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A fundamental issue in visual attention is the
relationship between the useful field of view (UFOV),
the region of visual space where information is encoded
within a single fixation, and eccentricity. A common
assumption is that impairing attentional resources
reduces the size of the UFOV (i.e., tunnel vision).
However, most research has not accounted for
eccentricity-dependent changes in spatial resolution,
potentially conflating fixed visual properties with
flexible changes in visual attention. Williams (1988,
1989) argued that foveal loads are necessary to reduce
the size of the UFOV, producing tunnel vision. Without a
foveal load, it is argued that the attentional decrement
is constant across the visual field (i.e., general
interference). However, other research asserts that
auditory working memory (WM) loads produce tunnel
vision. To date, foveal versus auditory WM loads have
not been compared to determine if they differentially
change the size of the UFOV. In two experiments, we
tested the effects of a foveal (rotated L vs. T
discrimination) task and an auditory WM (N-back) task
on an extrafoveal (Gabor) discrimination task. Gabor
patches were scaled for size and processing time to
produce equal performance across the visual field
under single-task conditions, thus removing the
confound of eccentricity-dependent differences in
visual sensitivity. The results showed that although
both foveal and auditory loads reduced Gabor
orientation sensitivity, only the foveal load interacted
with retinal eccentricity to produce tunnel vision,
clearly demonstrating task-specific changes to the form

of the UFOV. This has theoretical implications for
understanding the UFOV.

Introduction

General

Imagine the following real-world scenario: While
driving, you are talking on a cell phone and looking at
the car in front of you when you fail to notice a
pedestrian entering the road in your peripheral vision.
If you had not been talking on the cell phone, then you
might have been more likely to notice the pedestrian
(for review, see Horrey & Wickens, 2006). This real-
world example raises several important theoretical
questions regarding the nature of visual attention that
we address in the current study. Is your attention
actually narrower due to the cognitive load (i.e., tunnel
vision), or is it generally worse across your entire visual
field (i.e., general interference)? If your attention is
narrower, is it because you are attending to something
important in your center of vision (i.e., a foveal load),
or could a general cognitive load—such as in the
auditory modality—be sufficient to produce the same
effect?

As we search our visual landscape, we are bom-
barded with information. As we explore our environ-
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ment, we experience the world as a continuous flow of
information although it is actually acquired discretely
on separate fixations, the information from which is
integrated to create a coherent whole. Furthermore,
there is a complex relationship between perceptual
input and central processing, which seamlessly pro-
duces moment-by-moment awareness during our ev-
eryday activities. Because we cannot actively encode
every piece of information in our visual field at a single
time, we must limit the scope of our processing in a way
that optimizes our responses and decisions—a set of
mechanisms collectively called visual attention. The
area of visual space from which visual attention
selectively processes information within a single fixa-
tion is called the useful field of view (UFOV; Mack-
worth, 1965).1 The UFOV has been shown to be
modulated by factors such as age (Ball, Beard,
Roenker, Miller, & Griggs, 1988; Ball, Owsley, Sloane,
Roenker, & Bruni, 1993; Sekuler, Bennett, & Mamelak,
2000), divided attention and task complexity (Atchley
& Dressel, 2004; Chan & Courtney, 1998; Miura, 1986;
Motter & Simoni, 2008), and training (Ball, Edwards,
& Ross, 2007). Yet despite its flexibility, the UFOV is
still reliant on perceptual information, which is limited
by the structure of our sensory organs.

We typically interpret our environment as being
clear and not distorted or blurred as information is
presented further away from the center of our gaze. In
reality, there are a number of low-level physiological
changes that occur between central and peripheral
vision, and they necessarily reduce visual performance
with increasing retinal eccentricity, referred to here
collectively as eccentricity-dependent sensitivity limits.
Although the literature detailing the nature of attention
and central versus peripheral vision both have been
rigorously investigated in parallel, the issue of how
attention changes independently of eccentricity-depen-
dent sensitivity limits is still unresolved. In particular,
the effects on the UFOV caused by visual versus
auditory dual tasks have not been directly compared
with one another, nor have their effects been teased
apart from the effects of eccentricity-dependent sensi-
tivity limits.

Central versus peripheral vision

Fundamental differences between central and pe-
ripheral vision are well established with the earliest
quantitative modeling being described by Aubert and
Foerster (1857; Strasburger, Rentschler, & Juttner,
2011). They found that, as retinal eccentricity in-
creased, letter acuity decreased. Although the experi-
mental rigor of psychophysical estimations of spatial
visual abilities continued over the next century, a more
unified model of the response properties of central and

peripheral vision at a neural level was not developed
until the pioneering work of Anstis (1974), Rovamo,
Virsu, and Naesaenen (1978), and Virsu and Rovamo
(1979). These studies determined that the sensitivity for
a stimulus with fixed spatial properties (size, spatial
frequency, contrast) would decrease monotonically as
the stimulus appeared farther away from the center of
vision. This is due, in part, to the decrease in cone
density from central to peripheral vision (Curcio,
Sloan, Packer, Hendrickson, & Kalina, 1987) as well as
the reduced ratio of cones to the retinal ganglia (which
project to the lateral geniculate nucleus), which
diminishes with eccentricity after approximately 108 of
retinal eccentricity (Perry & Cowey, 1985).

The reduced cellular representation at these early
sensory stages of processing translates to further
central vision biases of information representation in
the primary visual cortex with more cortical cells
responding to information in central vision than in
peripheral vision. This central vision bias in the visual
cortex was termed ‘‘cortical magnification’’ by Daniel
and Whitteridge (1961) and modeled in terms of its
relationship to the contrast sensitivity function by Virsu
and Rovamo (1978; Rovamo & Virsu, 1979). As a
consequence, the bias in signal processing across visual
space can be mitigated by scaling the stimuli to be more
salient in terms of their perceptual attribute, thus
eliciting a response from an equal number of cortical
cells across retinal eccentricity (Daniel & Whitteridge,
1961). Nevertheless, the precise cortical magnification
factor (M) varies across a wide range of factors,
including the target stimulus (e.g., Landoldt C vs.
Gabor patches), species, individual differences, and the
azimuth position of the stimulus (Strasburger et al.,
2011). Therefore, although it is possible that one could
estimate M from neurological data, if the goal of the
researcher is to mitigate low-level visual differences
across retinal eccentricity, one may be more precise by
setting the scaling factor on the basis of individual
observers’ psychophysical data.

The structural/perceptual differences between central
and peripheral vision have real-world effects in terms of
the types of information that they are best suited to
processing. The high spatial resolution of the fovea
makes it ideal for tasks that require one to discriminate
fine-detailed information, such as objects (Henderson
& Hollingworth, 1999; Nuthmann, 2014), words
(McConkie & Rayner, 1975), and faces (Walker-Smith,
Gale, & Findlay, 1977). Although peripheral vision has
lower spatial resolution, it is generally sufficient to
guide attention to to-be-fixated objects (Deubel &
Schneider, 1996; Henderson, 1992; Henderson &
Hollingworth, 1998; Schneider, 1995) and even to
identify or discriminate peripheral stimuli if they are
large enough to be resolved (Thorpe, Gegenfurtner,
Fabre-Thorpe, & Bulthoff, 2001).
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Attention

Attention is a key factor that can at least partially
allow the observer to compensate for the reduced
sensitivity in the visual periphery (Posner, 1975).
However, the term ‘‘attention’’ is itself a contentious
construct with no clear answer on precisely what
attention is or precisely how it improves visual
performance (Anderson, 2011; Carrasco, 2011; Posner,
1975; Rosenholtz, Huang, & Ehinger, 2012). The
association between attention, working memory (WM),
and executive control (Cowan, 1988; Engle, 2002;
Ericsson & Kintsch, 1995) has strong construct
validity; however, it is not clear whether these functions
are independent of each other or if they are merely
subsets of a more complex latent variable.

Nevertheless, a vast body of research has shown
that, for a given stimulus, tremendous differences in the
perceptual experience can result from the attentional
state of the observer. From this literature, two key
assumptions regarding attention seem to be well
supported (reviewed in Carrasco, 2011). First, the brain
has limited neural resources to accomplish any given
task or set of tasks and must therefore selectively
allocate its resources. Second, the activation of
irrelevant information can interfere with processing
relevant information (Posner, Snyder, & Davidson,
1980; Remington, Johnston, & Yantis, 1992; Theeuwes
& Godijin, 2002). Putting these two assumptions
together, selective attention can be understood as the
set of processes by which task-relevant information is
amplified while task-irrelevant information is sup-
pressed (Carrasco, 2011).

Measures of attention

Most research on attention has measured it using
arrays of artificial stimuli, such as in attentional cueing
paradigms (Posner et al., 1980), feature/conjunction
search tasks (Treisman & Gelade, 1980; Wolfe, Cave, &
Franzel, 1989), multiple object tracking (Pylyshyn &
Storm, 1988), and orientation-discrimination tasks
(Nachmias, 1967). Despite the artificiality of these
paradigms, their simplicity allows for careful control of
the stimuli and allows one to draw inferences regarding
attention in a more general sense. An attentional
measure of particular relevance to the current study,
which uses such artificial stimuli, is the Useful Field of
Viewt (UFOVt) task (Ball et al., 1988; Ball et al., 1993),
which has been shown to successfully predict real-world
driving performance. This measure contains three tasks:
foveal object identification (called the processing speed
task), foveal object identification concurrent with
peripheral object localization (called the divided attention
task), and foveal object identification concurrent with

peripheral object localization among distractors (called
the selective attention task). In the processing speed task,
the amount of time needed to identify the foveal object
with 75% accuracy is calculated. Using the presentation
duration determined in the processing speed task,
peripheral targets are presented at retinal eccentricities
ranging from 108 to 308 eccentricity in the divided and
selective attention tasks (Ball et al., 1993). Increases in
error rates for more peripheral targets suggest that the
participant’s UFOV has been reduced, which can
indicate that the individual has a reduced speed of
processing or that there is reduced sensitivity to
peripheral information regardless of time. Nevertheless,
reduced peripheral processing in the UFOV task has
correlated relatively strongly (r¼ 0.52) with the
likelihood of being involved with a car collision over the
following 3-year span (Ball et al., 1993; Ball et al., 2006;
Edwards et al., 2005). However, these studies demon-
strate that a substantial amount of the explained
variance in predicting car collision likelihood is shared
by simple eye health (’25%), and these measures are
limited to correlations between reductions in attention
and overall collision risk. The design of the UFOV task
also prevents it from being implemented within the
boundaries of a simulated real-world environment, such
as a driving or flight simulator. Thus, the UFOVt

cannot be used experimentally to measure transitory
attentional variations within real-world contexts, such as
simulated driving. Therefore, if an important goal of
attentional research is to measure attention in mean-
ingful, real-world contexts and in a dynamic fashion,
then measures of attention involving real-world stimuli
and allowing natural eye movements must be used.

Measures of attention often rely on measuring the
spread of attention by using overt attentional behaviors
(e.g., eye movements) to infer the spread of covert
attention in space (Loschky et al., 2014; Reimer, Mehler,
Wang, & Coughlin, 2012). This allows one to see
moment-to-moment changes in attention as differences
in saccade targeting, amplitude, and fixation densities.
The assumption here is that attention must be allocated
to an area or object in space prior to the eye movement
by being made (Deubel & Schneider, 1996). When an
observer is under higher cognitive load, he or she has
fewer attentional resources to distribute over visual
space, which affects what peripheral information he or
she can localize and orient toward (Loschky et al., 2014;
Pomplun, Reingold, & Shen, 2001; Reimer et al., 2012).
Thus, the breadth of attention is more constrained.
Likewise, artificially limiting the span of covert attention
using gaze-contingent displays can result in changes to
overt attention. The ‘‘moving window’’ paradigm pio-
neered byMcConkie and Rayner (1975) in the context of
reading used eye tracking to present a gaze-contingent
‘‘window’’ of normal text centered on the fixation point,
surrounded by masked (i.e., randomized) letters in the
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periphery, and varied window size to determine the
threshold beyond whichmasking produced no significant
difference in saccade amplitudes compared to a normal
text condition. Results showed asymmetries in window
size (i.e., needing more letters to the right of fixation than
to the left), thus establishing a link between covert and
overt attention during dynamic reading, such that one
attends to a particular region in space before a saccade
can be made to that particular target region. The moving
window method has also been extended to visual search
of artificial stimulus arrays (Elihipanah, Christensen, &
Reingold, 2011; Pomplun et al., 2001; Rayner & Fisher,
1987) and search for objects in scenes (Loschky &
McConkie, 2002; Nuthmann, 2013; see also Cajar et al.,
2016; Nuthmann & Malcolm, 2016). Nevertheless, there
are some general limitations of the moving window
paradigm. One is that the window itself may create
artifactual effects on eye movements (the dependent
measure of attention). For example, if the window
suddenly appears relatively late during a fixation, this can
systematically produce longer fixation durations, a
phenomenon known as saccadic inhibition (Reingold &
Stampe, 1999).2 A related question is whether attention
may also be drawn to the edge of the window due to the
sharp resolution contrast there, thus also affecting
attentional breadth. However, if so, saccade length
distributions in window conditions should cluster around
the window radius, but an analysis of gaze data in a
moving window study found no evidence for this
(Loschky & McConkie, 2002). Finally, one could argue
that it is preferable to study covert attention by having
the experimenter preselect items to probe during fixations
rather than depending on the viewer to select which items
will be targeted by overt attention.

Other studies have measured covert attention more
directly by having viewers make an explicit response to
peripherally presented information. One method of
doing so, often used in driving simulator studies, is the
peripheral detection task (PDT), in which participants
must detect targets that are presented at random
intervals, at fixed positions, often appearing in periph-
eral visual locations (e.g., near the edges of a computer
display; Crundall, Underwood, & Chapman, 1999,
2002). As we discuss later, although this method has the
advantage of requiring explicit responses to peripheral
stimuli, it has also had two important limitations.
Specifically, in the PDT, target stimuli are usually not
size-scaled to control for eccentricity-dependent sensi-
tivity loss; thus, doing so would be an improvement.
Furthermore, in the PDT, the retinal eccentricity of the
target presentations are generally not controlled, thus
adding measurement noise.

More recently, a framework has been developed for
dynamically measuring covert attentional breadth in
real-world scene photographs, videos, or simulations,
called the gaze-contingent UFOV (Gaspar et al., in

press; Loschky et al., 2014; Ringer, Johnson, Gaspar, et
al., 2014). This framework attempts to solve the various
problems discussed above in other measures of
attention in scenes. The gaze-contingent UFOV
framework has four basic components: (a) a dependent
measure of covert attention (e.g., a discrimination
task), (b) the gaze-contingent display of target stimuli
in order to control the retinal eccentricity of targets
during single fixations while allowing free eye move-
ments, (c) size-scaling of target stimuli as a function of
retinal eccentricity in order to mitigate low-level limits
on visual resolution that would otherwise be con-
founded with attention (as discussed in the next
section), and (d) a manipulation of attention. This
framework has been used in Experiments 1 and 2 and is
described in greater detail in the Methods section.

Dual tasking and changes in the UFOV

Current understanding of visual attention is incon-
clusive with regard to how attentional breadth changes
with reduced processing resources. In general, two
primary effects have been observed: general interference
and tunnel vision. When a secondary task produces
equivalent decrements in visual performance regardless
of retinal eccentricity, this is called general interference
(Holmes, Cohen, Haith, & Morrison, 1977). When a
secondary task produces greater decrements in visual
performance with increasing retinal eccentricity, this is
called tunnel vision (Ikeda & Takeuchi, 1975; Webster
& Haslerud, 1964). Williams (1988), however, drew a
sharp distinction between these two phenomena and
laid out three requirements for producing tunnel vision
in a visual task: (a) there must be a sufficiently difficult
foveal task, (b) the foveal task must be given priority
over all other tasks, and (c) the observer must make a
speeded response to both tasks.

We argue that an additional factor must also be
considered when discussing the existence or not of
tunnel vision. These are the well-known, eccentricity-
dependent limits of visual sensitivity due to cortical
magnification, which are logically independent of any
effects of attention. Williams (1988) found that a
difficult foveal load (e.g., vowel/consonant matching)
produced a steeper decline in peripheral letter identi-
fication than an easy foveal load (e.g., same letter
matching). However, Williams (1989) realized that such
a result could potentially be explained in terms of the
above-noted, eccentricity-dependent sensitivity limits.
Therefore, in a follow-up study, Williams (1989) first
size-scaled his stimuli (based on pilot testing) such that
under single-task conditions performance was equiva-
lent at all tested eccentricities (experiment 2). Impor-
tantly, it was only under dual task conditions that he
found tunnel vision, providing strong evidence of
tunnel vision based purely on attention. The only other
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study to our knowledge to have combined a manipu-
lation of foveal load with size-scaling of peripheral
stimuli was that done by Chan and Courtney (1998).
That study used a size-scaling equation based on the
reciprocal of the cortical magnification factor, called m-
scaling, to equalize performance across eccentricities in
the absence of a foveal load. The results showed no
evidence of tunnel vision but something much closer to
general interference.3

Similarly, a small number of studies of visual search
have investigated whether eccentricity effects, as an
attentional phenomenon, are eliminated by using m-
scaling to control for the drop-off in visual sensitivity
with eccentricity due to cortical magnification. Impor-
tantly, such eccentricity effects in visual search are
similar to tunnel vision in that both are generally
assumed to be attentional phenomena, and both show a
precipitous drop-off in visual performance with in-
creasing eccentricity—as also found with the UFOVt.
On the one hand, Wolfe, O’Neill, and Bennett (1998,
experiment 4a) found that m-scaling their stimuli did
not eliminate eccentricity-dependent reductions in
search efficiency. They therefore concluded that the
UFOV in visual search is limited based on attention,
not cortical magnification. On the other hand, an
extended series of experiments by Carrasco and
colleagues (Carrasco & Frieder, 1997; Carrasco,
McLean, Katz, & Frieder, 1998) found that through
careful m-scaling of their stimuli along various stimulus
dimensions, including combinations of size, orienta-
tion, and spatial frequency, they could eliminate the
eccentricity effects generally found in visual search,
which share much in common with tunnel vision. Thus,
the previous literature is unclear as to whether tunnel
vision actually exists when one first carefully controls
for the eccentricity-dependent reduction in visual
sensitivity due to cortical magnification.

Given the tenuous nature of finding the tunnel vision
effect when a foveal load ismanipulated, it seems even less
likely that such an effect would occur in the presence of an
auditoryWM load. Nevertheless, in one study evaluating
the effects of an auditory WM load on a visual match/
mismatch visual search task (Pomplun et al., 2001),
participants’ UFOV size was reduced by increasingly
difficult auditory dual task loads as measured by reduced
saccade amplitudes between target locations and in-
creased reaction time (RT) when mismatched clusters
were presented at greater retinal eccentricities. Similarly,
Atchley and Dressel (2004) found that conversations in
which the participant has nocontrol overwhenheor she is
able to receive or transmit information produces a smaller
UFOV as measured by the UFOVt task. This implies
that, as long as there is a visual task, the added cost of any
secondary load, even a purely auditory one, can produce
tunnel vision. Nevertheless, neither of the above studies
controlled for eccentricity-dependent reductions in visual

sensitivity, and theUFOVt task itself contains an implicit
foveal load in all three of its tests. Furthermore, two key
questions are whether these attentional effects would
necessarily translate to more realistic contexts and
whether the narrowing of attention is further exacerbated
by increasingly difficult auditory attentional demands.

In order to titrate the cognitive load of an auditory
WM task, the n-back task is useful as it can
incrementally increase the level of load experienced by
the participant in dual task situations (Jaeggi et al.,
2003; Reimer, 2009; Reimer et al., 2012; Ringer,
Johnson, Neider, Kramer, & Loschky, 2014). As an
auditory WM task, participants typically listen to
recordings of lists of letters and must respond whenever
an item repeats one that was n items back in the list. As
n increases, so does the number of items that must be
held and updated in WM.4 Specifically, the n-back
task’s main interfering effect seems to reside in its
ability to reduce executive attentional resources. With a
growing public safety emphasis on the dangers of
distracted driving, a growing number of studies have
sought to answer a very important and practical
question: What is the effect of an auditory WM load on
the UFOV in driving situations? In simulator studies of
the UFOV, the driving task itself is usually quite
straightforward. It requires participants to navigate
through various degrees of traffic density in single or
dual task conditions (e.g., with the n-back task) often
while maintaining a set distance from a lead vehicle.
Dependent measures of attention usually involve
measuring lane variability, brake RT, and assessing
saccade scan paths while the vehicle is on the road.
Despite Williams’ (1988; 1989) proposed requirement
of a foveal load to precipitate tunnel vision, driving
studies using the n-back task have found that increasing
the level of n increased brake RT to peripheral hazards
and caused fixation patterns to become more tightly
clustered around the center of the display (Reimer,
2009; Reimer et al., 2012). Thus, the latter authors
concluded that reduced attentional resources produce a
narrowed scope of attention, namely tunnel vision. We
note, however, that these conclusions were drawn from
saccade distributions, which may miss the subtle effects
found by measures of covert attention.

Indeed, there is other evidence from simulated driving
environments that auditory cognitive loads produce
general interference when using measures of covert
attention. Strayer, Drews, and Johnston (2003) found
that cell phone conversations (i.e., an auditory WM
load) caused equally substantial decrements to both
central and peripheral vision as measured by braking
RTs to foveal (e.g., stopped vehicle) and peripheral
(road sign) hazards, suggestive of general interference.
Similar conclusions have been drawn from two recent
driving simulator studies that used an auditory n-back
task for their cognitive load (Gaspar et al., in press;

Journal of Vision (2016) 16(2):7, 1–25 Ringer et al. 5

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/934904/ on 09/13/2016



Ringer, Johnson, Neider, et al., 2014). Those studies
found that the auditory n-back task caused equal
reductions in covert attention (measured by Gabor
orientation discrimination) over the measured visual
field (from 58 to 158 eccentricity), again providing
evidence of general interference. These latter two studies
were unique in including two important controls to help
differentiate tunnel vision from general interference,
which have been missing from previous studies that
measured covert attentional breadth in natural scenes
(e.g., Crundall et al., 1999, 2002; Miura, 1986). First,
they used size-scaled stimuli to control for eccentricity-
dependent loss of sensitivity, thus eliminating possible
spurious evidence of tunnel vision. Second, they
presented the target Gabor patches gaze-contingently at
precisely determined eccentricities, thus increasing mea-
surement sensitivity, helping to differentiate tunnel
vision from general interference. Thus, using direct tests
of covert attentional breadth in simulated real-world
environments, there is fairly consistent evidence that
auditory WM loads cause general interference in visual
tasks, which is consistent with Williams’ (1988; 1989)
claim that a foveal load is necessary to produce tunnel
vision.

The current study

The purpose of the current study is to determine
what effects differing task modalities (auditory vs.
foveal visual) have on attentional breadth, independent
of fixed properties of the retina and early visual
processes and as they apply to real-world environ-
ments. We did this using a particular instantiation of
the gaze-contingent UFOV framework described ear-
lier (Ringer, Johnson, Neider et al., 2014). Specifically,
we utilized eye tracking to present stimuli gaze-
contingently at controlled distances from the center of
vision during a given fixation. Because the target
eccentricities were predetermined, we could also scale
them to be equally discriminable over visual space
under single task conditions. This allows one to
attribute any changes in visual performance across the
visual field in a dual task condition as being unique to
attention. We chose two tasks to evaluate whether
increased task demands reduce the extent of attentional
breadth (i.e., tunnel vision) or produce overall reduc-
tions in attentional strength (i.e., general interference)
and whether these effects are unique to foveal and
auditory WM loads, respectively.

Each experiment required participants to freely view
images of natural scenes while performing a gaze-
contingent Gabor orientation discrimination task. In
Experiment 1, we manipulated attention by foveally
presenting a rotated L versus T discrimination task
(Beck & Ambler, 1973; Bergen & Julesz, 1983; Egeth &
Dagenbach, 1991; Kwak, Dagenbach, & Egeth, 1991;

Wolfe et al., 1989) at the same time as the peripheral
Gabor patches. Based on prior research showing that a
foveal load will induce tunnel vision, the addition of a
foveal load was predicted to reduce extrafoveal Gabor
orientation sensitivity whereas single task performance
(i.e., only peripheral or foveal stimuli within a given
fixation) was predicted to produce relatively flat
accuracy across retinal eccentricity (after having con-
trolled for eccentricity-dependent sensitivity through
size-scaling). To further test the importance of a foveal
load in producing tunnel vision, in Experiment 2, we did
not use a foveal load, but instead used an auditory n-
back task to manipulate attention (Gaspar et al., in
press; Jaeggi, Buschkuehl, Perrig, & Meier, 2010;
Loschky et al., 2014; Ringer, Johnson, Gaspar et al.,
2014) at the same time as the Gabor dual task. If a
foveal load is necessary to produce tunnel vision, then
the auditory n-back would instead be predicted to
produce general interference. Conversely, there is other
data to suggest that auditory WM loads (Atchley &
Dressel, 2004; Rantanen & Goldberg, 1999) and the n-
back task in particular (Reimer, 2009; Reimer et al.,
2012) produce tunnel vision. However, these latter
studies did not measure attentional breadth in a way
that controls for the eccentricity-dependent loss of visual
sensitivity due to cortical magnification.

Thus, the current study investigated this issue while
controlling for the effects of cortical magnification
through size-scaling using nearly identical methods
between attentional manipulations. General interference
would be evidenced by consistent reduction in orienta-
tion sensitivity that occurs across the visual field (i.e., a
statistical main effect of single vs. dual task) whereas
tunnel vision would be evidenced by reductions in
orientation sensitivity that occur with increasing retinal
eccentricity (i.e., a statistical interaction of the single vs.
dual task factor and eccentricity). Of course, as the
statistical reasoning outlined above suggests, these two
outcomes are not necessarily mutually exclusive. There-
fore, a further question for these two experiments was to
determine whether a foveal load and an auditory WM
load produce tunnel vision, general interference, or both.

Experiment 1

Methods

Methodological overview

In this experiment, participants completed four 1.5-
hr sessions over 4 days: day 1, visual and cognitive
screening and practice; day 2, Gabor task stimulus
onset asynchrony (SOA) thresholding across eccen-
tricities; days 3 and 4, single and dual task testing.
More specifically, on day 1, participants were screened
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for visual and cognitive acuity and given a brief
practice with the gaze-contingent discrimination task.
The gaze-contingent discrimination task was adapted
from Ringer, Johnson, Gaspar et al. (2014), and in it,
participants were told to freely view an image of a
natural scene for a picture memory task that would
occur at the end of a block of trials. During the
memorization task, a gaze-contingent stimulus would
appear, followed by a mask. After the discrimination
task, participants’ memory for scenes in the previous
block was tested. On day 2, the SOA between the target
and a mask was thresholded to determine the amount
of time needed to provide equal accuracy across
different retinal eccentricities. On days 3 and 4, the
participants were given two blocks of trials, one in
which only one retinal eccentricity was presented at a
given point in time (combined single task) and another
block in which a foveal stimulus was presented
simultaneously with a peripheral stimulus (dual task).
The ordering of single and dual tasks on days 3 and 4
was counterbalanced both within and across partici-
pants.

Participants

Ten Kansas State University students (six females;
mean age¼ 24.35, SD ¼ 3.45) responded to an online
university posting for a paid, multiday study lasting
approximately 4 days. Participants were compensated
$5 per hour at the end of each session with the promise
of an additional $5 per hour for each hour completed if
they completed all sessions. Before being admitted into
the study, participants were screened for normal vision
(20/30 Snellen acuity) using the Freiburg Acuity and
Contrast Sensitivity Test (FrACT; Bach, 2007) and for
normal cognitive acuity using the Montreal Cognitive
Assessment (MoCA; Nasreddine et al., 2005). All
auditory stimuli (i.e., digit lists, sentences, etc.) were
prerecorded to ensure that the stimuli were identical
across participants. Informed consent was given at the
beginning of each session.

Materials

Apparatus

Experiments were performed on a custom PC
running Microsoft Windows 7 with an Intel Core i7 970
processor (3.4 GHz) and 16 GB of DDR3 RAM and a
2-GB nVidia GEForce GTX 760 video card. Stimuli
were displayed on a 19-in. View-Sonic Graphics Series
monitor (Model G90fb) with a refresh rate of 85 Hz
and a display resolution of 1024 3 768 pixels. A chin
and forehead rest was used to stabilize head position
with a viewing distance of 60.33 cm from the screen,
providing a viewing angle of 33.678 3 25.508 for all
images. The monitor was calibrated using a Spyder3-

Elite photometer with a maximum and minimum
luminance of 91.3 cd/m2 and 0.40 cd/m2, respectively,
and a gamma of 2.2.

Eye movements were recorded monocularly using an
Eyelink 1000 desktop mounted eye tracker with a
sampling rate of 1000 Hz. Participants were calibrated
on a 13-point grid with a maximum average error rate
of 0.58 and a maximum error rate of 18 of visual angle.
The eye tracker was also used to present Gabor and L/
T stimuli gaze-contingently on the screen at a rate of
approximately every seven fixations. The experiment
structure was programmed using Experiment Builder
(version 1.10.1247), and the functional aspects of the
experiment (e.g., gaze-contingent stimulus drawing,
SOA settings, etc.) were implemented through custom
coding in Python (version 2.7). A fundamental concern
for the gaze-contingent displays is that the onset of the
gaze-contingent stimuli to the screen should occur
relatively quickly following the onset of a fixation (e.g.,
,80 ms; Loschky & Wolverton, 2007). All of the
stimuli presentation times were checked prior to
analyses and were found to range from 19 to 51 ms (M
¼ 41.25 ms, SD ¼ 3.56) after the onset of a critical
(stimulus present) fixation. Responses to the discrim-
ination tasks and the memory task were made using a
Cedrus RB-834 response box.

Stimuli

Scene images were randomly selected from the SUN
database. The image categories included a large
number of indoor and outdoor scenes. Stimuli for the
foveal task, the ‘‘L/T’’ patches (Figure 1A), were black
letters on circular neutral gray patches (grayscale value
¼ 127), subtending 28 diameter, which contained two
letters: either two Ls (catch stimulus) or an L and a T
(target stimulus). The characters in the foveal stimulus
were rotated to 908, 1358, 1808, 2708, or 3158 to ensure
that the L/T stimuli required serial processing (Egeth &
Dagenbach, 1991; Kwak et al., 1991). Additionally, the
pairs of letters were oriented either vertically or
horizontally. To increase the difficulty of the foveal
task, the junction of the L was offset by two pixels to
make the difference between the Ls and Ts more subtle
(Jiang & Chun, 2001). The foveal patch was presented
for a thresholded duration and then followed immedi-
ately by a mask containing four black squares (Figure
1A), which covered the potential locations for the L
and T target features. The maximum mask duration
was always equal to that of the L/T patch duration.

The Gabor stimuli used as the peripheral targets
(Figure 1B) were generated using MatLab (2009b),
including the image processing and signal processing
toolboxes. Four Gabor patches were presented, each
equidistant from the point of gaze and each other. This
was done so that, even if the participant’s gaze landed
in a corner of the image, at least one Gabor patch
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would be visible. The size-scaling of the patches was
estimated from earlier pilot studies in which the Gabor
patches were size-thresholded to be equally discrimi-
nable under unmasked conditions. The individual 38,
68, and 98 eccentricity Gabor patches subtended 4.18,
5.88, and 7.78 diameter, respectively. Because the Gabor
patches were presented on top of natural scene images,
there was the potential for simultaneous masking of the
Gabor patch by the background scene information.
Thus, in order to remove any variability caused by the
Gabor patches being presented in structurally sparse
versus complex backgrounds, a neutral gray annulus
surrounded each patch, creating a gap of 0.58 between
the patch and the scene background (Saylor & Olzak,
2006). In order to control for the amount of processing
time available for the Gabor patches, they were
presented for varying durations, and were immediately
followed by a filtered Gaussian noise mask, which was
the same size as the patch (Figure 1B). The noise masks
had the same mean luminance (0.5), RMS contrast (1),
and peak spatial frequency as the Gabor patches and
were presented up to the maximum duration of the
Gabor patch.

Procedure

Procedural overview

Within a trial, participants carried out two different
tasks: (a) memorization of the scene image, for a later
(relatively easy) picture recognition task—this was
done to encourage participants to actively explore the
image with many eye movements—and (b) discrimi-
nation tasks, involving either Gabor patch orientation
or rotated L versus T discrimination, which only
occurred occasionally for single fixations. The trial
continued until the participant made the requisite
number of fixations, producing the requisite number of
discrimination (target and catch) presentations for
every trial. Processing times for the stimuli were
initially thresholded in single task conditions. On the

final 2 days of testing, discrimination sensitivity was
compared between combined single task (separate
presentations of foveal and extrafoveal stimuli on
different fixations) and dual task (simultaneous pre-
sentations of foveal and extrafoveal stimuli on the same
fixation) conditions. Below we describe each of these
components of Experiment 1 in greater detail.

Memory task

In order to facilitate eye movements during the
discrimination tasks, participants were encouraged to
remember the details of the scene images in preparation
for new/old picture recognition memory tests that
would occur at the end of each block of trials. The
recognition memory tests consisted of half of the
images from the previous block (old images), and the
other half were new. Participants would start each
memory test trial using the same drift check and
fixation fail-safe procedures as the discrimination task.
The image would appear for 3 s, followed by a response
screen on which the participants were asked if they had
seen the image in the previous block of trials, to which
they gave a yes/no response using the response box.
The results of the recognition memory tests also
provided an alternative measure of the effects of the
cognitive load on attention as assessed by picture
encoding into long-term memory.

Discrimination tasks

In order to measure moment-to-moment changes of
attentional breadth, participants performed gaze-con-
tingent Gabor orientation and/or rotated L/T discrim-
ination tasks while freely viewing natural scenes for a
later memory task. Each trial was run with a particular
scene image that was viewed only once throughout the
discrimination phase of the experiment. When a
participant was ready to begin a trial, they pressed a
button while looking at a fixation fail-safe target at the
center of the screen. If the participant failed to fixate

Figure 1. Sample stimuli for Experiment 1. (A) Foveal targets and masks for the L versus T discrimination task showing examples of

target and catch stimuli, masks for foveal stimuli. (B) Examples of Gabor patches and masks at 38, 68, or 98 of retinal eccentricity.
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within a 18 invisible box around the target or his or her
calibration was no longer valid, the trial was aborted;
otherwise, the trial began. While they viewed the
images, the peripheral Gabor or the foveal L/T stimuli
would appear at varying distances from fixation,
followed by a mask. The SOA between the target and
the mask was set at an individually thresholded value
for each participant with his or her longest SOA value
among the four target eccentricities being used for all
eccentricities. If the participant moved his or her eyes
prior to the onset of the mask, the stimulus presenta-
tion was deemed a ‘‘nil patch’’ and rerun at the end of
the trial. In order to avoid having trials go on
indefinitely, if a participant generated too many nil
patches, a total of three nil patches per trial could be
accumulated before the experiment would simply move
on to the next trial. The gaze-contingent stimuli were
presented after every seven fixations with the first
presentation occurring on the participant’s seventh
fixation for that image. Participants could make a
response to the stimuli any time before the next
presentation (i.e., within the following seven fixations).

The stimuli for the foveal and peripheral discrimina-
tion tasks differed in order to create a more difficult
foveal load as well as to prevent participants from
making a simple same/different judgment for the central
and peripheral stimuli during the dual task condition.
For the (foveal) L/T discrimination task, the partici-
pants were required to respond with a button press from
their left hand when a T was present in the patch but not
when both characters were Ls. For the (peripheral)
Gabor discrimination task, participants were required to
make a response with their right hand when the patches
were oriented diagonally (6308) but not when the
patches were vertically oriented. Each trial contained at
least two presentations of each stimulus (one target, one
catch) at each level of retinal eccentricity.

SOA thresholding

In order to further control for eccentricity-depen-
dent sensitivity losses due to cortical magnification and
to mitigate individual differences in processing speed
among the participants, the SOAs between the onset of
the target and the following mask were tailored to the
ability of each individual participant. Following the
screening procedures from Day 1, participants com-
pleted the simple single task, consisting of 20 practice
trials of the L/T discrimination task, followed by 20
trials of the Gabor orientation discrimination task.
Because only two L/T patches were presented to the
participants per trial in this first phase of thresholding,
in each trial, the L/T stimuli in this block could be all
targets, all catch trials, or half target and half catch
trials to prevent participants from using a memory
strategy to make their responses. Changes in SOA were

incremented using the single interval adjustment matrix
(SIAM; Kaernbach, 1990) adaptive threshold estima-
tion algorithm. The target accuracy was set at 82.5%,
and the SOA step size was 23.5 ms (two monitor refresh
cycles). Feedback (percentage correct) for each target
eccentricity was given every five images.

On day 2, which was the second day of thresholding,
participants completed 80 trials of what we refer to as
the combined single task, in which both the L/T
discrimination task and the Gabor discrimination task
were presented within the same trial but on separate
fixations, separated in time by seven fixations
(Supplementary Movie 1). This was followed by 80
picture memory test trials. Importantly, on day 2, the
initial SOA values were set at the thresholded values
from Day 1. The step sizes for the SIAM were set at
23.5 ms for the first 40 trials and 11.76 ms (one monitor
refresh cycle) for the last 40 trials. Feedback was given
after every five trials. The threshold estimates were then
calculated and applied to the dual versus combined
single task trials on days 3 and 4.

The longest SOA value that was used from the
estimation session on day 2 was used as the SOA for all
retinal eccentricities on days 3 and 4. In the combined
single task condition, the L/T stimuli and Gabor
stimuli were always presented on separate fixations
with presentations separated in time by seven inter-
vening fixations. Conversely, in the dual-task condi-
tion, the L/T task and the Gabor task were presented
on the same fixation. Therefore, if we had used separate
SOAs for the L/T task and the Gabor task, it would
have resulted in masks appearing on the screen at
different times within a single fixation for the L/T and
Gabor stimuli. Whichever task was easier would have
had a shorter SOA, and its mask would onset earlier
than the mask for the more difficult task. The motion
transient caused by the earlier mask onset could
exogenously capture attention to that location (Rem-
ington et al., 1992; Theeuwes, Kramer, Hahn, & Irwin,
1998), disrupting performance in the more difficult
task. Therefore, in order to avoid this, it was necessary
to use a single SOA for both the L/T and Gabor tasks
(across all three Gabor eccentricities), applying the
longest SOA across both tasks and eccentricities to
both tasks and all eccentricities.

Combined single task versus dual task testing

On days 3 and 4 of the experiment, the participants
completed a block of 60 trials each of combined single
task and dual task trials. In the combined single task
condition, the participant saw two presentations for
each eccentricity with only one target eccentricity
presented during a given fixation. In the dual task
condition, the L/T task was presented at the same time,
on the same fixation, as the Gabor patches
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(Supplementary Movie 2). Thus, in the dual task
condition, the L/T task served as a foveal load, during
which time attention must be divided between central
and peripheral vision. Feedback was given after every
five images, but only for the foveal L/T task. This
implicitly encouraged participants to prioritize the
foveal task, a requirement for producing tunnel vision
according to Williams (1988, 1989). Each block of the
discrimination tasks was followed by a picture memory
test. The order of the combined single task and dual
tasks was counterbalanced across days for each
participant and across participants to account for
practice and learning effects.

Results

Precursors

SOA estimation: As noted above, in order to eliminate
eccentricity-dependent sensitivity loss and to control
for individual differences, masking SOAs were thresh-
olded for all participants. Prior to analyzing a
participant’s thresholding results, the data were filtered
to remove any patch presentations in which a saccade
occurred before the mask could be presented (i.e., a ‘‘nil
patch’’). Next, the thresholding data were filtered to
contain only reversal trials, namely, trials in which the
direction of SOA progression changed (i.e., increasing
to decreasing SOA or decreasing to increasing SOA).
Finally, the first four reversals (by participant and
eccentricity) were removed to reduce noise in the data
(Kaernbach, 1990). In order to calculate reliable
threshold estimates, approximately 12 reversals are
necessary. Participants averaged 17.68 (SD ¼ 4.94)
reversals for each eccentricity, which was well above the
minimum suggested number (Kaernbach, 1990). Nev-
ertheless, out of the total of 40 threshold estimates, four

individual SOA values were found to have insufficient
numbers of reversals (,12). In each of these cases, this
was due to a floor effect on the SOA scale (i.e., SOA¼
11.74 ms). Thus, the participants were significantly
practiced, and their performance was neither highly
variable nor unpredictable, and thus their data was
included in the final analysis.

As shown in Figure 2 and Table 1, the SOA
thresholds to produce the target level of equivalent
performance across tasks (82.5% accuracy) were
significantly higher for the foveal L/T task (at 08) than
those for the peripheral Gabor task (at 38, 68, and 98).
Furthermore, for the Gabor patches, the SOAs
necessary to reach the criterion level of accuracy tended
to increase from 38 to 98, t(9) ¼ 8.31, p , 0.001,
although there was no difference between 38 and 68, t(9)
¼ 0.672, p ¼ 0.52, n.s. Thus, the size-scaling of the
stimuli did not completely remove all eccentricity-
dependent loss of Gabor orientation sensitivity, further
validating our use of SOA thresholding for each
eccentricity. Nevertheless, the mean SOA for the
furthest eccentricity tested (98) was still well below the
SOA threshold for the foveal task. As noted above, on
days 3 and 4, for the Gabor orientation task, this meant
that the participants were allowed a considerably
longer processing time in the periphery than was
needed to achieve the criterion level of accuracy, which
provided an even more stringent test of the tunnel
vision hypothesis.

Discrimination

The complete results from 10 participants were
analyzed using a probit mixed-effects modeling ap-
proach to signal detection (DeCarlo, 1998; Jaeger,
2008; Wright, Horry, & Skagerberg, 2009) with R
statistical software (version 3.1.3) using the lme4
package (Bates et al., 2015). This modeling method
calculates the likelihood of a response as a function of
the type of stimulus (catch vs. target), task type
(combined single vs. dual task), and retinal eccentricity
(08, 38, 68, 98). The predictor of stimulus type as the first
step in the model provides an estimate of sensitivity (d0)
because it is determining the slope of the response
likelihood between target and foil stimuli, and thus it is

Figure 2. SOA thresholds (in milliseconds) for individual subjects

as a function of retinal eccentricity with each line representing

an individual subject’s stimulus threshold.

Mean SOA (ms) SE t value p(t) Cohen’s d

08 (L/T) 245.18 20.69 11.85 ,0.0001

38 70.38 18.96 �9.22 ,0.0001 �2.92
68 74.08 18.42 �9.29 ,0.0001 �2.94
98 125.06 18.37 �6.54 ,0.0001 �2.07

Table 1. Mean SOA estimates (in milliseconds) obtained on the
second day of SOA thresholding. Notes: The statistical test for
the L/T task is compared against 0 ms whereas the tests for 38,
68, and 98 are compared against the L/T SOA.
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the estimate of the difference between hits and false
alarms, respectively. Therefore, any reference to
sensitivity with regard to our predictors of task type
and eccentricity will be the result of its interaction with
stimulus type (DeCarlo, 1998; Wright et al., 2009). Any
interaction that does not include stimulus type (catch
vs. target) provides an estimate of bias given that it
represents the likelihood of responding ‘‘yes’’ to both
catch and target trials (DeCarlo, 1998; Wright et al.,
2009). Note, however, that unlike the signal detection
bias measure, c, the interaction B in this case represents
a ‘‘yes’’ bias with positive values.

Prior to evaluating any fixed effects among the three
tasks in Experiment 1 (i.e., L/T discrimination, Gabor
orientation discrimination, and picture memory), mul-
tiple models were generated, in which each model was
identical in its fixed effects structure, and the random
effects structure was permuted for singular effects of
task type and eccentricity (peripheral Gabor task only)
as well as additive and interactive effects of task type
and eccentricity (peripheral Gabor task only). Model
selection was on the basis of Bayesian inference criteria
(BIC) values, in which the model with the lowest BIC
value was selected, and its fixed effects were used for
hypothesis testing. This procedure was carried out for
all other mixed effects models.
Foveal sensitivity: L/T discrimination: A total of 9,800
foveal observations were recorded across 10 partici-
pants. This was on the order of twice as many
observations as any other eccentricity, which is due to
the fact that foveal presentations occurred with every
Gabor eccentricity in the dual task condition whereas all
other Gabor patch eccentricities were presented only
once. Two models were generated and tested prior to
analyzing the fixed effects of task type on sensitivity. In
one model, the random effects structure included only
subject intercepts as a random effects variable whereas

another model included task type as the sole random
effects variable. An assessment of BIC values demon-
strated that the added random effect of task type was
not warranted in the model (BIC¼ 8,129.4), and the
simplest model was chosen for analysis of fixed effects
tests (BIC¼ 8,118.9). The fixed effects of the model (see
Appendix A in Supplementary Materials) indicated a
significant liberal (‘‘yes’’) bias overall in foveal responses
(B¼ 0.436, z¼ 4.15, p , 0.001) in the combined single
task condition; however, this effect seemed to be
attenuated in the dual task condition (B¼�0.123, z¼
�2.89, p¼ 0.004). Analysis of sensitivity (d0; Figure 3)
showed a significant effect of task with participants’
performance at a much higher degree of sensitivity to the
L/T task in the combined single task condition (d0 ¼
2.70, SEM¼ 0.08) relative to the dual task condition (B
¼�1.07, z¼�12.59, p , 0.001). However, in terms of
comparing foveal performance to the thresholded
accuracy from the simple single task estimation portion
(i.e., 82.5% accuracy), dual task and combined single
task accuracies equate to approximately 81.8% and
91.5% correct, respectively. Therefore, it appears that
over the course of the experiment, participants’ perfor-
mance increased from the initial simple single task SOA
estimation to the combined single and dual task
conditions. However, addition of the dual task brought
participants’ performance back to roughly their original
simple single task estimation level of performance.
Peripheral task sensitivity: Gabor orientation discrimi-
nation: A total of 14,926 observations were used to
compare the effect of the presence of a foveal load on
peripheral orientation sensitivity. The data for the
Gabor orientation discrimination task were analyzed
similarly to the method used for the foveal discrimina-
tion task but with the added effect of retinal eccentricity.
Response likelihood was computed as a function of the
type of stimulus (target vs. catch), task type (dual task
vs. combined single task), and retinal eccentricity.
Random effects structures (effects that varied across
participants) varied as a function of task type, eccen-
tricity, task typeþ eccentricity, and the task type 3
eccentricity. From these models, BICs were compared
(see Appendix B for the full list of BIC values in
Supplementary Materials), and the optimal model was
found to be one that allowed model flexibility in terms of
task type (BIC¼ 9920.4) compared to the nearest model
that included the additive random effects of condition
and eccentricity (BIC¼ 9931.2).

In the combined single task condition, participants
were well beyond chance at discriminating Gabor
orientations (Figure 4; but see Appendix C for the full
model in Supplementary Materials) with sensitivity
being quite high (d0¼ 4.33, z¼ 55.53, p , 0.0001). This
was not surprising given that participants’ SOAs for the
Gabors were well beyond what was needed to produce
their criterion level of accuracy in the combined single

Figure 3. L/T discrimination task sensitivity (d0) as a function of

task type. Error bars¼ 95% CI.
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task in order to prevent asynchronous mask onsets
between the foveal and peripheral tasks. The single
value of SOA produced relatively constant combined
single task sensitivity as a function of eccentricity (Dd0¼
�0.055/8, z¼�1.77, p¼ 0.077). The fact that the values
for the combined single task are approaching the upper
limit of the distribution for d0 would normally be
troubling for traditional measures of sensitivity (Mac-
millan & Creelman, 2005); however, a major benefit of
fitting the data to a generalized linear mixed model for
signal detection is that such modeling is robust to
finding differences between values at extreme ends of
the binomial distribution (Dixon, 2008). As expected,
the dual task condition produced a significant decrease
in Gabor discrimination sensitivity compared to the
combined single task condition (B¼�3.23, z¼�38.35,
p , 0.0001), which would potentially provide support
for general interference. However, the crucial question
was not whether performance with the single versus
dual tasks would be different, but rather how perfor-
mance in these two tasks conditions would differ as a
function of eccentricity. Figure 4 shows clearly that
there was a significantly more negative slope as a
function of eccentricity for the dual task condition than
in the combined single task condition (Dd0¼�0.085/8, z
¼�2.52, p¼ 0.012), which supports the tunnel vision
hypothesis. We can then ask whether this interaction
invalidates the interpretation of the main effect for
single versus dual task as support for general interfer-
ence. Here, that does not seem to be the case as the
main effect of single versus dual task has a z value
(�38.35) that is .15 times larger than the interaction z
value (�2.52) as can be seen in Figure 4. Therefore, the

results seem to strongly support general interference
but nevertheless also show support to a lesser degree
for tunnel vision.

Picture memory

Results from the picture recognition memory tests
were analyzed using a probit mixed model to determine
whether participants’ memory for pictures was affected
differentially by the combined single task versus dual
task conditions. Two models were generated with the
identical fixed effects of picture identity (new vs. old)
and task condition. These two models differed in that
one model included only each subject as a random
effect whereas the other model included task type
(single vs. dual) as a random effect. A comparison of
BIC values indicated that the simpler model was
sufficient to account for variability across subjects (BIC
¼ 1492.6) and that the addition of task type was not
warranted (BIC ¼ 1504.7). The fixed effects from the
model (see Appendix D for all model estimates in
Supplementary Materials) show that there was no
significant response bias for the combined single task
condition (B ¼�0.060, z ¼�0.56, p ¼ 0.573), nor was
there a significant change in bias for the dual task
condition relative to the combined single task condition
(B ¼�0.030, z¼�0.41, p ¼ 0.680). The participants
were quite sensitive to the picture memory task in the
combined single task condition (d0¼2.887, z¼28.103, p
, 0.001), and there was no difference in sensitivity
between the combined single task and dual task
conditions (B¼�0.273, z¼�1.86, p¼ 0.064; Figure 5).
Thus, it does not seem that the addition of simulta-

Figure 4. Gabor orientation sensitivity as a function of task and eccentricity. Lines are overlaid between observed and fitted results.

Error bars¼ 95% CI. ‘‘Fitted’’ results reflect the linear fit of Gabor discrimination sensitivity predicted by the model, and ‘‘observed’’
data reflects the raw Gabor discrimination sensitivity at each categorical level of retinal eccentricity.
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neous foveal and peripheral tasks affected the encoding
of the scene images into long-term memory.

Discussion

The results from Experiment 1 confirm previous
findings that attentional breadth is significantly reduced
in the presence of a difficult foveal load (Greene,
Simpson, & Bennion, 2012; Ikeda & Takeuchi, 1975;
Kramer, Sirevaag, & Hughes, 1988; Williams, 1988,
1989), but importantly, this was shown after carefully
controlling for eccentricity-dependent loss of sensitivity
due to cortical magnification, reducing noise in the
sensitivity measures by presenting stimuli gaze-contin-
gently at precisely determined eccentricities and within
the context of freely viewing natural scenes. Task
difficulty for the foveal load can be inferred by the
substantially longer SOAs that were necessary for the
foveal load (245 ms) compared to the most eccentric
Gabor patch (125 ms). An even more convincing aspect
of these results is that the peripheral Gabors were given a
much longer amount of processing time (masking SOA)
than necessary to reach their criterion level of accuracy,
but they still showed evidence of tunnel vision. Sensitivity
for the Gabors in the single task condition was very high
and completely flat across all retinal eccentricities.
However, when the foveal load was presented simulta-
neously with the Gabors, orientation sensitivity became
increasingly worse with increasing levels of retinal
eccentricity. Importantly, this occurred even when more
time than necessary was provided, which, if anything,
would have reduced the tunnel vision effect.

As noted above, the large main effect of the single
versus dual task factor in the Gabor task performance

provided strong evidence of general interference.
Likewise, there was also a decrease in foveal L/T task
sensitivity in the dual task condition, which is further
evidence of overall attentional costs to dual task
performance that extended over the entire visual field
including the fovea (i.e., general interference). Al-
though the added cost to the L/T task was not as
substantial as for the peripheral Gabor task, the loss of
foveal processing power in the L/T task was both
significant and meaningful. The fact that the evidence
for general interference was considerably larger than
that for tunnel vision may have been due to the fact
that we carefully controlled for the eccentricity-
dependent loss of resolution due to cortical magnifica-
tion by size-scaling our Gabor stimuli and SOA
thresholding them for each participant.

Interestingly, however, the drops in foveal L/T task
and peripheral Gabor sensitivity did not translate to an
impairment in scene memory encoding. These drops in
foveal and peripheral processing seemed to be only at
the point in time at which the foveal and peripheral
targets were present as opposed to being continuously
interfering. Picture memory was unaffected between the
two task conditions, which means that the encoding of
the picture into long-term memory was not significantly
affected by the added foveal load. Thus, the interfer-
ence was likely at a feed-forward level of processing
and not at later stages of processing.

Experiment 2

Experiment 1 showed that a foveal load produced a
strong degree of general interference together with a
milder degree of tunnel vision after controlling for
eccentricity-dependent loss of sensitivity due to cortical
magnification. Importantly as well, this was shown
within the context of a naturalistic environment (i.e.,
freely viewing natural scenes). Experiment 2 sought to
determine whether an auditory WM load would
produce tunnel vision or general interference of
attention while using similar methodological controls
in the same natural scene-viewing environment.

Method

Methodological overview

The methodology for this study was similar to
Experiment 1 with the primary difference being the
cognitive load manipulation: namely, an auditory n-
back task rather than the L/T foveal load. Day 1
contained the same screening procedures as in Exper-
iment 1, but participants completed 20 n-back lists to
determine the appropriate level of n-back to produce
roughly equal performance to that in the Gabor

Figure 5. Picture memory sensitivity as a function of task type.

Error bars¼ 95% CI.
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discrimination task. On day 2, the participants
completed 66 trials of the Gabor discrimination task,
which estimated the SOAs to be used during the
following days of testing. Days 3, 4, and 5 contained
the single versus dual task testing sessions. The testing
sessions were split up into three blocks: Gabor single
task, n-back single task, and dual task conditions.

Participants

Twelve Kansas State University students (nine fe-
males; mean age¼ 24.3, SD¼ 5.04) responded to an
online university posting for a paid, multiday study
lasting approximately 5 days. Participants were com-
pensated $5 per hour at the end of each session with the
promise of an additional $5 per hour bonus for each hour
completed if they completed all sessions. Participants
were also screened for normal vision (20/30 Snellen
acuity) using FrACT (Bach, 2007) and cognitive ability
using the MoCA (Nasreddine et al., 2005). Informed
consent was given at the beginning of each session.

Materials

Apparatus

The apparatus used in Experiment 2 was identical to
that in Experiment 1. The delays between the onset of a
fixation and updating of the Gabor stimuli to the
display were analyzed and found to have a range of 22–
51 ms (M¼41.21, SD¼3.52), which was well below the
80 ms updating threshold prescribed by Loschky and
Wolverton (2007).

Stimuli

The Gabor stimuli used in Experiment 2 were
identical to those of Experiment 1; however, the foveal
stimulus was changed from an L/T patch to a Gabor
patch subtending 2.28 of visual angle. The auditory
stimuli used in the n-back task were audio recordings of
seven letters (H, J, K, L, R, S, and T), which were
played every 2 s.

Procedure

N-back thresholding

Following the vision testing and MoCA screening
on day 1, the participants completed 20 trials in
which they freely viewed images of natural scenes for
a picture memory task that would occur after the n-
back block had ended. In the trials, participants were
told to memorize the images while they carried out
the auditory n-back task. Given that n-back levels can
only be changed in discrete increments, the SIAM

thresholding algorithm was not used in this case.
Instead, if participants scored an accuracy level of
less than 77.5% correct, the n-back level would be
reduced by one, and if they scored greater than 87.5%
correct, the n-back level would be increased by one.
Then, the n-back level that provided a performance
level closest to the criterion accuracy level (82.5%)
was used for the first dual versus single task blocks of
trials on day 3.

Gabor SOA thresholding

On day 2, participants each completed 66 Gabor
discrimination task trials with two presentations (one
target, one catch trial) of each Gabor patch eccentricity
(08, 38, 68, and 98) per trial (Supplementary Movie 3).
Based on the results from Experiment 1, in order to
avoid artificially inflated SOAs early on in the
experiment, the SOA for all Gabors was set at 200 ms
for the first six trials in the experiment. After the first
six trials, the participants were given feedback on their
accuracy for each eccentricity, and the SIAM algorithm
began to manipulate the SOAs for the Gabors.
Feedback was provided every six trials until the
participant reached the memory task.

Memory task

The memory task for Experiment 2 was identical to
Experiment 1.

Single versus dual task testing

On days 3, 4, and 5, the participants completed three
blocks of 30 trials during each session: Gabor single
task, n-back single task, and dual task (Supplementary
Movie 4). However, to account for learning and fatigue
effects that could occur across and within each session,
respectively, the order of each of these tasks was
counterbalanced both within and across participants.
At the beginning of each session, the experimenter set
the n-back level and Gabor SOA values (within the
nearest monitor refresh increment) based on the
threshold values from the previous session. The
participant was given feedback on the n-back task every
six trials to ensure that they were sufficiently engaged
with the attentional manipulation. However, because
the subjective WM load of the n-back task has been
shown to be significantly reduced with practice, the n-
back level was monitored during each session. If the
participant’s average n-back accuracy exceeded 90%
correct for a given day, the n-back level was increased
by one for the next day. For sessions in which the n-
back level had increased, the participant began the next
day’s experiment by completing five n-back practice
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trials with the new level before starting the experi-
mental trials for that day.

Results

Gabor SOA thresholding

The data cleaning procedures for the Gabor SOA
thresholding data for Experiment 2 were the same as
those in Experiment 1. One participant had difficulty
with the estimation task on day 1, which resulted in
SOAs of more than 400 ms and thus created the
strong likelihood of frequent nil patches in the
following 3 days of testing. However, after a second
thresholding session, the SOA estimates were below
200 ms and were considered acceptable. Participants
averaged approximately 11.46 reversals (SD ¼ 3.71)
for each retinal eccentricity, which is slightly lower
than what was prescribed by Kaernbach (1990).
However, in the cases in which less than 12 reversals
were obtained, the SOA values were usually ap-
proaching floor levels of processing time. Thus, the
results were not contaminated by inconsistent SOAs
across eccentricity.

The thresholded Gabor SOAs for Experiment 2
(Figure 6) were approximately equivalent to those
obtained in Experiment 1.5 Nevertheless, the statisti-
cally significant trend for larger SOA thresholds at
greater target eccentricities that was found in Experi-
ment 1 was not significant in Experiment 2.

Gabor discrimination: Single versus dual task

A total of 17,217 observations collected from 12
participants were used to generate five competing
models in a similar fashion to Experiment 1. These
models had identical fixed effects of stimulus type

(target vs. catch trial), task type (single vs. dual), and
retinal eccentricity (08, 38, 68, and 98) and varying
degrees of random effect complexity. The models (listed
in Appendix E in Supplementary Materials) were
compared, and it was found that the best model was
one that included additive random effects of task and
eccentricity (BIC ¼ 11,400.9) when compared to the
nearest best-fitting model, which included eccentricity
as the sole random effect (BIC¼ 11,408). Fixed effects
tests (detailed in full in Appendix F in Supplementary
Materials) revealed that single task Gabor sensitivity
was significantly above chance for all participants (d0 ¼
2.97, z¼ 68.79, p , 0.0001; Figure 7) but that there was
a significant reduction in orientation sensitivity with
increasing target retinal eccentricity (Dd0¼�0.049/8, z¼
�3.92, p , 0.0001). Additionally, there was a significant
difference in sensitivity for the Gabor orientation task
in the dual task condition relative to the single task
condition (B ¼�0.733, z ¼�13.02, p , 0.0001),
showing potential support for the general interference
hypothesis. However, as was the case in Experiment 1,
the critical question was not if the two tasks would be
different, but how they would be different across retinal
eccentricities. The dual task condition did not show a
significantly more negative slope compared to the single
task condition (Dd0 ¼�0.023/8, z¼�1.43, p¼ 0.154),
which is inconsistent with the tunnel vision hypothesis
for an auditory dual task load but is consistent with the
general interference hypothesis.

N-back task: Single versus dual task

To assess whether participants were engaged in the
cognitive load manipulation between the single and
dual task conditions, a probit mixed model was used to
analyze the sensitivity to the n-back task between single
versus dual task conditions. Two competing models
were generated, in which the fixed effects of stimulus
type (target vs. catch trial) and task type (single vs.
dual) were held constant, and the random effects of the
model included overall participant performance and
performance between single and dual tasks. The model
fits were assessed using BIC values, which demon-
strated that the simpler model that only included the
overall subject differences as a random effect (BIC¼
14,612) was the better fit compared to the model that
included variability between single versus dual task
performance (BIC¼ 14,629). Analysis of the fixed
effects (detailed in full in Appendix G in
Supplementary Materials) from the model demon-
strated that participants’ sensitivity to the n-back task
was significantly above chance in the single task
condition (d0 ¼ 1.75, z ¼ 78.56, p , 0.0001; Figure 8)
but that there was a significant decrease in sensitivity to
the n-back task in the dual task condition (B¼�0.22, z
¼�6.64, p , 0.0001). Despite the differences in

Figure 6. SOA thresholds (in milliseconds) for individual subjects

as a function of retinal eccentricity with each line representing

an individual subject’s stimulus threshold.
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performance, however, participants were still well
above chance in both conditions, which supports the
assumption that participants were sufficiently engaged
in the n-back task when simultaneously engaged in the
Gabor orientation discrimination task.

Picture memory

To determine the effect of the n-back task on the
encoding of picture information during the learning
phases of each block, two probit mixed models were
generated in a similar fashion to the picture memory
results from Experiment 1 but now with three levels of
task (Gabor single task, n-back single task, and dual
task; Figure 9). The optimal random effects structure
was one that allowed slopes to vary by subject

intercepts (BIC¼ 2317.2) compared with one that
allowed slopes to vary as a function of task across
subjects (BIC ¼ 2354.9). Fixed effects tests (detailed in
Appendix H in Supplementary Materials) showed that
participants were very sensitive to the picture memory
task in the Gabor single task condition (d0 ¼ 2.99, z ¼
25.37, p , 0.0001), which was significantly higher than
both the n-back single task (B ¼�0.68, z ¼�4.43, p¼
0.0001) and the dual task conditions (B¼�0.865, z ¼
�5.75, p , 0.0001). However, there was no difference in
picture memory between the n-back single task and
dual task conditions (B¼�0.186, z¼�1.338, p¼0.181),
both of which were lower than the Gabor single task
condition. Thus the presence of the n-back task, which
required participants to hold letter items in WM while
also memorizing the information held within the image,
interfered with encoding picture information into long-
term memory.

Discussion

The results from Experiment 2 showed that an
auditory WM load did not produce tunnel vision. It
should be noted that the effect of the foveal load on the
Gabor discrimination task (Dd0 ¼�0.085/8) in Exper-
iment 1 was more than three times steeper as a function
of retinal eccentricity than the auditory WM load (Dd0

¼�0.023/8) in Experiment 2. One explanation for the
fact that an auditory WM load failed to narrow the
UFOV (i.e., the auditory WM load produced shallower
changes in attentional breadth between single and dual
tasks), whereas the foveal load did, is in terms of

Figure 7. Gabor discrimination sensitivity as a function of task type and retinal eccentricity. Error bars¼ 95% CI. Fitted results reflect

the linear fit of Gabor discrimination sensitivity predicted by the model, and ‘‘observed’’ data reflects the raw Gabor discrimination

sensitivity at each categorical level of retinal eccentricity.

Figure 8. N-back task sensitivity as a function of task type. Error

bars¼ 95% CI.
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reduced competition at the visual perceptual level of
processing. That is, the foveal load in Experiment 1
pitted two visual tasks against each other whereas the
auditory WM load in Experiment 2 did not.

A second possible reason for the lack of difference in
Gabor sensitivity slopes as a function of eccentricity
across the single versus dual tasks is that the n-back
task auditory stimuli only occasionally occurred during
the trial whereas the foveal load dual task from
Experiment 1 always appeared simultaneously with the
peripheral Gabor discrimination task. To evaluate this
hypothesis, a hazard analysis on the dual task
condition was conducted to determine if there was any
change in Gabor sensitivity across retinal eccentricities
as a function of the temporal distance from an n-back
stimulus. Five logit mixed models were computed with
fixed effects of Gabor eccentricity and the distance in
time from an n-back stimulus with both serving as
singular, additive, and interactive mixed effects. Time
was fitted with a natural spline to account for potential
nonlinearity among retinal eccentricity slopes. Model
fitness indices found that a model that varied only in
terms of overall subject means was the best fitting
model (BIC ¼ 7623.4; listed in full in Appendix I in
Supplementary Materials) compared to the next best
model, which included differences across the previous
time from an n-back target. Although fixed effects tests
(see Appendix J for full details in Supplementary
Materials) revealed a replication of a significant
negative slope for eccentricity (B¼�0.06, z¼�3.11, p¼
0.002), there was no main effect of time (B¼�0.07, z¼
�0.308, p¼ 0.757), nor was there any interaction of
retinal eccentricity and time (B¼�0.008, z¼�0.123, p
¼ 0.902). Thus, given that the time between n-back
stimuli and Gabor stimuli had no effect on Gabor

sensitivity, we cannot explain the lack of a tunnel vision
effect in the current experiment based on the only
occasional occurrence of the n-back auditory stimuli. In
fact, a task analysis of the n-back task shows that the
‘‘empty time’’ between the occurrence of n-back
auditory items is far from cognitively empty. Rather,
the time between auditory items is filled with a series of
cognitive processes (Chen, Mitra, & Schlaghecken,
2008; Jaeggi et al., 2010), including ‘‘matching the
newest item with the one N-back in the list, deciding
whether to make a response (including resolving
interference from distractors), either making or inhib-
iting a response, then shifting the N-1 back item to the
N-back list position, replacing the previous N-back
item with the new one, and possibly also rehearsing the
relevant section of the new list’’ (Loschky et al., 2014, p.
530). Thus, if anything, it seems likely that the
participants in Experiment 2 were under a more
continuous cognitive load than the participants in
Experiment 1, who only dealt with the rotated L versus
T task every 2–3 s (i.e., every seventh fixation). At a
central processing level, there was reduced picture
memory with the n-back task, in which picture memory
was highest for the Gabor single task and significantly
lower for the n-back single task and the dual task
conditions. The lack of difference between the n-back
single task and dual task conditions, however, confirms
the conclusion from Experiment 1 that the occasional,
gaze-contingent stimulus presentations do very little to
interfere with the encoding of visual information.
Conversely, the relatively continuous cognitive load
caused by the n-back task clearly disrupted encoding
visual information into long-term memory.

General discussion

The objective for these two experiments was clear.
To date, no study had thoroughly evaluated the
moment-to-moment changes of attentional breadth
that occur (a) in the presence of differing task
modalities, (b) independent of eccentricity-dependent
loss of sensitivity due to cortical magnification, and (c)
in naturalistic contexts. The results presented here
suggest that a demanding foveal load is necessary but

Figure 9. Picture memory sensitivity as a function of task type.

Error bars¼ 95% CI.

Mean SOA (ms) SE t value p(t) Cohen’s d

08 110.81 25.95 4.27 0.001

38 108.68 24.42 �0.09 0.93 0.025

68 106.66 23.09 �0.18 0.86 0.052

98 140.77 23.22 1.29 0.22 0.372

Table 2. Mean SOAs (in milliseconds) for Gabor stimuli in
Experiment 2. Notes: t values are in comparison to the 08
eccentricity, and the 08 t value is compared to 0.
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also sufficient to significantly reduce the size of the
useful field of view in natural scene viewing even when
controlling for eccentricity-dependent loss of sensitiv-
ity.

Nevertheless, the results across the two experiments
showed substantial main effects of task type (single vs.
dual), which is consistent with general interference. To
reiterate, evidence of tunnel vision does not necessarily
negate evidence of general interference in a dual task
paradigm. In Experiment 1, despite the significant
interaction between task and eccentricity, there was a
far more pronounced main effect of dual task
interference across all eccentricities. This predominance
of general interference may be explained by our use of
size-scaling and SOA thresholding to control for
eccentricity-dependent loss of resolution due to cortical
magnification in the fully attended (single task)
condition. If correct, this suggests that much of the
usual reduction of the UFOV with eccentricity that is
labeled as tunnel vision may be due to cortical
magnification rather than attentional tunneling per se.
From this perspective, it is perhaps surprising that we
were able to find evidence in Experiment 1 of tunnel
vision at all once eccentricity-dependent loss of
sensitivity had been controlled for under single task
conditions. Thus, these are the first results to demon-
strate tunnel vision using a covert visual attention
measure in real-world scenes after accounting for
eccentricity-dependent visual differences.

In Experiment 2, we also observed clear evidence of
general interference with an auditory WM load, which
produced no interaction between the single versus dual
task and eccentricity factors. Those results are consis-
tent with other recent results using the same method-
ological framework but in driving simulator studies
(Gaspar et al., in press; Ringer, Johnson, Gaspar, et al.,
2014). These results are most easily explained by the
lack of a foveal load but may also reflect our efforts to
control for the effects of cortical magnification. One
can ask further why the foveal load caused such strong
general interference in Experiment 1 relative to the
effect found in Experiment 2. Specifically, the foveal
load in Experiment 1 produced greater dual task
interference with the Gabor task (single vs. dual task,
Dd0 ¼�3.23) than the n-back task did in Experiment 2
(single vs. dual task: Dd0 ¼�0.733). Having said that,
we must be cautious in interpreting these differences
because methodological constraints necessitated the use
of different SOA thresholds between Experiments 1 and
2. Nevertheless, it is noncontroversial that visuospatial/
visuospatial dual task interference should be stronger
than audio WM/visuospatial dual task interference in
line with predictions from multiple resource theory
(Wickens, 2002). In Experiment 1, participants com-
pleted a visual–visual dual task with central processing
resource competition occurring within the spatial

domain (i.e., the spatial configurations of junctions in
the L/T task and the spatial orientation of the Gabor
patches). Conversely, Experiment 2’s dual task para-
digm was an auditory WM load with central processing
resources divided between auditory versus visual
resources and also WM versus perceptual resources.
Thus, the different magnitudes of the single versus dual
task effects across Experiments 1 and 2 is not surprising
despite the fact that the difficulty for the primary tasks
in Experiments 1 and 2 (i.e., L/T discrimination and
auditory n-back task, respectively) was thresholded to
be approximately equal across both experiments.
Despite these efforts to equalize the difficulty of the
primary tasks, what is particularly interesting is that
when comparing single task performance on the visual
L/T and auditory n-back tasks themselves, the L/T task
(d0¼2.7) was clearly a much easier task than the n-back
task (d0 ¼ 1.75). Nevertheless, as shown by a
comparison of Figures 3 and 8, the drop in perfor-
mance from single to dual task was much greater for
the visual L/T task than the auditory n-back task. This
clearly shows that the relative difficulty of a single task
does not determine its relative difficulty when used as a
dual task manipulation.

The results from these two experiments are consis-
tent with Williams’ (1988, 1989) claim that producing
tunnel vision requires a sufficiently difficult foveal load.
Interestingly, however, although Williams (1988, 1989)
also argued for the necessity of a speeded response, in
the current study we did not have that, yet we produced
tunnel vision. On the other hand, our study did limit
stimulus processing time through the use of visual
masking that was tailored to each participant through
adaptive threshold estimation. This is similar to Ball et
al.’s (1988) method for measuring the UFOV, which
included a foveal load, and both used visual masking to
limit processing time, which is varied with an adaptive
threshold estimation procedure. Ball et al.’s (1988)
method and measure strongly imply the existence of
tunnel vision in their task, which is inferred through
increased processing time thresholds for localization
targets with increasing retinal eccentricity (although the
UFOVt does not control for low-level, eccentricity-
dependent loss of resolution and thus cannot rule out
that simple explanation for the apparent tunnel vision
in their task). In fact, having limited stimulus process-
ing time seems like a reasonable alternative to
Williams’ (1988, 1989) requirement of a speeded
response as a critical factor for producing tunnel vision.

Indeed, a simple explanation for our evidence of
tunnel vision in Experiment 1 crucially invokes limited
processing time. Specifically, if viewers’ attention was
initially focused at the fovea by the L/T foveal load and
if processing of the foveal load required considerable
processing time (as shown in Figure 2, L/T task),
viewers may not have had enough time to then switch
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their attention to the peripheral targets before they
were masked. Furthermore, if attentional switching
times increase with retinal eccentricity (as shown in
Figure 2, Gabor task at 38–98), then difficulties caused
by limiting processing time would be more severe for
more eccentric targets, thus producing tunnel vision.
Interestingly, we found this result despite giving
participants considerably more processing time than
they needed to do the Gabor task by itself (Figure 2,
comparison of L/T vs. Gabor task SOAs) by setting the
SOA for both tasks, for each participant, to their
longest SOA across tasks (i.e., the L/T). By doing so,
we therefore made it more difficult to find evidence of
tunnel vision if our above argument based on
processing time is correct. Thus, our evidence of tunnel
vision is, if anything, an underestimate.

The above argument is also consistent with previous
results showing that limiting processing time differen-
tially affects perception in central versus peripheral
vision with longer processing times needed to process
information in the periphery—suggesting that attention
moves outward from the fovea to peripheral vision over
the course of a fixation. Larson and Loschky (2009)
investigated rapid scene categorization and found that
they could divide circular scene images into mutually
exclusive central and peripheral regions (a circular
center and a surrounding annulus divided by a critical
radius) that produced identical performance when
briefly flashed but unmasked. Then, in a later
experiment using such critical radius stimuli, Larson,
Freeman, Ringer, and Loschky (2014) used visual
masking to investigate the effects of processing time on
rapid scene categorization based on information from
central versus peripheral vision. In one experiment, a
probability manipulation biased participants to expect
either the central or peripheral portions of natural
scenes, which were shown on 80% versus 20% of trials.
When participants were biased to expect centrally
presented portions of the image, they were significantly
worse at categorizing information in the periphery at
early (e.g., ,70 ms SOA) levels of processing time.
Conversely, when participants were biased to expect
peripheral information, there were no differences
between central and peripheral scene categorization at
either early or later processing times. These results
suggested an outward expansion of attention over
processing time within a single fixation. Comparing the
central processing bias found in Larson et al. (2014)
with the results of the current experiment suggests that
a foveal load slows down the rate at which attention
moves from the fovea into the periphery.

The progression of attention from central to
peripheral vision over the course of a single fixation is
consistent with serial attentional shift models (Hender-
son, 1993), which have been supported by gaze-
contingent studies of both reading (Henderson, 1992;

Rayner, Inhoff, Morrison, Slowiaczek, & Bertera,
1981; Rayner, Liversedge, & White, 2006; Rayner,
Liversedge, White, & Vergilino-Perez, 2003; for a
comprehensive comparison of models, see Reichle,
Rayner, & Pollatsek, 2003) and scene perception (van
Diepen & d’Ydewalle, 2003). Generally, these models
assume that after a saccade ends, early in a fixation,
attention is devoted to processing the foveal target,
assumedly because that is the information used to
update our understanding of the visual array. Having
done that, attention expands (or is allocated) to the
area in the visual periphery that is potentially most
informative (Eckstein, Drescher, & Shimozaki, 2006;
Najemnik & Geisler, 2005). Related research has shown
a systematic spread of covert attention from central to
peripheral vision that maps onto the time course of
single fixations (Motter & Simoni, 2008). Nevertheless,
Experiments 1 and 2 did not directly manipulate the
temporal properties of our Gabor and L/T stimuli
(initial SOA thresholding notwithstanding), and there-
fore, we cannot claim with certainty that tunnel vision
is a consequence of the sequential spread of attention
over space during a fixation. An alternative parallel
processing account would be that applying fewer
attentional resources to the periphery simply produces
slower peripheral processing.

To our knowledge, in scene perception, there are
currently no fully implemented computational models
of attentional distribution during each fixation between
the fovea and the periphery. However, in reading, the
saccade-generation with inhibition of foveal targets
model (SWIFT; Engbert, Nuthmann, Richter, &
Kliegl, 2005) provides a computational approach to
measuring the effects of foveal, lexical processing on
delaying the transition between serial and parallel
processing. Later versions of SWIFT (i.e., SWIFT 3;
Engbert, Longtin, & Kliegl, 2002; Schad & Engbert,
2012) integrate theories of parallel processing and the
‘‘zoom lens’’ model of attention (Eriksen & St. James,
1986; Eriksen & Yeh, 1985; Mueller, Bartlett, Donner,
Villringer, & Brandt, 2003; Seiple, Clemens, Green-
stein, Holopigian, & Zhang, 2002). In it, the program-
ming and execution of a saccade is dependent upon the
degree of foveal load but not the degree of extrafoveal
load. Greater foveal loads (e.g., difficult lexical
processing) reduce the size of the attentional window,
which interferes with the ability to process peripheral
information before the next saccade and fixation.
Because attention is a limited resource, if greater
attentional gain is devoted to foveal information, then
less is available for the parafovea and the periphery,
leading to attentional tunneling. This is broadly
consistent with the results of Experiment 1, which
showed that a foveal load led to tunnel vision in scene
perception. This suggests that a computational model
of attentional distribution during fixations in scene
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perception could have a number of parallels with the
SWIFT model for reading. However, in the context of
scene viewing, such a model would need to incorporate
changes based on crucial differences due to the nature
of scene versus reading stimuli, their respective
diagnostic information sources (Schyns, 1998), and
related processing routines (Ullman, 1984). For in-
stance, text has a far less varied structure than scenes,
and attentional shifts in reading are normally unidi-
rectional whereas, in scene viewing, attention is not
nearly so spatially and directionally constrained, and
this is evidenced in a number of differences in eye
movement parameters although not in the underlying
processes (see Nuthmann & Henderson, 2012).

An important remaining question is why the current
study showed that tunnel vision only occurred with a
foveal load and not with an auditory WM load as other
studies have shown that an auditory cognitive load
produced tunnel vision. Several studies have inferred
that increasing levels of an auditory cognitive load
produce progressively greater tunnel vision as indicated
by reduced saccade amplitude and increased fixation
distribution densities (Loschky et al., 2014; Pomplun et
al., 2001; Reimer et al., 2012). In an ingenious example,
Pomplun et al. (2001) made careful use of eye-
movement metrics to estimate the size of the covert
window of attention. To do this, they used a gaze-
contingent moving window to limit the scope of visible
information in such a way that the window was
sufficiently large to not interfere with the search task.
However, the narrowing of the perceptual span in all of
the above-cited studies could have been affected by the
eccentricity-dependent loss of resolution due to cortical
magnification, which could have degraded visual
information at a faster rate under divided attention
conditions even if covert attention was being reduced at
a constant rate across the visual field. If so, then our use
of size-scaling and SOA scaling to equalize perfor-
mance under single-task conditions may explain why
we found evidence for general interference from an
auditory WM load while these other studies found eye
movement–based evidence of tunnel vision. Of course,
for practical purposes, one could argue that the UFOV
does result in tunneling when measured under any dual
task condition—after all, the real world is not m-scaled.
However, if one wants to understand how covert
attention varies across the field of view, the answer can
become muddled if it is confounded with a priori
eccentricity-dependent sensory limitations. By using
size-scaling and SOA thresholding to ensure that this
alternative explanation could be eliminated, the data
from the two experiments in the current study
demonstrate a clearer association between a foveal load
and narrowing of covert attention.

The current study provides an important step toward
understanding the fundamental nature of the spread of

attention across the field of view, aka the UFOV, and it
does so within the context of naturally viewing real-
world scene images. In doing so, the current study
raises new questions, for example, regarding the
independent or interacting effects of m-scaling, pro-
cessing time, and attentional prioritization in produc-
ing tunnel vision or general interference, which further
research will be needed to answer. However, the current
study provides both a strong foundation and much-
needed guidance on which to base such further
research.

Keywords: eye tracking, gaze-contingent displays,
dual tasking, divided attention, useful field of view

Acknowledgments

This research by all authors on this project was
supported by a grant to LL (10846128) from the Office
of Naval Research. We thank Michael E. Young for his
statistical theoretical advice and Alicia Johnson, Jeff
Dendurent, Greg Erikson, Tera Walton, Allison Coy,
and Jacob DeHart for help in data collection and
discussion of the experiments and data. This article is
based on research done for Ryan V. Ringer’s MS thesis
in Psychological Sciences at Kansas State University.
Research in this article was previously presented at the
2015 Annual Meeting of the Vision Sciences Society
and the 2015 European Conference on Eye Move-
ments. Author contributions: conceived and designed
the experiments: (Experiment 1) RR, LL, ZT; (Exper-
iment 2) LL, RR, AJ, AK, ZT; programmed the
experiments: ZT; performed the experiments: RR;
analyzed the data: RR; wrote the first draft of the
paper: RR, LL; made revisions to the paper: RR, LL,
AJ, AK.

Commercial relationships: none.
Corresponding authors: Ryan V. Ringer; Lester C.
Loschky.
Email: rvringer@ksu.edu; loschky@ksu.edu.
Address: Department of Psychological Sciences, Kan-
sas State University, Manhattan, KS, USA.

Footnotes

1 Other similar terms are the functional field of view,
perceptual span, or attentional breadth. We will
primarily use the terms UFOV or attentional breadth.

2 This concern can be avoided by updating the gaze-
contingent display continuously. However, that can
produced a different artifact; namely, if perceptible
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jitter is introduced by intrafixational movements,
attention can be drawn to the edge of the window.

3 The results of Chan and Courtney (1998) are rather
complicated by the fact that there were opposing ceiling
and floor effects at the largest retinal eccentricity (58) in
the size-scaled and non-size-scaled conditions, respec-
tively. For the size-scaled stimuli, performance actually
increased with eccentricity, suggesting that the size-
scaling was somewhat overly effective.

4 Studies using fMRI measurements to evaluate the
locus of interference in the n-back have generally found
a relationship between the level of n and activation of
Broca’s area although this effect attenuates with
increased training (Cohen et al., 1997). A more reliable
effect of the n-back task is that the dorsolateral
prefrontal cortex (known to be heavily involved in
executive WM tasks) increases its level of activity as n
increases with a significant difference between zero and
one back compared to two and three back (Cohen et
al., 1997). Other fMRI data has also shown increases in
the right and left inferior frontal gyri and superior
parietal lobe in the two- and three-back tasks, an effect
carried over to the one-back task during simultaneous
visual and auditory n-back tasks (Jaeggi et al., 2003).

5 The only notable difference was the substantially
shorter threshold SOAs to discriminate Gabor patches
at the fovea (Table 2) than the rotated L/T task in the
fovea in Experiment 1. However, given the larger
differences between the tasks, such a difference is not
surprising.
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