed on 25 cm x 25 cm 

square white metal sheets and mounted on a 50 cm post. These targets were designed as circles 

with black and white segments on them to provide easy identification of the GCPs. Coordinates 

of these coded targets were measured with a Trimble R4 RTK GPS, with a horizontal accuracy 

of 0.025 m and a vertical accuracy of 0.035 m.  These GCPs were maintained throughout the 

crop season to enable georeferncing of UAS imagery from multiple dates. 

 

The number of GCPs depends on the amount of distortion in the imagery and the desired 

level of accuracy. The aerial imagery obtained from UASs deliver inaccurate location 

information. By georeferencing the data using GCPs, we can align the features in the aerial 

imagery with spatially referenced data on the ground(GCPs) (Toyama et al. 2003). Some 
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examples of reference systems are Latitude and Longitude, Universal Transverse Mercator 

(UTM), and State Plane Coordinate System. These GCPs were used to build a polynomial 

transformation based on a least-squares fitting algorithm, that shifts each of the orthomosaics 

generated from UAS imagery from its existing location to the spatially correct location (Brovelli 

& Minghini 2012; Sheta et al. 2012). A linear transformation equation requires a minimum of 3 

GCPs, a second-order equation needs 6 points, and a third-order equation: a minimum of 10 

points. As in this study, it is suggested to have more than the minimum numbers to lower the 

errors in fitting the equation (Hamza 2009). 

 

An in-house made calibration panel was set on the field before each flight. This foldable 

panel consisted of six individual 7 mm thick lightweight plywood panels with levels of gray 

from 0% being white and 100% being black and were attached using metal hinges. This panel 

was used as a white balance correction and reflectance adjustment of the temporal imagery as 

described in Haghighattalab et al. (Haghighattalab, González Pérez, et al. 2016). 

 

 

 High Throughput Phenotyping Analysis 

We used a semi-automated data analysis pipeline presented in Haghighattalab et al. 

(Haghighattalab, González Pérez, et al. 2016) to analyze each dataset and extracted plot level 

phenotypic values for different vegetation indices (VIs) including green NDVI, blue NDVI, and 

enhanced NDVI (GNDVI, BNDVI, and ENDVI). HTP data processing, for each time point of 

data collection, and for each environment after pre-processing the raw imagery of Canon S100 in 

DPP software (http://www.canon.co.uk/support/camera_software/) are as follows:  
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Semi-automatically analyzing the images in Agisoft software: 1) Alignment of photos 

and building sparse point clouds, 2) importing GCPs and geo-referencing the images, 3) dense 

point cloud construction, 4) manually classifying points into plants, and ground, 5) creating 

digital elevation model(DEM) based on classified point clouds, 6) orthomosaic generation using 

DEM, 7) calculation of various VIs, and 8) extraction of plot level data from VIs’ map.   

Image processing was primarily conducted using Python and R scripts, open source 

software QGIS (http://qgis.osgeo.org) and Agisoft PhotoScan package (Agisoft LLC, St. 

Petersburg, Russia, 191144) (Haghighattalab 2015; Haghighattalab & Agisoft LLC 2014; 

Haghighattalab, González Pérez, et al. 2016). 

 

 

 Moving Average Window Spatial Adjustment 

We applied a linear regression model with moving means as a covariate to correct for 

spatial variation in the field. The basic idea of moving average window adjustment is that the 

phenotypic value expected for plot i is correlated to some degree with its neighboring (Bos 

2008). The adjustment is done by calculating the mean of all the neighboring plots and using it as 

a covariate for the plot in the center of the search window (Lado et al. 2013; Bos 2008).  

 

Since we georeferenced the UAS imagery and can extract Latitude and Longitude 

coordinate for each pixel in the images, and correspondingly the center for each plot, we can 

locate the neighbor plots based on the coordinates of each plot extracted from UAS imagery and 

not based on the row and column information (Traditional method of moving grid) (Figure 11). 

We also can develop the search window not based on the number of neighbors, but based on the 
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distance between each plot and its neighboring plots using a user defined radius. This makes a 

“circular” moving window search available for the user. These modifications enable us to 

evaluate the benefits of a less restrictive experimental design in comparison with the traditional 

row-column designs in breeding programs. 

 

 Hot-spot Analysis to Choose the Optimum Window Size 

The circular moving window around a given plot is expected to capture a number of plots 

subjected to growing conditions most similar to that plot (Bos 2008). Moreover, the spatial 

heterogeneity in the field does not follow the same pattern all over the field. Therefore, there is a 

need to find the optimum window size for moving grid and customize the adjustment based on 

the location of the variation. 

 

The optimum value for window size, say: 𝑤𝑠𝑜𝑝𝑡, depends on the nature of the variation, it 

could change from trial to trial, and from corner to corner. A high value for ws may cause bias 

estimation of the quality of the growing conditions, and a small value suggests a higher mean 

squared error of the mean phenotypic values of plot i neighboring. There are not any guidelines 

to choose the 𝑤𝑠𝑜𝑝𝑡, and ws≈8 is often suggested as a reasonable choice for the window size 

(Bos & Caligari 2008). 

 

After extracting phenotypic values from the UAS imagery, we explored each feature 

within the context of neighboring features and performed a hotspot analysis. Hotspot analysis is 

a local statistics tool that calculates Getis-Ord Gi* statistic for each data available for a plot in 

the field (Equations 1,2,3) (Getis & Ord 1992; Mitchell 2005). Gi* identifies if local pattern is 
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different to what is observed across the field.  The Gi* statistic returned for each plot in the 

dataset is a Z score and p-value, by calculating the local sum for a wheat plot and its neighbor 

compared proportionally to the sum of all plots. When the local sum is very different from the 

expected local sum, and once that difference is too large to be due to random chance, a 

statistically significant Z score outcomes (Chester 1987; Goodchild 1986; Getis & Ord 1992; 

Ord & Getis 1995; Mitchell 2005).  

 

The Z score is based on the Randomization Null Hypothesis computation, which is 

complete spatial randomness. Z score indicates whether the observed spatial clustering of high or 

low values is more distinct than a random distribution of those same values which could help 

with detecting spatial variation in the field trials (Figure 12) (ERSI 2016; Mitchell 2005). 

Although hotspot analysis can be applied to skewed data because it is "asymptotically normal". 

For statistically significant positive Z score values, the larger the Z score is, the more 

intense the clustering of high values (hot spot). And correspondingly for statistically significant 

negative values of Z scores, the smaller the Z score is, the more intense the clustering of low 

values (cold spot) (Mitchell 2005; ERSI 2016; Chester 1987). A Z score near zero indicates no 

apparent concentration (neighbors have a range of values).  To determine if the Z score is 

statistically significant, it needs to be compared to the range of values for a particular confidence 

level. For example, at a significance level of 0.05, a Z score would have to be less than –1.96 or 

greater than 1.96 to be statistically significant. 

Gi
∗ =

∑ wi,jxj−X̅ ∑ wi,j
n
j=1

n
j=1

S
√[n ∑ wi,j

2 −(∑ wi,j)n
j=1

2n
j=1 ]

n−1

                                                        (Equation 1) 
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Gi
∗ is the Z score for plot i, where  𝑥𝑗 is the phenotypic value for plot j, 𝑤𝑖,𝑗 is the spatial 

weight between plot i and j, n is equal to the total number of features and S is given below in 

Equation 3: 

 

X̅ =
∑ xj

n
j=1

n
                                                                                   (Equation 2) 

S = √
∑ xj

2n
j=1

n
− (X̅)2                                                                 (Equation 3) 

 

Gi* results are Z scores – Z scores indicate the place of a particular value in a dataset 

relative to the mean, standardized with respect to the standard deviation. 

 

The conceptualization of Spatial Relationships parameter should reflect inherent 

relationships among the wheat plot HTP values that we are analyzing.  

The conceptualization of spatial relationships or the distance band value need to ensure 

every wheat plot (every feature in the analysis) has at least one neighbor, spatially when the data 

does not follow a normal distribution and is skewed. The number of neighbors needs to be 

neither too small nor too small; Z scores are reliable, even with skewed data as long as each 

feature is associated with several neighbors, as a rule of thumb, 8 neighbors (Mitchell 2005). 

There are several strategies such as inverse distance, k-nearest distance or fixed distance 

that one can choose based on the impact of neighboring plots on one another (Mitchell 2005; 

ERSI 2016). We used inverse distance weight strategy and specified a cutoff distance (using the 

Euclidean distance between the centroids of plots) to include 8 neighbors for each plot. 
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 Broad-sense Heritability 

Improving phenotypic values through identification and selection the superior genotypes 

is the ultimate goal of plant breeders. Due to the environmental effects on phenotypic values, 

there is not a perfect correspondence between phenotypic and genotypic values. Heritability is an 

index that expresses the degree of correspondence between phenotypic and genotypic values 

(Holland et al. 2003). 

The phenotypic variation (VP) of an individual is the combined result of its genotype 

variation (VG) and the effects of the environment (Ve): 

VP = VG + Ve                                                                               (Equation 4) 

Heritability estimates the proportion of variance of a phenotype that is due to genetic 

variation (Holland et al. 2003). A successful adjustment increases the heritability by reducing in 

the environmental variance. 

 

To estimate heritability, we calculated the plot-level value for HTP measurements and fit 

mixed model for replication, block, and genotype as random effects (equation 5).  

H2 =  
σgenotypic

2

σgenotypic
2 +

σerror
2

nrep

                                                                (Equation 5) 

Where σgenotypic
2 is genotypic variance, σerror

2  is error variance, nrep is the number of 

replicates in the trial (nrep=3). The lme4 R package was used for all mixed model analysis 

(Bates et al. 2014). 
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 RESULTS and DISCUSSION 

 Image Processing for HTP Data 

We deployed a low-cost UAS and consumer-grade imaging system at multiple times 

throughout the growing season for two different growing environments (Table 11). We analyzed 

all the imagery with minimum user support using our custom pipeline (Haghighattalab, González 

Pérez, et al. 2016). Image processing included converting raw images to TIFF format, 

georeferencing the imagery using GCPs, point cloud generation, digital elevation model (DEM) 

and orthomosaic generation using DEM, VI map generation, and plot level data extraction.  A 16 

bit orthomosaic TIFF image was generated with the semi-automated pipeline developed in 

Haghighattatlab et al (Haghighattalab & Agisoft LLC 2014; Haghighattalab, Perez, et al. 2016).  

 

 Hot Spot Analysis 

We used the hotspot analysis function in ArcGIS® software by Esri to get the Z score 

values for each plot in the field (Figure 13). We used inverse distance weight strategy and 

included at least four neighbors for each feature. Z score values represent the statistical 

significance of the spatial clustering of yield values in both environments, with inverse distance 

conceptualization of spatial relationships and accounting for 8 neighbors for each plot.  The 

resultant Z score values help us to understand the possibility and the location of spatial variation 

in the field (Mitchell 2005). Using the Z score we customized the size of the moving average 

window in the modified mvngGrAd package for each hot spot/cold spot area in the field, 

accounting a minimum 6 neighbors. Yield values shows variation in the field spatially, for 

example in drought environment, hotspots can be observed in patches on the left side of the field 

as well as on some other areas in small patches (Figure 14). For irrigated growing environment it 
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can be found that coldspots of yield are clustered mostly on the left side of the field, and hotspots 

on the right side. 

Using the spatial pattern analysis, we can detect the probability of non-random clustering 

in the phenotypic data. This enables us to compare patterns of different distributions or different 

time periods. With the temporal data set in hand, we can also determine whether the clustering 

becomes more or less extreme over time (Figure 15). 

 

 Moving Mean Adjustment 

The R package mvngGrAd [46], uses a moving grid adjustment method to adjust for 

environmental variation in field trials.  In this package, the trials are arranged as a matrix of row-

column design.  Each entry in this matrix is associated with a cell, respectively with a row and 

column number.  A grid is then created around each cell and the mean of the cells included in the 

grid is calculated [46]. We modified this package to incorporate geospatial data derived from 

aerial imagery into moving grid adjustment analysis. 

 

High throughput phenotypic data for VIs and yield data for both environments were 

analyzed using the mvngGrAd package (Technow 2012) in R. The analysis was performed 

individually for each growing environment and each date. A linear regression model with 

moving means as covariate (MVNG), was considered to account for spatial correlations. 

The number of neighbors for each window was different, and it was based on the number 

of plots that fall into a circle with a radius of “r” defined based on the Z score values (Figure 11). 
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The traits under study (GNDVI, ENDVI, BNDVI, and grain yield) were analyzed 

adjusting for spatial variation using a linear mixed model, with moth standard moving grid 

approach, and modified adjustment using spatial data extracted from the imagery. The modified 

moving grid adjustment presented more homogeneous residuals along the field compare to the 

standard moving grid without using spatial data (Figure 15 and 16). We observed the same result 

for ENDVI and BNDVI for both environments as GNDVI. The irrigated field showed minimal 

spatial variation and after spatial adjustment for the yield data, we observed homogeneous 

residuals throughout the field (Figure 16). Both spatial adjustment approach showed same results 

for irrigated field. 

On the other hand, drought environment presented a more pronounced field variation 

(Figure 15). And the adjustment using the modified moving grid for drought environment 

showed more uniform distribution of errors in the field, for both yield and the VIs. 

 

 Assessment of Spatial Adjustment using Broad-sense Heritability 

Within environment and trial, we calculated broad-sense heritability, commonly known 

as repeatability (Holland et al. 2003), for extracted VIs and grain yield, before and after moving 

grid adjustment.  

Figure 17, and 18 shows the average heritability across all ten trials, before and after 

moving grid adjustment. The heritability estimates were generally lower for grain yield and also 

VI values under irrigated growing conditions compare to drought. H2 for grain yield increased 

for all trials within drought environment, and for all trials in the irrigated environment with the 

exception of one trial. 
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Broad-sense heritability estimates for VIs within individual environments, were increased 

by using moving grid adjustment, thus make selection more efficient. 

 

 CONCLUSION 

The challenge in wheat breeding remains in accelerating the selection of high-yielding 

and well adapted of genotypes. Newly developed technologies in high-throughput phenotyping 

allow taking up this challenge and provide breeders with tools to rapidly measure physiological 

and agronomic traits in-season. By integrating genetic information with high-throughput 

phenotypic data, breeders will be able to better connect genotype to phenotype while more 

quickly and efficiently identifying and selecting superior higher yielding crop varieties from a 

larger population. 

 

To improve the accuracy of selections, the breeder needs to address the phenotypic 

variations caused by growing conditions. Geostatistical approaches with moving grid adjustment 

were examined in two environments contrasting for the accuracy gains as indicated by 

heritability increases. The high throughput phenotypic data and grain yield for each environment 

were adjusted individually and showed a strong spatial effect through the field for both drought 

and irrigated growing condition. The implementation of a moving mean spatial correction model 

enabled a better adjustment in measurements, showing an increment in the heritability of 

measurements.  Spatial adjustment in the drought environment had a strong impact on 

heritability for both yield values and VIs while the irrigated trials displayed an increase in 

heritability with spatial adjustment for all the VIs, and for yield in nine trials out of ten.  We 

demonstrate that the implementation of geospatial correct for field effects in the area of field-
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based high throughput phenotyping can be a powerful approach to increase the heritability of 

traits for selection by better accounting for variable field effects.  
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 TABLES 

  

Table 11 Flight information using unmanned aerial vehicle high-throughput phenotyping 

platform (IRIS+ and modified Canon S100), at CIMMYT, Ciudad Obregon, Mexico, 2016. 

Drought Environment 

Dates 

(2016) 

Flight 

speed 

(m/s) 

Attitude 

(m) 

Percent overlap No. of 

Images 

Spatial 

Resolution 

(cm) 
Side Forward 

March 2 2 30 70% 80% 98 ~0.9 

March 10 2 30 70% 80% 100 ~0.9 

March 14 2 30 70% 80% 99 ~0.9 

Irrigated Environment 

March 10 2 25 70% 80% 93 ~0.9 

March 15 2 25 70% 80% 93 ~0.9 

April 8 2 25 70% 80% 96 ~0.9 
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 FIGURES 

  

 

Figure 11 Modified moving window search for A) Drought and B) Irrigated environment. The 

plots are arranged based on their location on the ground using their Latitude-Longitude 

coordinates. The search window is a circular window with a defined radius based on the distance 

of the neighboring plots from each other. C) the search window of moving grid package before 

adjustment, number of neighboring plots can be defined on each row and column. The circles in 

the field represent the true centroid of each wheat plots extracted from aerial imagery. The 

distance between center of wheat plots in irrigated trials is approximately 1.6 m horizontally, and 

3.5 m vertically. This distance for drought environment is 1.3 m and 4.6 m. These distances vary 

throughout the field due to the presence of possible mistakes in planting. 
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Figure 12 Z scores are standard deviations. For example, a Z score of +2.5, means that the result 

is 2.5 standard deviations. Both Z scores and p-values are associated with the standard normal 

distribution. 



120 

 

Figure 13 Z score map of A) Drought environment, B) Irrigated Environment. Z score values 

represent the statistical significance of the spatial clustering of yield values in both environments, 

with inverse distance conceptualization of spatial relationships and accounting for 8 neighbors 

for each plot. The circles in the field represent the true centroid of each wheat plots extracted 

from aerial imagery. 
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Figure 14 Temporal and spatial pattern analysis of high-throughput phenotyping data extracted 

from UAS imagery captured at various time points after heading. A) Contour map of GNDVI 

values obtained on March 10, 2016 from irrigated trials. Spatial variation is observable as high 

values are clustered in patches on the right side of the field. B) GNDVI map, March 15, 2016, 

irrigated field. The trend of variation has changed from the last time point, but still high across 

the field. C) GNDVI map from April 8, 2016, the trend of GNDVI values has changed in this 

data set, patches of high values are scattered across the field. D) Contour map of GNDVI values 

extracted from UAS imagery from March 2nd, 2016, in drought trials. Spatial variation is 

observable in patches across the field. E) GNDVI values from March 10, 2016, the trend has 

changed, fewer clusters of high values of GNDVI can be observed on the left side of the field, 

although the pattern on the right side has slight change. F) GNDVI values extracted from March 

14 imagery; the spatial variation is very strong in the field, patches of high values on the left 

side. Slight change of low value clusters on the right side of the field is observable compare to 

March 10 data set. 
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Figure 15 Plot residuals along the field for drought trials. The color scale shows the value of 

residual effects as indicated: A) Distribution of residual values of yield in drought environment 

from moving grid adjustment B) Residuals from modified moving grid approach for Yield 

values, drought environment, C) Plot residuals along the field for GNDVI values, in drought 

environment from moving grid approach, GNDVI values were extracted from UAS imagery 

captured on March 10, 2016 D) Residuals for GNDVI values from March 10, 2016, drought 

from modified moving grid approach. 

 

 



123 

 

Figure 16 Plot residuals along the field for irrigated trials. The color scale shows the value of 

residual effects as indicated: A) Distribution of residuals for yield values in irrigated 

environment using moving grid adjustment B) Residuals from modified moving grid approach 

for Yield values, drought environment, C) Distribution of residuals for GNDVI values, in 

drought environment using moving grid adjustment, GNDVI values were extracted from UAS 

imagery captured on March 10, 2016 D) Residuals for GNDVI values from March 10, 2016, for 

drought environment, using modified moving grid adjustment. 
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Figure 17 Broad sense heritability within environment and trial. The broad sense heritability was 

calculated for GNDVI values for each date and yield values in irrigated environment, the average 

H2 has increased after spatial adjustment for all the GNDVI values, and for yield. The error bars 

show the standard deviations across all the trials. 
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Figure 18 The broad sense heritability was calculated for GNDVI values for each date and yield 

values in drought environment. H2 has increased after spatial adjustment for all the GNDVI 

values, and yield. The error bars show the standard deviations across all the trials. 
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Chapter 5 - Conclusion 

The bottleneck of traditional phenotyping methods has limited the ability to understand 

the interaction between a plant’s genotype and its surrounding environment. Traditional 

measuring techniques widely used in conventional phenotyping, are labor-intensive, time-

consuming, costly, and the accuracy is directly upon the precision of the surveyor. In the context 

of plant breeding and large genetic studies, these techniques are limited in the number of lines 

that can be adequately assessed for desirable traits. 

With the introduction of high-throughput phenotyping (HTP) through unmanned aerial 

vehicles (UAV) equipped with imaging sensors, breeding programs can rapidly and reliably 

collect phenotypic data with minimal labor costs and time. This lowering of time and cost 

constraints allows for breeders to increase the number of lines assessed, thereby increasing the 

probability of finding genetically superior lines. The HTP pipeline presented in this study shows 

significant potential for large-scale plant measurement in breeding nurseries using remote 

sensing and geographic information science (GIS) techniques. The rapid, low-cost evaluation of 

large field trials in plant breeding with UAV platforms has the potential to greatly accelerate the 

breeding process through more accurate selections on larger populations. 

After developing a pipeline to extract data different vegetation indices and height from 

UAS imagery, the second step in completing this research was to develop a geospatial method to 

predict grain yield using spatio-temporal data set. High correlation between GNDVI derived 

from aerial imagery and field measured allowed accurate prediction of estimated grain yield 

across the study area. 

The final step in accomplishing the major research objective was to evaluate the use of 

geostatistical spatial analysis for controlling the heterogeneity in high throughput phenotypic 
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data derived from UAS imagery, and yield data of a large wheat breeding nursery. Analyzing the 

temporal phenotypic data extracted from UAS imagery for two environments during the growing 

season resulted in detection of the spatially non-random patterns in the data. Geostatistical 

approaches integrated with moving grid adjustment were examined in two environments 

contrasting for the accuracy gains as indicated by heritability increases. 

 

HTP data derived from UAS not only enables us with faster data collection, and more 

number of lines to be assessed, but also it can help us to increase the accuracy of selection. With 

the help of GIS analysis and geospatial information derived from aerial imagery, we are able to 

have more precise selection by addressing the phenotypic variations caused by growing 

conditions.  

 

Our study provides strong evidence of the potential value of UAS for HTP applied to 

large wheat breeding nurseries. There is strong support of the value of UAS for predicting and 

evaluating several physiological traits and using this information for overall yield prediction. The 

use of geospatial statistics along with moving grid adjustment can improve the accuracy of HTP 

data used by breeders for selection. This integration of remote sensing technologies with 

geospatial techniques will allow for faster elucidation of the intricacies of the genotype to 

phenotype dilemma. When brought together, the integration of HTP in wheat breeding programs 

can help to accelerate the accurate identification of the most superior candidate varieties, 

increasing the speed and efficiency of the breeding program.  The delivery of superior, high-

yielding new varieties will help to meet the great challenges of meeting food security and 

increasing demands of a growing population. 
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Appendix A - Supplementary Materials 

This appendix includes the supplementary figures and tables. 

 

 

Figure 19 A foldable gray scale reference panel, used in the field for radiometric calibration as 

well as white balance correction. (Photo credit: Daljit Singh) 
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Figure 20 Surveying ground control points (GCPs) in the field using RTK GPS. Before the start 

of HTP 10-13 GCPs were uniformly distributed in the field. 
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Figure 21 IRIS+ (3D Robotics, Inc, Berkeley, CA 94710, USA) a low cost UAV, carrying 

modified NIR Canon S100 

 

 

 
Figure 22 Location of the study area with drought wheat trials in 2016 on the Norman E Borlaug 

Experiment Station at Ciudad Obregon, Sonora. 
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Figure 23 Location of the study area with irrigated wheat trials in 2016 on the Norman E 

Borlaug Experiment Station at Ciudad Obregon, Sonora. 
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Figure 24 Orthomosaic of UAS imagery captured on March 10, 2016 from drought trials, 

Norman E Borlaug Experiment Station at Ciudad Obregon, Sonora. 13 GCPs were uniformly 

distributed across the field before data collection. 
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Figure 25 GNDVI map of drought trials, calculated from UAS imagery captured on March 2nd, 

2016, which reveal the relative greenness of wheat plots. 
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Figure 26 GNDVI map of drought trials, calculated from UAS imagery captured on March 10th, 

2016. Low GNDVI values (Less green and more red) indicate a low fraction or absence of green 

plants on the surface. 
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Figure 27 GNDVI map of drought trials, calculated from UAS imagery captured on March 14th, 

2016 
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Appendix B - Supplementary Materials 

This chapter includes the scripts used in this dissertation. 

 Plot Extraction 

### This scrip takes the modified CSV file that has planting information; plot number, 

name of the plots, trials, GID, phenotypic information and converts it to KML file. Please 

read the "readme" that I created to help you with it. 

### Developer: Atena Haghighattalab 

import argparse 

import os 

from os.path import basename 

import math 

from lib.csvfile import Csvfile 

from lib.xmlbuilder import XmlKmlBuilder 

from lib.timer import Timer 

 

def add_style_to_folder(f_main, xml): 

    # add `Style` attribute to Main `Folder` 

    s = xml.create_el_style(f_main) 

 

    # add `IconStyle` into `Style` with `scale` 

    ics = xml.create_el_icon_style(s) 

    xml.create_el_scale(ics, '0.0') 

 

    # add `LabelStyle` into `Style` with `scale` 

    lbs = xml.create_el_label_style(s) 

    xml.create_el_scale(lbs, '0.5') 

 

    # add `PolyStyle` into `Style` with `fill` 

    lbs = xml.create_el_poly_style(s) 

    xml.create_el_fill(lbs, '0') 
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def addstyle_map_to_folder(f_main, xml): 

 

    # create `StyleMap` 

    sm = xml.create_el_style_map(f_main) 

 

    # create `Pair` inside `StyleMap` with `key` 

    p = xml.create_el_pair(sm) 

    xml.create_el_key(p, 'normal') 

    xml.create_el_styleurl(p, '#s_ylw-pushpin') 

 

 

def main(x1, y1, x2, y2, input_file): 

 

    # TODO: make this as a helper function 

    name = os.path.splitext(basename(input_file))[0] 

 

    csvfile = Csvfile(input_file) 

 

    x1o = x1 

    width = abs(x1 - x2) 

    height = abs(y1 - y2) 

 

    print(width) 

    print(height) 

 

    xml = XmlKmlBuilder() 

    d = xml.create_el_document() 

 

    # Main `Folder` with name 
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    f_main = xml.create_el_folder(d) 

    xml.create_el_name(f_main, name) 

 

    # `Folder` with name (OriginPoints) 

    f_origin_points = xml.create_el_folder(d) 

    xml.create_el_name(f_origin_points, name + '-Puntos de Origen') 

 

    # `Folder` with name (Points) 

    f_points = xml.create_el_folder(d) 

    xml.create_el_name(f_points, name + '-Puntos') 

 

    add_style_to_folder(f_main, xml) 

    addstyle_map_to_folder(f_main, xml) 

 

    # left-top `Placemark` 

    pm = xml.create_el_placemark(f_origin_points) 

    xml.create_el_name(pm, 'Punto 1') 

    pt = xml.create_el_point(pm) 

    xml.create_el_coordinates(pt, str(x1) + "," + str(y1) + ",0") 

 

    # bottom-right `Placemark` 

    pm = xml.create_el_placemark(f_origin_points) 

    xml.create_el_name(pm, 'Punto 2') 

    pt = xml.create_el_point(pm) 

    xml.create_el_coordinates(pt, str(x2) + "," + str(y2) + ",0") 

 

    # ------------------- ------------------- ------------------- ------------------- ------------------- 

 

    # count sum of rows in first column 

    hm = 0.0 

    for row in range(0, csvfile.rows_count()): 
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        if csvfile.is_number(0, row): 

            hm += csvfile.get_number(0, row) 

 

    # count sum of cols in first row 

    wm = 0.0 

    for col in range(0, csvfile.cols_count()): 

        if csvfile.is_number(col, 0): 

            wm += csvfile.get_number(col, 0) 

 

    not_empty_elements = [] 

 

    for row in range(1, csvfile.rows_count()): 

        with Timer() as t: 

            for col in range(1, csvfile.cols_count()): 

 

                id_val = str(csvfile.get(col, row)) 

 

                # `porcentajex` is how many GEO points in current column number 

                if csvfile.is_number(col, 0) and wm != 0: 

                    porcentajex = csvfile.get_number(col, 0) / wm 

                else: 

                    porcentajex = 0 

 

                if csvfile.is_number(0, row) and hm != 0: 

                    porcentajey = csvfile.get_number(0, row) / hm 

                else: 

                    porcentajey = 0 

 

                # 1st point (left-top) 

                x = x1 

                y = y1 
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                coord = format(x, '.12f') + "," + format(y, '.12f') + ",0 " 

                coord_point = "" 

 

                # 2nd point (right-top) 

                x = x1 + (width * porcentajex) 

                coord_point += format(x1 + (width * porcentajex / 2), '.12f') + "," 

                coord += format(x, '.12f') + "," + format(y, '.12f') + ",0 " 

 

                yempty = 0 

                for in_row in range(row, csvfile.rows_count()): 

                    if csvfile.get(in_row, col) == "-": 

                        not_empty_elements.append(str(in_row) + '-' + str(col)) 

                        yempty += csvfile.get(in_row, 0) / hm 

                    else: 

                        break 

 

                coord_point += format(y1 - (height * (porcentajey + yempty) / 2), '.12f') + ",0" 

 

                # 3rd (right-bottom) 

                y = y1 - (height * (porcentajey + yempty)) 

                coord += format(x, '.12f') + "," + format(y, '.12f') + ",0 " 

 

                # 4rd (left-bottom) 

                x = x1 

                coord += format(x, '.12f') + "," + format(y, '.12f') + ",0 " 

 

                # 1st point again 

                y = y1 

                coord += format(x, '.12f') + "," + format(y, '.12f') + ",0" 

 

                x1 = x1 + (width * porcentajex) 
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                if (str(row) + '-' + str(col)) not in not_empty_elements and id_val != "" and id_val != "-

": 

 

                    # add placemark 

                    pm = xml.create_el_placemark(f_main) 

                    xml.create_el_name(pm, id_val) 

                    xml.create_el_description(pm, id_val) 

                    xml.create_el_styleurl(pm, '#m_ylw-pushpin') 

 

                    pl = xml.create_el_polygon(pm) 

                    xml.create_el_tessellate(pl, '1') 

                    obi = xml.create_el_outer_boundary_is(pl) 

                    lr = xml.create_el_linear_ring(obi) 

                    xml.create_el_coordinates(lr, coord) 

 

                    # Add placemark 

                    pm = xml.create_el_placemark(f_points) 

                    xml.create_el_styleurl(pm, '#m_ylw-pushpin') 

                    xml.create_el_name(pm, id_val) 

                    p = xml.create_el_point(pm) 

                    xml.create_el_coordinates(p, coord_point) 

 

                # if cell is empty, but next one has something -> this is horizontal gap 

                # if "" == csvfile.get(col, row) and "" != csvfile.get(col+1, row): 

                # 

                #     x1 += csvfile.get_number(col, 0) * porcentajex 

                # 

                #     print(porcentajex) 

                #     print(width * porcentajex) 

                #     print(csvfile.get_number(col, 0) * porcentajex) 
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                #     print(col) 

                #     print(row) 

                #     exit() 

 

        print "=> elasped lpush: %s s" % t.secs 

 

        print(str(math.floor(float(row) / float(csvfile.rows_count()) * 100)) + "% completed") 

 

        x1 = x1o 

        y1 = y1 - (height * porcentajey) 

 

    # ------------------- ------------------- ------------------- ------------------- ------------------- 

 

    # output 

    xml.save('output.kml') 

 

 

#   Input variables: 

#   --y1 

#   --x1 

#   --y2 

#   --x2 

#   -f --input-file 

if __name__ == "__main__": 

 

    parser = argparse.ArgumentParser() 

 

    parser.add_argument('-y1', type=float, required=True, help="") 

    parser.add_argument('-x1', type=float, required=True, help="") 

    parser.add_argument('-y2', type=float, required=True, help="") 

    parser.add_argument('-x2', type=float, required=True, help="") 
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    parser.add_argument('-f', '--input-file', type=str, required=True, help="") 

 

    args = parser.parse_args() 

 

    main(args.x1, args.y1, args.x2, args.y2, args.input_file) 
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 Orthomosaic Generation 

## Author: Atena Haghighattalab 

## Created: 07/08/2014 

## Modified: 25/03/2015 

 

import os 

import PhotoScan 

 

 

def main(): 

 

 global doc 

 doc = PhotoScan.app.document 

 

 app = QtGui.QApplication.instance() 

 parent = app.activeWindow() 

  

 #prompting for path to photos 

 path_photos = PhotoScan.app.getExistingDirectory("Specify input photo folder:") 

 path_psz = PhotoScan.app.getSaveFileName("Specify path for the PSZ project file:") 

 path_export = PhotoScan.app.getExistingDirectory("Specify EXPORT folder:") 

  

 #processing parameters 

 accuracy = PhotoScan.Accuracy.HighAccuracy  #align photos accuracy 

 preselection = PhotoScan.Preselection.ReferencePreselection 

 keypoints = 40000 #align photos key point limit 

 tiepoints = 10000 #align photos tie point limit 

 source = PhotoScan.PointsSource.DensePoints #build mesh source 

 surface = PhotoScan.SurfaceType.HeightField #build mesh surface type 

 quality = PhotoScan.Quality.MediumQuality #build dense cloud quality 

 filtering = PhotoScan.FilterMode.AggressiveFiltering #depth filtering 
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 interpolation = PhotoScan.Interpolation.EnabledInterpolation #build mesh interpolation  

 face_num = PhotoScan.FaceCount.HighFaceCount #build mesh polygon count 

 mapping = PhotoScan.MappingMode.OrthophotoMapping #build texture mapping 

 atlas_size = 8192 

 blending = PhotoScan.BlendingMode.MosaicBlending #blending mode 

 color_corr = False 

 

 

 print("Script started") 

 

 #creating new chunk 

 doc.addChunk() 

 chunk = doc.chunks[-1] 

 chunk.label = "New Chunk" 

 

 #loading images 

 image_list = os.listdir(path_photos) 

 photo_list = list() 

 for photo in image_list: 

  if ("jpg" or "jpeg" or "JPG" or "JPEG") in photo.lower(): 

   photo_list.append(path_photos + "\\" + photo) 

 chunk.addPhotos(photo_list) 

 

 #loading coordinates from EXIF and setting up the coordinate system 

 chunk.loadReferenceExif() 

 chunk.crs = PhotoScan.CoordinateSystem("EPSG::4326") 

 proj = chunk.crs 

 PhotoScan.app.update() 

 

 #align photos 
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 chunk.matchPhotos(accuracy = accuracy, preselection = preselection, filter_mask = 

False, keypoint_limit = keypoints, tiepoint_limit = tiepoints) 

 chunk.alignCameras() 

  

 chunk.optimizeCameras() 

 

 #building dense cloud 

 PhotoScan.app.gpu_mask = 1  #GPU devices binary mask 

 PhotoScan.app.cpu_cores_inactive = 2  #CPU cores inactive 

 chunk.buildDenseCloud(quality = quality, filter = filtering) 

 

 #building mesh 

 chunk.buildModel(surface = surface, source = source, interpolation = interpolation, 

face_count = face_num) 

 

 #build texture 

 chunk.buildUV(mapping = mapping, count = 1) 

 chunk.buildTexture(blending = blending , color_correction = color_corr, size = 

atlas_size) 

 

 doc.save(path_psz) 

 PhotoScan.app.update() 

 

 ###exporting DEM and Orthophoto 

 

 #estimating effective ground resolution 

 #recalculating WGS84 resolution from degrees into meters if export projection (proj) is 

WGS84 

 if proj.authority == "EPSG::4326": 

  coord = PhotoScan.Vector([0,0,0]) 

  cam_num = 0 
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  for camera in chunk.cameras: 

   if not camera.transform: 

    continue 

   coord += proj.project(chunk.transform.matrix.mulp(camera.center)) 

   cam_num += 1 

    

  crd = (1. / cam_num) * coord 

 

  #longitude 

  v1 = PhotoScan.Vector((crd[0], crd[1], 0) ) 

  v2 = PhotoScan.Vector((crd[0] + 0.001, crd[1], 0)) 

  vm1 = proj.unproject(v1) 

  vm2 = proj.unproject(v2) 

  res_x = (vm2 - vm1).norm() * 1000 

 

  #latitude 

  v2 = PhotoScan.Vector( (crd[0], crd[1] + 0.001, 0)) 

  vm2 = proj.unproject(v2) 

  res_y = (vm2 - vm1).norm() * 1000 

    

  d_x = d_x / res_x   

  d_y = d_y / res_y 

   

  

 chunk.exportDem(path_export + "\\DEM.tif", format = "tif", projection = proj, dx = d_x, 

dy = d_y, nodata = -32767, crop_borders = True, write_kml = False, write_world = False) 

 chunk.exportOrthophoto(path_export + "\\ortho.tif", format='tif', blending = blending, dx 

= d_x, dy = d_y, color_correction = color_corr, projection = proj, write_kml = False, 

write_world = False) 

 

 print("Script finished") 
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PhotoScan.app.addMenuItem("Custom menu/Process 1", main)  

 

 

 Geographically Weighted Regression Models 

 

### this function is modified from gwr.predict in GWmodel package ### 

 

gwr.predict.mod = function(formula, data, predictdata, bw, kernel, approach, adaptive, p, 

theta, longlat, generate.prediction.var=F) { 

   

  fd.locat <- coordinates(data) ### extract training co-ordinate 

  fd.n <- nrow(fd.locat) ### number of training co-ordinate 

   

  pd.locat <- coordinates(predictdata) ### extract test co-ordinate 

  pd.n <- nrow(pd.locat) ### number of test co-ordinate 

   

  

##############################################################################

####################################################### 

  ### THIS WHOLE CHUNK IS TO EXTRACT OUT THE PROPER X (independent 

variable) AND Y (dependent variable) VALUES from the training data # 
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##############################################################################

####################################################### 

  mf <- match.call(expand.dots = FALSE) 

  m <- match(c("formula", "data"), names(mf), 0L) 

  mf <- mf[c(1L, m)] 

  mf$drop.unused.levels <- TRUE 

  mf[[1]] <- as.name("model.frame") 

  mf <- eval(mf, parent.frame()) 

  mt <- attr(mf, "terms") 

  y <- model.extract(mf, "response") 

  x <- model.matrix(mt, mf) 

   

  var.n <- ncol(x) ### number of predictor (including intercept) 

  idx1 <- match("(Intercept)", colnames(x)) ### identify intercept column 

  if (!is.na(idx1)) {colnames(x)[idx1] <- "Intercept"} ### some renaming 

  inde_vars <- colnames(x)[-1] ### names of independent variables (excluding intercept 

column) 

 

   

  ######################################## 

  ### THIS IS TO EXTRACT THE TEST DATA ### 

  ######################################## 
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  predictdata <- as(predictdata, "data.frame") ### convert the test data to dataframe 

  x.p <- predictdata[, inde_vars] ### extract the test indepedent variables 

  x.p <- cbind(rep(1, pd.n), x.p) ### add intercept ("1") 

  x.p <- as.matrix(x.p) 

   

   

  ########################################### 

  #### PART 1: FOCUS ON TEST DATA ########### 

  #### THIS IS THE ACTUAL PREDICTION STEP ### 

  ########################################### 

   

  ### matrix to hold the weights 

  wt <- matrix(nrow = fd.n, ncol = pd.n) 

   

  ### matrix to hold xtxinv (i.e. inverse of t(x) %*% t) 

  xtxinv <- as.double(rep(0, pd.n * var.n * var.n)) 

  dim(xtxinv) <- c(pd.n, var.n, var.n) 

   

  ### matrix to hold beta 

  betas1 <- matrix(nrow = pd.n, ncol = var.n) 

   

  ### for each set of test co-ordinate 

  for (i in 1:pd.n) { 
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    ### get GW distance between train co-ordinate and test co-ordinate 

    dist.vi <- gw.dist(fd.locat, pd.locat, focus = i, p, theta, longlat) 

     

    ### assign corresponding GW weights 

    W.i <- gw.weight(dist.vi, bw, kernel, adaptive) 

     

    ### record the weight (W.i) in wt 

    wt[, i] <- W.i 

     

    ### GW regression on x and y using weight (W.i) 

    gw.resi <- gw.reg1(x, y, W.i, i) 

     

    ### record the beta values 

    betas1[i, ] <- gw.resi[[1]] 

     

    ### record the xtxinv 

    xtxinv[i, , ] <- gw.resi[[2]] 

  } 

   

  ### THIS IS THE PREDICTION STEP!!! 

  ### predict using x.p (predictor independent variables) and betas1 (previously recorded) 

  gw.predict <- gwr.fitted(x.p, betas1) 
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  if (generate.prediction.var) { 

     

    

########################################################################## 

    ### Everything below are for generating the regression statistics only ### 

    

########################################################################## 

     

    ####################################### 

    #### PART 2: FOCUS ON TRAINING DATA ### 

    ####################################### 

     

    ### matrix to hold beta 

    betas2 <- matrix(nrow = fd.n, ncol = var.n) 

     

    ### S is analogous to xtxinv above, but the form is much simpler 

    S <- matrix(nrow = fd.n, ncol = fd.n) 

     

    for (i in 1:fd.n) { 

      dist.vi <- gw.dist(fd.locat, fd.locat, focus = i, p, theta, longlat) 

      W.i <- gw.weight(dist.vi, bw, kernel, adaptive) 
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      gw.resi <- gw.reg(x, y, W.i, T, i) 

      betas2[i, ] <- gw.resi[[1]] 

      S[i, ] <- gw.resi[[2]] 

    } 

     

    tr.S <- sum(diag(S)) 

    tr.StS <- sum(S^2) 

    Q <- t(diag(fd.n) - S) %*% (diag(fd.n) - S) 

    RSS.gw <- t(y) %*% Q %*% y 

    sigma.hat <- RSS.gw/(fd.n - 2 * tr.S + tr.StS) 

        predict.var <- numeric(pd.n) 

    for (i in 1:pd.n) { 

      w2 <- wt[, i] * wt[, i] 

      w2x <- x * w2 

      xtw2x <- t(x) %*% w2x 

      xtxinvp <- c() 

      for (j in 1:var.n) xtxinvp <- rbind(xtxinvp, xtxinv[i, , j]) 

      s0 <- xtxinvp %*% xtw2x %*% xtxinvp 

      x.pi <- x.p[i, ] 

      dim(x.pi) <- c(1, length(x.pi)) 

      s1 <- x.pi %*% s0 %*% t(x.pi) 

      pse <- (sqrt(sigma.hat)) * (sqrt(1 + s1)) 

      pvar <- (pse)^2 
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      predict.var[i] <- pvar 

    } 

        gwr.pred.df <- data.frame(betas1, gw.predict, predict.var) 

  } else { 

    gwr.pred.df <- data.frame(betas1, gw.predict, NA) 

  } 

   ### clean up and output data 

  colnames(gwr.pred.df) <- c(paste(colnames(x), "coef", sep = "_"), "prediction", 

"prediction_var") 

    form =  as.character(formula) 

  form = form[2] 

  gwr.pred.df = cbind(gwr.pred.df, actual=predictdata[,form]) 

  rownames(pd.locat) <- rownames(gwr.pred.df) 

  SDF = SpatialPointsDataFrame(coords = pd.locat, data = gwr.pred.df) 

  return(SDF) 

} 

 

### this function is modified from gwr.predict in GWmodel package ### 

 

gwr.predict.mod.quick = function(formula, data, predictdata, bw,  kernel, approach, 

adaptive, p, theta, longlat.type, DM, train.numbering, test.numbering) { 

   

  fd.locat <- coordinates(data) ### extract training co-ordinate 
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  fd.n <- nrow(fd.locat) ### number of training co-ordinate 

   

  pd.locat <- coordinates(predictdata) ### extract test co-ordinate 

  pd.n <- nrow(pd.locat) ### number of test co-ordinate 

   

  

##############################################################################

####################################################### 

  ### THIS WHOLE CHUNK IS TO EXTRACT OUT THE PROPER X (independent 

variable) AND Y (dependent variable) VALUES from the training data # 

  

##############################################################################

####################################################### 

  mf <- match.call(expand.dots = FALSE) 

  m <- match(c("formula", "data"), names(mf), 0L) 

  mf <- mf[c(1L, m)] 

  mf$drop.unused.levels <- TRUE 

  mf[[1]] <- as.name("model.frame") 

  mf <- eval(mf, parent.frame()) 

  mt <- attr(mf, "terms") 

  y <- model.extract(mf, "response") 

  x <- model.matrix(mt, mf) 
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  var.n <- ncol(x) ### number of predictor (including intercept) 

  idx1 <- match("(Intercept)", colnames(x)) ### identify intercept column 

  if (!is.na(idx1)) {colnames(x)[idx1] <- "Intercept"} ### some renaming 

  inde_vars <- colnames(x)[-1] ### names of independent variables (excluding intercept 

column) 

   

   

  ######################################## 

  ### THIS IS TO EXTRACT THE TEST DATA ### 

  ######################################## 

  predictdata <- as(predictdata, "data.frame") ### convert the test data to dataframe 

  x.p <- predictdata[, inde_vars] ### extract the test indepedent variables 

  x.p <- cbind(rep(1, pd.n), x.p) ### add intercept ("1") 

  x.p <- as.matrix(x.p) 

   

   

  ########################################### 

  #### PART 1: FOCUS ON TEST DATA ########### 

  #### THIS IS THE ACTUAL PREDICTION STEP ### 

  ########################################### 

   

  ### matrix to hold the weights 

  wt <- matrix(nrow = fd.n, ncol = pd.n) 
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  ### matrix to hold xtxinv (i.e. inverse of t(x) %*% t) 

  xtxinv <- as.double(rep(0, pd.n * var.n * var.n)) 

  dim(xtxinv) <- c(pd.n, var.n, var.n) 

   

  ### matrix to hold beta 

  betas1 <- matrix(nrow = pd.n, ncol = var.n) 

   

  ### for each set of test co-ordinate 

  for (i in 1:pd.n) { 

     

    ### use pre.compute DM 

    dist.vi <- DM[test.numbering[i], train.numbering] 

     

    ### assign corresponding GW weights 

    W.i <- gw.weight(dist.vi, bw, kernel, adaptive) 

     

    ### record the weight (W.i) in wt 

    wt[, i] <- W.i 

     

    ### GW regression on x and y using weight (W.i) 

    gw.resi <- gw.reg1(x, y, W.i, i) 

     



158 

    ### record the beta values 

    betas1[i, ] <- gw.resi[[1]] 

     

    ### record the xtxinv 

    xtxinv[i, , ] <- gw.resi[[2]] 

  } 

   

  ### THIS IS THE PREDICTION STEP!!! 

  ### predict using x.p (predictor independent variables) and betas1 (previously recorded) 

  gw.predict <- gwr.fitted(x.p, betas1) 

   

  ### Skip the variance calculation 

  gwr.pred.df <- data.frame(betas1, gw.predict, NA) 

   

  ### clean up and output data 

  colnames(gwr.pred.df) <- c(paste(colnames(x), "coef", sep = "_"), "prediction", 

"prediction_var") 

   

  form =  as.character(formula) 

  form = form[2] 

  gwr.pred.df = cbind(gwr.pred.df, actual=predictdata[,form]) 

  rownames(pd.locat) <- rownames(gwr.pred.df) 

  SDF = SpatialPointsDataFrame(coords = pd.locat, data = gwr.pred.df) 
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  return(SDF) 

   

} 

 

gwr.bootstrap = function(formula.reg, data, output.folder, bootstrap, percentage.test, 

kernel, bandwidth=NULL,  approach, adaptive, p, theta, longlat) { 

   

  data.full = data 

   

  out.fold = file.path(output.folder) 

 

  ### calculate GW matrix 

  print("Calculate GW distance matrix...") 

  DM = gw.dist(dp.locat=coordinates(data.full)) 

   

  ### select best bw 

  if (is.null(bandwidth)) { 

    print("Select best bandwidth...") 

    bw.best = bw.gwr(formula(formula.reg), data.full, approach, kernel, adaptive, p, theta, 

longlat, DM) 

  } else { 

    bw.best = bandwidth 

  } 
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  write(paste("Bandwith:", bw.best), paste(out.fold, "/bootstrap_log.txt", sep=""), append 

= T) 

   

  ### bootstrap 

  print("Start Bootstrap procedure...") 

  num.data = nrow(data.full) 

  write(paste("Number of total data:", num.data), paste(out.fold, "/bootstrap_log.txt", 

sep=""), append = T) 

  write(paste("Percentage of test data:", percentage.test, "%"), paste(out.fold, 

"/bootstrap_log.txt", sep=""), append = T) 

  num.test = round(num.data*percentage.test/100, 0) 

  write(paste("Number of test data:", num.test), paste(out.fold, "/bootstrap_log.txt", 

sep=""), append = T) 

   

  row.numbering = 1:num.data 

   

  bootstrap.raw = list() 

   

  progbar = utils::txtProgressBar(style = 3) 

  for (i in 1:bootstrap) { 

     

    test.numbering = sort(sample(row.numbering, num.test)) 

    train.numbering = row.numbering[!row.numbering %in% test.numbering] 
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    ### training 

    data.train = data.full[train.numbering,] 

     

    ### test 

    data.test = data.full[test.numbering,] 

     

    ### use GW regression (simplified function) for prediction 

    temp =  gwr.predict.mod.quick(formula(formula.reg), data.train, data.test, bw.best, 

kernel, approach, adaptive, p, theta, longlat, DM, train.numbering, test.numbering) 

 

    bootstrap.raw[[i]] = as.matrix(data.frame(temp)[,c("prediction", "actual")]) 

     

    utils::setTxtProgressBar(progbar, i/bootstrap) 

  } 

  close(progbar) 

   

  print("Saving bootstrap results...") 

  save(bootstrap.raw, file = paste(out.fold, "/bootstrap_raw.RObj", sep="")) 

   

  print("Calculate summary statistics...") 

  bootstrap.result = do.call(rbind, lapply(bootstrap.raw, function(x) { 

    t.ssq = sum((x[,2]-mean(x[,2]))^2) 
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    r.ssq = sum(abs(x[,1]-x[,2])^2) 

    R2.model = 1 - r.ssq/t.ssq 

    temp = cor.test(x[,1], x[,2]) 

    return(c(p=temp$p.value, cor=as.numeric(temp$est), R2.model=R2.model)) 

  })) 

  bootstrap.result = data.frame(bootstrap.result) 

  write.table(bootstrap.result, file = paste(out.fold, "/bootstrap_result.txt", sep=""), 

sep="\t", quote=F, row.names=F, col.names=T) 

  save(bootstrap.result, file = paste(out.fold, "/bootstrap_result.RObj", sep="")) 

   

  bootstrap.summary = summary(bootstrap.result) 

  write.table(bootstrap.summary, file = paste(out.fold, "/bootstrap_summary.txt", sep=""), 

quote=F) 

 

  print("DONE") 

   

} 
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