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Abstract 

Animal food manufacturing facilities need to evaluate biological hazards within their 

facility due to their severity and probability to cause illness or injury in humans or animals. 

Control of biological hazards, including Salmonella and Porcine Epidemic Diarrhea Virus 

(PEDV), in animal food manufacturing facilities may require a preventative control to mitigate 

the risk of the hazard. Thermal processing is an effective point-in-time control, but does not 

prevent cross-contamination during drying, cooling, and packaging/load-out of animal food. 

Therefore, it may be appropriate to sanitize surfaces to prevent cross-contamination of animal 

food during manufacturing. The objective of the first experiment was to evaluate surface 

decontamination strategies for Porcine Epidemic Diarrhea Virus (PEDV) using chemical 

disinfectants to reduce viral RNA on various manufacturing surfaces. Concentrated liquid 

formaldehyde and sodium hypochlorite reduced the quantity of viral PEDV RNA on all tested 

surfaces. Rubber belting from a bucket elevator retained the most PEDV RNA, while the 

polyethylene tote bag retained the least. In the second experiment, surface decontamination was 

evaluated for Salmonella Typhimurium using liquid and dry chemical sanitizers on various 

manufacturing surfaces. Surfaces treated with concentrated commercial formaldehyde had no 

detectable Salmonella after treatment, and surfaces treated with medium chain fatty acids 

(MCFA) had at least a 4-log reduction compared to the control. The dry commercial acidulant, 

sodium bisulfate, was the most effective dry sanitizer tested, but had limited efficacy depending 

on surface type.  

Experiment 3 further tested the application of two chemical sanitizers against Salmonella 

Enteritidis on residual surface and feed contamination in pilot-scale mixers. Manufacturing 

sequence, but not treatment impacted feed and surface contamination of Salmonella Enteritidis. 



 

Specifically, there was Salmonella-positive residue in the batch of feed manufactured 

immediately after the positive control batch. However, no Salmonella residue was detected in 

batches of feed treated with either concentrated commercial essential oil blend or rice hulls 

treated with 10% MCFA. Low levels of Salmonella residues were observed from feed and 

surfaces manufactured after Sequence 1, but no residues were observed by Sequence 2. This data 

suggests that sequencing of feed during manufacturing can reduce Salmonella-positive 

contamination within animal food and on manufacturing surfaces, particularly after the second 

batch or with the use of chemical treatments. In summary, liquid sanitizers have been shown to 

be effective at reducing Salmonella spp. and PEDV contamination on a variety of animal food 

manufacturing surfaces, but application and practicality may be limited.  
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Chapter 1 - The evaluation of surface disinfectants and mitigation 

strategies to reduce the risk of microbiological hazards in pet food 

and animal feed manufacturing facilities.  

 ANIMAL FOOD SAFETY HAZARDS 

The introduction of new regulations, such as the Food Safety Modernization Act, and 

new biological hazards that can be passed through animal food, such as Porcine Epidemic 

Diarrhea Virus (PEDV), have created interest for biological hazard control and decontamination 

strategies within animal food manufacturing facilities. Each facility that manufactures, processes, 

packs, or stores finished animal food or ingredients that will be consumed by animals in the U.S. 

must identify these potential hazards and evaluate their severity and probability in a food safety 

plan (21 C.F.R. § 507.31). If the facility determines the hazard’s combination of severity and 

probability requires a preventive control, then that hazard must be significantly minimized or 

prevented through a preventive control (21 C.F.R. § 507.34). Unfortunately, there is limited 

information available to help facilities determine the severity or probability of biological hazards 

within animal food intended for different species. Information is extremely limited to help 

determine possible control strategies. Therefore, the objective of this review is to serve as a 

resource for animal food manufacturing facilities to identify and develop control strategies for 

biological hazards in animal food.  

The term ‘hazard’ is defined by 21 C.F.R. § 507.3 as, “any biological, chemical 

(including radiological), or physical agent that has the potential to cause illness or injury in 

humans or animals.” Facilities that manufacture, process, pack, or hold animal food must 

identify and evaluate known or reasonably foreseeable hazards (21 C.F.R. § 507.31). A hazard is 
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considered to be a ‘known or reasonably foreseeable hazard’ if it is “known to be, or has the 

potential to be, associated with the facility or the animal food.” According to 21 C.F.R. § 

507.33(d), there are 10 items that must be considered during this identification and evaluation 

process, which include: 1) formulation of the animal food; 2) condition, function, and design of 

the facility and equipment; 3) raw materials and other ingredients; 4) transportation practices; 5) 

manufacturing/processing procedures; 6) packaging activities and labeling activities; 7) storage 

and distribution; 8) intended or reasonably foreseeable use; 9) sanitation, including employee 

hygiene; and 10) any other relevant factors such as the temporal nature of some hazards (21 

C.F.R. § 507.33(d)).  

While the facility must determine on its own if a hazard is known or has the potential to 

be associated with it based on the items listed above, there are resources available to aid with the 

determination if the hazard is associated with a type of animal food. These resources can include 

previous recalls, withdrawals, reportable food registry reports, or scientific literature for a 

specific type of animal food. While chemical and physical hazards are important to consider, the 

scope of this review is to focus on summarizing the biological hazards associated with different 

types of animal foods. 

A biological hazard addressed by specific U.S. regulation was Bovine Spongiform 

Encephalopathy (BSE). Prions associated with BSE have been shown to be transmitted through 

mammalian protein if fed back to ruminant animals. To prevent this occurrence and limit BSE 

incidence within the US, the FDA published an initial rule in 1997 and strengthened regulation in 

2008 (21 C.F.R. § 589.2000 and 21 C.F.R. § 589.2001). This is considered to be one of the most 

successful rules implemented by FDA, with a high level of compliance and stabilization of the 
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disease, allowing the return of the US to ‘negligible risk’ status according to the World Health 

Organization (30). 

While BSE was the first potential feed-transmitted biological hazard in the US, recent 

focus has moved to Salmonella spp. The FDA publishes an annual report describing foods that 

have resulted in Reportable Food Registry (RFR) reports. These are items that any human or 

animal food, “for which there is a reasonable probability that the use of, or exposure to, such 

article of food will cause serious adverse health consequences or death to humans or animals” 

(13). Of the 114 RFR reports associated with animal food in the five published annual reports, 49 

are due to Salmonella spp. contamination in pet food (13). This makes it by far the most 

substantial hazard quantified by FDA in recent years.  

Notably, all 49 RFR reports associated with Salmonella spp. were due to contamination 

in pet food. This is predominantly due to the manner in which FDA considers Salmonella spp. as 

an adulterant. For example, the FDA Compliance Policy Guide 690.800: Salmonella in Food for 

Animals describes FDA’s current thinking that any finished pet food contaminated with any 

serotype of Salmonella is considered to be adulterated because of its propensity to be a direct 

human contact food and potentially impact human health (8). Alternatively, finished livestock 

feed is only considered adulterated if it contains a serotype of the bacteria known to cause illness 

in the animal for which it is intended. Of the more than 2,600 different serotypes of Salmonella, 

only a few are known to cause illness or injury in specific animal species. Those serotypes and 

their affected animal species are listed in Table 1.1. The occurrence of these specific serotypes in 

livestock feed is limited. None of those listed have been linked to an RFR in the 6 published 

annual reports available. Furthermore, only Salmonella Enteritidis has been demonstrated to be 

in the 25 most common serotypes found in animal feed or ingredients according to an FDA 
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survey (29). All other serotypes have a relatively low level of occurrence. Still, presence of any 

level of the specified serotype, or any serotype at all in pet food, is deemed to be an adulterant in 

that animal food if it will not undergo further heat processing or a subsequent commercial kill 

step.  

 

Table 1.1. Salmonella as a biological hazard of concern in animal foodabc 

Poultry  Salmonella Pullorum, Salmonella Gallinarum, or Salmonella 

Enteritidis 

 

Swine Salmonella Choleraesuis 

 

Sheep Salmonella Abortusovis 

 

Horse Salmonella Abortusequi 

 

Dairy and Beef Salmonella Newport or Salmonella Dublin 

 

Pets (including dogs, cats, 

and aquarium fish) 

All serotypes of Salmonella 

a.Table adapted from FDA Compliance Policy Guide Sec. 690.800 Salmonella in Food for 

Animals, 2013.  
b.Additional serotypes will be evaluated on a case-by-case basis. 
c,Animal food will not subsequently undergo a commercial heat step or other commercial 

process that will kill the Salmonella. 

 

While Salmonella spp. is the primary biological hazard of concern in animal food 

manufacturing facilities, two other biological hazards have surfaced as possible hazards to be 

evaluated. Prior to 2015, the pet food industry did not recognize Listeria monocytogenes as a 

potential hazard in its products. However, 7 RFR reports were reported from July 2015 to July 

2016, all of which occurred in raw, fresh, and frozen pet foods (13). Survey data collected from 

196 raw dog and cat foods revealed that 8% contained Salmonella spp. and 16% tested positive 

for presence of Listeria monocytogenes. Thus, facilities producing finished raw, fresh, or frozen 

pet foods without a thermal kill step are under increased scrutiny to ensure the safety of their 
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products through other control measures including Current Good Manufacturing Practices, other 

processing controls, supply-chain applied controls, and sanitation controls.  

While Salmonella spp. and Listeria monocytogenes have focused on transmission through 

pet food, another biological hazard has caused harm in swine feed. Recently, feed has been 

recognized as one of many potential vectors that may transmit Porcine Epidemic Diarrhea Virus 

(PEDV; 10, 39, 46). Biosecurity measures have been implemented at many swine feed mills to 

prevent the entry of PEDV through ingredients, transportation, and people (4). Furthermore, dust 

has been recently shown to cause cross-contamination within feed mills, which may contaminate 

animal feed manufacturing surfaces (16). The transmission of biological hazards has historically 

been linked to ingredients, but other data supports the role of cross-contamination from animal 

food contact surfaces, such as the interior of conveyors, bucket elevators, bins, and floors (10, 

16, 22, 24, 25, 36).  

Control of biological hazards, such as Salmonella spp., Listeria monocytogenes, and 

PEDV, require a multi-pronged biosecurity plan to 1) minimize hazard entry; 2) control hazards 

via process controls; and 3) prevent cross-contamination prior to packaging or consumption by 

an animal. These strategies will be briefly described.  

 

 CONTROL OF ANIMAL FOOD SAFETY HAZARDS 

 Minimization of Entry 

Hazards can be significantly minimized or prevented through activities associated with 

Current Good Manufacturing Practice, the use of designated ingredients and known suppliers, or 

through more strenuous supply-chain applied controls. The methods of appropriate control vary 

based on the facility and the type of animal food that it manufactures, processes, packs or holds. 
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 Current Good Manufacturing Practice 

 Many successful strategies for reducing risk of biological hazards within the 

facility can begin with successfully complying with current good manufacturing practice 

requirements (CGMP). According to the FDA, the goal of CGMP requirements is “to prevent 

animal food from containing filthy, putrid, or decomposed substances, being otherwise unfit for 

food, or being prepared, packed, or held under insanitary conditions whereby it may have 

become contaminated with filth, or whereby it may have been rendered injurious to health” 

(Preamble, II: Legal Authority; 28). Sections of the requirements include Personnel, Plant and 

Grounds, Sanitation, Water Supply and Plumbing, Equipment and Utensils, Plant Operations, 

and Holding and Distribution. Basic requirements of this section that may limit the entry and 

occurrence of biological hazards in manufacturing facilities include individuals being qualified 

for their duties, including understanding the importance of employee health and personal 

hygiene, the presence of handwashing facilities, the minimization of trash and areas of pest 

harborage, and the elimination of drips and condensate. The use of toxic materials, including 

cleaning materials and sanitizers, is allowed, but these materials must be safe for their intended 

use, labeled, used, and stored properly within the manufacturing facility.  

  Designated Ingredients and Known Suppliers 

Another method to reduce the introduction of undesirable microorganisms into a facility 

is the use of approved suppliers. The acts of using reputable suppliers, monitoring supplier 

facilities for compliance with expectations, sampling, and testing supplied raw materials can all 

greatly decrease instances of biological hazards. Some facilities have opted to eliminate 

problematic suppliers or even entire ingredients that have a historic incidence of a biological 

hazard of concern. For example, research suggests that some animal proteins can have higher 
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risks for microbial contamination compared to other ingredient categories (29). Surveillance 

testing conducted by the food and drug administration found that 22.9% of 122 animal food 

ingredients were positive for Salmonella (15). Of these, fish meal had the highest incidence of 

contamination, with 4 of the 5 samples testing positive for Salmonella and Escherichia coli, and 

all samples testing positive for Enterococcus. Similarly, Li (29) reported that 66% of animal-

derived ingredients tested positive for Salmonella spp. from 2002 to 2006, which fell to 41% by 

2007 to 2009. Still, this is an extremely high occurrence compared to an 11% incidence rate from 

the same time periods in plant-derived ingredients. Even more concerning is that many of these 

ingredients have been associated with resistance to common antimicrobials. Hofacre (20) 

described that of 27 rendered protein ingredients testing positive for Salmonella spp., 33% of the 

Salmonella were resistant to tetracycline, 22% to cephalothin, and 11% to ampicillin. Others 

have pointed to the role of rendered proteins as a potential vector or reservoir of PEDV (7).  

Due to these incidents, some livestock feed manufacturing facilities have chosen to 

remove all animal proteins from the feed mill. This practice eliminates a potential vector of 

biological hazard, but also prevents the use of high quality, relatively inexpensive protein 

sources. Other facilities, such as pet food manufacturing facilities, cannot remove the ingredient 

due to its necessary inclusion in the diet. Instead, facilities use known suppliers, purchasing 

contracts, and letters of assurance to clearly communicate expectations between suppliers and 

customers. The use of known suppliers and associated activities, such as random sampling or 

supplier facility audits, can greatly reduce the probability of biological hazard entry through 

ingredients.  
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 Supply-Chain-Applied Controls 

If a facility identifies that a hazard has a severity and probability that requires a 

preventive control, one way that hazard can be prevented is through a supply-chain-applied 

control (23). According to FDA 21 CFR § 507.105, this is a type of preventive control where the 

supplier controls the hazard prior to receipt by the receiving facility. This type of preventive 

control requires a great amount of communication and coordination by both the supplier and 

customer (21 CFR § 507.110). For example, monitoring of the hazard must occur at the 

supplying facility, but the receiving facility must have a corrective action plan in place in case 

product is shipped with the hazard (21 CFR § 507.110). Furthermore, the preventive control 

requires the receiving facility to identify, conduct, and document verification activities to ensure 

the supplier is complying with its expectations (21 CFR § 507.115). These verification activities 

may include an onsite audit, review of the supplier’s food safety records, or product testing (21 

CFR § 507.130 and 21 CFR. § 507.135). Adding to the complexity is that the supplier is the last 

entity to grow or manufacture the raw material or ingredient. This means that intermediaries, 

such as brokers, must disclose the suppliers of their product, and verification activities must be 

carried out on all suppliers if lots are comingled. Because of the difficulty of communicating, 

verifying, and documenting these requirements between suppliers and receiving facilities, it is 

anticipated that many facilities will either use known suppliers to reduce the likelihood of hazard 

occurrence so they do not require a preventive control, or will control the hazard via process 

control at their own facility (23).  
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 CONTROL HAZARDS VIA PROCESS CONTROLS 

Most preventive controls within animal food manufacturing facilities are expected to be 

process controls, or a control associated with a step that is part of the manufacturing process. 

These are typically point-in-time mitigation measures, which may include thermal processing, 

irradiation, or the use of chemical additives to control pH or water activity.  

 Point-in-Time Mitigants 

The pet food industry has relied on thermal processing as a point-in-time mitigant for 

Salmonella control in animal feed ingredients for years. Much of this early research is still 

relevant today, such as Liu (31) who first described D-values of Salmonella destruction in an 

animal food matrix and its relationship with moisture levels. Thermal processing continues to be 

the most common form of critical control points or process preventive controls for biological 

hazards, with recent data available for Salmonella destruction by preconditioner and PEDV 

deactivation by pellet mill (6, 37, 52). More recently, ingredient manufacturers have looked to 

the use of ultraviolet light or irradiation to ensure destruction of biological hazards (11, 50). 

Extensive discussions of these are outside the scope of this literature review, but examples have 

been described by Cochrane (7). While highly effective and relatively easy to manage, point-in-

time mitigants may be problematic as they do not prevent hazard reoccurrence through 

recontamination. Thus, animal foods subject to re-contamination with environmental pathogens 

may need to be treated with chemicals that offer resistance to cross-contamination or all post-

mitigation animal food contact surfaces must be cleaned and sanitized, which is not realistic for 

most of the current animal food industry.   
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 Chemical Mitigants 

The use of chemical additives may both significantly minimize or prevent a biological 

hazard from contaminating animal food, and also provide some protection against subsequent 

cross-contamination. Formaldehyde-based products, medium chain fatty acids, and essential oils 

have all demonstrated effectiveness to help prevent post-processing cross-contamination of 

biological hazards in feeds and ingredients (3, 5). Carrique-Mas (3) found formaldehyde was the 

most effective treatment against Salmonella in fish meal and meat and bone meal. It also proved 

to be more effective than formic, propionic, and sorbic acids. There are concerns associated with 

these mitigants, some of which include that most are not labeled for proactive mitigation, require 

specialized application equipment, are expensive, and may be harmful to employee health. 

Added to these issues are that some, such as formaldehyde-based products, may pose customer 

labeling concerns and require special permitting for use. While effective, many pet food 

manufacturers cannot justify the use of chemical mitigants in current production. Thus, they 

must rely on control of biological hazards through traditional thermal processing and prevention 

of cross-contamination through sanitation controls.   

  

 PREVENTION OF CROSS-CONTAMINATION PRIOR TO PACKAGING OR 

CONSUMPTION BY AN ANIMAL  

If a facility identifies a hazard that requires a preventive control and the most appropriate 

control is a point-in-time mitigant, such as thermal processing, the facility must also take steps to 

prevent subsequent cross-contamination. This can be accomplished through the use of hygienic 

zoning and/or surface sanitation.  
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 Hygienic zoning  

Hygienic zoning is a method used to control the movement of people, ingredients, and 

utensils from being a source of cross-contamination. Typically, facilities employ the use of walls, 

designated maps, and color coding to help employees follow designated traffic flow. A study 

conducted within an oilseed crushing facility without hygienic zoning reported that the highest 

concentration of Salmonella spp. contamination was from employee shoes; which was greater 

than the contamination from all other surfaces combined, including brooms, floors, processing 

surfaces, and rodents (36). Even after decontamination of the shoes, contamination existed again 

within one day (36). Crossover areas that had been decontaminated were again contaminated 

within 1 day, but segregated passage areas remained Salmonella-free up to 4 weeks after 

decontamination. Clearly, employee zoning can be helpful to reduce the cross-contamination of 

biological hazards as they are passed throughout a facility. However, there are times where 

surfaces become contaminated and must be sanitized. 

 

 Surface Sanitization 

Historically, the animal food manufacturing industry has prevented batch-to-batch hazard 

contamination through planned sequencing or flushing of diets (21 C.F.R. § 255). However, the 

control measure was designed to reduce contamination of chemical hazards, not biological 

hazards that have the potential to leave potent residues on equipment or thrive with biofilms. As 

such, batch-to-batch sequencing alone has shown to be ineffective at eliminating Enterococcus 

faecium (21) and Porcine Epidemic Diarrhea Virus (47) contamination from equipment. This is 

likely due to contaminated organic residue and dust (16) remaining on surfaces of equipment and 

conveyors, as well as relatively large quantities of feed remaining in the boot of bucket elevator 
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conveyors (47). In these instances, more strenuous physical cleaning may be necessary. 

However, the applicability of this option is limited because most equipment in animal food 

manufacturing facilities was not designed to be clean-in-place. Further complicating biological 

hazard control on these surfaces is the potential formation of biofilms. 

Biofilm formation of pathogenic bacteria may be one method of hazard reintroduction 

within an animal food manufacturing facility. Biofilms are formed when individual bacterial 

cells adhere and embed in an extracellular polymeric substance providing a defense mechanism, 

such as an equipment surface (33). Planktonic cells can then respond to form a biofilm. 

Pathogenic bacteria, including Salmonella spp. and Listeria monocytogenes, may form biofilms 

in processing environment (33). Their extracellular polymeric matrix is difficult to penetrate for 

sanitizing. For example, Salmonella spp. has been shown to maintain presence on dry surfaces 

for up to 4 weeks through a biofilm (18).  

The described challenges in equipment design and biofilm formation must be considered 

if there is concern that a biological hazard may re-contaminate animal food due to its presence on 

equipment. In these instances, traditional sequencing/flushing or physical cleaning is not likely to 

be sufficient for complete control, so a sanitize step is necessary. Sanitize means to adequately 

treat cleaned surfaces by a process that is effective in destroying vegetative cells of pathogens, 

and in substantially reducing numbers of other undesirable microorganisms, but without 

adversely affecting the product or its safety for animals or humans (21 C.F.R. § 507.3). In order 

to sanitize, surfaces must first be cleaned. Cleaning works by using physical brushing/sweeping 

or a detergent /cleaning agent/water to physically remove organic debris from surfaces. While 

physical cleaning in animal food manufacturing facilities has previously been the primary 

method of hazard mitigation, it is just the first step of mitigating a biological hazard.  
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Data related to surface sanitization in animal food manufacturing facilities is limited. 

What is available has typically been reported as a reduction in positive swabs, so the level on 

contaminated surfaces was not quantified (51). Thus, the industry relies on strategies from the 

human food industry (34, 35). Preventative measures utilized by food industry have included 

coating of surfaces to limit the establishment of vegetative cells or biofilms (27, 43). Many of the 

methods or measures used to sanitize surfaces in the human food industry are impractical for the 

animal food industry due to cost and liquid application. For example, both Huss (21) and 

Schumacher (46) demonstrated that liquid decontamination of animal food manufacturing 

equipment appears effective, but not practical to implement. This is because most livestock feed 

manufacturing systems are typically a dry bulk system, so water introduction for cleaning or 

sanitization may be a source of hazard introduction instead of a reduction mechanism. Generally, 

a water activity (aw) level of 0.87 is required for growth of most bacteria pathogens of concern, 

so introducing a water-based sanitizer may raise the aw to levels that allow for bacterial growth 

(2). In these instances, dry chemicals may be a more appropriate than liquid surface sanitization.   

Evaluation and selection of a sanitizer should consider microbial efficacy, practicality of 

application, application time, impact of surface type on effectiveness and corrosiveness, and cost 

(32). Sanitizers can be classified into chlorine and chlorine derivatives, quaternary ammonium 

compounds, acid-anionic sanitizers, and hydrogen peroxide/ peroxyacetic acids (21 C.F.R. § 

178.1010). Other chemicals that may have similar properties and have sanitization properties that 

may be useful in animal food manufacturing facilities include alcohols, 

formaldehyde/glutaraldehyde, and medium chain fatty acids. 

Chlorine and chlorine derivatives can be used as a broad-spectrum of bactericidal, 

fungicidal, sporicidal, tuberculocidal, and virucidal control within facilities. The action of the 
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active ingredient, free chlorine, on microorganisms is not fully understood. Current research 

indicates a multiplicative of factors that result in hazard destruction, including oxidation of 

enzymes and amino acids, ring chlorination of amino acids, loss of intracellular contents, 

decreased uptake of nutrients, inhibition of protein synthesis, decreased oxygen uptake, oxidation 

of respiratory components, decreased ATP synthesis, nucleic acid replication disruption, and 

depressed DNA synthesis (44). Chlorides include hypochlorite, chlorine gas, and sodium 

chlorite. Their efficacy decreases with increased pH due to its caustic properties. One 

consideration is that this high acidity can be hazardous for employers and corrosion to 

equipment. Notably, hypochlorite solutions may produce the carcinogens bis(chloromethyl) ether 

when in contact formaldehyde (14) and trihalomethane when in contact with hot water 

(219).  Hypochlorite and sodium chlorite can be effective detergents and sanitizers, and are 

known to penetrate biofilms developed by of Salmonella (26, 40). Because of their potential 

impact on human health, chloride and its derivatives must be rinsed from surfaces prior to 

manufacturing food for consumption by animals or humans. 

Quaternary ammonium compounds, commonly called ‘quats,’ inactivate energy-

producing enzymes, denature essential cell proteins, and disrupt the cell membrane of pathogens 

(44). They are known to be effective sanitizers of fungi, bacteria, and non-enveloped viruses. 

Their true advantage is an ability to effectively sanitize in the presence of Salmonella spp. 

biofilms and because the presence of organic matter is not as inhibitory to their action as it is to 

other sanitizers (1, 40). For this reason, quats are commonly used in animal rearing facilities. For 

example, quats have been demonstrated to reduce Salmonella spp. by 2 to 3 CFU/cm2 log on 

galvanized steel in a poultry barn (40). Research also demonstrates their effectiveness to sanitize 
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stainless steel contaminated with Listeria monocytogenes (38, 42) and rubber contaminated with 

Salmonella typhimurium (42).  

Acid-anionic sanitizers, including acetic, benzoic, and propionic acids, have been favored 

for food processing antimicrobials due to their combination of effectiveness and positive 

consumer perception. Their mode of action includes acidifying the cytoplasm and disrupting cell 

membrane organization, which is highly effective for Salmonella spp. destruction in human food 

manufacturing facilities (3, 41). Due to their effectiveness and relative safety, organic acid salts 

have even been used as surface treatment of foods to prevent microbial growth and as a 

preservative in finished foods (3, 45, 48). For example, sodium bisulfate, a dry acidulant, has 

been demonstrated to prevent Salmonella typhimurium cross-contamination when used as a 

coating on pet food kibble (22). While a rinse is not required on surfaces to maintain animal or 

human food safety, the acids can be corrosive, so surfaces are typically rinsed to maintain 

equipment integrity.  

Hydrogen peroxides/peroxyacetic acids can be used directly on food-contract surfaces 

without a liquid rinse but have not been shown to be as effective as other chemicals and require 

higher liquid additions. Their mode of action is that the hydroxyl free radicals disassociate cell 

membrane, lipids, and DNA of pathogenic microorganisms (44). They have been demonstrated 

to control bacteria, yeasts, fungi, viruses and spores. Hydrogen peroxide products can be stable 

for long periods of time (less than 2% active ingredient loss per year) at room temperature (44).  

Alcohols, such as ethanol and isopropanol, are able to destroy undesirable 

microorganisms through the denaturation of essential proteins and inhibition of nutrients for 

proliferation. Alcohol antibacterial properties are limited with spore forming bacteria including, 

Bacillus and Clostridium (44) However, isopropanol has been demonstrated to be effective for 
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the mitigation of lipid viruses, which include coronaviruses such as feline coronavirus and 

porcine epidemic diarrhea virus (44). Alcohol use has been limited use due to cost and 

recommended level included high levels (70% ethanol recommended). When evaluating surface 

disinfectants used by various animal food manufacturing facilities in Norway, alcohol products 

were more effective (4 log reduction) than acids, aldehydes, peroxides, and chlorine products in 

suspension tests (35). This effectiveness is desirable, as is its limited need for water in order to 

be effective. However, the chemical must be rinsed from surfaces and completely dried prior to 

manufacturing animal or human food (35).   

Formaldehyde and glutaraldehyde are in a class of sanitizers that are available in liquid 

and gaseous forms and have bactericidal, fungicidal, sporicidal, tuberculocidal, and virucidal 

control that is commonly used within animal production and health care facilities (44).  The 

activity of aldehydes causes alkylation of sulfhydryl, hydroxyl, carboxyl, and amino groups of 

microorganisms and further cell lysis. They are not commonly used within food manufacturing 

due to consumer perception and labeling concerns, in addition to potential carcinogenic effects to 

employees if handled improperly. However, they have been demonstrated to be highly effective 

at preventing Salmonella Enteritidis or PEDV cross-contamination when applied directly to 

animal food (3, 5, 7). Aldehydes are also highly effective to decontaminate surfaces in livestock 

production and handling. Effective formaldehyde gas application of poultry layer houses reduces 

surface contamination of Salmonella spp. (17), and PEDV is inactivated by a combination 

glutaraldehyde/quaternary ammonium chloride disinfectant on aluminum livestock trailers (49). 

Recent research has utilized antimicrobial properties of medium chain fatty acids for 

reduction of Salmonella typhimurium in animal feeds (5). Other fatty acids have been used for 

inclusion in poultry diets for Salmonellosis. Believed antimicrobial mode of action include 
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disruption of cell membrane and other essential functions (12). Cochrane (7) demonstrated 

efficacy of medium chain fatty acids on reduction of PEDV. Benefits of medium chain fatty 

acids include high efficacy to formaldehyde products and may provide continued bacteriostatic 

action due to their amphipathic structure (12).   

In summary, biological hazards, such as Salmonella spp., Listeria monocytogenes, and 

PEDV, are a new category of hazard to a substantial sector of the animal food industry. Their 

control requires a multi-pronged biosecurity plan to 1) minimize hazard entry; 2) control hazards 

via process controls; and 3) prevent cross-contamination prior to packaging or consumption by 

an animal. While research has made strides to address the first two points, there is still limited 

knowledge as to how prevention of cross-contamination can be employed to the traditional 

livestock feed industry. Additional research is needed to identify the effectiveness of dry and 

liquid sanitizers on biological hazards established on animal food manufacturing equipment, 

particularly when there are differences in types of surfaces. Therefore, the objective of this thesis 

is to identify the effectiveness of dry and liquid sanitizers on reducing Salmonella spp. and 

PEDV contamination on a variety of animal food manufacturing surfaces 
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Chapter 2 - Using environmental swabbing to quantify the 

effectiveness of chemical disinfectant to reduce the quantity of 

PEDV RNA on feed manufacturing surfaces 

 ABSTRACT 

Porcine Epidemic Diarrhea virus (PEDV) is a possible hazard in feed mills that could impact 

swine health. If the virus enters a feed mill, it quickly becomes widely distributed and is difficult 

to decontaminate from surfaces. The objective of this study was to evaluate a variety of liquid 

and dry sanitation treatments that could be used to reduce the amount of PEDV found on feed 

manufacturing surfaces in feed mills. This experiment was replicated 3 times and was designed 

as a 5 × 10 factorial with main effects of 5 different feed manufacturing surfaces and 10 

sanitizing treatments. Surfaces included stainless steel, plastic, rubber, woven polypropylene tote 

bag, and sealed concrete coupons (103 cm2). One mL (1×105 TCID50/ml) of stock PEDV was 

applied to each surface and allowed to dry completely for 60 min. Next, chemical treatments 

were applied for 15 min: 1) no sanitation treatment (control); 2) untreated rice hulls; 3) rice hulls 

treated with formaldehyde-based commercial product (Sal CURB; Kemin Industries Inc., Des 

Moines, IA), 4) liquid formaldehyde-based commercial product (Sal CURB; Kemin Industries 

Inc., Des Moines, IA); 5) dry commercial benzoic acid and eubiotic blend (VevoVitall and 

CRINA; DSM Nutritional Products Inc., Parsippany, NJ); 6) liquid ammonium chloride, 

isopropanol, and hydrogen peroxide-based commercial food-grade sanitizer (DrySan Duo; 

Ecolab, St. Paul, MN); 7) liquid hydrogen peroxide commercial product (INTERvention; Virox 

Technologies Inc. Ontario, Canada); 8) liquid quaternary ammonium glutaraldehyde commercial 

product (Synergize; Preserve International, Reno NV); 9) liquid sodium hypochlorite 
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commercial sanitizer (Bleach; Clorox, Oakland, CA); and 10) liquid medium chain fatty acid 

blend of caprylic, capronic, and capric acids. The quantity of PEDV RNA was determined using 

quantitative reverse transcription PCR (qRT-PCR). All main effects and interaction were highly 

significant (P ≤ 0.001). Concentrated liquid Sal CURB was the most effective sanitizer at 

removing PEDV RNA across surfaces, followed by liquid bleach (42.9, 35.2, and 26.2 CT for 

Sal CURB, bleach, and untreated control, respectively). Rubber belting obtained from a bucket 

elevator retained the most PEDV RNA of any tested surface, while the polyethylene tote bag 

retained the least (28.0 and 31.4 CT for rubber and tote bag, respectively). Additional research is 

necessary to identify the role of sanitizer on PEDV infectivity, and to develop dry sanitizers 

capable of removing PEDV mRNA on animal food manufacturing surfaces.  

 

Key Words: PEDV, sanitation, feed manufacturing surfaces 
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 INTRODUCTION 

Swine feed mills may be a potential vector for Porcine Epidemic Diarrhea Virus (PEDV) 

transmission into swine herds (8, 12, 13). Recent studies have demonstrated the potential for 

PEDV to be introduced into the feed mill through ingredients, vehicles, and employees (2). 

Regardless of the method of entry, viral contamination becomes widespread within the 

manufacturing environment due to cross-contamination from employees, utensils, or even dust 

(7, 13). There are limited options to decontaminate feed mills once viral RNA has become 

established. Thermal processing, or the use of a pellet mill inactivates the virus at 130°F for 30s 

(4). However, it does not prevent re-contamination from PEDV-contaminated dust or residue on 

feed manufacturing equipment surfaces after the pelleting process. Chemical sanitizers typically 

used in human food manufacturing have shown some promise on reducing PEDV RNA on trailer 

surfaces (1). Current industry practices include the use of heat, sodium hypochlorite, or 

quaternary ammonium/glutaraldehyde combinations to sanitize swine farm surfaces 

contaminated with PEDV. However, there is limited information regarding their success on 

reducing viral RNA on feed manufacturing surfaces. Even if there were successful options, there 

may be limited application of liquid sanitizers due to the inherent dry nature of ingredients and 

feed. The introduction of water, even in the form of a liquid sanitizer, may actually increase the 

quantity of other biological hazards if they are not targeted by the sanitizer (11). Furthermore, 

ideal sanitizers would be safe for use in both animal feed and on equipment surfaces. Therefore, 

the objective of this study was to evaluate the ability of a variety of liquid and dry chemical 

sanitizers to reduce the quantity of detectable PEDV RNA.  
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 MATERIALS AND METHODS 

The experimental treatments were arranged as a 5 × 10 factorial with 5 different feed 

manufacturing surfaces, 10 chemical treatments, and three replications of each combination.  

 Surface preparation and viral inoculation.  

Surfaces included: 1) stainless steel (stainless steel type 316; Built-So-Well Manhattan, 

KS); 2) plastic (Dura Bucket National Oats Co. Collinsville, Ill.); 3) rubber (Maxi-Lift Inc. 

Addison, TX); 4) woven polypropylene tote bag (The MegaSack Corp. Magnolia, AR); and 5) 

sealed concrete (Quikrete Co. Atlanta, GA). Surface coupons (103.23 cm2) were representative 

samples from larger scale manufacturing surfaces. Surface coupons were prepared, inoculated, 

and treated with chemical as previously described by Bowman (1). Briefly, surfaces were 

sanitized, rinsed, and autoclaved. Next, 1 mL of PEDV (USA/IN/2013/19338; 1×105 TCID50/ml, 

initial mRNA CT 20.7) was applied to the surfaces and spread using a cell spreader to cover the 

entire area. Surfaces were allowed to dry for 60 min. After drying, control samples had a PEDV 

mRNA concentration of 26.2. This reduction in CT due to inoculation and drying of the virus is 

similar to that reported by Bowman (1) and unpublished data from our laboratory confirming the 

repeatability of this technique    

 Surface treatment.  

After drying, respective treatment was applied to coupon surface, 1 mL of liquid or 15 g 

of dry treatment was spread onto each surface for 15 minutes to allow for complete surface 

coverage. Immediately after dry treatment, excess material was removed by sterile forceps and 

gently tapping twice. Chemical treatments included: 1) no sanitation treatment (control); 2) 

untreated rice hulls; 3) rice hulls treated with formaldehyde-based commercial product (Sal 

CURB; Kemin Inc., Des Moines, IA; 30% formaldehyde and 10% propionic acid/methanol 
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blend); 4) liquid formaldehyde-based commercial product (Sal CURB; Kemin Inc., Des Moines, 

IA); 5) dry commercial benzoic acid and probiotic blend (VevoVitall and CRINA; DSM 

Nutritional Products Inc., Parsippany, NJ; 96% benzoic acid and 4% probiotic blend); 6) liquid 

commercial food-grade sanitizer (DrySan Duo; Ecolab, St. Paul, MN; 10.98% isopropyl alcohol, 

0.045% hydrogen peroxide, 0.016% alkyl dimethyl benzyl ammonium chloride, 0.007% dodecyl 

dimethyl ammonium chloride, and 0.005% dioctyl dimethyl ammonium chloride); 7) 3% dilution 

of liquid hydrogen peroxide commercial product (INTERvention; Virox Technologies Inc. 

Ontario, Canada; 4.25% hydrogen peroxide); 8) 0.39% dilution of liquid quaternary ammonium 

glutaraldehyde commercial product (Synergize; Preserve International, Reno NV; 26.0% alkyl 

dimethyl benzyl ammonium chloride and 7% glutaraldehyde); 9) 10% dilution of liquid sodium 

hypochlorite commercial sanitizer (Bleach; The Chlorox Company, Oakland, CA; 5 to 10% 

sodium hypochlorite); and 10) liquid medium chain fatty acid blend of caprylic, capronic, and 

capric acids as described by Cochrane (3; 1:1:1 wt:wt ratio). 

 Sample collection and statistical analysis.  

Surfaces were then swabbed according to Bowman (1) to determine residual PEDV 

contamination using pre-moistened environmental swabs in 5 mL of neutralizing broth (World 

Bioproducts LLC., Mundelein, IL). Swabs were vortexed and PEDV was quantified using qRT-

PCR. Results were analyzed using the SAS version 9.4 (SAS Inst. Ind., Cary, NC). Main effects 

included surface type and treatment and their interaction. A preplanned contrast included the 

comparison of dry vs. liquid chemical treatments. Significance was considered at P ≤ 0.05 and 

marginally significant from P > 0.05 to P ≤ 0.10. 
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 RESULTS AND DISCUSSION 

All main effects and interactions were highly significant (P ≤ 0.001; Table 2.1 and 2.2). 

Rubber belting obtained from a bucket elevator retained the most detectable PEDV RNA of any 

tested surface, while the polyethylene tote bag retained the least (28.0 and 31.4 CT for rubber 

and tote bag, respectively ). Concentrated liquid Sal CURB was the most effective sanitizer at 

removing detectable PEDV mRNA across surfaces, followed by liquid bleach (42.9, 35.2, and 

26.2 CT for Sal CURB, bleach, and untreated control, respectively). The liquid Sal CURB 

prevented detection of PEDV mRNA (> 45 CT) on plastic, polyethylene tote bag, rubber, and 

stainless steel. Cement still contained residual PEDV mRNA, even after liquid formaldehyde 

application, but the sanitizer was still more effective than all other treatments (P < 0.05; 36.7 

CT). Liquid bleach was most effective at reducing detectable PEDV mRNA on the polyethylene 

tote bag (43.0 CT), followed by stainless steel, rubber, and plastic (P < 0.05; 37.1, 35.6, and 35.0 

CT, respectively). However, liquid bleach was least effective on cement (P < 0.05; 25.4 CT). All 

other sanitizers did not influence the detection of PEDV mRNA on any surfaces compared to 

that detected on the untreated control (P > 0.05). Other evaluation of surface disinfectant studies 

found that oxidizing agent (0.5%) and hypochlorite (bleach; 2.06%) disinfectants were effective 

in reducing viral detectable mRNA as compared to positive controls, (26.27 and 24.29 vs. 14.46 

CT, respectively) Further analysis of oxidizing agent and hypochlorite treatments did not contain 

viable PEDV during bioassay (1). Similar treatment reduction of viral PEDV mRNA of 

hypochlorite was shown by Bowman (1; 24.3 vs. 14.5 CT, for hypochlorite vs. positive control, 

respectively).  

This study evaluated the impact of sanitizers on reducing detectable PEDV mRNA as 

measured by qRT-PCR and quantified by CT values. This method does not indicate infectivity, 
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only the presence or absence of viral RNA. Additional research is necessary to identify the role 

of sanitizer on PEDV infectivity, even if RNA residue remains, and to develop dry non-corrosive 

sanitizers capable of removing PEDV RNA on animal feed manufacturing surfaces. Added to 

these issues are that some, such as formaldehyde-based products, may pose customer labeling 

concerns and require special permitting for use. The transmission of biological hazards has 

historically been linked to ingredients, but other data supports the role of cross-contamination 

from animal food contact surfaces, such as the interior of conveyors, bucket elevators, bins, and 

floors (8, 13). Due to wide spread contamination of PEDV, biosecurity measures have been 

implemented at many swine feed mills to prevent the entry of PEDV through ingredients, 

transportation, and people (2).  

Environmental swabbing by Gebhardt (7) demonstrates the level of cross contamination 

of Porcine Epidemic Diarrhea Virus was still present after 4 sequences of uncontaminated feed 

(44% metal and 100% plastic and rubber surfaces). Dust collected from the animal food 

manufacturing surface is likely the culprit of this contamination, and has been demonstrated to 

contain infectious material (7). Removing dust alone, however, does not always remove 

biological hazards, particularly in the case of bacterial hazards. Physical cleaning of animal food 

manufacturing facilities has shown to be ineffective at reducing concentration of Enterococcus 

faecium from equipment (9). This experiment described that highly intensive liquid sanitation 

and heat was required to completely rid the animal food manufacturing facility from the 

biological hazard (9).  

Increased concern of viral transmission through human foods and animal production 

facilities can provide guidance for sanitation of feed facilities. Escudero (6) evaluated two strains 

of human norovirus and was shown to transfer viral RNA following surface contamination for up 
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to 42 days. Previous research has evaluated that effective sanitation of trailers has included 

hydrogen peroxide sanitizer and quaternary ammonium/ glutaraldehyde effective at reducing 

PEDV infectivity during bioassay (15). Currently recommended sanitizers for PEDV include: 

phenols, peroxygens, hypohloride, and quaternary ammonium/ glutaraldehyde combination. 

Sanitizing chemicals may vary in type and concentration due to a food contact surface in feed 

manufacturing and contamination of chemical hazards in animal feed. Thus, there are occasions 

when animal food manufacturing equipment may require substantial sanitization. Sanitation of 

surfaces can reduce cross-contamination or can be applied throughout the facility to 

decontaminate equipment if an undesirable microorganism has been established. Sanitizing with 

liquid sanitizers typically requires physical cleaning, chemical treatment, rinsing with water, and 

complete drying.  

Control of PEDV in animal food manufacturing should be applied through a 

multiplicative approach of good manufacturing practices, thermal mitigation, employee zoning, 

and surface sanitation for prevention of cross contamination (21 C.F.R.§ 507.31).  In summary, 

liquid Sal CURB and liquid bleach were the most effective chemical treatments to reduce the 

quantity of detectable PEDV RNA, but their application is limited due to their liquid state and 

potential corrosiveness in animal food manufacturing. Surface type can also influence PEDV 

mitigation strategies, particularly on rubber belting in bucket elevators or stainless steel, which 

can be more challenging to decontaminate in animal food facilities. Appropriate surface 

sanitation should be evaluated by surfaces being sanitized, safety and efficacy of the sanitizer, 

and capabilities of the animal food manufacturing facility including equipment to be sanitized.  
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 TABLES 

Table 2.1. Main effects of chemical treatments and feed manufacturing surfaces to reduce the quantity of 

detectable PEDV RNA with environmental swabbing1 

 Quantity of 

 PEDV, CT 

Surface  

  Cement 30.0ab 

  Plastic 28.5bc 

  Polyethylene tote bag 31.4a 

  Rubber 28.0c 

  Stainless steel 28.9bc 

Chemical treatment  

  Untreated control 26.2c 

  Untreated rice hulls 26.7c 

  Commercial formaldehyde-treated rice hulls (2 kg/ton)2 26.2c 

  Concentrated commercial formaldehyde2 42.9a 

  Concentrated dry commercial benzoic acid and probiotic blend3  27.9c 

  Ready-to-use liquid commercial food-grade sanitizer4  26.2c 

  3% dilution of liquid hydrogen peroxide commercial product5  26.5c 

  0.39% dilution of liquid quaternary ammonium/glutaraldehyde commercial product6 28.4c 

  10% dilution of liquid sodium hypochlorite commercial sanitizer7  35.2b 

  Concentrated liquid medium chain fatty acid blend8  27.4c 

P=  

  Surface  0.001 

  Treatment < 0.0001 

  Surface × treatment 0.001 

SEM  

  Surface 0.60 

  Treatment 0.85 

  Surface × treatment 1.91 
1This experiment was conducted in a 5 × 10 factorial with 3 replicates per treatment. 
2 Sal CURB; Kemin Inc., Des Moines, IA; 30% formaldehyde and 10% propionic acid/methanol blend. 

3VevoVitall and CRINA; DSM Nutritional Products Inc., Parsippany, NJ; 96% benzoic acid and 4% probiotic blend. 

4DrySan Duo; Ecolab, St. Paul, MN; 10.98% isopropyl alcohol, 0.045% hydrogen peroxide, 0.016% alkyl dimethyl 

benzyl ammonium chloride, 0.007% dodecyl dimethyl ammonium chloride, and 0.005% dioctyl dimethyl ammonium 

chloride. 
5INTERvention; Virox Technologies Inc. Ontario, Canada; 4.25% hydrogen peroxide 
6Synergize; Preserve International, Reno NV; 26.0% alkyl dimethyl benzyl ammonium chloride and 7% 

glutaraldehyde. 
7 Bleach; The Chlorox Company, Oakland, CA; 5 to 10% sodium hypochlorite. 

8 Caprylic, capronic and capric acids in 1:1:1 custom blend described by Cochrane et al., 2015, 2016. 
abcMeans with different superscripts differ (P < 0.05). 
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Table 2.2. Interaction of chemical treatments × feed manufacturing equipment surfaces to reduce the quantity of detectable PEDV 

RNA with environmental swabbing1 

 Surface type 

Cement Plastic 

Polyethylene 

tote bag Rubber 

Stainless 

steel 

Chemical treatment      

  Untreated control  27.5fghij 26.7fghij 28.3fghij 23.8j 24.6ij 

  Untreated rice hulls 31.2defg 24.6ij 28.9fghij 24.3j 24.5ij 

  Commercial formaldehyde-treated rice hulls (2 kg/ton)2 30.3defgh 24.2j 28.5fghij 23.7j 24.5ij 

  Concentrated commercial formaldehyde2 36.7bc 45.0a 43.0a 45.0a 45.0a 

  Concentrated dry commercial benzoic acid and 

probiotic blend3  

30.6defgh 26.1ghij 29.8efghi 26.4fghij 26.3ghij 

  Ready-to-use liquid commercial food-grade sanitizer4  27.9fghij 24.9ij 28.3fghij 24.7ij 26.0ghij 

  3% dilution of liquid hydrogen peroxide commercial 

product5  
27.7fghij 25.4hij 27.8fghij 24.7ij 27.2fghij 

  0.39% dilution of liquid quaternary 

ammonium/glutaraldehyde                                             

commercial product6 

31.7cdef 27.1fghij 29.7efghi 26.3ghij 27.3fghij 

  10% dilution of liquid sodium hypochlorite commercial 

sanitizer7  

25.4hij 35.0bcde 43.0a 35.6bcd 37.1b 

  Concentrated liquid medium chain fatty acid blend8  31.1defg 26.3ghij 27.4fghij 26.0ghij 26.0ghij 

P= 0.001 

SEM 1.91 
1This experiment was conducted in a 5 × 10 factorial with 3 replicates per treatment. 
2 Sal CURB; Kemin Inc., Des Moines, IA; 30% formaldehyde and 10% propionic acid/methanol blend. 

3VevoVitall and CRINA; DSM Nutritional Products Inc., Parsippany, NJ; 96% benzoic acid and 4% probiotic blend. 

4DrySan Duo; Ecolab, St. Paul, MN; 10.98% isopropyl alcohol, 0.045% hydrogen peroxide, 0.016% alkyl dimethyl benzyl 

ammonium chloride, 0.007% dodecyl dimethyl ammonium chloride, and 0.005% dioctyl dimethyl ammonium chloride. 
5INTERvention; Virox Technologies Inc. Ontario, Canada; 4.25% hydrogen peroxide. 
6Synergize; Preserve International, Reno NV; 26.0% alkyl dimethyl benzyl ammonium chloride and 7% glutaraldehyde. 
7 Bleach; The Chlorox Company, Oakland, CA; 5 to 10% sodium hypochlorite. 

8 Caprylic, capronic and capric acids in 1:1:1 custom blend described by Cochrane et al., 2015, 2016. 
abcdefghijklMeans with different superscripts differ (P < 0.05). 
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Chapter 3 - The evaluation of liquid and dry chemical treatments to 

reduce Salmonella contamination on animal food manufacturing 

surfaces 

 ABSTRACT 

Recent research has confirmed that Salmonella can be isolated from animal food, 

ingredients, and animal food manufacturing surfaces. Currently, there is limited data regarding 

the sanitation of animal food manufacturing surfaces. Therefore, the objective of this experiment 

was to evaluate the effects of nine chemical treatments to reduce Salmonella Typhimurium 

contamination on various manufacturing surfaces. This experiment was designed in a 9 × 5 

factorial with nine chemical treatments and five surfaces. The nine chemical treatments included: 

1) no inoculation or sanitation treatment (negative control), and those inoculated with Salmonella 

typhimurium and treated with 2) no sanitation treatment (positive control), 3) ground corn , 4) 

liquid commercial formaldehyde, 5) liquid food-grade sanitizer, 6) liquid medium chain fatty 

acid blend of caprylic, capronic and capric acids (MCFA), 7) dry commercial calcium 

propionate, 8) dry commercial acidulant, and 9) dry commercial benzoic acid. The five surfaces 

included 1) stainless steel, 2) plastic, 3) woven polypropylene tote bag, 4) rubber belt, and 5) 

rubber tire. Plastic had greater Salmonella growth in the positive control than the polypropylene 

tote bag, with other surfaces being intermediate (P < 0.05). Surfaces treated with concentrated 

commercial formaldehyde had no detectable Salmonella after treatment, and surfaces treated 

MCFA had at least a 4-log reduction compared to the control (P < 0.05). The dry commercial 

acidulant was the most effective dry sanitizer tested, but still only resulted a 0.9- to 2.7-log 
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reduction compared to the control for plastic, polyethylene tote bag, rubber, and stainless steel, 

respectively, with no impact on Salmonella concentration on rubber tires (P < 0.05). While most 

effective in this experiment, liquid sanitizers have limitations in a dry, bulk systems. In 

summary, liquid formaldehyde, food-grade sanitizer and MCFA, were the most effective 

chemical treatments to reduce Salmonella surface contamination. Surface type can also influence 

Salmonella mitigation strategies specifically stainless steel and plastic which can be more 

challenging sanitation within animal food facilities. 

 

 

 INTRODUCTION 

Salmonellosis globally effects over one million people, with 380 human deaths each year 

in the United States (2). With recent changes in the farm-to-fork initiative by the Food and Drug 

Administration, animal food manufacturing facilities have placed a greater emphasis on 

controlling biological hazards, such as Salmonella. (21 C.F.R. § 507.3). It has been demonstrated 

that Salmonella and other pathogens may be potentially introduced into facilities through 

ingredients and employees (8, 15, 18). Thermal processing, such as extrusion or pelleting, can 

eliminate or reduce biological hazards in animal food (5, 19). However, post-processing cross-

contamination can occur during the manufacturing, storage, and transportation of the finished 

product through dust, air or employee handling which can cause residual contamination in 

finished product processing areas (13). One way to prevent post-processing cross-contamination 

is by sanitizing post-processing surfaces. However, there is little data to evaluate the efficacy of 

various sanitizers on animal food manufacturing surfaces (10, 18). What is available is 

extrapolated from human food manufacturing knowledge, and tends to be focused on liquid 
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sanitizers. While liquid sanitation has been shown to be effective against biological hazards, 

including biofilm forming bacteria, it is challenging in a traditional animal food manufacturing 

facility, which is typically a dry bulk system not designed with clean-in-place equipment (3, 22). 

There are a variety of surfaces within these facilities, and there is no published data evaluating 

the efficacy of sanitizers for use in animal food manufacturing facilities on varying surface types. 

Therefore, the objective of this experiment was to identify successful sanitizing treatments to 

remove Salmonella typhimurium from a variety of common animal food manufacturing surfaces.  

 

 MATERIALS AND METHODS 

 Inoculum and surface preparation.  

Salmonella Typhimurium (ATCC 14028) was stored at -80ºC and inoculated into 10 mL 

of trypticase soy broth (Difco, Becton, Dickinson, and Company, Franklin Lakes, NJ) for 24 

hours at 37°C. Next, samples were streak plated onto tryptic soy agar (Difco, Becton, Dickinson, 

and Company, Franklin Lakes, NJ) plates held at 35 ± 2°C for 24 ± 2 hours. Single colonies were 

then used to inoculate trypticase soy broth and were incubated for 35 ± 2°C for 24 ± 2 hours. 

Next, 1mL of Salmonella inoculum broth was pipetted onto sterile coupon surfaces and spread 

using a cell spreader, as described by Bowman (1). Surface coupons included stainless steel 

representing equipment surfaces (stainless steel 316; Built-So-Well Manhattan, KS), plastic 

bucket from a bucket elevator conveyor (Dura Bucket National Oats Co. Collinsville, IL), rubber 

belt from a bucket elevator conveyor (Maxi-Lift Inc. Addison, TX), rubber tire (Firestone Tire 

and Rubber Company LLC. Nashville, TN) and woven polypropylene from a tote bag commonly 

used to store and transport animal food (The MegaSack Corp. Magnolia, AR).Coupons were 

103.23 cm2 squares, and were placed in sterile petri dishes.  
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 Surface treatment.  

Coupons were incubated at 35 ± 2°C for 24 ± 2 hours for biofilm formation of 

Salmonella typhimurium. Next, 1 mL of liquid or 15 g of dry treatment was spread onto each 

surface for 15 minutes to allow for complete surface coverage. Immediately after dry treatment, 

excess material was removed by sterile forceps and gently tapping twice. The nine treatments 

included: 1) no inoculation or sanitation treatment (negative control), inoculated with Salmonella 

with 2) no sanitation treatment (positive control), 3) ground corn , 4) liquid 30% formaldehyde-

based commercial product (Sal CURB; Kemin Inc., Des Moines, IA), 5) liquid 0.03% 

ammonium chloride, 10.89% isopropanol, and 0.045% hydrogen peroxide-based commercial 

food-grade sanitizer (DrySan Duo; Ecolab, St. Paul, MN ), 6) proprietary blend of liquid medium 

chain fatty acid blend of caprylic, capronic, and capric acids described by Cochrane (MCFA; 4), 

7) dry commercial 97% calcium propionate (SHIELD CA; Kemin Inc., Des Moines, IA), 8) dry 

commercial acidulant 91.5% sodium bisulfate (Sodium Bisulfate; Jones-Hamilton Co., 

Walbridge, OH), and 9) dry commercial 99.9% benzoic acid (VevoVitall; DSM Nutritional 

Products Inc., Parsipanny, NJ ). Chemical treatments were also grouped by dry and liquid 

treatments with dry treatments including SHIELD CA, SBS, and Vevo Vitall, and liquid 

treatments including Sal CURB, DrySan Duo, and MCFA.  

 

 Sample plating and enumeration.  

After residue of chemical treatments was removed, coupons were swabbed (PUR-Blue 

Swab Sampler with 5 mL of Neutralizing Buffer, Large Tip Swab; World Bioproducts LLC, 

Woodinville, WA) as described by Davidson (7) and vortexed prior to dilution (1, 7). Samples 
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were then serial diluted (10-1 to 10-6) in neutralizing broth (EMD Chemicals, Darmstadt, 

Germany) and spread to TSA plates. Plates were incubated at 35° ± 2°C for 24 ± 2 hours, and 

then enumerated.  

 

 Statistical analysis.  

Data was analyzed using the GLIMMIX procedure of SAS version 9.4 (SAS Inst. Ind., 

Cary, NC) as a completely randomized design with the main effects of surface and treatment, the 

interaction of treatment × surface, and a pre-planned contrast of dry vs. wet chemical treatments. 

There were 3 replicates per treatment. All results were log transformed and presented as 

Salmonella CFU/cm2. Difference were considered statistically significant at P < 0.05, and 

marginally significant at P < 0.10. 

 

 RESULTS AND DISCUSSION 

Salmonella mitigation of animal food manufacturing surfaces should include several 

strategies including minimization of entry, point-in-time mitigation, and post-processing cross-

contamination. One method to reduce post-processing contamination is by ensuring post-

processing equipment surfaces are not contaminated with biological hazards. Dust collected from 

the animal food manufacturing surface is likely the culprit of this contamination. Removing dust 

alone, however, does not always remove biological hazards, particularly in the case of bacterial 

hazards. Physical cleaning of animal food manufacturing facilities has shown to be ineffective at 

reducing concentration of Enterococcus faecium from equipment (11). This experiment 

described that highly intensive liquid sanitation and heat was required to completely rid the 

animal food manufacturing facility from the biological hazard (11). Thus, there are occasions 



43 

 

when animal food manufacturing equipment may require substantial sanitization. Sanitation of 

surfaces can reduce cross-contamination or can be applied throughout the facility to 

decontaminate equipment if an undesirable microorganism has been established. Sanitizing with 

liquid sanitizers typically requires physical cleaning, chemical treatment, rinsing with water, and 

complete drying. These activities are typically not practical for animal food manufacturing 

facilities, so dry sanitizers may be a more practical method if found to be effective.  

All main effects and interactions were highly significant (P ≤ 0.001). Effective sanitizers 

included commercial formaldehyde, commercial food-grade sanitizer, MCFA, and dry 

commercial acidulant reduced Salmonella concentration compared to the positive control (P < 

0.05, Table 3.1). The most effective treatment was commercial formaldehyde, where direct 

application of the commercial product containing 30% formaldehyde resulted in no detectable 

Salmonella on all tested surfaces (6.7 CFU/cm2 mean reduction; P < 0.05). The other liquid 

sanitizers also reduced (P < 0.05) Salmonella concentration from surfaces compared to the 

positive control, with MCFA resulting in a 5.8-log mean reduction and the ready-to-used liquid 

commercial food-grade sanitizer resulting in a 2.9-log reduction compared to the positive 

control. Previous research evaluating the impact of formaldehyde and MCFA on Salmonella 

within animal feed ingredient has shown to be highly effective to prevent cross-contamination in 

animal foods treated with the chemical prior to inoculation (4). To demonstrate that dry 

sanitation was effective beyond physical action, a treatment of dry corn without chemical was 

tested and yielded no difference compared to the positive control (6.1 vs. 6.7 CFU/cm2; P < 

0.05). The only dry treatment that reduced (P < 0.05) Salmonella concentration below the 

positive control level was the dry commercial acidulant, which resulted in a 1.3-log reduction. 

Liquid sanitation were effective including commercial formaldehyde, medium chain fatty acid 
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blend, and food-grade sanitizer as compared to dry treatments (2.9-6.7 CFU/cm2 log reduction; P 

< 0.0001).  

Surface type also impacted Salmonella concentration (P = 0.001), with plastic and 

stainless steel having greater mean Salmonella concentration in the positive controls compared to 

rubber tires, rubber belt, and polypropylene tote bag. (Table 3.1, P < 0.05; 4.2, 4.5 versus 4.0, 

3.5, 3.3 CFU/cm2). Previous research has shown that buna-n-rubber and polyethylene coating has 

shown bacteriostatic and hydrophobic action to Salmonella, Listeria monocytogenes and protein 

substrates (14, 21).  

 

 Effect of chemical treatment on plastic surface.  

Plastic surfaces in animal food manufacturing facilities are common in bucket elevator 

conveyors and utensils, such as shovels. Plastic elevator buckets, which were used as the source 

of plastic in this study, raise concern due to accumulation of organic material in the boot pit, or 

bottom, of bucket elevators where they may harbor biological hazards. These plastic surfaces 

typically begin smooth, like in the coupon sampled, but are typically gouged during normal 

equipment wear, which may provide additional harborage for undesirable microorganisms. Initial 

Salmonella concentration on plastic surfaces were one of the highest surfaces tested, and 

significantly higher than on polyethylene tote bag (7.4 versus 5.8 log CFU/cm2; P < 0.05; Table 

3.2). Other surfaces had intermediate Salmonella concentration on the positive control samples. 

Liquid commercial formaldehyde, food-grade sanitizer, MCFA, and the dry commercial 

acidulant reduced Salmonella concentration on plastic compared to the positive control (P < 

0.05; 7.4, 6.0, 5.8, and 1.0 CFU/cm2 log reduction, respectively). This is promising because most 

dry sanitizers desire a 1-log or 90% reduction in Salmonella (17). These dry acids are typically 
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less effective than liquids due to the potential formation of biofilms, but have greater consumer 

appeal and practicality for implementation compared to their liquid counterparts (12), Sodium 

bisulfate is generally recognized as safe and can be used as an animal food ingredient. Thus, its 

use in animal food manufacturing is readily available and practicle for application. The weak 

acid salt dissociates to have a 2-phase action: first lowering the pH to limit bacterial growth, and 

second the desiccation of cytoplasm for a bactericidal effect that is effective in human foods 

(12). The product has been shown to reduce Salmonella contamination and reduce cross-

contamination when applied as a coating to pet food kibble, and thus has promising results as a 

sanitizer (12). The dry calcium propionate and dry benzoic acid showed no significant reduction 

in Salmonella (P > 0.05) on plastic surfaces compared to the positive control.  

 Effect of chemical treatment on rubber belt surfaces.  

Similar to plastic surfaces, rubber presents specific concern due to rubber being used on 

bucket elevators. Rubber belts in these conveyors typically becomes cracked and pitted, which 

can further develop additional surfaces to harbor biological hazards.  Previous research has 

demonstrated that rubber surfaces can resist sanitation by increased growth of certain bacteria 

including Listeria monocytogenes but was less bacteriostatic when compared with Salmonella 

typhimurium (21). Treating rubber with commercial formaldehyde and MCFA resulted in the 

surface having no detectable growth of Salmonella in our study (P < 0.05; 6.1 CFU/cm2 log 

reduction vs. positive control). Commercial food-grade sanitizer was also an effective treatment 

for reduction of Salmonella on rubber compared to the positive control (P < 0.05; 3.2 CFU/cm2 

log reduction). All dry treatments had similar Salmonella as the control (P > 0.05).  
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 Effect of chemical treatment on polypropylene tote bag.  

Introduction of biological hazards can occur when animal food manufacturing facilities 

reuse bags to store or transport animal food or when transportation bags between farms and the 

facility. The reuse of tote bags is not recommended without proper cleaning, chemical sanitizing, 

and complete drying. However, this process is rarely completed by animal food manufacturers. 

Thus, residual material or dust on a bag, as well as any potential biofilms, may lead to harborage 

of undesirable microorganisms. 

 Salmonella contamination on polypropylene tote bags, which are commonly used to 

store and transport animal food, was the lowest among all tested surfaces, and significantly lower 

than on plastic surfaces (P < 0.05; 5.8 versus 7.4 CFU/cm2, Table 3.2). Notably, these bags 

contain woven polypropylene plastic, which made the inoculation, sanitizer treatment, and 

swabbing more challenging. Still, both formaldehyde and MCFA reduced surface contamination 

of Salmonella compared to the positive control (P < 0.05; 5.8 and 5.4 CFU/cm2 log reduction). 

No other treatment reduced Salmonella concentration on polyethylene tote bags compared to the 

control (P > 0.05).  

 

 Effect of chemical treatment on stainless steel surfaces.  

One of the most common surfaces within animal food manufacturing facilities is stainless 

steel. While its positive control had one of the highest concentrations of Salmonella 

concentration of all tested surfaces, it was statistically similar to all other surfaces tested (P > 

0.05). The most effective sanitizer on stainless steel was commercial formaldehyde, followed by 

MCFA, commercial dry acidulant, and the commercial food-grade sanitizer (P < 0.05; 7.4, 6.6, 

2.7, and 1.9 CFU/cm2 log reduction, respectively compared to the positive control). The 
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commercial calcium propionate and benzoic acid sanitizers were not effective at reducing 

Salmonella concentration compared to control (P > 0.05). Møretrø (18) demonstrated that the 

most effective chemical at reducing Salmonella Senftenberg 1702-1 and S. Agona 71-3, dried on 

stainless steel animal food manufacturing surfaces was 70% ethanol (>4 log reduction) as 

compared to commercial acids, aldehyde, peroxygens, and chloride products. This sanitizer is 

highly effective and a common chemical treatment in laboratory settings, but impractical to 

implement for wide scale animal food manufacturing facilities because residues require rinsing 

with water and complete drying prior to later manufacturing (18). 

  

 Effect of chemical treatment on tires.  

While not part of the traditional animal food manufacturing environment, vehicle tires are 

frequently within animal food manufacturing facilities and drive over exposed ingredient pits 

while unloading animal food. As such, their contamination may lead to cross-contamination of 

other surfaces or animal food. Some facilities have taken steps to sanitize vehicle tires prior to 

entering facilities in order to limit their impact as a potential vector. Again, the most effective 

sanitizing treatment to remove Salmonella contamination included commercial formaldehyde 

and MCFA of Salmonella (P < 0.05; 6.6 and 6.1 CFU/cm2 log reduction, respectively). No other 

sanitizer reduced Salmonella contamination from the treatment (P > 0.05).  

Prior to applying a sanitizer treatment to any surfaces, cleaning is necessary to reduce 

surface tension and remove organic material.  Effective cleaning, which may require both 

physical cleaning and the use of cleaning solutions, removes biofilm formations that will allow 

for subsequent penetration and removal of vegetative bacteria by a sanitizer. Inadequate removal 

of organic matter during physical cleaning can provide adequate conditions for bacterial growth, 
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increase cross-contamination, and reduce sanitizer efficacy. Organic material removal can be 

challenging for animal food facilities due to dust formation during production.  Dust has been 

shown to cross-contaminate surfaces during production of porcine epidemic diarrhea virus and 

Enterocuccus faeciuim (9, 11). Control of Salmonella within a facility should consider microbial 

growth requirements including water activity, and neutral pH, and wide temperature range (20). 

Altering microbial conditions can reduce Salmonella contamination by use of thermal mitigation, 

reducing water activity, or acidifying usually with a sanitizer.  

Evaluation and selection of a sanitizer should consider microbial efficacy, practicality of 

application, application time, impact of surface type on effectiveness and corrosiveness, and cost 

(17). Several sanitizers used in this study are highly corrosive, and can cause metal pitting and 

degradation causing further niche for harborage of bacteria. Corrosiveness of the sanitizers in 

this experiment were not measured and was outside the scope of this experiment. However, it is 

an important aspect to consider when evaluating sanitizers. Additional research is warranted to 

consider the use of a quaternary ammonium compound sanitizer and include measures for 

equipment corrosiveness.  

In summary, animal food manufacturing surfaces are able to be highly contaminated with 

Salmonella typhimurium, with plastic being more susceptible to polyethylene tote bags. The 

physical action of unground corn without chemical treatment did not reduce Salmonella 

typhimurium concentration from animal food manufacturing surfaces, Concentrated commercial 

formaldehyde product highly effective at reducing Salmonella contamination to undetectable 

levels on all tested surfaces. Treatments, medium chain fatty acid blend and commercial food-

grade sanitizer were also effective at reducing Salmonella contamination on most surfaces. The 

dry commercial acidulant reduced the Salmonella concentration of most surfaces by 
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approximately 1-log and was thus the most effective dry product tested. The use of a commercial 

dry calcium propionate product or a commercial dry benzoic acid product did not impact 

Salmonella concentration of surfaces compared to the positive control.  

While this study yielded valuable data as a starting point to identify potentially effective 

sanitizers, additional research is warranted to determine practical dosages and application 

methods of liquid sanitizers on animal food manufacturing surfaces in an industry setting. 

Furthermore, more research is needed to identify or develop highly effective dry sanitizers that 

are able to penetrate or remove biofilms while preserving equipment integrity 

  



50 

 

 REFERENCES 

1. Bowman, A. S., J. M. Nolting, S. W. Nelson, N. Bliss, J. W. Stull, Q. Wang, & C. 

Premanandan. 2015. Effects of disinfection on the molecular detection of porcine 

epidemic diarrhea virus. Veterinary microbiology. 179(3):213-218. 

2. Centers for Disease Control and Prevention. Oct. 1, 2015. Salmonella. Accessed Sept. 21 

2016. Available at: http://www.cdc.gov/salmonella/indes.html.  

3. Cochrane, R. A., S. S. Dritz, J. C. Woodworth, C. R. Stark, A. R. Huss, J. P. Cano, R. W. 

Thompson, A. C. Fahrenholz, and C. K. Jones. 2016. Feed mill biosecurity plans: A 

systematic approach to prevent biological pathogens in swine feed. J. Swine Health and 

Prod. 24(3):154-164. 

4. Cochrane, R. A., A. R. Huss, C. G. Aldrich, C. R. Stark, and C. K. Jones. 2016.  

Evaluating Chemical Mitigation of Salmonella Typhimurium ATCC 14028 in Animal  

Feed Ingredients. J. Food Protect. 79(4):672-676. 

5. Cochrane, R. A., L. L. Schumacher, S. S. Dritz, J. C. Woodworth, A. R. Huss, C. R. 

Stark, J. M. DeRouchey, M. D. Tokach, R. D. Goodband, J. Bai, Q. Chen, Jianqiang 

Zhang, P. C. Gauger, R. G. Main, and C. K. Jones. 2015. Effect of Thermal Mitigation on 

Porcine Epidemic Diarrhea Virus (PEDV)- Contaminated Feed. Kansas Agricultural 

Experiment Station Research Reports. 1(7):2. 

6. Current Good Manufacturing Practice, Hazard Analysis, and Risk-Based Preventative 

Controls for Food Animals, 21 CFR 507. 2015. 

7. Davidson, C. A., Griffith, C. J., Peters, A. C., & Fielding, L. M. 1999. Evaluation of two 

methods for monitoring surface cleanliness—ATP bioluminescence and traditional 

hygiene swabbing. Luminescence, 14(1):33-38. 

http://www.cdc.gov/salmonella/indes.html


51 

 

8. Ge, B., P. C. LaFon, P. J. Carter, S. D. McDermott, J. Abbott, A. Glenn, S. L. Ayers, S.L. 

Friedman, J. C. Paige, D. D. Wagner, S. Zhao, P. F. McDermott and  M.A. Rasmussen. 

2013. Retrospective Analysis of Salmonella, Campylobacter, Escherichia coli, and 

Enterococcus in Animal Feed Ingredients. Foodborne Pathogens and Disease. 10:684.  

9. Gebhardt J. T., J. C. Woodworth, C. K. Jones, P. C. Gauger, M. D. Tokach, J. M. 

DeRouchey, R. D. Goodband, M. Muckey, R. A. Cochrane, C. R. Stark, J. Bai J, Q. 

Chen, J. Zhang, A. Ramirez, R. J. Derscheid, R. G. Main, and S. S. Dritz. 2016. 

Evaluation of the effects of flushing feed manufacturing equipment with chemically 

treated rice hulls on likelihood of porcine epidemic diarrhea virus (PEDV) transmission 

by swine feed and feed manufacturing equipment. Kansas Agricultural Experiment 

Station Research Reports. 1:9-10. 

10. Habimana, O., T. Møretrø, S. Langsrud, L. K. Vestby, L. L. Nesse, and E. Heir. 2010. 

Micro ecosystems from feed industry surfaces: a survival and biofilm study of 

Salmonella versus host resident flora strains. BMC veterinary research, 6(1):1. 

11. Huss, A. H., R. A. Cochrane, A. Deliephan, C. R. Stark, and C. K. Jones. 2015. 

Evaluation of a Biological Pathogen Decontamination Protocol for Animal Feed Mills. J. 

Food Prot. 78:1682.  

12. Jeffrey, A. 2016. The role of Salmonella in animal food. Manhattan, Kan.: Kansas State 

University. 

13. Jones, F. T. 2011. A review of practical Salmonella control measures in animal feed. J.  

Appl. Poult. Res. 20:102-113. 



52 

 

14. Löpez, G. P., B. D. Ratner, C. D. Tidwell, C. L. Haycox, R. J. Rapoza, and T. A. Horbett. 

1992. Glow discharge plasma deposition of tetraethylene glycol dimethyl ether for 

fouling‐resistant biomaterial surfaces. Journal of biomedical materials research, 

26(4):415-439. 

15. Maciorowski, K., F. Jones, S. Pillai, and S. Ricke. 2004. Incidence, sources, and control 

of food-borne Salmonella spp. in poultry feeds. World's Poultry Science Journal, 

60(4):446-457.  

16. Mani-Lopez, E., H. S. García, and A. López-Malo. 2012. Organic acids as antimicrobials 

to control Salmonella in meat and poultry products. Food Research International. 

45(2):713-721. 

17. Marriott, N. and R. Gravani. 2006. Principles of food sanitation (5th ed., Food science 

texts series). New York, N.Y.: Springer 

18. Møretrø, T., L. K. Vestby, L. L. Nesse, S. E. Storheim, K. Kotlarz, and S. Langsrud. 

2009. Evaluation of efficacy of disinfectants against Salmonella from the feed industry. J. 

Appl. Microbiol. 106(3):1005-1012. 

19. Okelo, P. O., D. D. Wagner, L. E. Carr, F. W. Wheaton, L. W. Douglass, and S. W. 

Joseph. 2006. Optimization of extrusion conditions for elimination of mesophilic bacteria 

during thermal processing of animal feed mash. Anim. Feed Sci. and Tech. 129:116-137. 

20. Podolak, R., E. Enache, W. Stone, D. G. Black, and P. H. Elliott. 2010. Sources and risk 

factors for contamination, survival, persistence, and heat resistance of Salmonella in low 

moisture foods. J. Food Prot. 73:1919-1936. 



53 

 

21. Ronner, A. B., and A. C. Wong. 1993. Biofilm development and sanitizer inactivation of 

Listeria monocytogenes and Salmonella typhimurium on stainless steel and Buna-n 

rubber. J. Food Prot. 56:750-758. 

22. Steenackers, H., K. Hermans, J. Vanderleyden, and S. C. De Keersmaecker. 2012. 

Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. 

Food Research International, 45(2):502-531.



54 

 

 TABLES 

Table 3.1 Main effect of chemical treatments and surface type to reduce the Salmonella 

concentration on feed manufacturing equipment surfaces with environmental swabbing1.  

 Quantity of  Salmonella 

 Log10/cm2 

Surface  

   Plastic 4.2a 

   Polyethylene Tote Bag 3.5bc 

   Rubber Belt 3.3c 

   Stainless Steel 4.5a 

   Rubber Tire 4.0ab 

  

Treatment  

   Negative control NGe,2 

   Positive control 6.7a 

   Untreated ground corn 6.1ab 

   Concentrated liquid commercial formaldehyde3 NGe, 2 

   Ready-to-use liquid commercial food-grade sanitizer4 3.8c 

   Concentrated liquid medium chain fatty acid blend5 0.9d 

   Concentrated dry commercial calcium propionate6 6.0ab 

   Concentrated  dry commercial acidulant7 5.4b 

   Concentrated dry commercial benzoic acid8 6.2a 

  

P=  

   Surface  0.001 

   Treatment <0.0001 

   Surface x Treatment 0.001 

   Dry vs Liquid Treatment  <0.0001 

SEM  

   Surface 0.19 

   Treatment 0.26 

   Surface x Treatment 0.58 
1 This experiment was conducted in a 5 × 9 factorial with 3 replicates per treatment.  
2 NG, no growth of Salmonella detected after 24 h of incubation.  
3 Commercial 30% formaldehyde (Sal CURB; Kemin Inc., Des Moines, IA.) 

4 Commercial 0.03% ammonium, 10.89% chloride isopropanol and 0.045% hydrogen 

peroxide sanitizer (DrySan Duo; ECOLAB, St. Paul, MN) 
5 Medium chain fatty acid blend 1:1:1, Caprilic, capronic and capric acids (Cochrane et 

al., 2015, 2016) 
6 Commercial 97% calcium propionate (SHIELD CA; Kemin Inc., Des Moines, IA.) 

7 Commercial acidulant (Sodium Bisulfate; Jones-Hamilton Co.) 

8 Commercial 99.9% benzoic acid (VevoVitall; DSM Nutritional Products Inc., 

Parsipanny, NJ) 
abcdeMeans with different superscripts differ (P < 0.05) 
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Table 3.2. Effect of chemical treatment × surface interaction on Salmonella inoculated feed manufacturing surfaces 1. 

      

Surface Plastic Polyethylene 

Tote Bag 

Rubber Stainless 

Steel 

Tire 

      

      

Treatment      

   Negative control NG2 NG2 NG2 NG2 NG2 

   Positive control 7.4a 5.8bcdefghi 6.1abcdefgh 7.4ab 6.6abcdef 

   Untreated ground corn 7.3abc 5.2ghi 4.9hi 7.5a 5.5defghi 

   Concentrated liquid commercial formaldehyde3 NG2 NG2 NG2 NG2 NG2 

   Ready-to-use liquid commercial food-grade sanitizer4 1.4lk 4.0ij 2.9kj 5.3fghi 5.3fghi 

   Concentrated liquid medium chain fatty acid blend5 1.6lk 1.4kl NG2 0.8 0.5 

   Concentrated dry commercial calcium propionate6 7.0abcd 5.2fgh 5.3efghi 7.0 abcde 5.7cdefgh 

   Concentrated dry commercial acidulant7 6.4bcdefgh 4.7hi 5.2fghi 4.7hi 6.8abcdef 

   Concentrated dry commercial benzoic acid8 7.5a 5.1ghi 5.1ghi 7.6a 5.5defghi 

P= 0.001     

SEM 0.82     

      
1 This experiment was conducted in a 5 × 9 factorial with 3 replicates per treatment, presented as log CFU/cm2.  
2 NG, no growth of Salmonella detected after 24 h of incubation.  
3 Commercial 30% formaldehyde (Sal CURB; Kemin Inc., Des Moines, IA.) 

4 Commercial 0.03% ammonium, 10.89% chloride isopropanol and 0.045% hydrogen peroxide sanitizer (DrySan Duo; ECOLAB, St. 

Paul, MN) 
5 Medium chain fatty acid blend 1:1:1, Caprilic, capronic and capric acids (Cochrane et al., 2015, 2016) 
6 Commercial 97% calcium propionate (SHIELD CA; Kemin Inc., Des Moines, IA.) 

7 Commercial acidulant (Sodium Bisulfate; Jones-Hamilton Co.) 

8 Commercial 99.9% benzoic acid (VevoVitall; DSM Nutritional Products Inc., Parsipanny, NJ) 
abcdefghijklMeans with different superscripts differ (P < 0.05) 
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Chapter 4 - Evaluating the roles of surface sanitation and feed 

sequencing on mitigating Salmonella Enteritis contamination on 

animal food manufacturing equipment 

 ABSTRACT  

 The objective of this study was to evaluate the efficacy of flushing surfaces with 

untreated feed vs. the use of two different chemical sanitizers on residual surface and feed 

Salmonella Enteritidis contamination. First, a Salmonella-negative batch of poultry feed was 

mixed in 9 laboratory-scale paddle mixers. A feed sample was collected, and targeted locations 

on surfaces within the mixer were swabbed to confirm Salmonella-negative status. Next, a 

Salmonella-positive batch of poultry feed was mixed, sampled, and mixer surfaces swabbed. 

Mean Salmonella Enteritidis contamination across all 9 mixers were 3.63 CFU/g for sampled 

feed and 1.27 CFU/cm2 for surface contamination. Next, the mixers manufactured one of the 

following treatments (3 mixers/treatment): 1) none (control); 2) concentrated commercial 

product containing a eubiotic blend of essential oils (benzoic acid and blend of essential oils: 

thymol, eugenol, piperine and other essential oil compounds); or 3) rice hulls treated with a 10% 

wt/wt addition of a medium chain fatty acid (MCFA; 1:1:1 blend of caprylic, caproic, and capric 

acids). Each treatment was previously weighed and manufactured prior to inoculation of 

Salmonella.  After each treatment, each mixer manufactured another 2 batches of Salmonella-

free feed (Sequence 1 and Sequence 2). Feed samples were collected, and surfaces were swabbed 

between each batch of feed. Mixers were not physically cleaned after each sequence, only feed 

discharged from the mixers. Manufacturing sequence (P < 0.0001), but not treatment (P > 0.05) 

impacted feed or surface contamination of Salmonella Enteritidis. There was Salmonella-positive 
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residue in the batch of feed manufactured immediately after the positive control batch. However, 

no Salmonella residue was detected in batches of feed treated with either the commercial 

essential oil blend or MCFA. Low levels of Salmonella residue were observed from feed (0.7 

cfu/g for commercial essential oil blend) and surfaces (0.1 cfu/cm2 for MCFA) manufactured in 

Sequence 1, but no residue was observed by Sequence 2. This data suggests that sequencing of 

feed during manufacturing reduces Salmonella-positive contamination within animal food and on 

manufacturing surfaces, particularly after the second batch or with the use of chemical 

treatments.  

 

Key words: Salmonella, sanitation, feed manufacturing surfaces 
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 INTRODUCTION 

 Recent changes in regulation and customer requirements are placing new pressure on the 

sanitation expectations of animal food manufacturing facilities, particularly those for livestock 

(9). The recently-implemented Food Safety Modernization Act requires animal food 

manufacturing facilities to evaluate if sanitation controls, such as sanitizing animal food contact 

surfaces, are necessary to prevent Salmonella contamination in the finished product (6). Previous 

methods of sanitation of animal food contact surfaces have relied on ‘sequencing’, where diets 

are manufactured in a strategic sequence to limit carryover from high risk ingredients to specific 

feeds, and ‘flushing,’ where a pulse of animal food is conveyed through the manufacturing 

system to ‘flush’ biological hazards through the manufacturing system. However, neither method 

addresses biological hazard residues on surfaces, particularly those that form biofilms resistant to 

physical cleaning.   

With higher emphasis on animal food safety, specifically livestock species, feed mills 

will now need to reevaluate hazards within their facility to determine if hazard control is 

necessary (6, 9). Most facilities will deem Salmonella spp. to not require hazard control due to a 

combination of low severity and probability in animal food. However, Salmonella Enteritidis is 

known to be potentially pathogenic to poultry and the serotype is the 11th most frequent serotype 

found in animal food (10, 14). Thus, some poultry feed manufacturers may determine the control 

of Salmonella Enteritidis is necessary to prevent animal food from serving as a potential vector 

of the hazard.  

  Methods to control biological hazards include Current Good Manufacturing Practices, 

Process Controls, Supply-Chain-Applied Controls, or Sanitation Controls (6). Sanitation controls 

are appropriate in cases where an animal food manufacturing facility has concerns with 
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undesirable microorganisms that may contaminate feed through cross-contamination from 

manufacturing surfaces. While a great quantity of data has been generated regarding the efficacy 

of sanitizers in human food manufacturing facilities, very little data exists to evaluate the 

efficacy of sanitizers with animal food. Therefore, the objective of this experiment was to 

evaluate the efficacy of flushing surfaces with untreated feed vs. the use of two different dry 

chemical sanitizers on residual surface and feed Salmonella Enteritis contamination.  

 

 MATERIALS AND METHODS 

 This study was conducted in the Biosafety Level 2 Cargill Feed Safety Research Center 

(FSRC) at Kansas State University. Procedures were approved by the Kansas State University 

Institutional Biosafety Committee #1058.  

 Preparation of inoculum.  

Salmonella enterica subsp. Enterica Servar Enteritidis (ATCC 13076) was cultured, 

stored at -80°C, and inoculated to 10 mL of trypticases soy broth (TSB; Difco, BD) for 24 h at 

37°C. Culture was further grown by transferring to fresh TSB to produce a final 1 L inoculum 

with a concentration of 8.1 log CFU/mL.  

 Manufacturing of Salmonella-negative feed.  

A Salmonella-negative poultry diet was manufactured in the O.H. Kruse Feed 

Technology Innovation Center at Kansas State University in Manhattan, Kansas. The resulting 

feed was confirmed Salmonella-negative, subsampled into 2.2-kg batches, stored, and placed in 

sealed packages at ambient conditions. Salmonella-free rice hulls were mixed with a 10% wt/wt 

addition of a medium chain fatty acid 1:1:1 blend of caprylic, caproic, and capric acids described 

by Cochrane (4), and subsampled into 2.2-kg batches.  
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One batch of Salmonella-negative feed was mixed in each of the 9 laboratory-scale 

paddle mixers (Cabela’s Heavy Duty Meat Mixer IK-541001; Cabela’s Inc., Sidney, NE) for 5 

minutes, which was the validated mix time. After mixing was complete, 2 samples of feed were 

collected from various locations within each mixer. Samples were stored at -20°C until analysis. 

Mixers were inverted to remove material, but not physically cleaned, which resulted in a residue 

similar to that in commercial manufacturing conditions. Next, surfaces were then swabbed using 

a premoistened swab (PUR-Blue Swab Sampler with 5 mL of Neutralizing Buffer, Large Tip 

Swab; World Bioproducts LLC, Woodinville, WA) using procedures described by Davidson (8) 

and Bowman (2). Briefly, four various premeasured (103 cm2) locations on the interior of the 

mixer, including 2 mixer sides, mixer paddles and shaft, and mixer lid were swabbed for surface 

contamination. Swabs were stored in collection containers at -20°C until analysis.   

Manufacturing of Salmonella-positive feed.   

After manufacturing the Salmonella-free diets, the Salmonella Enteritidis broth inoculum 

was applied to 50 kg mash poultry diet using a 100-kg paddle mixer (H.C. Davis Sons MFG Co. 

Inc., Bonner Springs, KS, USA) with a pump sprayer, followed by 5 min of mixing. Salmonella-

positive feed was discharged from mixer and subsampled into 2.2-kg batches. These batches 

were then mixed in the 9 laboratory-scale mixers for 5 minutes, samples collected, mixers 

inverted, and surfaces swabbed using procedures described above. The resulting Salmonella-

positive feed contained 3.7 log CFU/g of Salmonella Enteritidis.  

 Chemical flush and sequencing. 

The 9 laboratory-scale mixers were then randomly assigned to 3 treatments with 3 mixers 

per treatment. Mixers were then subjected to one of the following treatments: 1) no treatment 

(control); 2) concentrated commercial product containing a eubiotic blend of essential oils 
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(CRINA; DSM Nutritional Products Inc., Parsipanny, NJ); or 3) rice hulls treated with 10% 

MCFA. Treatment batches were mixed for 5 minutes, samples collected, mixers inverted, and 

surfaces swabbed using procedures described above. Next, the 9 laboratory-scale mixers were 

used to manufacture two sequences of Salmonella-free feed (Sequence 1 and Sequence 2). 

Again, feed was mixed for 5 minutes, samples collected, mixers inverted, and surfaces swabbed 

using procedures described above. 

 Sample analysis.  

After collection of feed and surface swabs, samples were transported on ice to the 

microbiology lab for serial dilution, plated onto xylose deoxyribose agar, incubated, and 

enumerated for analysis of Salmonella in accordance with FDA Bacteriological Analytical 

Manual (1). The detectable limit for Salmonella was 10 colony forming units (CFU per g or 

swab).  

 Statistical analysis.  

Data were first log transformed and then analyzed using the GLIMMIX procedure of 

SAS version 9.4 (SAS Inst. Ind., Cary, NC) as a completely randomized design with three 

replicates per treatment. Main effects included treatment (control vs. commercial essential oil 

blend vs. MCFA blend) and sequence nested within treatment (Salmonella-negative batch, 

Salmonella-positive batch, chemically-treated batch, sequence 1, and sequence 2). Salmonella 

contamination in feed is presented as Salmonella CFU/g, while contamination on surfaces is 

presented as CFU/cm2. Difference were considered statistically significant at P < 0.05, and 

marginally significant at P < 0.10. 
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 RESULTS AND DISCUSSION 

 This study evaluated various methods to reduce the probability that animal food 

will be a vector for Salmonella entry into poultry farms and the human food chain. 

Manufacturing sequence (P < 0.0001), but not treatment (P > 0.05) impacted feed or surface 

contamination of Salmonella Enteritidis (Table 4.3). No samples of feed had detectable 

Salmonella after the Salmonella-negative batch of feed was manufactured (Table 3.1). One 

Salmonella-positive swab was collected from the lid of a mixer after the Salmonella-negative 

batch was manufactured. This was very low level contamination, and when averaged with swabs 

from 11 other swabs from that treatment, the mean level was below the 10 cfu/cm2 detectable 

limit (Table 3.2). Mean Salmonella Enteritidis contamination rate across all 9 mixers were 3.63 

CFU/g for feed and 1.27 CFU/cm2 for surface contamination. It is notable that surfaces had more 

than a 2-log reduction in Salmonella Enteritidis contamination compared to the level directly in 

the feed. However, this study effectively demonstrates that Salmonella-positive poultry feed can 

contaminate animal food manufacturing surfaces and lead to carryover contamination in the next 

batch. Specifically, there was Salmonella-positive residue in the batch of feed manufactured 

immediately after the positive control batch. However, no Salmonella residue was detected in 

batches of feed treated with either the commercial essential oil blend or MCFA. Low levels of 

Salmonella residue were observed from either feed (0.7 cfu/g for commercial essential oil blend) 

or surfaces (0.1 cfu/cm2 for MCFA) manufactured in Sequence 1, but no residue was observed 

by Sequence 2.  

 Initial surface swabs for Salmonella indicated that background Salmonella was minimal 

on mixer surfaces prior to inoculation of Salmonella-positive feed (1/ 36 swabs, Salmonella-
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negative batch). Previous, feed manufacturing surveillance studies for Salmonella have identified 

similar positive swabs within manufacturing (7, 17).   

These results indicate that flushing can reduce Salmonella contamination within a mixer, similar 

to its mechanistic way to reduce drug carryover in medicated feed manufacturing (5). This is in 

agreement with data reported by Gebhardt (11), where sequencing of feed through mixer and 

bucket elevator was effective at reducing porcine epidemic diarrhea virus (PEDV) in swine feed.  

 The low levels of Salmonella residue in feed or on surfaces after Sequence 1, but not in 

the chemically-treated batch, may have been impacted by sampling sensitivity. However, we 

hypothesize that the finding was due, at least in part, to contaminated dust residue. Swabs were 

collected in targeted locations and not swabbed over the same spot after each sequence. As such, 

it is plausible that Salmonella-contamination was denatured by the chemicals during the 

chemically-treated batch, but still viable in low levels in the sampling location during Sequence 

1. Dust collected from animal food contact surfaces has been previously identified to carry 

pathogenic biological hazards, and is therefore one of the highest risks for cross-contamination 

during feed manufacturing (11). Due to the high quantity of airborne particulates in animal food 

manufacturing facilities, Salmonella-contamination of such dust may cause it to be a widespread 

mechanism for hazard transmission. Previously, the impact of contaminated dust has been 

evaluated in an animal food manufacturing facility. After manufacturing a batch of feed 

containing Enterococcus faecium, nearly all animal food and non-animal food contact surfaces 

were positive for the surrogate (13). Similar results were observed regarding the role of a viral 

hazard by Schumacher (19). Both experiments demonstrated how the quantity of organic 

material through dust can be specifically challenging for sanitary animal food manufacturing. 

Huss (13) also determined that physical cleaning was not effective in reducing the bacteria on 
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environmental surfaces. Highly aggressive procedures were required to completely 

decontaminate the animal food manufacturing surfaces, including the use of liquid chemical 

sanitizers and heat.  

 These results show how an effective surface sanitation control requires both physical 

cleaning and sanitizing to reduce surface contamination of bacteria (15). Prior to sanitizing 

surfaces, cleaning is necessary to reduce surface tension and remove organic material.  Effective 

cleaning, which may require both physical cleaning and the use of cleaning solutions, removes 

biofilm formations that will allow for subsequent penetration and removal of vegetative bacteria 

by a sanitizer. Inadequate removal of organic matter during physical cleaning can provide 

adequate conditions for bacterial growth, increase cross-contamination, and reduce sanitizer 

efficacy. Inadequate cleaning results in increased water activity and organic material on surfaces, 

and these nutrients may lead to the proliferation of undesired bacteria (15). While thorough 

cleaning is required, it must be followed by a sanitizer to ensure that loosened vegetative bacteria 

cells are effectively reduced, otherwise cleaning alone may actually increase cross-

contamination. Both steps are necessary as residual organic material from inadequate cleaning 

can create a buffer with sanitizers, thus reducing sanitizer functionality. These steps produce 

challenges in the feed industry. Effective cleaning may be difficult because the dry bulk system 

of feed manufacturing leaves a large quantity of organic material on surfaces. There is limited 

wet cleaning in these systems, and sanitizing is even less common.  

 Previous research has demonstrated that sanitizing animal food contact surfaces with 

liquids is highly effective, but not easily feasible in animal food manufacturing facilities due to 

their dry bulk systems, the potential for sanitizers to cause corrosion of processing equipment, 

and the facilities’ prevalence for high organic material or dust on manufacturing surfaces (12, 13, 
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16). An evaluation of liquid sanitizers and chemical treatments on stainless steel surfaces has 

demonstrated that the concentrated form of the MCFA blend used in this experiment is effective 

at reducing Salmonella typhimurium (6.6 CFU/cm2 log reduction; 16). The same MCFA blend 

has been demonstrated to reduce the quantity of post-processing Salmonella serovar 

Typhimurium contamination if 2% is applied to swine feed prior to its inoculation with bacteria 

(4). One limitation of this product is high liquid inclusion and limited availability for 

manufacturing facilities.  

 A commercially-available alternative with similar properties is the dry essential oil blend 

utilized in this experiment. This product is already approved as a livestock feed additive, and has 

demonstrated abilities to reduce surface biofilms of Salmonella (18). Both products showed 

promise to reduce the numerical quantity of detectable Salmonella in animal food or on surfaces 

when they were included as flushes; but the 0.8- and 0.1- log reduction in animal food or on 

surfaces were not significant (P > 0.05) compared to the control.  

While this experiment mimicked commercial animal food manufacturing, its design was unable 

to evaluate Salmonella spp. that had adapted and developed a biofilm on manufacturing surfaces, 

which is possible in low moisture conditions (18).  Salmonella spp. has been shown to maintain 

presence on dry surfaces for up to 4 weeks through a biofilm, and contaminate product 

throughout this entire time (12). If this were to occur, it is expected that both physical cleaning 

and sanitizing would be required to completely mitigate the hazard from manufacturing surfaces 

(3).  

 For the first time, this study demonstrated how animal food manufacturing surfaces can 

be contaminated with Salmonella Enteritidis after manufacturing a Salmonella-positive batch of 

poultry feed. It is possible for contaminated surfaces to then subsequently adulterate succeeding 



66 

 

feed batches. The use of chemical flushes may help reduce this potential, and sequencing 

eliminated the risk after the second sequence of feed. Additional research is necessary to further 

evaluate the role of sequencing and dry sanitizers when Salmonella biofilms are formed on 

manufacturing surfaces.     
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Table 4.1. Poultry diet composition (as-fed basis)  

Item: Poultry diet 

Ingredient, %  

   Wheat 63.72 

   Soybean 46% 29.77 

   Soy oil 2.82 

   Limestone 1.19 

   Dicalcium phosphate 0.98 

   L-lysine HCl 0.35 

   Vitamin and mineral premix 0.30 

   DL methionine 0.29 

   Sodium bicarbonate 0.29 

   Salt 0.14 

   L-threonine 0.11 

   Choline chloride 0.03 

   Natugrain TS1 0.01 

   Naturphos E1 0.01 

Total 100.00 

  
1BASF Corp. Florham Park, NJ 07932, USA 
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Table 4.2. Impact of feed batch sequencing and chemical treatment on number of positive 

Salmonella Enteritis feed samples and surface swabs1 

 Number of Salmonella-Positive 

Swabs/Total Swabs Collected 

Treatment Feed Surfaces 

Salmonella-negative batch 0/9 1/36 

Salmonella-positive batch 9/9 31/36 

Chemically-treated batch   

   Control --- --- 

   Commercially-available essential oil blend2 0/3 2/12 

   Rice hulls + 10% medium chain fatty acid blend3 0/3 0/12 

Sequence 1   

   Control 1/3 4/12 

   Commercially-available essential oil blend2 1/3 1/12 

   Rice hulls + 10% medium chain fatty acid blend3 0/3 4/12 

Sequence 2   

   Control 0/3 0/12 

   Commercially-available essential oil blend2 0/3 0/12 

   Rice hulls + 10% medium chain fatty acid blend3 0/3 0/12 
1Salmonella-negative feed was mixed in 9 laboratory-scale mixers, followed by Salmonella-
positive feed (3.7 log CFU/g Salmonella Enteritidis), a chemically-treated batch, and two 
Salmonella-negative feed sequences to evaluate traditional sequencing vs. two different 
chemical flushes on preventing batch-to-batch feed and manufacturing surface Salmonella 
contamination. Three treatments were tested: 1) no chemical (control), a commercially-
available essential oil blend; or 3) rice hulls treated with a 10% concentration of a medium 
chain fatty acid blend. There were 3 mixers per treatment. One composite feed sample and 4 
swabs of manufacturing surfaces were collected from each mixer after each batch and 
analyzed for Salmonella concentration. Detection limits were set at (<10 CFU/g or CFU/cm2). 
Limits below the detection limit are designated as 0. 
2 CRINA (DSM Nutritional Products Inc., Parsipanny, NJ).  
310% wt/wt addition of a medium chain fatty acid 1:1:1 blend of caprylic, caproic, and capric 
acids described by Cochrane et al. (2015).  
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Table 4.3. Impact of feed batch sequencing and chemical treatment on number of positive 

Salmonella Enteritis feed samples and surface swabs1 

 Number of Salmonella-Positive 

Swabs/Total Swabs Collected 

Sequence(Treatment) Feed Surfaces 

Salmonella-negative batch 0.0b 0.0b 

Salmonella-positive batch 3.6a 1.3a 

Chemically-treated batch   

   Control --- --- 

   Commercially-available essential oil blend2 0.0b 0.0b 

   Rice hulls + 10% medium chain fatty acid blend3 0.0b 0.0b 

Sequence 1   

   Control 0.8b 0.1b 

   Commercially-available essential oil blend2 0.7b 0.0b 

   Rice hulls + 10% medium chain fatty acid blend3 0.0b 0.1b 

Sequence 2   

   Control 0.0b 0.0b 

   Commercially-available essential oil blend2 0.0b 0.0b 

   Rice hulls + 10% medium chain fatty acid blend3 0.0b 0.0b 

P =   

   Treatment 0.194 0.259 

   Sequence(Treatment) < 0.0001 < 0.0001 

SEM   

   Treatment 0.43 0.23 

   Sequence(Treatment) 0.29 0.11 
1Salmonella-negative feed was mixed in 9 laboratory-scale mixers, followed by Salmonella-

positive feed (3.7 log CFU/g Salmonella Enteritidis), a chemically-treated batch, and two 

Salmonella-negative feed sequences to evaluate traditional sequencing vs. two different 

chemical flushes on preventing batch-to-batch feed and manufacturing surface Salmonella 

contamination. Three treatments were tested: 1) no chemical (control), a commercially-

available essential oil blend; or 3) rice hulls treated with a 10% concentration of a propriety 

blend of medium chain fatty acids. There were 3 mixers per treatment. One composite feed 

sample and 4 swabs of manufacturing surfaces were collected from each mixer after each 

batch and analyzed for Salmonella concentration. Detection limits were set at (<10 CFU/g or 

CFU/cm2). Limits below the detection limit are designated as 0. 
2 CRINA (DSM Nutritional Products Inc., Parsipanny, NJ).  
310% wt/wt addition of a proprietary MCFA 1:1:1 blend of caprylic, caproic, and capric acids 

described by Cochrane et al. (2015).  
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