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ABSTRACT
We consider the shape of the posterior distribution to be used when fitting cosmological models
to power spectra measured from galaxy surveys. At very large scales, Gaussian posterior
distributions in the power do not approximate the posterior distribution PR we expect for
a Gaussian density field δk, even if we vary the covariance matrix according to the model
to be tested. We compare alternative posterior distributions with PR , both mode-by-mode
and in terms of expected measurements of primordial non-Gaussianity parametrized by fNL.
Marginalising over a Gaussian posterior distribution Pf with fixed covariance matrix yields
a posterior mean value of fNL which, for a data set with the characteristics of Euclid, will be
underestimated by �fNL = 0.4, while for the data release 9 of the Sloan Digital Sky Survey-III
Baryon Oscillation Spectroscopic Survey (BOSS DR9; Ahn et al.) it will be underestimated
by �fNL = 19.1. Adopting a different form of the posterior function means that we do not
necessarily require a different covariance matrix for each model to be tested: this dependence is
absorbed into the functional form of the posterior. Thus, the computational burden of analysis
is significantly reduced.

Key words: methods: statistical – inflation – large-scale structure of Universe.

1 IN T RO D U C T I O N

Forthcoming galaxy surveys, such as the Dark Energy Spectro-
scopic Instrument (DESI; Schlegel et al. 2011), Euclid (Laureijs
et al. 2011)1 and the Square Kilometre Array (SKA),2 will constrain
the Universe’s expansion history, geometry and the growth of struc-
ture with unprecedented accuracy. The basic statistics containing
large-scale structure information are the two-point clustering mea-
surements, the correlation function and the galaxy power-spectrum
P (k). As they form a Fourier pair, their information content is
the same and we focus only on the latter in this work. The lin-
ear galaxy power spectrum encodes a wealth of information about
the physics of the Universe, allowing us to constrain cosmologi-
cal models with baryon acoustic oscillations (BAO), gravitational
models with redshift space distortions (RSD) and inflationary mod-
els with primordial non-Gaussianity, parametrized to first order by
fNL. In order to do so, one has to know the likelihood and/or pos-
terior of power spectra, which for simple cases can be calculated
analytically. For general cases, one usually assumes the likelihood
or posterior to be multivariate Gaussian with a covariance matrix
Cij ≡ 〈P(ki)P(kj)〉. The estimation of the covariance matrix is a crit-

�E-mail: benedict.kalus+mnras@port.ac.uk
1 www.euclid-ec.org
2 www.skatelescope.org

ical step in the analysis of data. Internal methods such as the sub-
sample, jackknife and bootstrap methods have been widely used in
the past, but Norberg et al. (2009) have shown that they are not
able to faithfully reproduce variances. Robust estimates are often
instead obtained from mock galaxy catalogues. In recent analyses
of the Baryon Oscillation Spectroscopic Survey (BOSS; Ahn et al.
2012; Dawson et al. 2013), these were generated from second order
Lagrangian Perturbation Theory matter fields using a friends-of-
friends group finder (Davis et al. 1985) to find haloes (Scoccimarro
& Sheth 2002; Manera et al. 2012). Their masses were calibrated
by comparisons with N-body simulations. A Halo Occupation Dis-
tribution then prescribed how to populate these haloes with mock
galaxies, and the geometry and the efficiency of the survey were
sampled. Alternative methods for producing mocks include N-body
simulations, comoving Lagrangian acceleration (COLA; Tassev,
Zaldarriaga & Eisenstein 2013) simulations or alternative simpler
methods such as pinpointing orbit-crossing collapsed hierarchical
objects (PINOCCHIO; Monaco, Theuns & Taffoni 2002) or ef-
fective Zel’dovich approximation mocks (EZmocks; Chuang et al.
2015). The covariance matrix is then the sample variance of the
power spectra from the different mocks (Manera et al. 2012; Taylor,
Joachimi & Kitching 2013; Percival et al. 2014). The covariance
matrix computed from the mocks will depend on the cosmolog-
ical model that was used to generate them. It is computationally
costly to produce mock catalogues for each possible cosmological
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Table 1. Notation used for probabilities.

Symbol Name Description

Z(P̂ ) evidence probability of the data P̂

L(P̂ |PH) likelihood probability of the data P̂ given the hypothesis PH

P(PH|P̂ ) posterior probability of the hypothesis P given the data P̂

�(PH) prior probability of the hypothesis

model and set of parameters to be tested, so one usually chooses a
cosmological model which will produce a P(k) reasonably close to
the measured one and uses the covariance matrix computed from
the mocks created assuming that model. This approximation does
not hold in general, especially at large scales. In this paper, we
study other ways of approaching this problem, including using ap-
proximations to the true posterior distribution to obtain accurate
inferences without requiring a covariance matrix for each cosmo-
logical model. We apply the most suitable of these approximation
and the true distribution to provide a probability distribution func-
tion (PDF) for measurements of the non-Gaussianity parameter fNL.
Our result will provide a complementary method to analysing fNL

directly from δ(x), as described in Verde et al. (2013).
We proceed as follows. In Section 2, we test the standard Gaussian

posterior shapes mode-by-mode on a toy example where we mea-
sure the power spectrum itself. We do a similar test in Section 2.5
to study the impact of using different posterior distributions on a
real survey, i.e. the Sloan Digital Sky Survey (SDSS)-III BOSS. In
Section 3, we study alternative posterior shapes for power spectrum
estimates inspired by cosmic microwave background (CMB) analy-
ses. We test the most promising posterior distribution by postdicting
a fNL-measurement for a data sample like the data release 9 (DR9)
of BOSS and we make predictions of Euclid fNL-measurements in
Section 4. We conclude in Section 5.

Throughout this work, we adopt a Bayesian framework and mark
observed data with a hat, e.g. P̂ and quantities related to the hy-
pothetical model with an H, e.g. PH. We denote probability dis-
tributions with different letters L, P , � and Z , which we define
in Table 1, to make clear whether they depend on data and/or
the model. The ubiquitous Bayesian equation thus reads for this
example

P(PH|P̂ ) = L(P̂ |PH)�(PH)

Z(P̂ )
. (1)

2 T H E P OW E R SP E C T RU M L I K E L I H O O D

In this section, we elaborate the analytic likelihood and posterior
functions of the galaxy clustering power spectrum assuming a Gaus-
sian density field. We consider this posterior function as the ‘truth’
and compare it to commonly used approximations of the galaxy
power spectrum posterior function for single modes, which we shall
introduce in Section 2.3.

2.1 The True Distribution of |̂δk| Under the Assumption of a
Gaussian Density Field

The positions of the galaxies in a survey can be transformed into a
galaxy overdensity field

δ(x) ≡ n(x) − n̄(x)

n̄(x)
, (2)

where n(x) is the measured galaxy number density and n̄(x) the
expected value. Fourier transforming δ(x) yields

δk ≡ 1

V

∫
d3xδ(x) exp(ikx) (3)

whose covariance matrix〈
δk1δ

∗
k2

〉 = (2π)3

V
δD(k1 − k2)P (k1) (4)

is given by the power spectrum P (k). Following the standard as-
sumption that δk forms a Gaussian random field, the probability of
measuring a particular value of the real and imaginary parts (δ̂u, δ̂v)
of a single δ̂k = δ̂u + iδ̂v is a zero centred Gaussian distribution
with standard deviation half the true power 1

2 PT (k):

Z(δ̂u) = 1√
πPT (k)

exp

(
− δ̂u

2

PT (k)

)
,

Z(δ̂v) = 1√
πPT (k)

exp

(
− δ̂v

2

PT (k)

)
. (5)

We use the letter Z here, because we have assumed that the true
power is known, i.e. the distribution only depends on the data (cf.

Table 1). The distribution of the absolute value |̂δk| =
√

δ̂u
2 + δ̂v

2

is given by a Rayleigh distribution:

ZR(|̂δk|) =
∫

dδ̂u

∫
dδ̂vZ(δ̂u)Z(δ̂v)δD(|̂δk| −

√
δ̂u

2 + δ̂v

2
)

= 2|̂δk|
PT (k)

exp

(
− |̂δk|2

PT (k)

)
. (6)

Throughout this paper, we regard equation (6) as the ‘true’ distri-
bution of |̂δk| to which we compare several approximations later.

Any model dependence enters the Rayleigh distribution only in
the covariance of the density field, which is equal to the true power
spectrum. The position of the distribution’s peak equals the value
of the true power. Measurements of δ̂k have been used to make cos-
mological inferences when they have been further decomposed into
spherical harmonics and spherical Bessel functions, because radial
and angular modes can be distinguished, allowing an easy analysis
of RSD. However, this method is rather complex and computation-
ally expensive (Heavens & Taylor 1995; Percival et al. 2004). It
is difficult to linearly compress δ̂k efficiently maximally retaining
information.

2.2 The posterior in terms of the power

We can rewrite the Rayleigh distribution in terms of the power. We

replace PT (k) with PH(k), and δ̂k with
√

P̂ (k) in equation (6) which
in this way depends on both data and model, and hence becomes a
likelihood (cf. Table 1):

LR(P̂ (k)|PH(k)) = 2
√

P̂ (k)

PH(k)
exp

(
− P̂ (k)

PH(k)

)
. (7)

We can use Bayes’ theorem (cf. equation 1) to find the posterior. It
is standard to assume a uniform prior

� (PH(k)) =
{ 1

Pmax(k)
, if 0 ≤ PH(k) ≤ Pmax(k),

0 otherwise,
(8)
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The posterior for galaxy power spectra 2575

which requires an arbitrary choice of Pmax(k). We assume that
Pmax(k) is far in the right tail of the likelihood such that �(PH(k))

Z(P̂ (k))
is

effectively constant and hence acts only as a normalization factor.
Thus, for the ‘true’ posterior we have

PR(PH(k)|P̂ (k)) = LR(P̂ (k)|PH(k))∫
dPH LR(P̂ (k)|PH(k))

∝ 2
√

P̂ (k)

PH(k)
exp

(
− P̂ (k)

PH(k)

)
. (9)

As P̂ is a constant in the posterior, one can rewrite equation (9)
such that the log-posterior only depends on the ratio P̂ (k)/PH(k):

− 2 ln(PR) = 2M ln

(
PH(k)

P̂ (k)

)
+ 2M

P̂ (k)

PH(k)
+ const. (10)

Then we follow the method of Hamimeche & Lewis (2008) and
introduce

γ (x) ≡
√

− ln(x) + x (11)

to make equation (10) look more quadratic:

− 2 ln(PR) = 2M

[
γ

(
P̂ (k)

PH(k)

)]2

+ const. (12)

We can also define

Pγ (k) ≡ Pf (k)γ

(
P̂ (k)

PH(k)

)
(13)

for some fiducial model with power Pf. Pγ has then a symmetric

Gaussian posterior with a fixed variance C̃k = 2P 2
f (k)

M
evaluated for

our fiducial model

− 2 ln(PR) = 4Pγ C̃−1
k Pγ + const. (14)

In general. things are more complicated than this simple picture.
For example, the survey geometry leads to a convolution of δk, and
non-linear effects distort the small scale mode distribution. Ideally,
we would like to use a single distribution, and this should be matched
to simulations (e.g. Blot et al. 2015). In order to broaden the choice,
we also consider a number of forms for the likelihood inspired by
CMB analyses.

2.3 Common Approximations of the Likelihood/Posterior
of the Power Spectrum

Often, the power-spectrum is directly analysed, incorrectly assum-
ing it follows a Gaussian distribution, thus the distribution of a finite
empirical realization of the power spectrum P̂ (k) would read

Z
(
P̂ (k)

)
=

exp

(
− 1

2

[
P̂ (k)−PT (k)

]2

Ck

)
√

2πCk
, (15)

where Ck ≡ 〈P 2
T (k)〉 = 2P 2

T (k)
M

is the variance of the true power
spectrum PT at a bin centred around k comprising M independent
modes. Note, that we assume that the widths and positions of the
k-bins are such that window effects are negligible (Feldman, Kaiser
& Peacock 1994) and different modes are independent.

As in Section 2.2, we replace PT (k) with PH(k) in equation (15)
making it a likelihood (cf. Table 1)

L(P̂ (k)|PH(k)) =
exp

(
− 1

2

[
P̂ (k)−PH(k)

]2

CH
k

)
√

2πCH
k

, (16)

where CH
k ≡ 〈P 2

H (k)〉 is the variance for the hypothetical power
spectrum PH(k).

However, in practice one chooses a fiducial model with power
spectrum P̃ (k) and estimates the variance C̃k ≡ 〈P̃ 2(k)〉 for this
particular choice:

L(P̂ (k)|PH(k), C̃k) =
exp

(
− 1

2

[
P̂ (k)−PH(k)

]2

C̃k

)
√

2πC̃k

. (17)

For mock based variance calculations, P̃ (k) is the cosmology of the
mocks used in their analysis.

We can again use Bayes’ theorem (cf. equation 1) and assume the
same uniform prior as before to find the posterior. For the posterior
assuming a Gaussian distribution in P̂ (k) with model-dependent
covariance we have

PD(PH(k)|P̂ (k)) = L(P̂ (k)|PH(k))∫
dPHL(P̂ (k)|PH(k))

∝
exp

(
− 1

2

[
P̂ (k)−PH(k)

]2

CH
k

)
√

2πCH
k

, (18)

where we adopt the subscript notation PD of Hamimeche & Lewis
(2008). Note that both the exponential and the covariance matrix
CH

k depend on PH(k).
If a fixed covariance is assumed, we have to apply the Bayesian

equation (1) to equation (17) giving

Pf (PH(k)|P̂ (k), C̃k) ∝
exp

(
− 1

2

[
P̂ (k)−PH(k)

]2

C̃k

)
√

2πC̃k

. (19)

2.4 A simple test of the posterior shapes for the isotropically
averaged power spectrum

In this subsection, we combine the single mode posterior func-
tions to posterior functions of the band-power. We do not take any
anisotropic effects, such as RSD, into account. This is conserva-
tive because the effective volume for higher multipole moments
(cf. equation 25) is smaller, therefore containing fewer indepen-
dent modes and thence amplifying the effect of choosing different
posterior shapes.

In Gaussian cases, we suppose that our volume is large enough to
accommodate M independent complex Gaussian distributed sam-
ples of δk such that we can use

Cab = 2

M
δD(ka − kb)P 2(ka). (20)

to calculate the covariance matrices at higher numbers of modes
M. We can obtain the band-power version of PR(PH(k)||̂δk|) by
multiplying together the single mode expressions.

MNRAS 455, 2573–2581 (2016)
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The three different posterior shapes of PH are plotted in Fig. 1.
In the top panel of Fig. 1, we plot single mode posterior distribu-

tions for which we adopt |̂δk| = 100 and PT (k) = P̂ (k) = |̂δk|2 =
10 000. Note, that a different choice would shift the peak positions
and normalization factor, but preserve the shapes. We make two
different choices for the fixed covariance to see the effect of mak-
ing the wrong assumption. For the dotted red line, we choose the
covariance matrix which corresponds to the true power spectrum
PT (k), i.e. C̃k = 2P 2

T (k) = 50 000 000, and for the dashed-dotted
line, we consider that our guess of the power spectrum is 5 per cent
lower than the actual power spectrum, i.e. C̃k = 45 125 000. The
panels in the middle and at the bottom of Fig. 1 show the posterior
distributions for 10 and 100 independent modes, respectively.

Figs 1 and 2 show that different choices of the covariance matrix
provide very different posterior distributions for a small number of
modes, but if we can increase the number of independent modes,
we see the effect of the central limit theorem and the posterior
distribution functions become more and more similar. We observe
that the maximum of the fixed-covariance posterior always agrees
with the true value, even if the wrong fiducial model has been
chosen. However, if we choose the wrong covariance matrix, we
over or underestimate the error of our measurements. If we do not fix
the covariance, the best fit, i.e. the maximum of the posterior, has an
offset with regard to the true value, which decreases as the number of
modes increases. We also notice the long right tails of the varying-
covariance Gaussian and the posterior measured from |̂δk|. The
logarithmic plot in Fig. 2 shows that the tails of all approximations
disagree with the true posterior distribution. However, PD is closest
to the truth.

2.5 Application to a real survey

We have seen that a Gaussian distribution for PH(k) is not a good
approximation to the true Rayleigh distribution if the number of
modes is small. In this section, we study whether this has an impact
on a real survey. We will base our analysis on an analytic linear
error for the power spectrum and errors, but use survey parameters
for the data release 11 (DR11) of BOSS. For a real survey, we have
to take into account that the discrete positions of the galaxies in
a given survey are sampled from a continuous random field by a
Poisson point process (Feldman et al. 1994). To take this sampling
process into account,equation (4) becomes〈
δk1δ

∗
k2

〉 = (2π)3

V
δD(k1 − k2)

[
P (k1) + n̄−1

]
, (21)

and hence also

P(PH(k)||̂δk|) ∝
|̂δk| exp

(
− |̂δk |2

PH(k)+n̄−1

)
PH(k) + n̄−1

. (22)

The average number density n̄ = 2 × 10−4 h3

Mpc3 can be calculated
from the number of galaxies contained in the BOSS DR11 CMASS
sample (690,826) and its survey volume VS = 10 Gpc3 (Anderson
et al. 2013) assuming h = 0.7. For the covariance matrices of the
Gaussians, we need to know the number of modes (Feldman et al.
1994; Tegmark 1997)

M = VnVeff (k), (23)

where

Vn ≡ k2
n
kn

2π2
(24)

Figure 1. Comparison of different posterior distribution functions for 1,
10, 100 and 1000 independent modes (from top to bottom). The blue line
represents the product of single Rayleigh distributed modes (true posterior
distribution) and some of the approximations, such as the Gaussian posterior
distribution with a model-dependent covariance (green), and the Gaussian
posterior where the covariance is estimated for a fixed fiducial model (red).
The posterior takes the form of the dotted red line if the fiducial and the true
power spectra agree, the dashed-dotted line shows the effect of choosing a
fiducial model of which the power spectrum is wrong by 5 per cent.
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The posterior for galaxy power spectra 2577

Figure 2. Same as the bottom panel of Fig. 1, but with a logarithmic
ordinate.

is the k-space-‘volume’ of the nth k-bin centred at kn with width
�kn, and

Veff (k) ≡ VS

[
n̄P (k)

1 + n̄P (k)

]2

(25)

is the effective volume. Anderson et al. (2013) calculate the power
spectrum in Fourier modes averaged over bin widths of �k =
0.008h Mpc−1. The values of the k-bin centres and their correspond-
ing number of modes M are M=18, 180 and 500 in the three lowest
k-bins centred at k = 0.004, 0.012 and 0.02 Mpc h−1. We model
the measured power spectrum as P̂ (k) = b2Plin(k), where b = 1.87
is the large-scale bias and Plin(k) is a linear power spectrum pro-
duced by CAMB (Lewis, Challinor & Lasenby 2000). For the other

measurement we take |̂δk| =
√

P̂ (k) + n̄−1. The resulting posterior
distributions for the three lowest k-bins are plotted in Fig. 3. At the
largest scales, i.e. k = 0.004h Mpc−1, neither PD or Pf match PR .
At k = 0.012h Mpc−1 and k = 0.02h Mpc−1 Pf and PD become
more similar, but neither of them features the asymmetric shape
of PR . Additionally, Pf and PD produce smaller error bars com-
pared to PR . We can also numerically compare the distributions if
we introduce the Kullback–Leibler (KL) divergence (Kullback &
Leibler 1951). A distribution P1 is ‘better’ than P2, if the loss of
information due to approximating the true distribution with P1 is
less than the same loss caused by using P2 as an approximation.
If we use a probability density function (PDF) g to approximate
another PDF f, a measure of the loss of information is given by the
KL divergence

DKL (g||f ) ≡
∫ ∞

−∞
dxf (x) ln

(
f (x)

g(x)

)
. (26)

The KL divergences given in Table 2 tell us the same story as Fig. 3.
The KL divergences of the Gaussian approximation with a varying
covariance PD is at all scales less than the KL divergence of Pf , i.e.
PD is a better approximation to the true PR . On the downside, its
best fit has an offset with respect toPR . We will therefore investigate
alternative posterior shapes in the next section.

3 ST U DY I N G A LT E R NAT I V E P O S T E R I O R
SHAPES

We have seen in the previous sections that the true posterior dis-
tribution PR is not well approximated by either Pf or PD if the
number of independent modes is low, which is the case at large
scales, i.e. small values of k. A similar problem arises when cosmo-
logical models are fitted to CMB power spectra, which are Wishart

Figure 3. Posterior distribution functions of the hypothetical power spec-
trum PH(k) for the three lowest k-bins of BOSS DR11 CMASS. The colour
coding is the same as in Fig. 1, with the addition of the OLN posterior
distribution plotted in magenta.

Table 2. Kullback–Leibler divergences of the different approximations with
respect to the true PR at different scales kn for BOSS DR11 CMASS.

kn
Mpc
h

DKL(PD ||PR) DKL(Pf ||PR) DKL(Pwrong
f ||PR)

0.004 0.0213 221 0.382 926 0.335 588
0.012 0.00 451 188 0.0341 685 0.0374 833
0.02 0.00 336 263 0.0138 535 0.0199 032

distributed. Bond, Jaffe & Knox (2000), Smith, Challinor & Rocha
(2006), Percival & Brown (2006) and Hamimeche & Lewis (2008)
have studied alternative distribution shapes that approximate the
Wishart distribution. We take a similar approach to Verde et al.
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Figure 4. Third and fourth order Taylor expansion to the true posterior
shape PR with M = 20 modes. The x-axis is a perturbation ε ≡ PH/P̂ −
1 of the model power spectrum PH around the average recovered best-
fitting value P̂ . As the third order approximation is not normalizable, the
normalization has been chosen such that it agrees with the 4th order at the
maximum. The true posterior shape agrees very well with the ICN posterior
shape.

(2003) and Percival & Brown (2006) and expand the natural loga-

rithm of equation (9) around the maximum PH(k) ≡ (1 + ε)|̂δk|2:3

− 2 ln (PR) = 2M

(
ε2

2
− 2ε3

3
+ 3ε4

4
+ O (

ε5
)) + const. (27)

This equation agrees to third order with the Taylor expansions of
the logarithms of the following distributions:

(i) the inverse cubic normal (ICN) distribution (Smith et al.
2006)

− 2 ln(PICN) = 18C̃−1
k

[
P̂ (k) − P̂ (k)4/3PH(k)−1/3

]2
, (28)

(ii) the offset lognormal (OLN) distribution

− 2 ln(POLN) = 2(1 + a)C̃−1
k

[
P̂ (k) ln

(
PH(k) + aP̂ (k)

P̂ (k) + aP̂ (k)

)]2

(29)

if a = −1/4,
(iii) and combinations of any of the distributions given in chap-

ter 5.1 of Percival & Brown (2006).

We can see from Fig. 4 that the 3rd order diverges for large values
of the model power spectrum PH. Hence the optimal free parameter
a might differ from a = −1/4. Therefore, we use the KL divergence
to optimize a in the OLN distribution POLN. It can be found to be
a = −0.201 at k = 0.004 Mpc

h
, a = −0.240 at k = 0.012 Mpc

h
and a

= −0.242 at higher values of k. POLN peaks at the maximum of
the true distribution PR and it approximates the tails of the true
distribution a bit better than the Gaussian approximations, but as
Fig. 3 shows, it is still obviously different from PR .

The ICN distribution (Smith et al. 2006) fits the true distribution
better. Fig. 4 shows a remarkable agreement between PR and PICN.
Writing both −2 ln(PR) and −2 ln(PICN) as Taylor series, we see
that their Taylor coefficients are equal for k ≤ 3 and approximately
equal for much higher orders (cf. Appendix A).

3 For realistic, noisy measurements of |̂δk| and P̂ (k), PH(k) has to be re-
placed by PH(k) + n̄−1 everywhere in this section. For simplicity, we do not
write the noise explicitly.

4 TH E E F F E C T O N fNL MEASUREMENTS

4.1 Physical model

In this section, we test the effect of using different posterior distri-
bution shapes on the inference of a real observable. The largest devi-
ations between the posteriors are at small k and we would therefore
expect the largest effects for parameters dependent on these modes.
At these scales, (local) primordial non-Gaussianity alters the biasing
law between dark-matter haloes and the underlying mass–density
field (Afshordi & Tolley 2008; Dalal et al. 2008; Matarrese & Verde
2008; Slosar et al. 2008; Giannantonio & Porciani 2010; Schmidt &
Kamionkowski 2010; Valageas 2010; Desjacques, Jeong & Schmidt
2011), making fNL a perfect test parameter of our analysis. The pa-
rameter arises in models where the potential has a local quadratic
term

� = φ + fNL

(
φ2 − 〈

φ2
〉)

. (30)

The resulting alteration of the bias can be written as

b(k, fNL) = b0 + δb(fNL) + 	b(k, fNL), (31)

where b0 is the bias in a universe without primordial non-
Gaussianity, δb(fNL) is the scale-independent modification to the
bias from the non-Gaussian form of the mass functions and (Schmidt
& Kamionkowski 2010; Desjacques et al. 2011)

	b(k, fNL) ≈ (b0 − 1)fNLA(k) (32)

is the local scale-dependent correction due to the easier halo forma-
tion with additional long-wavelength fluctuations, which depends
on the critical density δc(z) in the peak- background split model, as
well as the matter transfer function T(k), the matter density 
m, the
present-time Hubble parameter H0 and the linear growth function
D(z) through the parameter

A(k, z) = 3
mδc(z)

k2T (k)

(
H0

c

)2

. (33)

As δb(fNL)  	b(k, fNL) at our scales of interest (Slosar et al. 2008;
Giannantonio & Porciani 2010), we neglect δb(fNL). Fig. 5 shows
the effect of fNL on the galaxy power spectrum at large scales. We
plot the galaxy power spectrum Pg divided by the galaxy power
spectrum at fNL = 0, hence what we plot is proportional to the
square of equation (31). At lowest k, negative fNL enhances the
power spectrum due to the fact that the term proportional to f 2

NL

dominates the total bias. At slightly higher k, but still at large

Figure 5. Galaxy power spectra Pg calculated for different values of fNL

divided by the galaxy power spectrum Pg(fNL = 0) of a universe with a
Gaussian primordial density field.
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scales, the term linear in fNL dominates, and the power is enhanced
or decreased depending on the sign of fNL. At small, yet still linear,
scales, A(k, z) becomes small, thus initial local non-Gaussianities
do not have an effect on the galaxy power spectrum at these scales.

Here, we work to first order in δ, so that we can continue to
assume that δk is drawn from a Gaussian distribution, with an al-
tered P (k), i.e. the first order effect of non-Gaussianity is to PH(k),
keeping the distribution the same. Furthermore, we do not alter Vn

(equation 24) to include any coupling between modes from the non-
Gaussian signal. Where k is very small, higher order corrections to
δ will become increasingly important (e.g. Tellarini et al. 2015),
suggesting that the Gaussian limit for δ will break down here.

4.2 Boss results

We use BOSS DR9 parameters and the same CAMB linear matter
power spectrum as Ross et al. (2013). We also assume δc = 1.686

D(z) as
expected from the spherical collapse model in an Einstein–de Sitter
universe and a flat prior for fNL. We plot fNL posterior functions in
Fig. 6, assuming a measurement of a power spectrum with under-
lying fNL = 0. Pf is not symmetric, as both a linear and a quadratic
term of fNL enter the power spectrum. The ICN distribution agrees
again very well with PR . PR , Pf and PICN reproduce the true value
as their best-fitting estimate. Using PD , the most likely value of fNL

is fNL = −25.5 considering the same k-bins as Ross et al. (2013) in
their analysis of DR9 BOSS data, i.e. 0.004 h

Mpc ≤ k ≤ 0.05 h
Mpc .

One has to keep in mind that there are different definitions of
the measured value. The commonly published value is the posterior
mean 〈fNL〉, due to the fact that if fNL is fitted as part of a longer
list of cosmological parameters, one has to rely on Markov chain
Monte Carlo techniques (e.g. Lewis & Bridle 2002). In general,
such techniques cannot provide accurate estimates of the best-fitting
value. Hence, data analysis papers more often present 〈fNL〉 as their
results. If the posterior is asymmetric, the best fit and posterior mean
do not agree. Given a flat fNL-prior, we expect fNL = 11.4 using PR .
Based on our arguments in Sections 2.1 and 4.1, we think of the
mean of PR as the correct estimate of fNL. This seems counter-
intuitive because our input was that we measure a power spectrum
which corresponds to fNL = 0, but we have to consider that P̂ (k) is a
finite empirical realization in our part of the Universe corresponding
to the value of fNL = 0 we have assumed we would measure locally,
but due to the non-Gaussian shape of the posterior distribution, the
ensemble average of fNL measured in other parts of the Universe is
higher than the value we set as an input for our local environment.

Our results are summarized in Table 3. PICN reproduces the cor-
rect estimate of fNL, whereas PD and Pf estimate fNL = −11.9 and

Figure 6. Analytic fNL-posterior functions for a BOSS like survey combin-
ing all k-bins.

Table 3. fNL-postdictions of the best-fitting f
(BF)
NL and marginalized best fits

〈fNL〉, as well as its 95 per cent confidence interval, for BOSS DR9 using
different shapes of the posterior distribution.

Posterior f
(BF)
NL 〈fNL〉 95 per cent Confidence interval

PR 0 11.4 −71.5<fNL <100.7
PD −25.5 − 11.9 −68.2<fNL <53.4
Pf 0 − 7.7 −90.9<fNL <71.0
PICN 0 11.4 −71.9<fNL <101.2

fNL = −7.7, respectively. The choice of the posterior distribution
also affects the error estimation. If we use PR or PICN, the length of
our postdicted 95 per cent fNL-confidence interval (CI, cf. Table 3)
is similar to the length of Ross et al. (2013)’s most naı̈ve case ii
95 per cent CI, i.e. 32 < fNL < 198.

4.3 Euclid results

We make similar predictions for the Euclid survey (Laureijs et al.
2011). We assume bias values b(z) = √

1 + z, matched to simu-
lations of Orsi et al. (2010) and also assumed in Amendola et al.
(2013), and number densities n̄(z) predicted for Euclid by Pozzetti,
Hirata & Geach (in preparation) and a survey covering 15 000 deg2.
We generate CAMB matter power spectra P (k, z) for the redshift
range 0.9 < z < 1.74. Note, that the aim of this paper is to test
how the use of different posterior shapes influences cosmological
measurements, but not primarily to make fNL-predictions. We re-
fer to more rigorous predictions which can be found e.g. in Fedeli
et al. (2011), Laureijs et al. (2011), Giannantonio et al. (2012),
Yamauchi, Takahashi & Oguri (2014). These studies also include
3-point statistics, weak lensing tomography, measurements of the
integrated Sachs-Wolfe effect and/or the use of the multitracer tech-
nique. Their constraints are therefore tighter than ours.

As Euclid will probe a much larger volume, it will accommodate
many more k-modes and hence we see good agreement of Pf with
PR in Fig. 7. As against our results in Section 2.5, fixing the covari-
ance provides better fNL results than the inferences from a posterior
with varying covariance. However, PICN is still the best approxi-
mation and accurately reproduces the marginalized fNL-value of PR

and its 95 per cent CI, whereas using Pf yields the correct width of
the 95 per cent CI, but its position and the marginalized value have
an offset of 0.38 (cf. Table 4). We therefore still recommend either
using PICN or PR when cosmological models are fitted to power
spectra from galaxy surveys even as large as Euclid.

Figure 7. Analytic fNL-posterior functions for an Euclid like survey com-
bining all k-bins.
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Table 4. fNL-predictions similar to Table 3, but for Euclid.

Posterior f
(BF)
NL 〈fNL〉 95 per cent Confidence interval

PR 0 0.24 −9.0<fNL <9.4
PD −1.0 −0.30 −8.4<fNL <7.8
Pf 0 −0.14 −9.4<fNL <9.0
PICN 0 0.24 −9.0<fNL <9.4

5 C O N C L U S I O N S

We have studied different posterior shapes that can be used in the
fitting process of cosmological models to power spectra from galaxy
surveys. As the underlying matter density field is at least approxi-
mately Gaussian, we assume that the true posterior distribution PR

is based on a Rayleigh likelihood distribution in δ. Assuming Gaus-
sian posteriors in P (k), be it with a fixed or a varying covariance
matrix, does not approximate PR well and yields biased best-fitting
values and wrong error estimates especially on large scales where
statistics are not good enough to make use of the central limit
theorem.

If one confines oneself to use Gaussian posterior shapes, it de-
pends on the parameter one wants to constrain whether a fixed
or varying covariance matrix provides more accurate results. We
found that the posterior shape PD with varying covariance follows
PR closer thanPf with a fixed covariance when the power spectrum
PH (or any parameter linear in the power spectrum) is fitted to the
power spectrum P̂ , but when fNL is fitted to P̂ it is the other way
round.

Due to these reasons, we advise against using Gaussian posterior
distributions. Instead, we have found that posterior distributions,
such as the ICN distribution PICN (cf. equation 28) or applying
Hamimeche & Lewis (2008) method to PR (cf. equation 14), pro-
vide simple, more accurate alternatives. They confidently reproduce
the correct width of the 95 per cent confidence intervals in our sim-
plified predictions of fNL-measurements. However, the final decision
about which posterior is the best to use should be done after testing
these methods against simulations which account for the non-linear
effects that we have ignored for simplicity in our analytic calcula-
tions. We leave this for future work.

A major advantage of the non-Gaussian posteriors presented in
this paper, is the fact that their covariance matrices do not depend
on the power spectrum of the model to be tested. The estima-
tion of covariance matrices is a critical and computationally ex-
pensive step in the data analysis. Extensions to configuration-space
analyses based on the correlation function ξ (r) are left for future
work.
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A P P E N D I X A : C O M PA R I S O N O F PR A N D PICN

TAY L O R S E R I E S

In this appendix, we compare the Taylor Series of PR and PICN to
explain why they are so similar. We write the hypothetical power
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spectrum PH ≡ (1 + ε)|̂δk|2 as a perturbation around the measured
power. The Rayleigh posterior hence becomes

− 2 ln(PR) = 2 ln(1 + ε) + 2

1 + ε
. (A1)

Ignoring the irrelevant zero order contribution, the Taylor series
reads

− 2 ln(PR) = 2
∞∑

κ=1

(−1)κεκ κ − 1

κ
. (A2)

The ICN distribution in terms of ε is given by

− 2 ln(PICN) = 9
[
1 − (1 + ε)−1/3

]2

= 9
[
1 − 2(1 + ε)−1/3 + (1 + ε)−2/3

]
. (A3)

We make use of the generalized binomial series (1 + ε)α =∑∞
κ=0

(
α

κ

)
εκ , where

(
α

κ

) ≡ �(α+1)
�(κ+1)�(α−κ+1 is the generalized bino-

mial coefficient, and obtain the series

− 2 ln(PICN) = 9
∞∑

κ=1

εκ

[(− 2
3

κ

)
− 2

(− 1
3

κ

)]
. (A4)

Again, we have ignored irrelevant constant terms. The negative
entries in the binomial coefficients can be removed using

(
α

κ

) =
(−1)κ

(
κ−α−1

κ

)
:

− 2 ln(PICN) = 9
∞∑

κ=1

(−1)κεκ

[(
κ − 1

3

κ

)
− 2

(
κ − 2

3

κ

)]
. (A5)

If we insert values for κ ≤ 3, we find the equality

2
κ − 1

κ
= 9

[(
κ − 1

3

κ

)
− 2

(
κ − 2

3

κ

)]
. (A6)

Thus, PR and PICN are the same to third order. What is even more
striking is that for larger κ ,the approximation

2
κ − 1

κ
≈ 9

[(
κ − 1

3

κ

)
− 2

(
κ − 2

3

κ

)]
(A7)

still holds. For κ < 17, the two sides differ by less than 20 per cent.
Therefore, the agreement between PR and PICN is high.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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