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INtRODUCtION

Dose–response models are used to estimate the min-
imal concentrations of a nutrient that maximize a given 
outcome, thereby determining nutritional requirements 
for optimal performance. Polynomials and broken lines 
are functional forms commonly used in regression 
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ABStRACt: Advanced methods for dose–response 
assessments are used to estimate the minimum con-
centrations of a nutrient that maximizes a given 
outcome of interest, thereby determining nutritional 
requirements for optimal performance. Contrary to 
standard modeling assumptions, experimental data 
often present a design structure that includes corre-
lations between observations (i.e., blocking, nesting, 
etc.) as well as heterogeneity of error variances; either 
can mislead inference if disregarded. Our objective 
is to demonstrate practical implementation of linear 
and nonlinear mixed models for dose–response rela-
tionships accounting for correlated data structure and 
heterogeneous error variances. To illustrate, we mod-
eled data from a randomized complete block design 
study to evaluate the standardized ileal digestible 
(SID) Trp:Lys ratio dose–response on G:F of nursery 
pigs. A base linear mixed model was fitted to explore 
the functional form of G:F relative to Trp:Lys ratios 
and assess model assumptions. Next, we fitted 3 com-
peting dose–response mixed models to G:F, namely a 
quadratic polynomial (QP) model, a broken-line linear 
(BLL) ascending model, and a broken-line quadratic 
(BLQ) ascending model, all of which included hetero-
skedastic specifications, as dictated by the base model. 

The GLIMMIX procedure of SAS (version 9.4) was 
used to fit the base and QP models and the NLMIXED 
procedure was used to fit the BLL and BLQ models. 
We further illustrated the use of a grid search of initial 
parameter values to facilitate convergence and param-
eter estimation in nonlinear mixed models. Fit between 
competing dose–response models was compared using 
a maximum likelihood–based Bayesian information 
criterion (BIC). The QP, BLL, and BLQ models fitted 
on G:F of nursery pigs yielded BIC values of 353.7, 
343.4, and 345.2, respectively, thus indicating a better 
fit of the BLL model. The BLL breakpoint estimate 
of the SID Trp:Lys ratio was 16.5% (95% confidence 
interval [16.1, 17.0]). Problems with the estimation 
process rendered results from the BLQ model ques-
tionable. Importantly, accounting for heterogeneous 
variance enhanced inferential precision as the breadth 
of the confidence interval for the mean breakpoint 
decreased by approximately 44%. In summary, the 
article illustrates the use of linear and nonlinear mixed 
models for dose–response relationships accounting for 
heterogeneous residual variances, discusses important 
diagnostics and their implications for inference, and 
provides practical recommendations for computation-
al troubleshooting.
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models to estimate nutrient dose–response relationships 
(Robbins et al., 1979; Vedenov and Pesti, 2007; Pesti et 
al., 2009). These models are often used in a fixed-effects 
modeling framework that assumes mutually independent 
observations with homogeneously dispersed errors. Yet 
experimental data often present a design structure that in-
cludes correlations between observations (i.e., blocking, 
nesting, etc.) and heteroskedastic errors (Wiggans and 
VanRaden, 1991; Wolfinger, 1996). In fact, heterogeneity 
of residual variances, also known as heteroskedasticity, 
seems to be a relatively common phenomenon in animal 
production systems (Cernicchiaro et al., 2013; Gonçalves 
et al., 2015) and it can mislead inference if disregarded 
(Wiggans and VanRaden, 1991; Wolfinger, 1996).

Mixed models are particularly well suited 
to handling correlated data (Littell et al., 2006). 
Implementation of mixed models, however, is not 
without challenges, including convergence of the it-
erative estimation process, particularly when fitting 
nonlinear mixed models. A common problem is that 
models either fail to converge or converge to subop-
timal solutions (i.e., local vs. global maxima). A grid 
search approach can assist the estimation process by 
providing initial parameter values over the likelihood 
surface and guiding the iterative process away from 
suboptimal solutions and facilitating a more efficient 
search for optimal solutions (Kiernan et al., 2012).

The main objective of this paper is to demonstrate 
practical implementation of linear and nonlinear mixed 
models methodology for dose–response relationships, 
accounting for correlated data structures and heteroge-
neous variances. Second, we illustrate techniques to fa-
cilitate computational implementation of these models.

MAtERIALS AND MEtHODS

Data
We used the data set previously presented by 

Gonçalves et al. (2015) on G:F of nursery pigs fed 
experimental diets consisting of increasing levels 
of standardized ileal digestible (SID) Trp:Lys ratio. 
Briefly, data were collected under a randomized com-
plete block design whereby 1,088 pigs arranged in pens 
of 24 to 27 pigs were blocked by average initial BW 
and randomly assigned to experimental diets (6 pens/
diet) consisting of SID Trp:Lys ratios of 14.5, 16.5, 18.0, 
19.5, 21.0, 22.5, and 24.5%. The response variable G:F 
in its observed scale ranged from 520 to 610 g BW gain/
kg feed intake. Our choice of units for G:F as grams per 
kilogram feed intake rather than the more commonly 
used kilograms per kilogram was intended to ensure nu-
merical stability in the estimation process, particularly 
for variance components. It is well described that when 

the scale of the data is very small and close to internal 
tolerances of computational algorithms, convergence 
can be impaired and estimation suffers (Kiernan et al., 
2012). Proper choice of unit scale is important to ensure 
computational stability in the estimation process but 
does not affect the nature of the conclusions. The raw 
data are reported in Fig. 1 as a SAS software (version 
9.4; SAS Inst. Inc., Cary NC) data step and includes 
BW blocks (i.e., “Block”), SID Trp:Lys treatment (i.e., 

Figure 1. Example data set from Gonçalves et al. (2015), which 
evaluated the effects of standardized ileal digestible (SID) Trp:Lys ratio on 
nursery pig performance with 2 residual variance groups (Var1 for [16.5 
and 18.0% SID Trp:Lys ratios] and [14.5, 19.5, 21.0, 22.5, and 24.5% SID 
Trp:Lys ratios] for Var2).
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“Trt”), pen identification (i.e., “PenID”), and the re-
sponse G:F expressed in grams per kilogram.

Base Mixed Model: Specification and Implementation

We started by fitting a “base” linear mixed model 
to 1) explore possible functional forms of the relation-
ship between G:F and SID Trp:Lys ratios; 2) evaluate 
model assumptions, in particular homogeneity of re-
sidual variances; and 3) obtain preliminary estimates 
of variance components (i.e., block and residual vari-
ances) that could later be used as starting values in 
dose–response linear and nonlinear mixed models. 
The base mixed model was specified as follows:

yij = η + αi + bj + eij,  [1]

in which yij is the G:F expressed in grams per kilo-
gram associated with the experimental unit in block j 
assigned to SID Trp:Lys ratio i and η corresponds to an 
intercept, whereas αi represents the differential effect 
of Trp:Lys ratio i (treated as a categorical variable); in 
turn, bj is the random effect of the jth block with bj ~ 
N(0, σb

2) and eij is a random residual associated with 
the experimental unit in the jth block that received the 
ith SID Trp:Lys ratio whereby eij ~ N(0, σe

2), and bj 
and eij are assumed to be independent of each other.

The base mixed model was fitted with the 
GLIMMIX procedure of SAS software (version 9.4; 

Fig. 2A) using its default estimation method REML. 
The Kenward–Roger’s procedure was used to esti-
mate degrees of freedom and adjust estimated SE for 
bias correction (Littell et al., 2006). To assess model 
assumptions, we plotted studentized residuals as a 
function of levels of the treatment factor (Fig. 3A). 
All observations had values of studentized residuals 
between −3 and 3, thereby indicating no evidence for 
any extreme observations beyond probabilistic expec-
tation. However, it was apparent from Fig. 3A that the 
amount of dispersion of studentized residuals around 
their expected value 0 (i.e., horizontal like in Fig. 3A) 
was noticeably uneven across treatments. Note, for 
instance, that at an 18% SID Trp:Lys ratio, residuals 
were tightly clustered around 0, whereas for diets con-
sisting of a 14.5 or 24.5% SID Trp:Lys ratio, residu-
als seemed to have the greatest dispersion around 0, 
thereby questioning the assumption of a homogeneous 
residual variance in the base mixed model.

Specification of Heterogeneous Residual 
Variances. To further evaluate potential heteroskedastic-
ity, we expanded our base mixed model in Eq. [1] to ac-
commodate heterogeneous residual variances such that 

( )( )

2~ 0,
ij kij ee N s  with subscripts indicating the kth 

level of a variance group to which the ijth observation 
corresponded. Figure 2B shows SAS software code to 
implement heteroskedastic specifications of the base 
mixed model. We defined alternative variance groups

Figure 2. A) Base model assuming homogeneous residual variance. B) Base model allowing for heterogeneous residual variances.
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consisting of 2, 3, 4, or 7 levels empirically defined 
from Fig. 3A, as treatment combinations having seem-
ingly comparable residual dispersion. These variance 
groups are listed in Table 1 and are presented for il-
lustration, realizing that this is not an exhaustive list. A 
commented SAS software code is available as a sup-
plementary file (see the online version of the article 
at http://journalofanimalscience.org) to illustrate how 
the variance groups were defined. The choice of model 
with the best fitting heterogeneous variance specifica-
tion was based on the Bayesian information criterion 
(BIC; Schwarz, 1978). Please refer to the model se-
lection section below for more details.

Dose–Response Estimation Models:  
Specification and Implementation

Next, we considered 3 competing linear and nonlinear 
dose–response mixed models, namely a quadratic poly-
nomial (QP) model, a broken-line linear (BLL) ascend-
ing model, and a broken-line quadratic (BLQ) ascending 
model. These competing models represent 3 commonly 
used functional forms of the relationship between nutri-
ent requirement and the response G:F, based on the AA 
nutrition literature (Robbins et al., 2006; Pesti et al., 2009). 
The competing models were specified as follows:

Quadratic polynomial model:

yij = β0 + β1,QP Xi + β2,QP Xi
2 + bj + eij. [2] 

Broken-line linear ascending model:

yij = φBLL + βBLL × (ωBLL − Xi) + bj + eij  
for Xi < ωBLL,  [3] 
and 
yij = φBLL + bj + eij      for Xi ≥ ωBLL.

Broken-line quadratic ascending model:

yij = φBLQ + β1, BLQ × (ωBLQ − Xi) + β2, BLQ × 
(ωBLQ − Xi)

2 + bj + eij      for Xi < ωBLQ,  [4]  
and 
yij = φBLQ + bj + eij      for Xi ≥ ωBLQ.

In these models, yij is the observed G:F associated with the 
pen randomly assigned to the SID Trp:Lys ratio i within 
block j and Xi indicates the ith known SID Trp:Lys ratio. 
For all models, bj is the random effect of the jth block 
with bj ~ N(0, σb

2) and eij is a random error associated 
with the experimental unit in the jth block that received 
the ith SID Trp:Lys ratio whereby ( )( )

2~ 0,
ij kij ee N s , 

whereby the group composition of each the kth levels was 
defined by the best-fitting heteroskedastic base model 
(as described in previous section). Also, bj and eij are as-

sumed to be independent of each other. For the QP model, 
β0 is the intercept and β1,QP and β2,QP are the correspond-
ing unknown linear and quadratic regression coefficients 
relating Xi to the observed response yij. For the nonlinear 
models, φBLL and φBLQ indicate the unknown maximum 
response (i.e., plateau) under the BLL and BLQ models, 
respectively; in turn, βBLL, β1,BLQ, and β2,BLQ are the 
corresponding unknown regression coefficients describ-
ing the relationship between Xi and yij for values of Xi 
smaller than the plateau. Finally, ωBLL and ωBLQ are 
the unknown minimum levels of the SID Trp:Lys ratio 
to reach the plateau under the BLL and BLQ models, re-
spectively. We note that our implementation of nonlin-
ear mixed models takes into consideration the standard 
recommendation of the hierarchy principle for model 
building, whereby if a higher-order polynomial term is 
retained in the model, then the related lower-order terms 
are also kept in the model regardless of whether or not 
the coefficients for the lower-order terms are significant 
(Kutner et al., 2005).

Figure 3. A) Studentized residuals of G:F, expressed in grams per 
kilogram, by treatment levels obtained from a base model fitted with a 
common residual variance. B) Studentized residuals of G:F, expressed in 
grams per kilogram, by treatment levels obtained from a base model allow-
ing for heterogeneous of residual variances with 2 group variances ([16.5 
and 18.0% standardized ileal digestible {SID} Trp:Lys ratios] vs. [14.5, 
19.5, 21.0, 22.5, and 24.5% SID Trp:Lys ratios]).
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The SAS software (version 9.4) was used to imple-
ment all dose–response models. The GLIMMIX proce-
dure was used to fit the QP model whereas NLMIXED 
procedure was used for the nonlinear mixed models 
(i.e., BLL and BLQ). Under both procedures, the 
method of estimation was specified to be maximum 
likelihood (ML) to enable comparison of competing 
models. Figure 4 shows code used to implement the 
dose–response models using SAS software, in particu-
lar the QP model (Fig. 4A), the BLL model (Fig. 4B), 
and the BLQ model (Fig. 4C).

We note that, for the data set used in this article, the 
final dose–response models used for inference needed 
to account for heterogeneous residual variances, as 
dictated by preliminary data exploration using the 
base mixed model (see the previous section). We fur-
ther illustrate the impact that disregarding heterogene-
ity of variances when modeling can have on the point 
estimates of the dose–response breakpoint as well as 
on its inference. Specifically, we compare estimates of 
nutrient requirements and respective inference based 
on the best fitting dose–response model with and with-
out specification of heterogeneous residual variances.

Improving Computational Performance of 
Nonlinear Mixed Models. To facilitate the iterative 
estimation process of fitting nonlinear mixed models, 
we provided initial values for key parameters using the 
PARMS statement (Fig. 4B and 4C). Initial values for 
parameters φBLL, φBLQ, βBLL, β1,BLQ, β2,BLQ, ωBLL, 
and ωBLQ were approximated from empirical scat-
ter plots of the data and also from fitted values from 
the base mixed model. In turn, initial values for σb

2 
and 2  

kes  were elicited using estimates from the base 
mixed model. For each parameter, at least 3 initial val-
ues were used to conduct a grid search so that for the 
BLL model, a total of 35 sets of starting values were 
evaluated, whereas at least 36 sets of starting values 
were considered for the BLQ model.

Estimating Confidence Intervals for Optimal 
Nutrient Requirements. For the nonlinear mixed mod-
els, the estimated mean breakpoint parameters (i.e., 
ωBLL for the BLL model and ωBLQ for the BLQ model) 
and their corresponding asymptotic confidence interval 

(CI; i.e., 95%) follow from ML estimation of model 
parameters; these values can be obtained directly from 
the SAS NLMIXED output. For the QP model, the esti-
mated mean dose level at which the maximum response 
occurred is not automatically output and needs to be 
computed, as follows. We first obtained the first deriva-
tive of the fitted regression equation with respect to the 
predictor variable X (Pesti et al., 2009) and then equated 
the derivative to 0 and solved for X, thus obtaining the 
value of X that maximized the average response; this 
value was derived to be −( b̂1)/(2 b̂2). A (1 − α)% CI for 
the estimated mean dose level using the QP model can 
be approximated using a graphical approach (Lavagnini 
and Magno, 2007). Briefly, the fitted QP equation is plot-
ted over the dose levels with the desired estimated CI 
(i.e., 95% CI). Then, the maximum estimated response 
is projected on the y-axis using a horizontal line. The 
points of intersection of this horizontal line with the CI 
boundaries on the predicted line are then projected onto 
the x-axis as CI estimators of the optimum dose level.

An alternative approach to computing CI on the 
mean dose level at which the maximum response oc-
curred involves numerical estimation through Monte 
Carlo simulation. Specifically, one may draw a large 
number of paired samples of parameters β1 and β2 from 
a multivariate normal distribution with mean parameter 
given by the point parameter estimates and variance–
covariance values specified as the corresponding esti-
mates of the sampling distributions of β1 and β2. Then, 
for each pair of β1 and β2 draws, one may compute the 
value −(β1)/(2β2), thus obtaining an empirical distribu-
tion of the value of X that maximizes the average re-
sponse under the QP model. The (α/2)th and (1 − α/2)
th percentiles of this empirical distribution can then be 
used to report the (1 − α)% CI for the estimated mean 
dose level that maximizes G:F based on the QP model.

Model Comparison. Competing mixed models 
used to evaluate 1) heterogeneity of error variances and 
2) the functional form of the dose–response relation-
ship (i.e., QP, BLL, and BLQ) were compared based 
on model fit using the BIC (Schwarz, 1978). It is noted 
that the competing models evaluated here either for 
heterogeneity of error variances or for functional form 

table 1. Bayesian information criterion (BIC) fit statistics for base models fitted assuming a homogeneous (i.e., 
common) variance or heterogeneous variances for 2, 3, 4, or 7 groups
Variance component BIC Group constituency
Common variance 303.6 No groups
2 variance groups – combination I 299.6 (16.5 and 18.0) vs. (14.5, 19.5, 21.0, 22.5, and 24.5)
2 variance groups – combination II 300.6 (14.5, 19.5, and 24.5) vs. (16.5, 18.0, 21.0, and 22.5)
3 variance groups 300.3 (14.5, 19.5, and 24.5) vs. (21.0 and 22.5) vs. (16.5 and 18.0)
4 variance groups 301.1 (14.5, 19.5, and 24.5) vs. (21.0 and 22.5) vs. (16.5) vs. (18.0)
7 variance groups 306.4 One group per treatment
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of the dose–response relationship were not fully nested 
among themselves. Therefore, a likelihood ratio test–
based approach to model comparison would not have 
been appropriate. Furthermore, when comparing fit be-
tween models fitted using GLIMMIX and NLMIXED 
procedures, it is important to pay special attention to 
default software specifications, thereby ensuring that 
the underlying methods of estimation are aligned so as 
to enable meaningful comparisons of information cri-
teria. The default specification for method of estima-
tion in GLIMMIX is REML, whereas in NLMIXED, 
it is ML; therefore, one should explicitly specify ML-
based inference in GLIMMIX by indicating method = 
MSPL (Fig. 4A) in SAS software code.

RESULtS AND DISCUSSION

Base Mixed Model: Implementation and Inference
After fitting a base mixed model to the response 

G:F assuming a homogeneous residual variance (as in 
Eq. [1]), we assessed model assumptions using a plot 
of studentized residuals over levels of SID Trp:Lys ra-
tios (Fig. 3A). The residual plot indicated no evidence 

for extreme observations beyond probabilistic expecta-
tion, as all studentized residuals were within ±2.5. Yet 
studentized residuals seemed to be more dispersed 
around their expected mean 0 for some SID Trp:Lys 
ratio treatments (i.e., 14.5 and 24.5%) than for others 
(i.e., 16.5 and 18.0%) thereby questioning the stan-
dard assumption of a homogeneous residual variance 
across all treatments. Instead, the plot of studentized 
residuals (Fig. 3A) suggested that the residual variance 
might differ among treatments. To address this depar-
ture from model assumptions, we expanded our base 
mixed model to explicitly accommodate heterogeneous 
residual variances. Table 1 shows BIC statistics for 
model fit assessment for alternative base mixed mod-
els fitted either with a homogeneous residual variance 
(i.e., a common variance across SID Trp:Lys ratios) or 
with heterogeneous residual variances. Heteroskedastic 
groups were defined either on each SID Trp:Lys ratio 
(i.e., 7 variance groups) or on 2, 3, or 4 so-called “vari-
ance groups” consisting of empirical combinations of 
SID Trp:Lys ratio treatments. Base mixed models with 
heterogeneous residual variances for 2, 3, or 4 groups 
of treatments fitted the data better than the base mixed 
model with a common homogeneous residual variance; 

Figure 4. A) Quadratic polynomial mixed model with heterogeneous variance. B) Broken-line linear mixed model with heterogeneous variance. C) 
Broken-line quadratic mixed model with heterogeneous variance.



Gonçalves et al.1946

this assessment was supported by smaller values of the 
BIC statistic (Table 1). Therefore, we selected for fur-
ther modeling steps the most parsimonious model, that 
is, the base mixed model with fewest variance compo-
nents that best fit the data, in this case the model with 
heterogeneous residual variances for 2 groups of SID 
Trp:Lys ratios consisting of 16.5 and 18.0% vs. 14.5, 
19.5, 21.0, 22.5, and 24.5%. Indeed, a plot of studen-
tized residuals obtained from fitting the selected base 
model with heterogeneous residual variances suggested 
a more even spread of residuals for all SID Trp:Lys ra-
tio treatments (Fig. 3B). Figure 5 shows the estimated 
least squares means of G:F for experimental diets con-
sisting of increasing levels of SID Trp:Lys ratio allow-
ing for heterogeneous residual variance across 2 groups, 
as specified based on the best fitting base mixed model.

Dose–Response Models

As previously indicated, our implementation of 
nonlinear dose–response mixed models included elici-
tation of initial parameter values to facilitate the esti-
mation process. Using parameter estimates from the 
base mixed model (Fig. 5), we specified initial values 
for the scaled plateau level (i.e., φBLL or φBLQ) at ap-
proximately 582 g BW gain/kg feed intake whereas 
the slope βBLL for the linear segment of the BLL mod-
el was approximated at 1,950 (calculated using val-
ues from Fig. 5 as (582 − 543)/(0.165 − 0.145)). It 
is noted that the sign of the initial value provided for 
the slope βBLL must be multiplied by −1 to yield the 
value −1,950 given the model parameterization pro-
cess implemented in SAS software. For breakpoint 

parameters, namely ωBLL or ωBLQ, initial values were 
specified at 15.0, 16.0, and 17.0% SID Trp:Lys ratios 
based on descriptive assessments of the data. Initial 
values for variance components were obtained from 
corresponding estimates of variance components from 
the fitted base mixed model and specified at 11 for BW 
block (σb

2), 56 for variance group 1 (
1

2
es ), and 268 for 

variance group 2 (
2

2
es ).

To facilitate model convergence, we set up a grid 
search across initial parameter values. For a grid search, 
each model parameter was assigned an array of initial 
values selected within the domain of each parameter; this 
grid search approach can be particularly important for 
variance components. For the BLL model, we set an ar-
ray of parameter values consisting of all combinations of 
φBLL = [578, 582, 586], βBLL = [−975, −1,950, −3,900], 
ωBLL = [0.15, 0.16, 0.17], σb

2 = [6, 11, 22], 1

2
es  = [28, 

56, 112], and 2

2
es  = [134, 268, 536]. Eliciting an array of 

reasonable initial values for each parameter can be chal-
lenging. One possible approach may be to halve or dou-
ble the individual values specified to initiate the iterative 
estimation process, provided that all values in the grid 
fall within the bounds of the parameter space. Following 
a similar rationale, we specified initial values for parame-
ters of the BLQ model. The initial values for β2,BLQ were 
informed based on the β2 coefficient from the QP model, 
whereby β2,BLQ = [−4,685, −9,369, −18,738].

After fitting the BLL and BLQ models, conver-
gence was reached and all parameter estimates were 
found to be within the plausible range specified by the 
grid search and away from the extreme values of each 
grid search. It is noted that the array of initial values 
that initiates the grid search can be lengthened and/or 
tuned using a trial-and-error approach to ensure that, 
ultimately, the point estimate of the parameter of inter-
est falls within the specified array grid. Such tuning is 
important to minimize the chances of convergence to a 
local maxima. As such, more than 3 initial values may 
be needed for some parameters to enhance the search 
through the likelihood surface. Yet one should keep 
in mind that larger grids can substantially increase 
the use of computational resources. Furthermore, it 
is worth noticing that, even with all these precautions, 
convergence to suboptimal local maxima can still  
occur. Therefore, there is no substitute for a careful 
critical assessment of results in the specific context of 
a given data application.

After model fitting, the heteroskedastic versions of 
the QP, BLL, and BLQ models yielded BIC of 353.7, 
343.4, and 345.2, respectively, indicating that the BLL 
model was the better fitting one. For further character-
ization, we present fitted equations and interpretations 
based on all competing dose–response mixed models. 

Figure 5. Estimated least squares means of G:F (SEM), expressed in 
grams per kilogram, for experimental diets consisting of increasing levels 
of standardized ileal digestible (SID) Trp:Lys ratio using the selected base 
mixed model with heterogeneous residual variances. a,bDifferent letters in-
dicate significant mean differences between treatments (P < 0.05). 
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We note, however, that for the purpose of reporting re-
sults in scientific publications, it is often recommended 
that only the best fitting model or, alternatively, models 
with comparably better fit (i.e., lowest BIC values with 
differences smaller than 2 points) be used to draw con-
clusions, to avoid misleading readers using inference 
from models with relatively poorer fit to the data.

Figure 6 shows fitted regression lines based on all 
3 competing dose–response mixed models overlay-
ing a scatter plot of the data. The estimated regression 
equations for these models are presented below fol-
lowed by the corresponding estimated SEM for each 
parameter estimate in the succeeding line:

Quadratic polynomial predictive equation:
G:F = 192.67 + 3,859.90 × (Trp:Lys ratio) − 
9,369.19 × (Trp:Lys ratio)2  
(SEM 94.11, SEM 974.12, and SEM 2,477.57, 
respectively).

Broken-line linear predictive equation:
G:F = 582.68 − 1,950.00 × (0.1653 − Trp:Lys ratio), 

if SID Trp:Lys ratio < 16.5%  
(SEM 2.41, SEM 347.24, and SEM 0.0018, 
respectively), and

G:F = 582.68  
if SID Trp:Lys ratio ≥ 16.5%  
(SEM 2.41).

Broken-line quadratic predictive equation:
G:F = 582.43 − 1,950.00 × (0.1604 − Trp:Lys ratio)  
− 40,000.00 × (0.1604 − Trp:Lys ratio)2  
(SEM 2.05, SEM 0.00019, SEM 0.0021, SEM 
0.000002812, and SEM 0.0021, respectively),  
if SID Trp:Lys ratio < 16.0%, and

G:F = 582.43  
if SID Trp:Lys ratio ≥ 16.0%  
(SEM 2.05).

Based on its large BIC value, we concluded that 
the QP model showed the poorest data fit of all. This is 
apparent in Fig. 6, where the estimated regression line 
for the QP model appeared to underestimate G:F at the 
16.5% Trp:Lys ratio while seemingly overestimating 
it at the 14.5 and 19.5% Trp:Lys ratios. Furthermore, 
the functional form imposed by the QP model on these 
data forced a maximum predicted G:F at approximate-
ly the 21% Trp:Lys ratio followed by a decrease in 
predicted G:F above this nutrient level. Such predict-
ed decline in G:F at the highest levels of Trp:Lys ratios 
is not consistent with the data considered in this study 
(Fig. 6). To further support this point, it is noted that 
there were no significant differences in mean G:F be-
tween treatments consisting of a 21.0, 22.5, or 24.5% 
Trp:Lys ratio (P > 0.90 in all cases; Fig. 5).

The best fitting model for this data set, that is the 
BLL model, estimated the SID Trp:Lys ratio breakpoint 
at 16.53% (95% CI [16.07, 17.00]). Figure 7 illustrates 
the fitted BLL model, including the breakpoint estimate 
and its corresponding estimated 95% CI. A note of cau-
tion is in order here: Although the BLL breakpoint pa-
rameter was technically identifiable in this case, it is ap-
parent from this data example that a very limited amount 
of information was available to infer on this parameter. 
In other words, one need only 2 anchoring points to 
uniquely identify a straight line. In this data, 2 anchoring 
points were available to trace the ascending linear sec-
tion of this piecewise BLL regression, namely the 14.5 
and 16.5% SID Trp:Lys ratio, both below the estimated 
BLL breakpoint at 16.53%. So, although technically 
valid, the BLL breakpoint estimate is noted to be based 
on the bare minimum amount of information needed to 
draw a straight line; this should raise questions about 
the stability of the BLL breakpoint estimate. Clearly, an 
experiment will have to be designed in which numerous 
levels of SID Trp:Lys ratio varying between 14.5 and 
16.5% are fed, to better characterize the functional form 
of the G:F trend across this range of SID Trp:Lys ratios.

The BLQ model initially appeared to have an in-
termediate fit to the data relative to the BLL model and 
the QP model; in fact, its BIC value seemed to support 
the BLQ model as a closely ranked second to the best-
fitting BLL model. However, on closer evaluation, it 
should look suspicious that the BLQ breakpoint esti-
mate (i.e., 16.04%) fell below the 16.50% Trp:Lys ra-
tio mark. That is, the quadratic piece of the fitted BLQ 
model rested on just 1 anchoring point along the x-ax-
is, namely the 14.50% Trp:Lys ratio (Fig. 6). In other 

Figure 6. Fitted regression lines for G:F, expressed in grams per kilo-
gram, as a function of experimental diets consisting of increasing levels of 
standardized ileal digestible (SID) Trp:Lys ratio for competing dose–response 
linear and nonlinear mixed models accounting for heterogeneous residual 
variances, including a quadratic polynomial (QP) model, a broken-line linear 
(BLL) ascending model, and a broken-line quadratic (BLQ) ascending model.
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words, the data contained no information to assess cur-
vature of a fitted line for G:F between the 14.50 and 
16.50% Trp:Lys ratios. Indeed, BLQ models fitted with 
breakpoint parameters held constant in this range of X 
have unchanged −2 log likelihoods (data not shown). 
As a result, the BLQ breakpoint estimate obtained here 
should not be considered informative or meaningful but 
rather suspect and questionable. In fact, the numerical 
value obtained as a BLQ breakpoint estimate may be 
interpreted as a reflection of problems in the estimation 
process. This is further supported by warning messages 
obtained in the SAS log when fitting the BLQ model. 
Even more dramatically than with the BLL model, the 
end conclusion here is the need for a follow-up study 
designed to feed multiple levels of SID Trp:Lys ratio in 
the range between 14.50 and 16.50%.

It is important to note that dose–response models 
should be fitted and plotted at the level of the experi-
mental unit so that the underlying variability in the data 
is properly accounted for. In other studies, dose–re-
sponse models were fitted to the average values of each 
treatment for a given response variable (Robbins et al., 
2006). This practice may appear to enhance model fit, 
although at the price of disregarding the underlying ex-
perimental error. As a result, inferential precision would 
be artificially exaggerated (i.e., deflated estimates of 
uncertainty) with subsequent undesirable consequences 
on Type I error and repeatability of results.

Mixed Model Selection

Commonly used fit statistics in the context of mixed 
models include the BIC and the Akaike’s information 

criterion (AIC), among others (Milliken and Johnson, 
2009). For these information criteria, smaller values 
are indicative of models with better fit to the data. In 
this study, we used a ML-based BIC as our fit statistic 
of choice to select between competing dose–response 
mixed models. The calculation of BIC yields fit crite-
ria that are slightly more conservative than that of the 
AIC, as the BIC tends to put a greater penalty on number 
of model parameters, thus favoring more parsimonious 
models (Schwarz, 1978). For any given model, the value 
of the BIC can take any number on the real line from mi-
nus infinite to positive infinite. Yet the BIC value is only 
meaningful in relative terms, that is, when comparing 2 
or more models applied to the same data set (Milliken 
and Johnson, 2009). A model with a smaller BIC value 
indicates better fit to the data; more specifically, models 
that differ in their BIC values by at least 2 points are con-
sidered to have meaningful differences in their data fit 
(Raftery, 1996). Only the best fitting model, that is, the 
model with the smallest BIC, should be used for estima-
tion and inference, as models with poorer fit could yield 
artifactual, even apparently contradicting, conclusions.

Another model selection criterion commonly used 
to assess goodness of fit in the context of fixed-effects 
regression models is the coefficient of determination 
(R2). As intuitive an interpretation of goodness of fit as 
it might have (i.e., proportion of variability explained by 
an effect), R2 is often misused in the context of mixed 
models (Littell et al., 2006). More specifically, for mod-
els that have more than one variance component (i.e., 
mixed models), one should recall that R2 is not uniquely 
defined (Kvålseth, 1985) and that the variety of alter-
native specifications of R2 is not equivalent (Kvålseth, 
1985). This, in turn, can lead to nontrivial pitfalls during 
interpretation of data analysis results (Kvålseth, 1985; 
Willett and Singer, 1988).

Homogeneous vs. Heterogeneous Residual Variances

In the context of linear models, it is well described 
that violation of the homogeneous residual variance 
assumption poses a considerable risk to inference, 
probably more so than violations of the normality as-
sumption on residuals (Milliken and Johnson, 2009). 
Incorrectly assuming homogeneous residual variances 
due to unchecked residual assumptions can impair 
inferential efficiency when treatment means (or func-
tions thereof) are of interest (Wiggans and VanRaden, 
1991; Wolfinger, 1996). In this study, when homoge-
neous residual variances were incorrectly assumed, 
the breadth of the BLL-based 95% CI on the estimated 
SID Trp:Lys ratio breakpoint for maximum G:F was 
increased by approximately 44% relative to that of 
the BLL model with heterogeneous residual variances 

Figure 7. Nonlinear broken-line linear ascending mixed model for 
G:F, expressed in grams per kilogram, accounting for heterogeneous resid-
ual variances, including mean predictions (ascending and horizontal lines), 
95% confidence interval on the mean (whiskers), and estimated standard-
ized ileal digestible (SID) Trp:Lys ratio breakpoint (vertical line at 16.5% 
SID Trp:Lys ratio) with corresponding 95% confidence interval (vertical 
dashed lines; [16.1, 17.0]).



Updated mixed models for dose–responses 1949

(95% CI [15.8, 17.4] vs. [16.1, 17.0], respectively). 
This example of inappropriately calibrated inferential 
uncertainty illustrates typical inferential inefficiencies 
associated with erroneous assumptions in the context 
of dose–response relationship mixed models.

Hierarchy Principle in Polynomial Models

On building of polynomial regression models, abid-
ing by the hierarchy principle is generally recommended 
to ensure proper model formulation (Peixoto, 1987). The 
hierarchy principle states that if a higher-order polyno-
mial term is retained in the model, then the related low-
er-order terms should also be kept in the model whether 
or not the coefficients for these lower-order terms are 
significant (Kutner et al., 2005). This recommendation 
has not always been heeded in the animal sciences, in 
particular in the context of estimation of nutritional re-
quirements. For example, BLQ models lacking a first-
order linear term have been used (Robbins et al., 2006; 
Pesti et al., 2009) counter to the hierarchy model build-
ing principle. Only hierarchically well-formulated mod-
els are invariant under linear transformation; otherwise, 
significance tests on regression coefficients can yield ar-
tifactual results (Peixoto, 1987). Artifactual results may 
not be obvious for any given data applications; therefore, 
the importance of taking this principle into careful con-
sideration during model building.

Troubleshooting Nonlinear Mixed Models

Several useful tips on troubleshooting implemen-
tation of nonlinear models can be found in the litera-
ture (Kiernan et al., 2012). Specific to nonlinear mixed 
models such as BLL and BLQ, some of the most com-
mon issues include convergence of the iterative esti-
mation process and estimation failures.

Use of a Grid Search to Facilitate Estimation. One 
of the biggest challenges in nonlinear mixed models is 
to reach convergence of the iterative estimation process. 
Even when convergence is attained, there is no guaran-
tee that it be on a global maxima (optimal solution) of 
the likelihood function as opposed to a local maxima 
(suboptimal solution). Most nonlinear optimization 
methods can be trapped by local maxima and provide no 
clear indication of convergence to suboptimal solutions. 
The use of a grid search approach can assist in this pro-
cess by providing plausible initial parameter values over 
the range of the feasible parameter space, thus more ef-
ficiently guiding the iterative parameter estimation pro-
cess toward optimal global solutions and away from 
suboptimal ones (Kiernan et al., 2012). Specification 
of initial values is particularly important for variance 
components as well as for nonlinear parameters, such 

as the breakpoint parameter in the piecewise regression. 
Initial values can be specified in NLMIXED by using 
the PARMS statement (Fig. 4B and 4C). The actual 
initial values inputted into NLMIXED can be adjusted 
based on preliminary analysis and also to assess sensi-
tivity of the final inference to starting values. For the 
data sets that we have used, we find that specification of 
at least 3 initial values for each parameter facilitates a 
grid search over the likelihood surface. The START op-
tion in the NLMIXED procedure will call for an output, 
which shows exactly which initial value the procedure 
chose for each of the parameters. A greater number of 
initial values in the grid search will enhance the search 
through the likelihood surface, particularly for param-
eters of primary interest (i.e., breakpoints). One should, 
however, also consider that large grid searches can sub-
stantially increase the use of computational resources.

Other Troubleshooting Techniques. Besides using a 
grid search, failures to converge can be minimized by 1) 
specifying reasonable models that reflect the functional 
form of the dose–response appropriately for a given data 
set, whereby “reasonable models” can be informed from 
preliminary analysis or fitting a base model that does not 
assume any functional form in the relationship between 
response and treatment, as in our case; 2) increasing the 
number of maximum iterations before which the esti-
mation process will abort if convergence has not been 
reached (i.e., in the NLMIXED procedure, this can be 
specified with the option MAXITER); 3) defining rea-
sonable boundaries for selected parameters, in particular 
the breakpoint parameter, which should not lie outside of 
the range of dose levels considered in a given study (i.e., 
in the LNMIXED procedure, this can be specified with 
the BOUNDS statement); 4) careful tuning of the conver-
gence criterion (i.e., in NLMIXED, this can be attained 
by modifying the relative gradient criterion using the op-
tion GCONV; in particular, GCONV = 0 will force the 
procedure to continue to a greater number of iterations 
until the relative change in a succeeding convergence cri-
terion, namely the function value criterion (FCONV) is 
met), as suggested by Kiernan et al. (2012); and 5) evalu-
ating the programing code for bugs and coding errors, as 
with implementation of any statistical software.

Last but not least, we emphasize that neither speci-
fying grid searches nor any of the troubleshooting tips 
discussed this far are infallible, as it was apparent for 
the BLQ model fitted in this study. In fact, none of these 
troubleshooting techniques can by themselves guaran-
tee proper use and behavior of the estimation process. In 
other words, fitting of nonlinear mixed models should 
not be approached as a plug-and-play software exercise. 
There is no substitute for a careful critical assessment of 
estimation and inference results in the particular con-
text of a problem of interest.
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Summary

This paper presents concepts underlying the im-
plementation of linear and nonlinear mixed models for 
dose–response relationships accounting for correlated 
data structure and heterogeneous residual variances. 
We illustrated the inferential implications of properly 
checking and addressing model assumptions, particu-
larly pertaining to the assumption of a common resid-
ual variance, as well as the use of the hierarchy prin-
ciple for model building. Additionally, we explained 
the importance of using proper fit statistics for model 
selection in the context of mixed models and the pit-
falls of using the conventional fixed-effect-based coef-
ficient of determination (R2). We further demonstrated 
practical approaches to facilitate some of the compu-
tational challenges associated with fitting of nonlinear 
mixed models, including use of a grid search to facili-
tate convergence of the iterative estimation process.
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