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Abstract. Long-term surface air temperatures at 1.5 m screen

level over land are used in calculating a global average sur-

face temperature trend. This global trend is used by the IPCC

and others to monitor, assess, and describe global warm-

ing or warming hiatus. Current knowledge of near-surface

temperature trends with respect to height, however, is lim-

ited and inadequately understood because surface tempera-

ture observations at different heights in the surface layer of

the world are rare especially from a high-quality and long-

term climate monitoring network. Here we use high-quality

two-height Oklahoma Mesonet observations, synchronized

in time, fixed in height, and situated in relatively flat terrain,

to assess temperature trends and differentiating temperature

trends with respect to heights (i.e., near-surface lapse rate

trend) over the period 1997 to 2013. We show that the near-

surface lapse rate has significantly decreased with a trend

of − 0.18± 0.03 ◦C (10 m)−1 per decade indicating that the

9 m height temperatures increased faster than temperatures

at the 1.5 m screen level and/or conditions at the 1.5 m height

cooled faster than at the 9 m height. However, neither of the

two individual height temperature trends by themselves were

statistically significant. The magnitude of lapse rate trend is

greatest under lighter winds at night. Nighttime lapse rate

trends were significantly more negative than daytime lapse

rate trends and the average lapse rate trend was three times

more negative under calm conditions than under windy con-

ditions. Our results provide the first observational evidence

of near-surface temperature changes with respect to height

that could enhance the assessment of climate model predic-

tions.

1 Introduction

Physical properties of the atmosphere and dynamic processes

mix heat vertically and horizontally, yielding the highest

temperatures, on average, at the surface with marked sea-

sonal and spatial variations (IPCC, 2013; Karl et al., 2006).

The thermal structure near the surface is affected by vari-

ous surface forcings (e.g., radiation absorbed and emitted,

turbulent mixing, and vegetation interaction) which result in

the near-surface lapse rate varying considerably with loca-

tion and season as well as with atmospheric humidity (Stone

and Carlson, 1979; Karl et al., 2006; Mahrt, 2006; Pielke

Sr. et al., 2007). In the entire troposphere, climate models

indicate a distinct height-dependent temperature response to

surface temperature increases (refers to air temperature at a

screen height near ground surface) (Gaffen et al., 2000; San-

ter et al., 2005; Karl et al., 2006; Thorne et al., 2011; Sei-

del et al., 2012; Mitchell et al., 2013). Most of these height-

dependent temperature studies focused on tropospheric tem-

perature trends by using radiosonde and satellite observa-

tions and climate models (Thorne et al., 2011), however, the
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near-surface temperature lapse rate has rarely been studied in

the surface layer of the atmosphere.

Natural internal climate variability and noise in the data

make the detectability of long-term temperature trends in

the surface boundary layer difficult. One reason is that the

boundary layer typically changes from a convective turbulent

regime, with a gain of sensible heat (daytime), to a thermo-

dynamically stable, long-wave radiationally cooled regime

(nighttime) with a loss of sensible heat (Pielke Sr. et al.,

2007; Baldocchi and Ma, 2013). The high-quality two-height

surface observations in the Oklahoma Mesonet (Shafer et al.,

2000; Lin et al., 2007), however, provide for the first time

an accurate observational network to extract the temperature

trend signal at two heights in the surface layer. The temper-

ature observations are synchronized in time, fixed in height,

and situated in relatively flat terrain, thus providing a unique

opportunity to evaluate near-surface temperature trends and

thus the lapse rate trends.

This study is the first observational investigation of two-

height, near-surface temperatures to examine lapse rate

trends and variability over more than a decade period, a 17-

year timescale from 1997 to 2013, which substantially in-

creases the signal-to-noise ratio for trend analysis (Santer

et al., 2011) compared to a decade observation (Lin et al.,

2007). In this study, our objective is to provide observational

evidence for near-surface lapse rate and temperature trends

over 1997 to 2013 in Oklahoma.

2 Climate stations and data analysis methods

2.1 Climate stations and data

We selected stations from the Oklahoma Mesonet, which

is a world-class network of environmental monitoring sta-

tions. As reported in 2009, the National Research Council

(NRC) recommended the Oklahoma Mesonet as the “gold

standard” for statewide weather and climate networks (https:

//www.mesonet.org/, accessed on 4 May 2015). For two-

height temperatures, quality-controlled hourly observations

from the Oklahoma Mesonet were used. They include air

temperatures at 1.5 and 9.0 m, relative humidity at 1.5 m,

wind speeds (WS) at 2 and 10 m, global incoming solar ra-

diation (SR), and precipitation. The uncertainties in obser-

vations prior to 1997 in the Oklahoma Mesonet were due to

an incomplete thermometer’s processing algorithm (a delay

time required in HMP35C temperature sensors for tempera-

ture and humidity measurements) (Shafer et al., 2000) so our

study period was from January 1997 to December 2013. Sta-

tions that experienced relocation and missing high-level (i.e.,

9 m) temperature measurements were excluded leaving a to-

tal of 44 Oklahoma Mesonet stations selected (Fig. 1) from

104 stations initially commissioned in January 1994 in Okla-

homa.
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Figure 1. 44 Oklahoma Mesonet stations (filled circles) and 44

USHCN stations (open circles), in which the Oklahoma Mesonet

stations include 34 grassland stations (green) and 10 cropland sta-

tions (black circles). The MODIS Land Cover product (MOD12Q1)

(Friedl et al., 2010) in 2005 was used to classify the Oklahoma

Mesonet stations into grassland (34 stations) and cropland stations

(10 stations). The thin lines indicate the borders of nine climate di-

visions in Oklahoma.

The US Historical Climatology Network (USHCN, ver-

sion 2.5) consists of 44 high-quality stations in Oklahoma

and the data quality of monthly average temperatures has

been rigorously examined (Menne et al., 2009) (Fig. 1).

These 44 USHCN stations have long been commonly se-

lected for use in evaluating climate changes on the global,

regional, and state scales and thus the USHCN temperature is

considered as a reference temperature change when evaluat-

ing climate change. It was assumed that both the 44 USHCN

stations and the 44 Oklahoma Mesonet stations are represen-

tative of the Oklahoma state region in this study.

2.2 Homogeneity tests of temperature time series in the

Oklahoma Mesonet

In the USHCN data set, the instrument change adjustments in

a climate series “is a regional average” (Quayle et al., 1991;

Hubbard and Lin, 2002, 2006). The exact effect at individ-

ual stations may vary depending on local environmental or

climate factors such as the direction of sunlight and wind

speeds around the radiation shields. Temperature data used

in the study from the Oklahoma Mesonet are quality con-

trolled and thermometers used in the network have been cal-

ibrated every 24 to 60 months. The air temperature at 9 m

height was measured by a thermistor in a naturally ventilated

radiation shield from 1997 to 2013. Air temperature instru-

ments at 1.5 m height were changed from a naturally venti-

lated radiation shield into an aspirated radiation shield in late

2008. Therefore, homogeneity tests of monthly temperatures

for individual Mesonet stations in both T1.5 m (temperatures

at the 1.5 m height) and T9 m (temperatures at the 9 m height)

series over 1997 to 2013 were evaluated using two methods:

standard normal homogeneity test (SNHT) (Alexandersson

and Moberg, 1997; Peterson et al., 1998) and multiple lin-

ear regression (MLR) (Vincent, 1998; Reeves et al., 2007).
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Figure 2. Monthly time series of (a) surface temperature at 1.5 m (T1.5 m), (b) surface temperature at 9 m (T9.0 m), (c) USHCN surface

temperature (TUSHCN), (d) near-surface air heat content (H ) at 1.5 m, (e) surface dew point temperature (Td), and (f) surface temperature

difference between T1.5 m and TUSHCN. The ± values define the 95 % confidence intervals for specific trends shown in each panel. The first

2 months of H and Td and the first month of T1.5 m were missed due to fewer available observations.

Note that a time series was classified as homogeneous only

if the null hypothesis of homogeneity was not rejected at the

95 % level, using both methods to evaluate the single-most-

probable discontinuities (or step changes). The reference se-

ries (Ri) was formed by using five nearest stations weighted

by squared correlation coefficients (ρi,j ). In their simplest

form, the SNHT and MLR are written as

Qi =
(
yi − yi

)
−

5∑
j=1

ρ2
i,j (xi,j − xj )

5∑
j=1

ρ2
i,j

(1)

yi =a2+ b2 I(i≥c)+ c2Ri + ei,2. (2)

The second part of SNHT’s Eq. (1) is the reference series.

The xj is a surrounding station series and yi is the candidate

station series to be tested. In the MLR’s Eq. (2), the I variable

is a binary variable which is zero prior to the change point (c)

and one after the occurrence of that change point (c). The ei
in Eq. (2) is the regression residual term. Note that for Ri in

Eq. (2), the reference series is the same as the second part of

Eq. (1).

The 44 T1.5 m candidate series were tested against the near-

est five USHCN stations, creating the reference series. Three

documented change points and five undocumented change

points were detected in the T1.5 m temperature series. Three

documented change points were adjusted in this study. For

the 44 T9 m candidate series, the instruments have been con-

sistently operated by naturally ventilated radiation shields

from 1997 to 2013. Larger ambient wind speeds at the 9 m

height relative to the 1.5 m, reduce radiative errors for T9 m

temperatures (Hubbard and Lin, 2002). When the 44 T9 m se-

ries were tested by using a reference series created from the

five nearest Oklahoma Mesonet stations at the 9 m height,

only two change points were found which were undocu-

mented. These undocumented changes were not adjusted in

our T9 m temperature series.

2.3 Data and trend analysis

The lapse rate is defined as −1T
1z

by using the hourly tem-

peratures observed at 1.5 and 9.0 m in units of ◦C (10 m)−1.

A negative trend in the lapse rate when the surface layer is

stably stratified means that the temperature change became

steeper (warmer at the higher level and/or cooler at the lower

level). When the surface layer is unstably stratified, a nega-

tive trend means the temperature change with height has be-

come less. All missing data were not filled or interpolated by

estimation and no outlier screening was implemented in the

study. When there were three hourly temperatures missing,

the daily lapse rate was excluded. The monthly data were

www.atmos-chem-phys.net/16/827/2016/ Atmos. Chem. Phys., 16, 827–841, 2016
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Figure 3. Changes of monthly lapse rate (LR) (◦C (10 m)−1) in Oklahoma over 1997–2013: (a) absolute daily (blue), daytime (red), and

nighttime (green) lapse rates, (b) daytime anomaly lapse rates, (c) daily anomaly lapse rates derived from 24 h averaged over two heights,

and (d) nighttime anomaly lapse rates. The straight lines are least squares trends (◦C (10 m)−1 per decade) with adjusted p values shown.

The ± values define the 95 % confidence intervals for trends. The shaded region around lapse rate anomalies shows the standard deviation

of 44 Oklahoma Mesonet stations. The metadata for dates of thermometer status are shown at the bottom of (b) for changes of thermometer

radiation shields at 9 and 1.5 m.

excluded when more than 5 days were missing in a month.

The air temperatures at two heights for daytime and night-

time were calculated based on the sunrise and sunset hours

(rounded into an integral hour) during any calendar day. The

mean wind speed of 2 and 10 m heights was used to clas-

sify wind regimes as windy (87 % percentile or above, i.e.,

5 windiest days in a month) or calm (17 % percentile or be-

low, i.e., 5 calmest days in a month) conditions on a monthly

basis.

Monthly anomalies for lapse rates, temperatures, and other

climatic variables were departures from monthly climatol-

ogy for the period from January 1997 to December 2013.

The regional time series were aggregated by using an equally

weighted station average from each station when the obser-

vations were available.

The computation of complementary variables shown in

this study is briefly described here. The total energy content

of a unit parcel of air (per kg) is provided by the sum of the

kinetic energy, latent heat, enthalpy, and gravitational poten-

tial energy (Peterson et al., 2011). Without considering the

gravitational potential energy and kinetic energy, the air heat

content (H ) was then calculated by (Pielke Sr. et al., 2004;

Peterson et al., 2011)

H = CpT +Lq, (3)

where T is the Kelvin temperature (K) and q is the specific

humidity (kg kg−1). Both the specific heat of air at constant

pressure Cp (J K−1 kg−1) and the latent heat of evaporation

L (J kg−1) are calculated by a function of ambient humidity

and temperature (Stull, 1988).

The water vapor pressure deficit (VPD) was calculated us-

ing

VPD= es− ea . (4)

es and ea are the equilibrium (or saturated) vapor pressure

and actual vapor pressure with respect to water obtained from

(Wiederhold, 1997),

ew =

(
1.0007+ 3.46× 10−6P

)
6.1121e[

17.502T
240.97+T

), (5)

where P is the atmospheric pressure (mb) and ew is the equi-

librium vapor pressure (mb); for es (mb), T is the ambi-

Atmos. Chem. Phys., 16, 827–841, 2016 www.atmos-chem-phys.net/16/827/2016/
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Figure 4. (a) Lapse rate seasonality averaged over 1997 to 2013 for

daily (blue), daytime (red), and nighttime (green) periods; standard

deviations are represented by shaded areas. The significant trends

in daily, daytime, and nighttime lapse rates (Fig. 3b, c and d) were

removed before calculating the standard deviation. (b) The same as

(a) but averaged over the first 10 years (1997–2006; gray areas with

black lines) and averaged over the last 10 years (2004–2013; blue

for daily, red for daytime, and green for nighttime).

ent temperature (◦C); for ea (mb), T is the dew point tem-

perature (◦C). The dew point was calculated from ambient

temperature and relative humidity observed in the Oklahoma

Mesonet. The pressure P was estimated based on the station

elevation. The calculation of reference evapotranspiration

(ETo) used the Penman-Monteith equation (Allen, 2000). All

variables in the ETo calculation are either directly available

at the stations or were estimated from empirical equations

(Allen, 2000).

For the trend analysis, the adjusted standard error and ad-

justed degrees of freedom method was used for evaluating

the statistical significance of regional temporal trends and

individual station trends at the 95 % or otherwise specified

confidence levels (Santer et al., 2000; Karl et al., 2006). This

approach is a modification of the ordinary least squares linear

regression to substitute the effective sample size by correct-

ing for the effect of temporal autocorrelation in the anomaly

time series or its residual series (Santer et al., 2000; Karl et

al., 2006).

3 Results

3.1 Surface temperature-related trends at individual

levels

Here we present the first observational investigation of

two-height, near-surface temperatures to examine lapse rate

trends and variability over more than a decade period. For

the period of 1997 to 2013, when trends of surface tem-

perature anomalies are evaluated by individual surface tem-

peratures at 1.5 m (T1.5 m) and 9.0 m (T9.0 m) from Okla-

homa Mesonet stations, statistically non-significant trends

of +0.065± 0.59 ◦C per decade and +0.281± 0.58 ◦C per

decade, respectively were documented (Fig. 2a and b). How-

ever, trends could not be confirmed for either of these two in-

dividual surface temperatures over Oklahoma (derived from

T1.5 m and T9.0 m) when adjusting the statistical analysis for

first-order autocorrelation effects as shown by the adjusted

p values in the trend analysis. When we used the USHCN

data, the surface temperatures (TUSHCN) again showed a sta-

tistically non-significant trend of 0.079± 0.58 ◦C per decade

(Fig. 2c) over 1997 to 2013.

In terms of month-to-month variability of these three time

series (Fig. 2a to c), the standard deviations over the pe-

riod studied were 1.63, 1.64, and 1.65 ◦C for T1.5 m, T9 m,

and TUSHCN, respectively, without any statistical differences.

To further examine the change over 1997 to 2013 at a sin-

gle height, the surface air heat content (H ) (Pielke Sr. et

al., 2004; Peterson et al., 2011) was evaluated. Again, we

were unable to confirm a statistically significant trend in H

although the H showed an apparent “cooling” trend (i.e.

−0.737± 1.08 kJ kg−1 per decade) (Fig. 2d), which was

caused by a decrease in air humidity (Fig. 2e).

The air heat content variability was very similar to the

air temperature’s month-to-month variability although it was

coupled with air humidity (Fig. 2d and e). The temperature

difference between measurements at 1.5 m of the Oklahoma

Mesonet and USHCN (T1.5 m−TUSHCN) had an overall stan-

dard deviation of 0.17 ◦C where less variation occurred dur-

ing the first 10 years, relative to the subsequent 7 years. A

slightly positive T1.5 m−TUSHCN difference, observed during

the last 3 years, cannot be attributed to the thermometer’s ex-

posure changes in the Oklahoma Mesonet because the aspi-

rated thermometers could have a cool-bias compared to non-

aspirated thermometers at observing stations. Nonetheless,

the overall 0.17 ◦C standard deviation of T1.5 m− TUSHCN is

of the order of uncertainties associated with any current ther-

mometer used in climate monitoring networks (Hubbard and

Lin, 2002; Lin et al., 2005).

3.2 Surface lapse rate trends and seasonality

Figure 3 shows lapse rate changes and changes in monthly

anomalies for daily, daytime, and nighttime conditions. The

lapse rate is defined as −
(T9 m−T1.5 m)

7.5 m
with values plotted in

units of ◦C (10 m)−1. There was a substantial and clear sea-

sonality signal in the daily lapse rate time series (Figs. 3a and

4a). The lapse rates in summertime were larger than in the

wintertime which indicated that the lapse rate involved inter-

actions with stronger turbulent energy exchanges in summer

and relatively weaker turbulent energy exchanges in winter

in the surface boundary layer (Figs. 3a and 4a).

The statistically significant trend of the daily lapse rate

was −0.18± 0.03 ◦C (10 m)−1 per decade, and this daily

www.atmos-chem-phys.net/16/827/2016/ Atmos. Chem. Phys., 16, 827–841, 2016
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Figure 5. Individual station trends of monthly lapse rate anomalies (◦C (10 m)−1 per decade) for (a) daily lapse rate, (b) daytime lapse rate,

and (c) nighttime lapse rate. The histogram of individual station trends is presented to the right side of each panel. The x axis is the color

bar of trends and the y axis represents the number of stations having that trend. Pink squares indicate non-significant trends, otherwise, the

stations are significant at 95 % confidence levels accounting for serial autocorrelation. The dotted orange line is the line of 35.4◦ in latitude

to divide Oklahoma into northern and southern areas, both of which have 22 stations for evaluating averaged lapse rate trends of southern

(TrendS, unit is ◦C (10 m)−1 per decade) and northern (TrendN, ◦C (10 m)−1 per decade) areas. The p value shown is from the two-sample

t test.

lapse rate trend is the average of daytime (−0.16 ◦C (10 m)−1

per decade) and nighttime (−0.20 ◦C (10 m)−1 per decade)

lapse rate trends as expected; all at the 99.9 % confidence lev-

els. The nighttime lapse rate not only showed a larger trend

than in the daytime but also varied significantly more (Fig. 3b

and d).

In Fig. 3b, the metadata inventory of thermometer changes

suggests that there could be systematic biases which might

compromise trend analysis. In addition to the routine quality-

control and instrument calibrations of T1.5 m and T9 m, we

conducted multiple lines of data examination in T1.5 m and

T9 m for their fidelity: (1) data homogeneity tests were con-

ducted and documented change points were adjusted; (2) the

T1.5 m−TUSHCN time series (Fig. 2f) showed that no system-

atic biases existed in T1.5 m due to instrument changes late

in 2008; and (3) the relatively flat lapse rate anomalies from

2009 to 2013 did not support a systematic bias caused by

changes from naturally ventilated thermometers to aspirated

thermometers (Fig. 3b). Therefore, it is unlikely that changes

from naturally ventilated to aspirated thermometers in 2008

and 2009 contribute to the lapse rate trends.

That the lapse rate trend is statistically significant is ini-

tially surprising, since the individual two-height tempera-

tures have no significant trends (Fig. 3a and b). We explained

how this can occur in Appendix A (see Figs. A1 and A2).

Results in Fig. 3 indicated that the temperature difference

between T9.0 m and T1.5 m had a statistically significant in-

creasing trend. Considering the statistically non-significant

trends in T1.5 m and T9.0 m (Fig. 3a and b), we infer that

the near-surface vertical temperatures at 9 m were warming

faster than temperatures at the screen level (1.5 m) in the

surface boundary layer. However, it is possible that cooling

(which is within the range of statistical uncertainty) at the

1.5 m level could account for the increased temperature dif-

ference (T9 m−T1.5 m). The−0.18 ◦C (10 m)−1 per decade of

lapse rate trend with a 7.5 m height difference is equivalent

to a warming trend +0.135 ◦C per decade of the (T9 m minus

T1.5 m) temperatures. Regardless of whether the individual

levels can be shown to have statistically significant positive

or negative trends over time, our results in Oklahoma present

clear evidence for changes of near-surface vertical tempera-

ture profiles over the period 1997 to 2013. This means that

measurements of trends at a single height introduce an uncer-

Atmos. Chem. Phys., 16, 827–841, 2016 www.atmos-chem-phys.net/16/827/2016/
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Figure 6. Trends and variations of monthly lapse rate (LR) (y axis units are ◦C (10 m)−1) classified by windy and calm conditions for daily

(a) and (b), daytime (c) and (d), and nighttime (e) and (f) from 1997–2013. Windy conditions were the days that mean wind speeds were

above the 87 % percentile in a month (i.e., 5 windiest days in each month), and calm conditions were the days where the mean wind speed

was below the 17 % percentile (i.e., 5 calmest days for each month). The straight lines are least squares trends (◦C (10 m)−1 per decade) with

adjusted p values shown. The ± values define the 95 % confidence intervals for trends. The shaded region shows the standard deviation of

44 stations.

tainty that has not yet been accounted for in the use of surface

temperature trends to diagnose and monitor global warming.

The seasonality shown in the daytime lapse rate was

clearer than in the nighttime lapse rate (Figs. 3 and 4), sug-

gesting that strong turbulent mixing controlled the daytime

mixing layer but as expected, there was stabilized surface air

(weak turbulence) in the nocturnal boundary layer (Stone and

Carlson, 1979; Stull, 1988; Karl et al., 2006; McNider et al.,

2012). Thus, the nighttime lapse rate clearly consistently var-

ied much more than the daytime lapse rate over 1997 to 2013

(Figs. 3a and 4a). Figure 4 indicates that part of the day-

time was unstably stratified in the surface boundary layer,

however, for most of the time over a 24 h period, the lapse

rates show a stable surface boundary layer for all months

in the Oklahoma region. During the spring season, the day-

time lapse rates were relatively suppressed while nighttime

lapse rates were suppressed during the fall season in Okla-

homa (Fig. 4a). All daytime, daily, and nighttime lapse rates

showed a change between the averages of the first 10 years

and the last 10 years (Fig. 4b).

3.3 Spatial distributions of station’s lapse rate trends

To examine spatial aspects of lapse rate changes, the lapse

rate trends in 44 individual stations are shown in Fig. 5

for daily, daytime, and nighttime lapse rates. All but one

station lapse rate trend showed a decrease irrespective of

whether they were the daily, daytime, or nighttime anal-

yses. About 16, 36, and 23 % of all stations showed sta-

tistically non-significant trends for the daily, daytime, and

nighttime time series, respectively. The majority of stations

showed significant decreasing trends, especially for daily

lapse rates (Fig. 5). The histogram of individual trends for

nighttime indicated trends were more negative relative to

daily and daytime lapse trends (meaning the higher level tem-

perature increased more (or decreased less) than the lower

level temperature). Across Oklahoma, the lower latitude re-

gion showed more negative lapse rate trends. When divid-

ing all of Oklahoma into northern and southern areas by a

35.4◦ N line in latitude, the average lapse rate trends in the

southern area were significantly more negative than the aver-
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Figure 7. Changes of monthly lapse rates (LR) (◦C (10 m)−1) averaged only by grassland stations in Oklahoma over 1997–2013: (a) daily

anomaly derived from 24 h averaged over two heights, (b) daytime anomaly, and (c) nighttime anomaly. The straight lines are least squares

trends (◦C (10 m)−1 per decade) with adjusted p values shown. The± values define the 95 % confidence intervals for trends. The shaded

region shows the standard deviation from 34 grassland stations.

age trends in the northern area at 98 % confidence levels for

daily lapse rates (TrendN =−0.14 vs. TrendS =−0.24 ◦C

(10 m)−1 per decade), daytime lapse rates (TrendN =−0.12

vs. TrendS =−0.22 ◦C (10 m)−1 per decade), and night-

time lapse rates (TrendN =−0.16 vs. TrendS =−0.25 ◦C

(10 m)−1 per decade) (Fig. 5).

3.4 Wind influences on lapse rate trends

Daytime and nighttime lapse rate trends demonstrate differ-

ent properties largely due to the diurnal solar cycle, wind

speed and its interaction with the land surface (Pepin, 2001;

Karl et al., 2006; Mahrt, 2006; McNider et al., 2012). Wind

strongly influences turbulent mixing and surface boundary

layer depth (Stull, 1988; Pepin, 2001). Figure 6 shows the

lapse rate trend and variations under windy and calm condi-

tions. There was no significant lapse rate trend observed un-

der windy daytime conditions (Fig. 6c). The most negative

lapse rate trend, −0.40± 0.03 ◦C (10 m)−1 per decade, was

found under calm nighttime conditions (Fig. 6f). Both the

trend magnitude and variation of lapse rate under calm night-

time conditions were the largest among all classified lapse

rates as shown in Fig. 6. Since the stable nocturnal boundary

layer is very sensitive to local radiative effects from atmo-

spheric CO2 and water vapor, wind speed, surface roughness,

and soil heat capacity (Pielke Sr. et al., 2007; McNider et al.,

2012), slight changes to the surface layer structure from these

local effects could explain part of the observed trends. The

observed slight increase in wind speed could have resulted in

the 9 m level being above the nocturnal cool level more often

later in the observational period, thus a positive temperature

trend would be seen in the data due to this effect.

3.5 Trends of related climate variables in Oklahoma

over 1997 to 2013

The MODIS Land Cover product (MOD12Q1) was used for

the year 2005 (Friedl et al., 2010) to classify all 44 Ok-

lahoma Mesonet stations into 34 grassland stations and 10

cropland stations to examine possible effects of land use and

land cover on lapse rates (Fig. 1). Figures 7 and 8 showed that

there were no statistical differences among respective lapse

rate trends between grassland and cropland stations.

Due to the complexity of the surface vertical tempera-

ture profile variations (Stone and Carlson, 1979; Pepin, 2001;

Mahrt, 2014), here we simply presented a monthly smoothed

anomaly time series of climatic variables including solar ra-

diation (SR, W m−2), water vapor pressure deficit (VPD,
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Figure 8. The same as Fig. 7 but only for 10 cropland station averages.

kPa), mean wind speed (WS, m s−1), precipitation (mm),

and reference evapotranspiration (ETo, mm month−1), and

their correlations with the monthly lapse rate time series

(Fig. 9). Only mean wind speed and reference evapotran-

spiration showed significant trends; both of which were in-

creasing (Fig. 9d and f). In terms of correlation with lapse

rates, solar radiation, reference evapotranspiration, and vapor

pressure deficit showed significant correlations with values

of −0.55, −0.46, −0.18, and 0.35, respectively.

In summary, for related climate variables, it is understand-

able that solar radiation is the most correlated due to its

strong role on turbulent sensible heat flux from the ground

surface associated with vertical temperature gradients and

stability. The wind speed did play a role for lapse rate

changes in the surface boundary layer (Pepin, 2001; Pielke

Sr. et al., 2007; McNider et al., 2012; Baldocchi and Ma,

2013). Precipitation changes can provide information about

soil moisture changes and its effect on variations of the day-

time surface energy budget and heating of atmospheric tem-

peratures (McNider et al., 2012; Baldocchi and Ma, 2013).

Nevertheless, the mechanism of decreased lapse rates and lat-

itudinal gradients of surface lapse rate trends observed in Ok-

lahoma from 1997 to 2013 warrants further study and longer

observation data in the future.

4 Summary and concluding remarks

Our study has the following major findings. First, using the

lapse rate (defined as the difference in temperature at two

levels) trends can be diagnosed with more statistical confi-

dence than considering temperature trends from each level

separately. Second, trends of surface temperature depend on

the height at which the measurements are made. A greater

warming at the 9 m level, or larger cooling at the 1.5 m screen

level would explain such an observation. This is important as

the surface temperature is used to diagnose and model global

warming (IPCC, 2013). Using just the 1.5 m level trends

would provide a different magnitude of trend than if obtained

from the temperatures at 9 m (at least in Oklahoma and this

may be true elsewhere). Third, the near-surface lapse rate

trends were altered by wind speed. Fourth, lapse rate trends

in southern Oklahoma were significantly more negative than

further north in the state. Our study suggests a positive tem-

perature trend at 9 m could be due in part to a change in wind

speed during the time period such that the 9 m level more of-

ten remains above the nocturnal cool layer later during the

observing period.

Finally, since land surface temperatures are often not taken

at the same height above the ground, if the magnitude of

long-term trends depends on the height of the measurement,

it further complicates the ability to accurately quantify global

warming using a global average surface temperature trend
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Figure 9. Monthly smoothed anomaly time series over 1997–2013 of (a) lapse rate (LR, ◦C (10 m)−1), (b) solar radiation (SR, W m−2), (c)

water vapor pressure deficit (VPD, kPa), (d) mean wind speed (WS, m s−1), (e) precipitation (mm), and (f) reference evapotranspiration (ETo,

mm month−1). The p valueadj is p values in the trend analysis, pr values are p values given in the correlation analysis, and r correlation

coefficients with the lapse rate time series. All time series are 7-month moving averages (used as a smoother) of the original monthly data,

which were expressed as a departure from the 1997 to 2013 average. The significant trends or correlations are indicated by specified p values

but non-significant trends were evaluated at the 95 % confidence levels.

from a single height of observation at each location used in

the construction of the global assessment (IPCC, 2013). This

research should provide impetus for building additional or

vertical expansion of current in situ observational infrastruc-

ture for a more robust understanding of climate change.
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Appendix A: How do two individual heights show no

statistically significant trends, but the difference or the

lapse rate does?

One might question how measurements from two individ-

ual heights can show no significant trends but the difference

does. To evaluate this, we first generated two monthly tem-

perature anomaly series, representing measurements at 9 m

height (m1) and 1.5 m height (m2) with a length of 360-

month values (i.e., 30 years). The correlation coefficient be-

tween m1 and m2 was preset at 0.97, which was a typical

value for the monthly T9 m and T1.5 m series in this study. The

simulated m1 and m2 were generated by introducing fields

of random month-to-month temperatures that were normally

distributed with a mean of zero and a variance of one. Sec-

ondly, the initial trends and noise values in m1 and m2 were

added to produce the s1 and s2 series as

s1 =m1+ trend1+ n1 (A1)

s2 =m2+ trend2+ n2, (A2)

where trend1 and trend2 are initial trends imposed on the

series, which have four combinations of a non-trended se-

ries and a linear trended series. These four trend combina-

tions were [0.00 0.00], [0.00 0.12], [0.12 0.00], and [0.12

0.12] ◦C per decade. The n1 and n2 are normally distributed

noise and n2’s power level was set four times larger than the

power level in n1 because it was assumed that surface tem-

peratures at T1.5 m may have larger non-climatic and local-

climatic noise than T9 m. In terms of noise level, the normally

distributed noise n1 had a zero mean and 0.2 of standard de-

viation.

The third step was to run simulations 1000 times to gener-

ate 1000 pairs of s1 and s2 series for the four trend combina-

tions individually, resulting in 1000 difference series of s1–s2
for each set of trend conditions. Figure A1 illustrates an ex-

ample result out of running 1000 simulations when trend1

and trend2 were [0.12 0.00] ◦C per decade. This example

shows that two individual temperatures (s1 and s2) can show

no statistically significant trends but the difference (s1–s2)

does (Fig. A1).

Finally, trend analyses were conducted for the s1, s2, and

s1–s2 series. The results indicate that there were about 600

chances out of 1000 simulations, where two trends of s1
and s2 were not significant but the s1− s2 trend was signif-

icant, that is the [001] status shown in Fig. A2b and c, un-

der the combination of trends imposed by [0.00 0.12] and

[0.12 0.00] ◦C per decade. When both trends were zero or

both trends were 0.12 ◦C per decade, there was a rare chance

to have a significant s1–s2 trend (Fig. A2a and d).

In summary, a differential process (s1–s2) is able to ro-

bustly suppress noise common to the s1 and s2 series rela-

tive to the difference signal (s1–s2). Therefore, an improved

signal-to-noise ratio series of s1–s2 could show a statistically

significant trend, but two individual s1 and s2 series do not

show statistically significant trends.
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Figure A1. An example of two non-significant trends in s1 (a) and s2 (b) temperature time series individually but differentiating them, s1–s2
temperature series (c) shows a significant trend. This is one realization example taken from the simulations; s1 and s2 were constructed with

trend values of 0.12 and 0.00 ◦C decade−1, respectively.
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Figure A2. These figures illustrate the frequency of outcomes (shown as the y axis) for four combinations of initial trends for series s1 and

s2. The eight possible combinations (shown as the x axis) are represented by 3-bit binary numbers: the first bit represents the s1 trend status;

the second bit represents the s2 trend status; and the last bit represents the s1–s2 trend status. Each trend status has two possibilities of either

a non-significant trend (0) or a significant trend (1). For example, the 001 in the x axis stands for a combination of a non-significant trend (0)

in s1, non-significant trend (0) in s2, and significant trend in s1–s2 (1). Initial trends of s1 and s2 were imposed as (a) 0.00 and 0.00; (b) 0.00

and 0.12; (d) 0.12 and 0.00; and (d) 0.12 and 0.12 for each corresponding set of 1000 realizations. The trend units are ◦C per decade. The

y axis represents the number out of 1000 simulations for eight combinations of the s1, s2, and s1-s2 trend status.
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