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Abstract
High-integrity applications are safety- and security-critical applications developed for a

variety of critical tasks. The correctness of these applications must be thoroughly tested

or formally verified to ensure their reliability and robustness. The major properties to

be verified for the correctness of applications include: (1) functional properties, capturing

the expected behaviors of a software, (2) dataflow property, tracking data dependency and

preventing secret data from leaking to the public, and (3) robustness property, the ability

of a program to deal with errors during execution.

This dissertation presents and explores formal verification and proof technique, a promis-

ing technique using rigorous mathematical methods, to verify critical applications from the

above three aspects. Our research is carried out in the context of SPARK, a programming

language designed for development of safety- and security-critical applications.

First, we have formalized in the Coq proof assistant the dynamic semantics for a signifi-

cant subset of the SPARK 2014 language, which includes run-time checks as an integral part

of the language, as any formal methods for program specification and verification depend

on the unambiguous semantics of the language.

Second, we have formally defined and proved the correctness of run-time checks genera-

tion and optimization based on SPARK reference semantics, and have built the certifying

tools within the mechanized proof infrastructure to certify the run-time checks inserted by

the GNAT compiler frontend to guarantee the absence of run-time errors.

Third, we have proposed a language-based information security policy framework and

the associated enforcement algorithm, which is proved to be sound with respect to the

formalized program semantics. We have shown how the policy framework can be integrated

into SPARK 2014 for more advanced information security analysis.
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Chapter 1

Introduction

Challenges Today, more and more software-dependent applications are being developed

and they are widely used to better our life. At the same time, they may also cause disaster,

especially for those safety critical and security critical softwares used in the area of finance,

healthcare, transportation, defence and so on. Examples include password checking systems,

online shopping and banking systems, medical device coordinating systems, railway and air-

craft control systems, military system and control systems of nuclear power plants. Any

errors in these critical systems will endanger personal life safety, company financial security,

national security and environment safety. How can we prevent such catastrophic events

and trust that these critical softwares will always perform correctly? To solve this prob-

lem, stringent software certification standards have been defined for several different critical

domains (e.g., DO-178C/DO-333 for avionics, ISO 2626 for automotive, and EN50128 for

railways). In the case of avionics, DO-333, a supplement of DO-178C on formal methods,

allows testing to be partly replaced by formal verification, which has been successfully ap-

plied in some projects at Dassault-Aviation and Airbus1. These standards only provide a

guidance for software verification procedure, but concrete verification techniques completely

satisfying these standards are still a long way to go.
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Correctness Properties Critical softwares are usually developed for a variety of critical

tasks , so their correctness must be thoroughly tested or formally verified to ensure their

reliability and robustness. The major properties to be verified for the correctness of software

include: functional property, dataflow property, and robustness property.

Functional Property. It is a property about a program’s intended behaviors, which are

usually expressed with pre and post conditions. The precondition describes the condition

that must always be true for the input variables when the program is called, and the post-

condition is a condition that will always hold when the program returns. Therefore, pre and

postconditions specify a contract between a program and its users, whenever the precondi-

tion is satisfied by the users, the program will promise to always return a result satisfying

its postcondition.

Dataflow Property. It’s a property about data dependency between program input and

output variables. It can be used for code optimization (e.g. dead code detection), ensure

the property of noninterference (e.g. prevention of leaking secret information) and so on.

Robustness Property. It is a property about the ability of a program to deal with errors

during execution. One major robustness property is to ensure the absence of runtime errors,

such as divide by zero, overflow, out of range and so on. They should be handled correctly,

otherwise the program may get into abnormal state and return unexpected result.

Verification Methods Automatic methods to ensure software correctness include static

analysis, performed during compilation phase, dynamic analysis, performed during program

execution, and their combination. Static analysis techniques range from simple type checks

to sophisticated formal methods, such as data-flow analysis, Hoare logic, model checking

and symbolic execution. Contrast to dynamic analysis, such as testing which is driven by

test cases and is unlikely to cover and test all possible program behaviors, formal methods

apply rigorous mathematical approach to prove the correctness of software by building some

mathematic models for the software and using mathematic reasoning logic to reason about its

possible behaviors against some correctness constraints. Therefore, verification techniques
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based on formal methods are able to explore all possible program states and conclusively

prove the absence of certain errors.

1.1 Motivation

Formal Language Semantics Formal verification techniques applies formal methods

of mathematics to prove the correctness of programs, and all assumptions related to each

formal analysis method should be described and justified in order to make it sound. As any

formal static analysis must rely on the behavior of the language being analyzed to explore

all possible behaviors of a program, a precise and unambiguous definition of the semantics

of the language becomes clearly a requirement in the certification process. Furthermore, the

correctness of program static analysis itself and program translations can be also proved

with respect to the language semantics.

The semantics of language is so important, for both correct program execution and sound

program analysis, that all programming languages come with a reference manual defining

semantics for each language structure. However, the semantics in this form (written in

natural language descriptions) is quite informal and it may lead to semantic ambiguity

(different implementor has different interpretation). To solve this problem, it’s required

to precisely define the formal semantics for a language in a rigorous mathematical way.

Approaches to defining formal semantics of programming language include denotational

semantics, operational semantics and axiomatic semantics.

Certification of Static Analysis There are various program static analysis and veri-

fication techniques that have been proposed to automatically check the correctness of the

program with respect to the user supplied contracts. Usually, the reasoning logic and the

implementation algorithms behind these static analysis methods are assumed to be correct

and their claimed arguments for the analyzed program are trusted to be true. For critical

applications with demand of high level reliability and robustness, these assumptions should
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be justified to convince the correctness of the analysis methods themselves. More and more

researchers have realized this problem, and a promising approach is to have their correctness

formally proved within some mathematical proof tool, or even generate convincing evidence

for their claimed verification results.

Enforceable and Sound Information Security Checking Framework Information

security is concerned with confidentiality, integrity, and availability of information2. Unlike

functionality requirements defining what a software is supposed to accomplish, the require-

ments of information security is implicit. Current methodologies for software development

provide little assurance that information security requirements are satisfied. A policy speci-

fication language for information security at the source code level is needed to explicitly and

precisely specify the expected information security requirements. A security policy frame-

work, with both expressive policy specification language and enforceable policy checking

algorithm proved to be sound based on the interpretation of the programming language,

can provide a high assurance that an implementation of a program satisfies the program’s

security requirements.

Formal Verification of Robustness Critical softwares are required to be robust to

perform well not only under ordinary conditions but also under unusual conditions. The

robustness of a software is almost as important as its functionality to achieve high levels

of reliability. Sometimes, it can cause serious, even catastrophic, results. A well-known

example is the explosion of the Ariane 5 launcher on its maiden flight in 1996 because of a

software runtime error (out of range, overflow), which caused a loss of approximately DM

1200 million3. As the number and complexity of critical softwares are growing, the common

testing based verification techniques will no longer be sufficient to ensure the robustness.

While formal verification is a promising technique to enable proving the absence of errors

for softwares executing in unusual conditions.
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1.2 Related Work

In this section, we provide a survey of the work related to this dissertation, including the

efforts made towards the formalization of language semantics, state-of-the-art work on formal

verification methods, recent work on language-based information flow security policies, and

the work on assurance of absence of run-time errors.

1.2.1 Formalization of Programming Language Semantics

Much work has been done on the the formalization of programming language semantics, but

most are for toy languages for academic purposes, and it’s rare to see the formal semantics

for real programming languages. The following are the only examples that we know coming

with formal semantics.

Clight4, a large subset of the C programming language that have been formalized in the

Coq proof assistant in CompCert project5 in INRIA. CompCert6 is a formally verified C

compiler with proof of semantic preservation in program translation from source to target

language. To achieve the correctness proof of the CompCert C compiler, the formal seman-

tics of Clight and a series of intermediate languages during its translation to machine code

have been formally defined in inductive small-step relations in Coq.

Tahina Ramananandro has formalized the semantics of a small subset of C++ using

Coq, focusing on the C++ object model, including object construction and destruction7,8.

This is a work towards a formalization of a verified compiler for the object-oriented subset

of C++ within the framework of the CompCert.

The Standard ML9 is a general-purpose functional language that comes with formal

semantics in mathematical notation, where the rules of evaluation for each phrase of the

language are formally specified.

C, C++ and Standard ML are all general-purpose programming language, none of them

are designed for development of critical softwares. As far as we know, SPARK is the only
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commercially supported programming language with a set of associated verification tool

set targeted specially to the development of critical softwares. SPARK formal semantics

were previously defined for SPARK 8310,11. This definition includes both the static and the

dynamic semantics of the language based on a precise notation inspired by the Z notation.

But these semantics are manually defined on paper, no tool was used to check the soundness

of these definition. What’s more, SPARK has evolved a lot since then, so a new and more

rigorous semantic formalization for SPARK becomes imperative for machine-checkable proof

of program correctness.

1.2.2 Certified Static Analysis

We have previously developed an information flow verification framework for machine-

checked proofs of programs compliance to its information flow contract12. The relational

Hoare logic (called SIFL13) for reasoning about conditional information flow is formalized in

Coq and have been proved sound with respect to the operational semantics of programming

language. In addition, SIFL is extended to emit formal certificate of correctness claims

about information flow contracts that are checkable in Coq proof assistant.

Deng Xianghua and others have manually formalized the operational semantics of Ki-

asan, a framework for reasoning and checking program properties based on symbolic execu-

tion, and proved the relative soundness and completeness for the basic symbolic executions

by hand14,15. Besides, they have also manually formalized the test input generation algo-

rithms of KUnit16, an analysis feedback extension to Kiasan, and proved the path coverage

of KUnit algorithms.

To assure the assertions claimed at the source-language program to be held in the

machine-language program, a verified software toolchain VST17 has been developed in An-

drew Appel’s research group. The software toolchain is a set of verification and translation

tools for C programs built based on the framework of CompCert, which consists of a formally

verified static analyzer to check assertions about programs, a formally verified compiler to

6



translate to machine language, and a runtime system to support context for programs.

All of the above work are carried out as an academic research and none of these prototype

tools are actually used by the industry for the program development. A still challenging

open problem is how to integrate these certification techniques into commercially available

static analysis tools and enable them have the ability for industrial scale development and

verification.

1.2.3 Verification of Run-Time Checks

Instead of merely detecting errors, formal methods can automatically verify the presence or

absence of run-time errors. Model checking, abstract interpretation, and deductive verifi-

cation techniques are the most well-known formal methods for the verification of run-time

errors.

Model checking18 builds a model for a system and then exhaustively check whether a

given property holds in this model. Verification of run-time errors can be performed by an

exhaustive analysis of the program states to check whether there exists a state leading to

a violation of any of the run-time properties. But it suffers from state explosion problems.

Some well-known existing model checkers includes SPIN19, Bandera20, Java Path Finder

(JPF)21, Bogor22 and so on.

Abstract interpretation23 is a technique of sound abstraction of the semantics of pro-

grams, which is mainly used for formal static analysis of program behaviors. It will never

yield false negatives, but may produce false alarms (or false positives). Astree24 is one of

static analysis tools designed based on the theory of abstract interpretation, aiming at for-

mally proving the absence of run-time errors. It consists of two phases, the analysis phase is

to formally construct the set of execution traces of the program, and the verification phase is

to check that none of the program’s execution traces can reach a state triggering a run-time

error.

Deductive program verification25 consists of generating a set of mathematical proof obli-
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gations (also called verification conditions), and then discharging these obligations using

either automatic or interactive theorem provers. GNATProve for SPARK programs is one

of such tools based on deductive verification technique. For each possible run-time error,

a verification condition will be generated and then discharged by either automatic theorem

prover, e.g. Alt-Ergo26, Z327, CVC428 and others, or interactive theorem prover, e.g. Coq.

All of the above methods and tools are assuming the existence of certain frontend tool

that can tell them what kinds of run-time checks and where are they needed to be checked

under what conditions. This dependence on the frontend and the assumption of its cor-

rectness may break the verification of run-time errors. As any errors in the frontend, either

misguiding the place of run-time checks or missing some checks, will make a sound verifica-

tion into an unsound one. So a sound method is to verify the correctness of the frontend as

well.

1.2.4 Declassification Policy

In contrast to the noninterference mechanism, which is too restrictive to describe the in-

formation security requirements of real applications, declassification mechanism provides

a more flexible way for specifying, reasoning about, and enforcing information security for

practically useful information flow control systems. It allows secret information to be declas-

sified to some extent by weakening noninterference mechanism, but, at the same time, it also

ensures that the system cannot leak more secret information than intended. There has been

a lot of work on language-based security policies for enforcing declassification mechanism,

which are usually classified into four different categories by the following four dimensions:

what can be declassified, where declassification can occur, who is able to declassify informa-

tion and when its allowed to be declassified. In this section, we don’t plan to discuss them in

four different dimensions as the declassification policies usually touch multiple dimensions

and it’s hard to categorize them into exact one dimension.

Flow locks 29 introduce a very simple mechanism for specifying conditional declassifica-
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tion policies, which can specify conditions under which data may be read by certain system

principals (or security levels). In this approach, each variable is associated with a set of

system principals that can read it, and each principal can be guarded with conditions under

which the principal has the right to access to the variable’s value. The conditions for declas-

sification are represented as locks, which can be manipulated by means of special program

instructions to either open or close locks according to the changes of program state.

Nondisclosure policy 30 is a block-structured approach to dynamically manipulate flow

policies. It is a generalisation of non-interference that supports locally induced flow policies

through the use of the special construct “flow F in M ”, where F is a flow policy and M is an

expression or subprogram, meaning that M is executed in the context of current flow policy

extended with F , and the current policy is restored when the execution ofM terminates. The

flow policy F is in the form of `1 ≺ `2 , meaning declassification from security level `1 to `2,

for example, for the security levels H and L, with H > L, “flow (H ≺ L) in (yl = xh + 2 )”

is legal because the flow policy H ≺ L allows the declassification from H to L in this as-

signment.

Delimited nondisclosure policy (DND)31 uses commands of the form “declassify (exp) in {c}”

to specify what (through the value of expression exp) may be declassified in the program

c. Security domains are not explicitly mentioned in declassification commands because

implicitly a flow policy with only two domains, public and secret, is assumed.

Delimited release 32 uses so called escape hatches to indicate what may be declassified by

a program. An escape hatch has the syntax declassify(exp, d), where exp is an expression

and d is a security domain in the given flow policy. Semantically, the escape hatch specifies

that the value of exp in the initial state (i.e. before program execution begins) may be

revealed to the security domain d.

Localized delimited release 33 strengthens the demands of the delimited release by loca-

tion sensitivity. It defines the security based on low-bisimulation relations for each pair of

states in two execution traces. It collects the declassified expressions along the trace, and at
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each declassification point, check whether current two states are low equivalent when they

agree on the values of collected declassified expression up to this point.

Conditioned gradual release 34 use revealed knowledge to bound the observed knowledge

by the attacker. It defines security as what a low observer knows about the initial state by

observing the visible part of the trace should be bounded by the declassification policy. A

declassification policy (P&ψ mod x ) is checked at each declassification point to see whether

condition P is always true in current state, and what the attacker observes from current

declassification operation is bound by what are allowed to be leaked by observing the current

value of ψ.

Declassification with explicit reference points 35 uses declassification guard dguard(r , exp, d)

to specify the values that may be declassified by an expression exp and by a reference point

r. The reference point determines a set of states with the intention that the value of exp in

any of these states may be declassified to domain d. Their framework allows one to make

explicit in which states exp is evaluated to be declassified.

More others’ work on declassification policy are still going on, but few of them have ever

tried to integrate their proposed policy framework into some real programming languages

and be used for the checking of the information security for the real programs.

1.3 Contributions

This dissertation presents and explores formal methods to ensure the software correctness

properties from different aspects, and makes the following contributions towards the de-

velopment of highly reliable and robust softwares used in critical domains to increase our

confidence in their correctness.

Formalization of the Language Semantics for SPARK SPARK is a subset of Ada

programming language designed for development of safety- and security-critical applications.

Our first contribution is the formalization work towards a formal semantics for SPARK 2014,
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the latest version of SPARK with new executable specification features. In this work, we

have formalized the dynamic semantics for a core subset of the SPARK 2014 language in the

Coq proof assistant (Section 3.3). The core language subset includes scalar subtypes and

derived types, array types, record types, procedure calls, and locally defined subprograms;

a large class of programs can be desugared to this core subset, thus, enabling evaluations

on realistic SPARK systems to some extent. The formal semantics specification represents

our trust-base (along with Coq, which itself has been highly-regarded as a proof system

that has a smaller trust-base compared to others); the specification is trustable because,

for example, it has been manually inspected by leading experts in SPARK/Ada both in

industry and academia. Hence, it can be considered as the reference SPARK 2014 formal

semantics. The main novelty in our semantics formalization is the modeling of on-the-fly

run-time checks within the language semantics, which lays the foundation for our (future)

work on mechanical reasoning about the correctness of SPARK translation and analysis.

Formalization, Proof and Certification for Run-time Check Generation and Op-

timization In SPARK, the compiler (called GNAT compiler) and verification tool set

(GNATProve) are integrated seamlessly and GNAT compiler plays an important role in the

GNATProve verification architecture. For example, to prove the absence of run-time errors,

GNATProve relies on the correctness of run-time checks placement by the GNAT compiler

frontend. Our second contribution is to build a mechanized proof infrastructure to formally

certify the run-time checks within program AST produced by GNAT compiler frontend,

which includes :

– An implementation of a certified run-time check generator for the core language (Sec-

tion 4.2); that is, the implementation is proved to be consistent with the reference

semantics with respect to the class of errors that can arise in the language subset

(such as overflow checks, range checks, array index checks and division by zero checks).

The consistency guarantees that if language-defined run-time checks generated by the
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certified implementation do not fail, a program cannot “go wrong” according to the

SPARK formal semantics. The generated checks by the implementation represents the

baseline as the most conservative run-time check set (i.e., a larger set is unnecessary

and could even be problematic).

– An implementation of a certified run-time check optimizer (Section 4.3). The op-

timization is needed because the GNAT frontend employs various optimizations to

reduce the set of run-time checks that it generates for run-time efficiency sake. The

certified optimizer uses an abstract interpretation-based23 interval analysis; it gener-

ates a smaller set of run-time checks compared to the ones produced by the GNAT

frontend, while still being consistent.

– An implementation of a conformance checker as a back-end of the GNAT front-end

(including, e.g., a SPARK program translator to fully resolved SPARK ASTs in Coq)

that automates evaluations of the GNAT frontend against the certified run-time check

generators (Section 4.4). This essentially turns the industrial GNAT frontend into

a certifying1 tool with respect to introduction of run-time error check decorations.

This increases the confidence in the GNAT compiler back-end that embeds run-time

assertion checking when it emits machine code for testing, as well as in the GNAT-

prove verifier that uses the run-time check decorations to determine what verification

conditions to generate.

A Sound Information Security Policy Framework The third contribution of this

dissertation is to propose a sound information security policy framework to enforce the

safety of information flow within a system that manipulates data of different security levels,

including:

– A design of a language-based information security policy specification framework (Sec-

1 Certifying here means that the tool generates evidence testifying that it is in fact consistent with its
specification for a particular use of the tool.
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tion 5.1) to capture the desired information flow from one domain to another on the

event of certain actions, and show how the framework can be specified and integrated

into SPARK using Ada 2012 aspects decorations. It enhances SPARK current infor-

mation flow analysis with ability to declare domains and specify declassification policy

between those domains.

– A design of a static enforcement algorithm (Section 5.2) that can automatically check

whether the program conforms to the specified information security policy, it’s a type

checking system that based on type constraint generation followed by constraint solv-

ing procedure. The checking algorithm is compositional, and the verification of in-

formation security can be achieved modularly, at the level of individual subprograms,

such that a called procedure can be checked with its inferred type constraint specifi-

cation.

– Formalization of the operational semantics for programs with declassification proce-

dures and proof of the correctness of the policy enforcement algorithm with respect

to the formalized program semantics (Section 5.4).

Toolset and Evaluation We have provided a software certification and verification in-

frastructure for static analysis of SPARK programs. This infrastructure includes a toolset

for program translation and analysis, such as translator (Jago) of SPARK 2014 ASTs into

Coq ASTs, conformance checker for run-time check decorations of ASTs and the automatic

checker for information security policies. Various evaluation of our proposed formal meth-

ods have been carried out on our toolset to demonstrate their effectiveness to assure the

software certification process to build highly reliable and robust softwares.

1.4 Outline

The rest of this dissertation is organized as follows.
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Chapter 2 is a background introduction, which contains a brief tutorial on SPARK

2014, a simple introduction about program run-time errors, a simple introduction to the

information flow control techniques to ensure secure information flow of a system, and a

summary about the formalization and proof techniques with Coq.

Chapter 3 presents the formal semantics of a core subset of SPARK 2014 programming

language, including the run-time checks that are enforced by the SPARK language.

Chapter 4 provides the correctness proof for both the run-time check generation and

run-time check optimizations, and their application to certify the correctness of run-time

check decorations produced by GNAT compiler frontend.

Chapter 5 presents the proposed information security policy to be integrated into SPARK

2014 and an efficient and sound static analysis algorithm for automatic and modular en-

forcement of the proposed security policy.

Chapter 6 summarizes and discusses about future work.
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Chapter 2

Background

2.1 SPARK 2014 Language

SPARK 2014 is a programming language designed for development of high integrity softwares

with a set of associated verification tool set. It is a subset of Ada 2012 by removing some

Ada features that defy analysis and proof and at the same time adding some new Ada

aspects to support modular, constructive and formal verification. SPARK advocates the

“correctness by construction” approach, which encourages the development of programs

that are guaranteed to be correct by virtue of the techniques used in its construction. By

now, SPARK has been used by various organizations, including Rockwell Collins and the US

National Security Agency (NSA)36, to develop safety critical and security critical systems

used in the area of finance, military and aviation, such as Lockheed C130J and EuroFighter

projects37.

Some promising features of the SPARK 2014 language:

• It’s a language with unambiguous semantics, which is required to achieve sound anal-

ysis. This also makes it possible for us to develop formal semantics for SPARK and

do formal proof and verification for SPARK techniques.
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• SPARK 2014 introduced executable contract based on Ada 2012, which enables SPARK

2014 to perform both contract-based static deductive verification and contract-based,

dynamic verification of interesting properties of a program. In SPARK 2014, contract

specification language is an essential part of SPARK programming language rather

than a different annotation language separate from SPARK programming language.

This makes it natural to have program development and contract specification in the

same programming language, reflecting the philosophy of “correctness by construc-

tion”.

• SPARK 2014 supplies various aspects (e.g., Global, Depends, Pre and Post), attributes

(e.g., ’Old, ’Update) and pragmas (e.g., Assert, Assume) to specify contracts of pro-

grams.

• The associated verification tool chain for SPARK support for a mixture of proof and

other verification methods such as testing. This enables a range of static analysis,

including information-flow analysis (e.g., dependence between input and output vari-

ables), formal verification of robustness properties (e.g., overflow check), formal ver-

ification of functional properties (e.g., Pre and Post conditions) and others. That’s

one of major reasons why SPARK is suitable for development of high integrity (either

safety critical or security critical) softwares.

Syntax of Aspects (introduced in SPARK 2014)

a s p e c t s p e c i f i c a t i o n : := with aspect mark [⇒ a s p e c t d e f i n i t i o n ]

{ , aspect mark [⇒ a s p e c t d e f i n i t i o n ] }

The following are some simple SPARK examples to demonstrate how the SPARK 2014

language looks like:

Example 2.1.1 (Global Aspect)

procedure Increase By One

with Global ⇒ ( In Out ⇒ X) ;
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i s

begin

X := X + 1 ;

end Increase By One ;

The Global aspect specifies all the global variables that are accessible by the specified pro-

cedures to read and/or write.

Example 2.1.2 (Depends Aspect)

procedure Swap (X, Y : in out I n t e g e r )

with Depends ⇒ (X ⇒ Y,

Y ⇒ X) ;

i s

T : I n t e g e r ;

begin

T := X;

X := Y;

Y := T;

end Swap ;

The Depends aspect specifies a dependency relation between inputs and outputs of the

program, and the SPARK associated verification tool sets will automatically check whether

all information flow within the program implementation complies with the user specified

dependency relations.

Example 2.1.3 (Pre and Post Conditions Aspects)

function Divide (X, Y : I n t e g e r ) return I n t e g e r

with Pre ⇒ Y /= 0 and X > Integer ’ F i r s t ,

Post ⇒ Divide ’ Result = X / Y;

i s

begin

return (X / Y) ;

end Divide ;

The Pre aspect specifies the preconditions that should be always satisfied when the sub-

program (procedure or function) is called, and the Post aspect specifies the postconditions
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that are promised to hold by the subprogram on its call return. In the above example,

the preconditions ensure that the subprogram will never get into division error guarded by

condition (Y /= 0), divisor y being not equal to zero, and overflow error guarded by con-

dition (X > Integer’First) as (Integer’First / (-1)) will cause overflow. The postcondition

specifies that the subprogram Divide will always return result (X / Y) if X and Y satisfies

its preconditions.

Example 2.1.4 (Contract Cases Aspect)

function Max (X, Y : I n t e g e r ) return I n t e g e r

with Contract Cases ⇒ ( X >= Y ⇒ Max’ Result = X,

X < Y ⇒ Max’ Result = Y) ;

i s

Z : I n t e g e r := X;

begin

i f X < Y then

Z := Y;

end i f ;

return Z ;

end Max;

The Contract Cases aspect provides a structured way of defining a subprogram contract

using mutually exclusive subcontract cases. In other words, the subprogram satisfies dif-

ferent contract case under different conditions and each time only one of the conditions of

the contract case list is satisfied. In the above example, the Contract Cases specifies that

if X is greater than or equal to Y in the initial state of the program, then subprogram Max

should return the value of X, otherwise, it returns the value of Y.

A Contract Cases aspect can be used together with the Pre and Post aspects for the

same subprogram. When the subprogram is called, it must be checked that the precondition

specified by the Pre aspect is satisfied and only one of the conditions of the contract case

list holds. When the subprogram returns, the postcondition specified by the Post aspect

and the contract case under true condition should be satisfied. Contract Cases is a little

like the refinement of the Post aspect but not exactly.
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In the following example, we will show an example specified by various aspects.

Example 2.1.5 (Combination of Various Aspect)

procedure Abs (X : in I n t e g e r ; Y : out I n t e g e r )

with Global ⇒ null ,

Depends ⇒ (Y ⇒ X) ,

Pre ⇒ (X > Integer ’ F i r s t ) ,

Post ⇒ (Y >= 0) ,

Contract Cases ⇒ ( X >= 0 ⇒ Y = X,

X < 0 ⇒ Y = −X) ;

i s

begin

i f X >= 0 then

Y := X;

else

Y := −X;

end i f ;

end Abs ;

In the above example, subprogram Abs computes the absolute value of X and stores the

result in the output variable Y. The precondition (X > Integer’First) specified in Pre aspect

is to guard against the possible overflow.

2.2 Run-Time Errors

Run-time error is an error occurs during the execution of a program that prevents a program

from working correctly. Unlike stop errors, which typically cause program to stop working,

a program can continue to work after a run-time error, but in an unspecified way and the

execution result is unexpected. Therefore, many programming languages provide some run-

time check mechanism to raise run-time error exception as the executing program gets into a

run-time error state. This is sufficient in some applications, but in the domain of safety- and

security- critical applications, any of such run-time exception is undesirable and may cause

disaster, such as applications in medical device systems. It can be achieved by testing of all
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different usage scenarios before the deployment of the applications. The method of testing

can detect some run-time errors but it cannot guarantee the absence of all run-time errors,

while formal verification methods can formally verify a program to be free of run-time errors

through static analysis of all possible program states.

In Ada 201238, there are four predefined exceptions in the language:

– CONSTRAINT ERROR: raised whenever a subtype’s constraint is not satisfied or

whenever a numeric operation cannot deliver a correct result (e.g. for arithmetic

overflow, division by zero).

– PROGRAM ERROR, raised upon an attempt to call a subprogram or activate a task

when the body of the corresponding unit has not yet been elaborated.

– STORAGE ERROR: raised whenever space is exhausted.

– TASKING ERROR: raised when exceptions arise during intertask communication.

SPARK is a subset of Ada and many of run-time errors in Ada are excluded in SPARK

because of the constraints of language features in SPARK, e.g. no dynamic allocation in

SPARK, therefore no STORAGE ERROR exception. Thus the remaining main run-time

errors in SPARK are: incorrect indexing of array, writing to a variable with a value out of

the range of the variable’s type through either assignment or pass-by-value in procedure call,

overflow of an arithmetic operation with regard to the range of the target base type, and

division by zero. All of these interesting errors can be divided into three major categories:

range error, overflow error and division error. The following are some classical examples to

illustrate these kinds of run-time errors in SPARK.

Range Error

Example 2.2.1 (Incorrect Indexing of Array)

subtype IndexT i s I n t e g e r range 0 . . 10 ;

type ArrayT i s array ( IndexT ) of I n t e g e r ;

procedure Update (A: in out ArrayT ; I : in IndexT ; V: in I n t e g e r ) i s
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begin

. . .

A( I + 1) := V; −− p o s s i b l e range error ;

. . .

end Update ;

The ArrayT is defined as an array of integer type with IndexT as its indexing bound type. It

will raise range error in A(I+1) when I is 10, as the result of I+1 falls out of the range of IndexT

and will cause illegal array access.

Example 2.2.2 (Assignment Range Error)

subtype T i s I n t e g e r range 0 . . 10 ;

procedure Assign (X: in T; Y: in I n t e g e r ; Z : out T) i s

begin

. . .

Z := X + 1 ; −− p o s s i b l e range error ;

Z := Y; −− p o s s i b l e range error ;

. . .

end Assign ;

Type T is defined as a subtype of integer with range 0 to 10. For a variable Z of type T, the

assignment with X+1 will cause range error when the value of X is 10. Similarly, the range

error is raised for assignment from Y to Z whenever the value of Y goes beyond the range

between 0 and 10.

Example 2.2.3 (Procedure Call Range Error)

subtype T i s I n t e g e r range 0 . . 10 ;

procedure f (X: in T; Y: out I n t e g e r ) i s

begin

Y := X + 1 ;

end f ;

procedure g (U: in I n t e g e r ; V: out T) i s

begin

. . .

f (U, V) ; −− p o s s i b l e range error ;

. . .

end g ;
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Procedure f increases the value of X by one and assigns the result to Y, with X being a variable

of subtype T and Y being an integer, and there is no run-time error in this procedure. But,

when it’s called in procedure g with arguments U and V, it may causes range errors in two

possible places: the range error raised when passing in the value from U to X and the range

error when passing out the value from Y to V when it returns. In both cases, they try to

write to a variable with a value that maybe out of its range.

Overflow Error

Example 2.2.4 (Arithmetic Operation Overflow)

procedure f (X: in I n t e g e r ; Y: in out I n t e g e r ) i s

begin

. . .

Y := X + Y; −− p o s s i b l e o v e r f l o w error ;

. . .

Y := X / Y; −− p o s s i b l e o v e r f l o w error ;

. . .

end f ;

Overflow error happens when the resulting value of an arithmetic operation, including +, −,

∗ and /, gets out of the range of the base type integer. For example, for X/Y, the overflow

happens when X is the minimum value of integer and Y is -1.

Division Error

Example 2.2.5 (Division by Zero)

procedure f (X: in I n t e g e r ; Y: in out I n t e g e r ) i s

begin

. . .

Y := X / Y; −− p o s s i b l e d i v i s i o n error ;

. . .

Y := X mod Y; −− p o s s i b l e d i v i s i o n error ;

. . .

end f ;

The division by zero error happens whenever the divisor is zero for division operators, such

as / and mod.
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2.3 Information Security

There exist a wide range of safety- and security- critical information systems being used in

the area of finance, healthcare, military and aviation to process multi-level security data,

including password checking system, online shopping and banking system. In general, there

are three ways to protect information confidentiality and integrity. Cryptography provides a

way to hide information in data and protect data from tampering, but it’s costly and imprac-

tical to decrypt and encrypt the data each time we need to process the data. Access controls

can protect data from being read or modified by unauthorized users. However, it cannot

prevent the propagation of information after it has been released for processing by a pro-

gram. Information flow is the transfer of information from an input to an output in a

given process. It reflects an end-to-end behavior of a system and Information flow control

provides a complementary approach to track and regulate the information flow of a system

to prevent secret data from leaking into public. One promising way to ensure the secure

information flow of a system is to use noninterference, which requires that secret data may

not interfere with (or affect) public data39, as an end-to-end semantic security condition to

reason about information flow security.

However, the security requirements enforced by noninterference are too restrictive. In

fact, computing systems often need to deliberately declassify (or release) parts of its confi-

dential information, for example, in password checking system, it’s necessary to reveal some

information about the stored password, telling the user whether his input password is cor-

rect or not. Declassification of information occurs when the confidentiality of information is

decreased or become less restrictive. It’s an exception to the normal secure information flow.

The major challenge is to design an elegant declassification mechanism to precisely capture

the intentional information release and ensure that the release is safe: the attacker could

neither get around the declassification mechanism nor exploit the declassification mechanism

to reveal more secret information than intended, e.g. secret laundering. A lot of research has

been carried out in the area of declassification, and Sabelfeld and Sands40 provides a road
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map of the main declassification methods in current language-based security research and

classify them according to four dimensions: what can be declassified, where declassification

can occur, who is able to declassify information and when it’s allowed to be declassified.

2.4 Formalization and Proof in Coq

Coq is a proof assistant, which is based on the Curry-Howard correspondence (propositions-

as-types, formulas-as-types or proofs-as-programs), for interactive theorem proving. It pro-

vides a specification language called Gallina, which integrates programming and proving

within a single formal language. That’s, Gallina can be used as either a higher-ordering

functional programming language to develop normal functional programs or a logic system

to build and prove mathematical theories.

The logical foundation of Coq is the Calculus of Inductive Constructions (CIC), which

has been proved to have property of strong normalization. This is a crucial property to

ensure termination of all programs (or proofs) written in Gallina, as non-terminating pro-

grams introduce logical inconsistency, where any theorem can be proved with an infinite

loop. This is also one way to avoid the halting problem, which is common in other program-

ming languages.

Coq comes with a set of built-in automation tactics, such as intros , inversion, simpl , auto

and so on, to address a goal directly or be applied repeatedly to reduce a goal to its sub-

goals until they are completely proved. While it is possible to conduct proofs using only

those tactics, you can significantly increase your productivity by working with a set of more

powerful user-defined tactics. To do it, Coq supplies a tactic language called Ltac, which

enables users to develop powerful problem-specific tactics for domain-specific applications.

In contrast to the classical program verification method, where programs and specifi-

cations for program correctness properties are developed separately and finally a proof is

built for the programs with respect to their specifications, dependent types in Coq make it
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possible to integrate programming, specification, and proof into a single phase. It supports

to encode correctness properties and proof within types, for example, the array type with

specified array size can guarantee the absence of out-of-bounds errors. Adam Chlipala from

MIT wrote a book41 about how to develop certified programs with dependent types in Coq.

Both the classical program verification method and dependent types mechanism have their

own advantages, and it’s hard to say which one is the best choice. It totally depends on

the favor of the user which verification style he prefers, as both can achieve the same goal.

In general, dependent types work great and save effort for verification of programs manip-

ulating data structures with some invariant properties. It can automatically propagate the

invariant properties attached to data structures along the verification procedure without

assuming and proving these invariants all the way down. And in most other cases, the

classical program verification method is more convenient.

Certified Program vs Certifying Program: A certified program is the one coming with

formal mathematical artifacts (such as machine-checked proofs) that serve as evidence that

its implementation is consistent with its specification41, while a certifying program is the

one to generate evidence for another program to testify that it’s in fact consistent with its

specification for a particular use of the program.

Some of the most famous certified programs include CompCert5 and VST17 as mentioned

before. CompCert is a certified compiler that the compiler itself is proved to be correct in

Coq. VST is a certified software verification toolchain built based on top of CompCert that

targets to prove the correctness of the whole software toolchain in Coq from source code

analyzer to program translator and the program supporting context. Furthermore, as part

of the VST project, researchers even developed a certified theorem prover, called VeriStar42,

for a decidable subset of separation logic. All these certified programs can guarantee the

correctness of the program verified at the source code level can still hold at the machine

code level.

Usually, it’s much easier to check the output of the program than verifying the correct-
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ness of the program itself. Certifying program is built based on this idea such that the

program itself is not necessarily to be correct but it can generates a certified output, such

as certifying compiler43. It constructs proof for the compiled program, with the proof to be

easily checked by the program consumer, thus the output of the certifying compiler is also

called proof-carrying code44. Proof-carrying code establishes the trust between the program

consumer and its producer, which is important to convince the consumer that the foreign

program is safe to execute, particularly in distributed and web computing where mobile

code is allowed. A lot of work on certifying compiler focus on type-safety properties that

it constructs proofs of type safety for programs with respect to some typing rules. How-

ever, it’s difficult to automatically build proof for more advanced correctness and security

properties for a program with certifying compiler.
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Chapter 3

Formal Semantics of SPARK 2014

One main contribution of this thesis is a formal language reference semantics of core SPARK

2014 defined using the Coq proof assistant45; Coq allows for specifying, implementing, and

proving programming language related properties. We chose Coq due to the fact that it has

a relatively small core which has been vetted by many experts in the programming language

community (small trust-base).

The core language includes features typically found in imperative languages such as

arrays, records, and procedure calls, as well as SPARK-specific structures, such as nested

procedures and subtypes. In Ada programming language, it has introduced four categories

of predefined exceptions that may be raised during the program execution. As a subset of

Ada, the exceptions that may occur in SPARK are referred as run-time errors. One major

difference between SPARK and other programming languages (e.g., C) is that verification

for absence of run-time errors is required by the semantics of the language itself. Thus,

our reference semantics perform the required run-time checks; that is, run-time checks are

enforced at appropriate points during the program execution, and the program will terminate

with a run-time error message as soon as one of its run-time checks fails.

The formalization includes: (a) a SPARK AST representation (symbols and types are

fully resolved), and (b) SPARK evaluation semantics (including, e.g., state/value represen-
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tations, expression evaluation, and statement execution).

3.1 Syntax of Core SPARK 2014

Figures 3.1, 3.2 and 3.3 show the syntax of core SPARK that we have formalized in Coq.

The syntax is given according to both SPARK 2014 and Ada 2012 reference manuals, and

we have ignored some trivial details, e.g., numeric literal denoting the integer literals.

In Figure 3.1, a SPARK program compilation is constructed from a set of compilation units

compilation unit that can be separated compiled. A library item is a compilation unit that’s the

body of a library unit library unit body. A subprogram body specifies the execution of a subprogram

and it’s an implementation of the library unit body.

Subprogram is a procedure that can have side effects to externally visible variables

through either output parameters or global variables. SPARK supports three access modes:

in, out and in out. A parameter with in mode is readable only, out means writable only, and

in out means both readable and writable. By default, the mode of parameter is in. Within

the declarative part of the procedure body, the user can declare new objects (e.g., integer

variable) through object declaration, new types (e.g., subtype, array and record type) through

subtype declaration and type declaration, or even nested procedures. A derived type defined with

derived type definition is a new type created from an existing one (e.g., type T is new Integer range 1 .. 5).

A procedure implementation body contains a sequence of statements handled sequence of statements,

which can be either simple statement simple statement (e.g., assignment assignment statement) or

compound statement compound statement (e.g., if statement if statement and loop statement loop statement).

An expression expression can be integer/boolean constant ( numeric literal ), variable, or nested ar-

ray or record (name).

For example, the following procedure Factorial defines a subprogram body, which can work as

a compilation unit. The procedure name Factorial corresponds to the defining program unit name

in the syntax, and the parameters M and N are its parameter profile. The local declarations
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compi la t ion : := { co mp i l a t i on un i t }

co mp i l a t i on un i t : := l i b r a r y i t e m

l i b r a r y i t e m : := l i b r a r y u n i t b o d y

l i b r a r y u n i t b o d y : := subprogram body

subprogram body : :=
s u b p r o g r a m s p e c i f i c a t i o n i s

d e c l a r a t i v e p a r t
begin

hand l ed sequence o f s ta t ement s
end ;

s u b p r o g r a m s p e c i f i c a t i o n : :=
p r o c e d u r e s p e c i f i c a t i o n

p r o c e d u r e s p e c i f i c a t i o n : :=
procedure de f in ing program unit name p a r a m e t e r p r o f i l e

de f in ing program unit name : := d e f i n i n g i d e n t i f i e r

p a r a m e t e r p r o f i l e : := [ f o rma l pa r t ]

f o rma l pa r t : :=
( p a r a m e t e r s p e c i f i c a t i o n { ; p a r a m e t e r s p e c i f i c a t i o n })

p a r a m e t e r s p e c i f i c a t i o n : :=
d e f i n i n g i d e n t i f i e r l i s t : mode subtype mark

mode : := [ in ] | in out | out

d e f i n i n g i d e n t i f i e r l i s t : :=
d e f i n i n g i d e n t i f i e r { , d e f i n i n g i d e n t i f i e r }

d e f i n i n g i d e n t i f i e r : := i d e n t i f i e r

subtype mark : := subtype name

Figure 3.1: Core SPARK Syntax (Part 1)

29



d e c l a r a t i v e p a r t : := { d e c l a r a t i v e i t e m }

d e c l a r a t i v e i t e m : :=
b a s i c d e c l a r a t i v e i t e m | subprogram body

b a s i c d e c l a r a t i v e i t e m : := b a s i c d e c l a r a t i o n

b a s i c d e c l a r a t i o n : :=
t y p e d e c l a r a t i o n | s u b t y p e d e c l a r a t i o n

| o b j e c t d e c l a r a t i o n

t y p e d e c l a r a t i o n : := f u l l t y p e d e c l a r a t i o n

s u b t y p e d e c l a r a t i o n : :=
subtype d e f i n i n g i d e n t i f i e r i s s u b t y p e i n d i c a t i o n

f u l l t y p e d e c l a r a t i o n : :=
type d e f i n i n g i d e n t i f i e r i s t y p e d e f i n i t i o n

t y p e d e f i n i t i o n : :=
i n t e g e r t y p e d e f i n i t i o n

| a r r a y t y p e d e f i n i t i o n
| r e c o r d t y p e d e f i n i t i o n
| d e r i v e d t y p e d e f i n i t i o n

hand l ed sequence o f s ta t ement s : := sequence o f s t a t ement s

s equence o f s t a t ement s : := statement { statement }

statement : := s imple s tatement | compound statement

s imple s tatement : := nu l l s t a t ement
| ass ignment statement
| p r o c e d u r e c a l l s t a t e m e n t

compound statement : :=
i f s t a t e m e n t

| l oop statement

Figure 3.2: Core SPARK Syntax (Part 2)
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ass ignment statement : := name := expr e s s i on ;

p r o c e d u r e c a l l s t a t e m e n t : := procedure name ac tua l pa ramete r pa r t ;

i f s t a t e m e n t : :=
i f cond i t i on then

s equence o f s t a t ement s
[ else

s equence o f s t a t ement s ]
end i f ;

l oop statement : :=
while cond i t i on loop

s equence o f s t a t ement s
end loop ;

name : := i d e n t i f i e r
| indexed component
| se l ected component

exp r e s s i on : := r e l a t i o n {and r e l a t i o n } | r e l a t i o n {or r e l a t i o n }

indexed component : := p r e f i x ( exp r e s s i on { , e xp r e s s i on })

se l ected component : := p r e f i x . i d e n t i f i e r

p r e f i x : := name

r e l a t i o n : := s i m p l e e x p r e s s i o n [ r e l a t i o n a l o p e r a t o r s i m p l e e x p r e s s i o n ]

s i m p l e e x p r e s s i o n : :=
[ unary add ing operator ] term { b ina ry add ing ope ra to r term}

term : := f a c t o r {m u l t i p l y i n g o p e r a t o r f a c t o r }

f a c t o r : := primary | not primary

primary : := n u m e r i c l i t e r a l | name | ( exp r e s s i on )

Figure 3.3: Core SPARK Syntax (Part 3)
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of Result and T are the declarative part of the procedure and handled sequence of statements is the

implementation body of the procedure specified in between begin and end .

procedure F a c t o r i a l (N : in I n t e g e r ; M : out I n t e g e r )

i s

Result : I n t e g e r := 1 ;

T: I n t e g e r ;

begin

T := N;

while T > 0 loop

Result := Result ∗ T;

T := T − 1 ;

end loop ;

M := Result ;

end F a c t o r i a l ;

This is a core subset of SPARK 2014 that the other SPARK language features can also be

translated and represented with this core subset. Formalization of the language semantics

is discussed in detail in the following sections.

3.2 Run-Time Checks

SPARK defines a set of run-time checks to be inserted and verified during the program

certification process and guarantee that for all possible execution of SPARK program, it’s

impossible for the checks to be violated. For the core SPARK 2014, we mainly focus on the

the following widely used and highly important run-time checks as required to be enforced

by SPARK reference manual.

• Overflow Check: this is a check for an operator where its operation may cause overflow

or underflow, such as binary operators (+, -, *, /) and unary operator (-).

• Division Check: this is check for division operators, such as (/, mod), to indicate a

zero divide check.
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• Range Check: this is a check for an expression whose computed value must fall within

the target type range of the context, such as the right hand side expression of an

assignment with its left hand side being some variable of integer subtype, subscript

expression in an indexed component, argument expressions for a procedure call and

initialization value expression for an object declaration where the types of their target

variables are some range constrained ones.

3.3 Formal Language Semantics

3.3.1 SPARK AST Representation

SPARK ASTs are represented using inductive type definitions in Coq, as shown in Fig-

ures 3.4 and 3.5, where each constructor of the type definitions is annotated with a unique

AST number. The AST numbers are useful as keys for source location, symbol, and type

tables. For example, the following inductively defines an expression:

Inductive expr : Type := BinOp : astnum −> binop −> expr −> expr −> expr

| . . .

where BinOp is the constructor for binary expression from two sub-expressions and one

binary operator, labeled with a unique AST number. As an example, the following shows

the Coq AST for the binary expression Result * T , where 25 is its astnum and 26 and 28 are

the astnum for both sub-expressions Result and T and Multiply is a binop to denote the operator

*. The BinOP is a Coq AST constructor to bind all these elements together to specify the

multiplication expression and comments in Coq are enclosed between (* and *).

(BinOp 25 Mult ip ly

(Name 26 ( I d e n t i f i e r 27 ( (∗Resu l t ∗) 5) ) )

(Name 28 ( I d e n t i f i e r 29 ( (∗T∗) 6) ) ) )

For any SPARK program, all of its used names can be represented as natural numbers in

Coq, including variable name, type name, procedure name and others, as long as the number

is a unique representation of that name, e.g., 5 representing Result in the above example.
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Definition astnum := nat .
Definition idnum := nat .
Definition procnum := nat .
Definition typenum := nat .

Inductive l i t e r a l : Type :=
| I n t e g e r L i t e r a l : Z −> l i t e r a l
| B o o l e a n L i t e r a l : bool −> l i t e r a l .

Inductive exp : Type :=
| L i t e r a l : astnum −> l i t e r a l −> exp
| Name : astnum −> name −> exp
| BinOp : astnum −> binop −> exp −> exp −> exp
| UnOp: astnum −> unop −> exp −> exp

with name : Type :=
| I d e n t i f i e r : astnum −> idnum −> name
| IndexedComponent : astnum −> name −> exp −> name
| SelectedComponent : astnum −> name −> idnum −> name .

Inductive stmt : Type :=
| Null : stmt
| Assign : astnum −> name −> exp −> stmt
| I f : astnum −> exp −> stmt −> stmt −> stmt
| While : astnum −> exp −> stmt −> stmt
| Cal l : astnum −> astnum −> procnum −> l i s t exp −> stmt
| Seq : astnum −> stmt −> stmt −> stmt .

Inductive type : Type :=
| Boolean
| I n t e g e r
| Subtype ( t : typenum )
| Derived Type ( t : typenum )
| Integer Type ( t : typenum )
| Array Type ( t : typenum )
| Record Type ( t : typenum ) .

Figure 3.4: SPARK AST in Coq (Part 1)
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Inductive range : Type := Range ( l : Z) (u : Z ) .

Inductive typeDecl : Type :=
| SubtypeDecl :

astnum −> typenum −> type −> range −> typeDecl
| DerivedTypeDecl :

astnum −> typenum −> type −> range −> typeDecl
| IntegerTypeDecl :

astnum −> typenum −> range −> typeDecl
| ArrayTypeDecl :

astnum −> typenum −> type −> type −> typeDecl
| RecordTypeDecl :

astnum −> typenum −> l i s t ( idnum ∗ type ) −> typeDecl .

Record objDecl : Type := mkobjDecl{
dec la rat ion astnum : astnum ;
object name : idnum ;
ob jec t nomina l subtype : type ;
i n i t i a l i z a t i o n e x p r e s s i o n : opt ion ( exp ) } .

Record paramSpec : Type := mkparamSpec{
parameter astnum : astnum ;
parameter name : idnum ;
parameter subtype mark : type ;
parameter mode : mode } .

Inductive dec l : Type :=
| Nul lDecl : d e c l
| TypeDecl : astnum −> typeDecl −> dec l
| ObjDecl : astnum −> objDecl −> dec l
| ProcBodyDecl : astnum −> procBodyDecl −> dec l
| SeqDecl : astnum −> dec l −> dec l −> dec l

with procBodyDecl : Type :=
mkprocBodyDecl

( procedure astnum : astnum )
( procedure name : procnum )
( p r o c e d u r e p a r a m e t e r p r o f i l e : l i s t paramSpec )
( p r o c e d u r e d e c l a r a t i v e p a r t : d e c l )
( procedure s tatements : stmt ) .

Figure 3.5: SPARK AST in Coq (Part 2)
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To be more precise, instead of sharing the same natural number domain for all different

names, we use idnum as natural number domain for variable names, procnum for procedure

names, and typenum for type names. In other words, different types of names can share the

same number but they are differentiated with respect to different semantic domains. For

example, given the following SPARK program:

type T i s range 0 . . 10 ;

. . .

procedure I n c r e a s e (X : in out T) i s

begin

X := X + 1 ;

end I n c r e a s e ;

its Coq AST is represented as:

( TypeDecl 4 ( IntegerTypeDecl 5 ( (∗T∗) 1) ( Range 0 10 ) ) )

. . .

( ProcBodyDecl 1

( mkprocBodyDecl 2

(∗ = = = Procedure Name = = = ∗)

( (∗ Increase ∗) 1)

(∗ = = = Formal Parameters = = = ∗)

(

( mkparamSpec 3 ( (∗X∗) 1) I n t e g e r In Out ) : : n i l )

(∗ = = = Object Dec lara t ions = = = ∗)

. . .

(∗ = = = Procedure Body = = = ∗)

. . .

)

)

where the type name T , procedure name Increase and parameter name X are all repre-

sented as number 1 , which is allowed as they appear in different semantics domains. The

1 in constructor IntegerTypeDecl distinguishes with the 1 in constructors mkprocBodyDecl and

mkparamSpec.

Our formalized SPARK subset supports two kinds of literals, as defined as literal type,

where Integer Literal is the constructor for integer literal and Boolean Literal for boolean literal.
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Expressions includes literal, binary expression, unary expression, nested array and record

access and so on, which is defined as exp and name types. Statement statement includes assign-

ment, conditional statement, while loop and procedure call.

SPARK supports range constrained scalar (integer) types that are useful as array index

types; that is, the range constraints are used to determine in-bounds/out-of-bounds array

operations (instead of using a special . length field such as in Java). Range constrained types

can be declared using either a subtype declaration (e.g., subtype T10 is Integer range 1 .. 10), a

derived type definition (e.g., type U10 is new Integer range 1 .. 10), or an integer type definition (e.g.,

type W10 is range 1 .. 10); they semantically differ in that the last two introduce a new type, while

the first one does not; the differences have to be taken into account in the formalization. This

illustrates the non-trivial number of language features that one has to cover when formalizing

a real programming language that can be directly leveraged for developing high-integrity

industrial tools. In Coq, these range constrained types can be defined with type declaration,

for example, Subtype Declaration is the constructor for subtype declaration, where typenum is the

declared subtype name, type is its parent type name, range specifies the range of the declared

subtype. Array Type Declaration is the constructor for declaring new array type, where typenum is

the declared array type name, the first type denotes array index subtype mark and the second

type denotes array component type; Record Type Declaration is the constructor for declaring new

record type, where typenum is the declared record type name and list (idnum ∗ type) defines a list

of record fields.

Besides the declaration of new types, user can define new objects, such as declaration of

variables, and it even supports the declaration of nested procedures to enable new procedure

to be defined and used within the scope of the enclosing procedure. Type declaration is defined

for such purpose with support for declaration of various types, objects and procedures.
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3.3.2 State/Value

Due to the run-time checks, evaluating either an expression or a statement may produce

an error state when the run-time check fails (otherwise a value or a state is produced,

respectively), which is captured using the following generic inductive type:

Inductive Ret (A: Type ) : Type := OK: A −> Ret A

| RTE: errorType −> Ret A.

Type parameter A is either the value/state type, and errorType is the run-time error state

type (e.g., division by zero, overflow, out of range), which are defined as following:

Inductive value : Type :=

| Undefined

| Int (n : Z)

| Bool (n : bool )

| ArrayV ( a : l i s t ( a r r index ∗ value ) )

| RecordV ( r : l i s t ( idnum ∗ value ) ) .

The value of an uninitialized variable is labeled as Undefined. ArrayV represents the array object

and RecordV represents record object.

Definition s t o r e : Type := l i s t ( idnum ∗ value ) .

Definition s t a t e := l i s t s t o r e .

The state is a stack of frames, which is represented as a list of store to capture the mapping

from variable id to value.

Inductive errorType : Type :=

| Div i s ion By Zero

| Overflow

| Out Of Range .

The errorType represents the three categories of run-time errors to be modeled in the SPARK

language semantics.

3.3.3 Expression Semantics

The expression operational semantics are defined by the inductive types given below. They

are complicated by the fact that sub-expression evaluation can produce an error state. In
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Coq, inductive types are used for mathematical constructions of a collection of objects.

Here, we apply the inductive types for constructing evaluation rules for expressions (or

programs), which inductively defines the computation relationships between the resulting

values (or states) and the expression (or program) to be evaluated under certain states.

Inductive evalExp : symTable −> s t a t e −> expr −> Ret value −> Prop :=

EvalBinOpE1 RTE : f o r a l l s t s e1 msg n op e2 ,

evalExp s t s e1 (RTE msg) −>

evalExp s t s (BinOp n op e1 e2 ) (RTE msg)

| EvalBinOpE2 RTE : f o r a l l s t s e1 v1 e2 msg n op ,

evalExp s t s e1 (OK v1 ) −> evalExp s t s e2 (RTE msg) −>

evalExp s t s (BinOp n op e1 e2 ) (RTE msg)

| EvalBinOp : f o r a l l s t s e1 v1 e2 v2 op v n ,

evalExp s t s e1 (OK v1 ) −> evalExp s t s e2 (OK v2 ) −> evalBinOp op v1 v2 v −>

evalExp s t s (BinOp n op e1 e2 ) v

. . .

Inductive evalBinOp : BinOp −> value −> value −> Ret value −> Prop :=

CheckBinops : f o r a l l op v1 v2 v v ’ ,

op = Add \/ op = Sub \/ op = Mul −>

Denotat iona l . binOp op v1 v2 = Some ( Int v ) −> overf lowCheck v v ’ −>

evalBinOp op v1 v2 v ’

| CheckDivRTE : f o r a l l v1 v2 ,

divCheck v1 v2 (RTE Div i s ion By Zero ) −>

evalBinOp Div ( Int v1 ) ( Int v2 ) (RTE Div i s ion By Zero )

| CheckDiv : f o r a l l v1 v2 v v ’ ,

divCheck v1 v2 (OK ( Int v ) ) −> overf lowCheck v v ’ −>

evalBinOp Div ( Int v1 ) ( Int v2 ) v ’

. . .

EvalBinOpE1 RTE specifies the evaluation of a binary expression (e1 op e2) where the evaluation

of e1 produces an error state (similarly, EvalBinOpE2 RTE for when e2 fails). EvalBinOp specifies

the situation where evaluations of both e1 and e2 produce operand values, which are then

evaluated using evalBinOp; evalBinOp incorporates various run-time checks such as division by

zero and overflow checks by using divCheck and overflowCheck; divCheck produces a value if the

second operand is non-zero (otherwise, it produces the error state RTE Division By Zero), and

overflowCheck produces a value if the given value fits within the (platform) integer type value
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range (otherwise, it produces RTE Overflow). Run-time checks for other language features such

as array indexing are specified in the same spirit as the above, but in some cases, it requires

to enforce more language specific run-time checks, such as range check for array indexing.

The following is the formalization of name evaluation for both accessing array component

and record field.

Inductive evalName : symTable −> s t a t e −> name −> Ret value −> Prop :=

| EvalIndexedComponentX RTE : f o r a l l s t s x msg ast num e ,

evalName s t s x (RTE msg) −>

evalName s t s ( Indexed Component ast num x e ) (RTE msg)

| EvalIndexedComponentE RTE : f o r a l l s t s x a e msg ast num ,

evalName s t s x (Ok ( ArrayV a ) ) −>

evalExp s t s e (RTE msg) −>

evalName s t s ( Indexed Component ast num x e ) (RTE msg)

| EvalIndexedComponent RTE : f o r a l l s t s x a e i t l u ast num ,

evalName s t s x (Ok ( ArrayV a ) ) −> valExp s t s e (Ok ( Int i ) ) −>

f e t c h e x p t y p e ( name astnum x ) s t = Some ( Array Type t ) −>

e x t r a c t a r r a y i n d e x r a n g e s t t ( Range l u) −>

rangeCheck i l u (RTE Out Of Range ) −>

evalName s t s ( Indexed Component ast num x e ) (RTE Out Of Range )

| EvalIndexedComponent : f o r a l l s t s x a e i t l u v ast num ,

evalName s t s x (Ok ( ArrayV a ) ) −> evalExp s t s e (Ok ( Int i ) ) −>

f e t c h e x p t y p e ( name astnum x ) s t = Some ( Array Type t ) −>

e x t r a c t a r r a y i n d e x r a n g e s t t ( Range l u) −>

rangeCheck i l u (Ok ( Int i ) ) −>

a r r a y s e l e c t a i = Some v −>

evalName s t s ( Indexed Component ast num x e ) (Ok v )

| EvalSelectedComponentX RTE : f o r a l l s t s x msg ast num f ,

evalName s t s x (RTE msg) −>

evalName s t s ( Selected Component ast num x f ) (RTE msg)

| EvalSelectedComponent : f o r a l l s t s x r f v ast num ,

evalName s t s x (Ok ( RecordV r ) ) −>

r e c o r d s e l e c t r f = Some v −>

evalName s t s ( Selected Component ast num x f ) (Ok v )

. . .

EvalIndexedComponentX RTE specifies the evaluation of an array component accessing (x(e)) where

the evaluation of the array x produces an error state, and EvalIndexedComponentE RTE for the
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case when the evaluation for indexing expression e fails. In the evaluation for array indexed

component, an additional range check is required to be performed according to the index

type of the array, which is fetched from a preconstructed symbol table. EvalIndexedComponent RTE

is the evaluation rule for the case when the value of e falls out of the range of array indexing

type t and throws out an Out Of Range error, while EvalIndexedComponent specifies the run-time

error free evaluation of array indexing. The evaluation of record field accessing (r . f) is

similar, it returns with a run-time error whenever the evaluation of record r fails, as specified

with EvalSelectedComponentX RTE, otherwise, returns the value of the specified record field with

EvalSelectedComponent.

3.3.4 Statement Semantics

For the semantics of statement, range checks are enforced during statement executions of,

for example, assignments and procedure calls. We describe the intuition behind statement

semantic rules using examples before giving their formal semantics in Coq.

For an assignment, range check is enforced for its right hand side expression if the left

hand side expression’s type is a range constrained type. For example,

subtype MyInt i s I n t e g e r range 1 . . 10 ;

X: MyInt ;

. . . ;

X := X + 1 ;

That is, X is a variable of type MyInt, which is defined as a subtype of Integer ranging from 1

to 10. The assignment increments X by 1, as follows. First, X + 1 is evaluated; if it returns

a value (instead of an error state), the value is checked against the range of MyInt before

updating X.

For a procedure call, range checks are required for both input arguments and output

parameters if the types of input parameters and output arguments are range constrained

types because input arguments are assigned to the procedure input parameters, and output

arguments are assigned to the output parameters. For example,
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procedure f oo (U: In MyInt , V: Out I n t e g e r ) i s

begin

V := U + 1 ;

end f oo ;

X: I n t e g e r ;

Y: MyInt ;

. . . ;

f oo (X, Y) ;

The procedure foo has one input parameter U and one output parameter V. When foo(X, Y);

is executed, the value of X (whose type is the general Integer type) is checked against MyInt’s

range first. Similarly, a range check is enforced when assigning the value of V to Y once foo

finishes executing.

The formal semantics for statement is defined as following:

Inductive evalStmt : symTable −> s t a t e −> statement −> Ret s t a t e −> Prop :=

| EvalAssignE RTE : f o r a l l s t s e msg ast num x ,

evalExp s t s e (RTE msg) −>

evalStmt s t s ( Assign ast num x e ) (RTE msg)

| EvalAssign : f o r a l l s t s e v x t s1 ast num ,

evalExp s t s e (Ok v ) −>

f e t c h e x p t y p e ( name astnum x ) s t = Some t −>

i s r a n g e c o n s t r a i n t e d t y p e t = f a l s e −>

storeUpdate s t s x v s1 −>

evalStmt s t s ( Assign ast num x e ) s1

| EvalAssignRange RTE : f o r a l l s t s e v x t l u ast num ,

evalExp s t s e (Ok ( Int v ) ) −>

f e t c h e x p t y p e ( name astnum x ) s t = Some t −>

ex t ra c t subtype range s t t ( Range l u) −>

rangeCheck v l u (RTE Out Of Range ) −>

evalStmt s t s ( Assign ast num x e ) (RTE Out Of Range )

| EvalAssignmentRange : f o r a l l s t s e v x t l u s1 ast num ,

evalExp s t s e (Ok ( Int v ) ) −>

f e t c h e x p t y p e ( name astnum x ) s t = Some t −>

ex t ra c t subtype range s t t ( Range l u) −>

rangeCheck v l u (Ok ( Int v ) ) −>

storeUpdate s t s x ( Int v ) s1 −>

evalStmt s t s ( Assign ast num x e ) s1

. . .
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The inductive type evalStmt specifies the evaluation semantics for statement that trans-

lates an initial state from one normal state to another normal or run-time error state.

EvalAssignE RTE is the evaluation rule for assignment (Assign ast num x e) when the evaluation of

the right hand side expression e gets into run-time error state, which is propagated as the

final state of assignment evaluation. EvalAssign gives the evaluation semantics for a normal

assignment to a non-range-constrainted variable by first evaluating the value of e and then

using it to update the state of x with storeUpdate operation, where fetch exp type returns the type

of x and is range constrainted type is a function to check whether it’s a range constrainted type.

EvalAssignRange RTE defines the evaluation semantics for assignment to range-constrainted vari-

able and it returns an Out Of Range error when the value of the right hand side expression e

goes beyond the allowed value range of the left hand side name x, while EvalAssignmentRange is

for the case when both the evaluation of e and the range check of its value against type of x

are all Ok. storeUpdate is used to update the value of a name, which can be either a variable,

array indexed component or record selected component, with its formal semantics defined

as the following:

Inductive storeUpdate : symTable −> s t a t e −> name −> value −> Ret s t a t e −> Prop

:= | S U I d e n t i f i e r : f o r a l l s x v s1 s t ast num ,

update s x v = Some s1 −>

storeUpdate s t s ( I d e n t i f i e r ast num x ) v (Ok s1 )

| SU IndexedComponentX RTE : f o r a l l s t s x msg ast num e v ,

evalName s t s x (RTE msg) −>

storeUpdate s t s ( Indexed Component ast num x e ) v (RTE msg)

| SU IndexedComponentE RTE : f o r a l l s t s x a e msg ast num v ,

evalName s t s x (Ok ( ArrayV a ) ) \/ evalName s t s x (Ok Undefined ) −>

eva l exp r s t s e (RTE msg) −>

storeUpdate s t s ( Indexed Component ast num x e ) v (RTE msg)

| SU IndexedComponent RTE : f o r a l l s t s x a e i t l u ast num v ,

evalName s t s x (Ok ( ArrayV a ) ) \/ evalName s t s x (Ok Undefined ) −>

eva l exp r s t s e (Ok ( Int i ) ) −>

f e t c h e x p t y p e ( name astnum x ) s t = Some ( Array Type t ) −>

e x t r a c t a r r a y i n d e x r a n g e s t t ( Range l u) −>

do range check i l u (RTE Out Of Range ) −>

storeUpdate s t s ( Indexed Component ast num x e ) v (RTE Out Of Range )
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| SU IndexedComponent : f o r a l l s t s x arrObj a e i t l u v a1 s1 ast num ,

evalName s t s x (Ok arrObj ) −>

arrObj = ( ArrayV a ) \/ arrObj = Undefined −>

eva l exp r s t s e (Ok ( Int i ) ) −>

f e t c h e x p t y p e ( name astnum x ) s t = Some ( Array Type t ) −>

e x t r a c t a r r a y i n d e x r a n g e s t t ( Range l u) −>

do range check i l u (Ok ( Int i ) ) −>

arrayUpdate arrObj i v = (Some ( ArrayV a1 ) ) −>

storeUpdate s t s x ( ArrayV a1 ) s1 −>

storeUpdate s t s ( Indexed Component ast num x e ) v s1

. . .

SU Identifier is a rule for state update of a variable x in state s with some value v, which re-

sults in a new state s1. The state update to an array indexed component (Indexed Component ast num x e)

by some new value v is a little complex. The storeUpdate terminates in an error state whenever

the evaluation of x, or the evaluation of e, or the range check of the indexing expression

get into an error state, as specified by SU IndexedComponentX RTE, SU IndexedComponentE RTE and

SU IndexedComponent RTE separately. SU IndexedComponent updates the state of x with new value v

when it passes all kinds of required run-time checks for its subexpressions. The storeUpdate

for nested array and record is defined recursively. For example, if x is a field of a record r

and it’s a variable of array, to update the value of r .x(1) with value v, first, 1) we have to

read the array value of x from the record r, then update it with the value v, then, 2) read

the record value of r, and update it with new array value for its field x, and finally, 3) write

back the updated record value to the store for r.

3.3.5 Declaration Semantics

For an object declaration, range check is required for the value of its initialization expression

if its declared type is a range constrained type. Other declarations, such as type declaration

and procedure declaration, should have no effect on program execution state.
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3.3.6 Evaluation

The main evaluation mechanism that we used to assess the integrity of the mechanized

semantics was through manual inspection by various experts including SPARK/Ada de-

signers/developers. Moreover, we have proved that the SPARK formal semantics enjoys a

form of type safety (Section 4.3), which guarantees, to some extent, its internal consistency.

Furthermore, we double checked the semantics against the SPARK46 and Ada38 reference

manuals, as well as against the GNAT compiler by probing it on some test programs and

experiments (Section 4.4).
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Chapter 4

Run-Time Check Certification

4.1 Architecture

Figure 4.1 gives an architectural overview of our approach; the subsequent sections will

describe each of the components.

4.2 Certified Run-Time Check Generator

Given a SPARK program, the GNAT compiler front-end builds the program fully-resolved

(symbol/type) AST decorated with flags that indicate the position and nature of the run-

time checks to be performed. When down-stream tools process the ASTs, they interpret or

transform the decorations. For example, a later phase of the GNAT compiler replaces each

decoration with an assertion AST representing code that implements the corresponding run-

time check. In contrast, the Why347-based GNATprove verification tool uses the decorations

to generate verification conditions. Both tools assume that the run-time check decorations

inserted by the GNAT compiler front-end are correct.

To formally capture the notion of decorating ASTs with run-time check information, we

implemented in Coq a run-time check decoration generator (RT-GEN in Figure 4.1) whose
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Figure 4.1: Architectural Overview

consistency with the mechanized SPARK reference semantics was established via a Coq

proof. Hence, the correctness of RT-GEN is certified. To achieve this, a different set of

operational semantic rules is needed (called EVAL-RT) – one that “evaluates” an AST with

run-time check decorations and only enforces the checking semantics where a decoration

occurs. Then, one can prove that, for any program and for any program initial state, EVAL-

RT supplied with run-time check decorations generated by RT-GEN produces exactly the

same state as EVAL (i.e., the SPARK reference semantics).

There are many ways one can engineer EVAL-RT and RT-GEN. One way is to create EVAL-

RT by modifying EVAL to accept a table that maps astnum to a collection of run-time checks

and then have RT-GEN generate such a table. Another way is to define a new AST type

(AST-RT) that explicitly holds run-time decorations as attributes, and RT-GEN transforms

EVAL’s AST to AST-RT. We developed both; perhaps surprisingly, the consistency proof is
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shorter in the latter case (the former is more general/extensible, hence, more complex).

Thus, for simplicity, we present the latter here.

EVAL-RT: is a modified EVAL that accepts AST-RT where run-time check decorations are

represented as tree attributes. For example, AST-RT expression is defined as follows.

Inductive expRT : Type :=

| BinOpRT : astnum→ binOp→ expRT→ expRT→

i n t e r i o r C h e c k s → exte r i o rChecks → expRT

| . . .

The difference from AST is that two additional fields interiorChecks and exteriorChecks are

introduced; interiorChecks are intended for run-time checks associated with the binary oper-

ator (e.g., addition requires overflowCheck), while exteriorChecks are checks associated with

expression’s context (e.g., if the expression is used for array indexing, then it should be

range-checked against the array size). Once AST-RT is defined, one can then define EVAL-RT

that accepts AST-RT and enforces the explicitly listed run-time checks (e.g., in interiorChecks

and exteriorChecks), as illustrated below.

Inductive evalExpRT :

symTabRT→ s t a t e → expRT→ Ret value → Prop :=

(∗ r u l e : no er ror from e1 & e2 e v a l u a t i o n s ∗)

| EvalBinOpRT : ∀ s t s e1 v1 e2 v2 i n s op v n exs ,

(∗ e v a l u a t e args ∗)

evalExpRT s t s e1 (OK v1 ) →

evalExpRT s t s e2 (OK v2 ) →

(∗ pr oces s RT checks ∗)

evalBinOpRTS i n s op v1 v2 v→

evalExpRT s t s (BinOpRT n op e1 e2 i n s exs ) v

. . .
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Inductive evalBinOpRTS : checkFlags → binOp→

value → value → Ret value → Prop :=

(∗ r u l e : done wi th checks , perform op ∗)

| CheckBinOpNil : ∀ op v1 v2 v ,

Denotat iona l . binOp op v1 v2 = Some v→

evalBinOpRTS n i l op v1 v2 (OK v )

(∗ r u l e : performing next check r e t u r n s err or ∗)

| ChecksBinOpRTE : ∀ ck op v1 v2 msg cks ,

evalBinOpRT ck op v1 v2 (RTE msg) →

evalBinOpRTS ( ck : : cks ) op v1 v2 (RTE msg)

(∗ r u l e : performing next check r e t u r n s OK,

cont inue i t e r a t i o n over checks ∗)

| ChecksBinOp : ∀ ck op v1 v2 v cks v ’ ,

evalBinOpRT ck op v1 v2 (OK v ) →

evalBinOpRTS cks op v1 v2 v ’ →

evalBinOpRTS ( ck : : cks ) op v1 v2 v ’ .

EvalBinOpRT specifies how a binary expression’s interiorChecks are enforced through evalBinOpRTS,

that iterates over the run-time check decorations (CheckBinop). If none of the run-time

checks produces an error state, the binary operation is then performed (CheckBinOpNil)

using evalBinOpRT (which is defined similarly to evalBinOp in Section 3.3); otherwise, it

returns the error state (CheckBinopRTE). (Note that enforcement of exteriorChecks is not

presented above as it involves arrays, which is not presented due to space constraint.)

RT-GEN: translates AST to AST-RT. In developing RT-GEN, we first specified its behavior

declaratively as a Coq inductively defined relation (e.g., toExpRT below) between AST to

AST-RT (with the symbol table as an auxiliary component). Then, we implemented the
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translation as a Coq function (e.g., toExpRTImpl).

Inductive toExpRT : symTab→ exp → expRT→ Prop :=

(∗ i n s e r t checks f o r o v e r f l o w on op r e s u l t ∗)

| ToBinOpO : ∀ s t op e1 e1RT e2 e2RT n ,

op = Add ∨ op = Sub ∨ op = Mul→

toExpRT s t e1 e1RT→ toExpRT s t e2 e2RT→

toExpRT s t (BinOp n op e1 e2 )

(BinOpRT n op e1RT e2RT [ OverflowCheck ] n i l )

(∗ f o r Div , i n s e r t checks d i v by 0 and

o v e r f l o w on op r e s u l t ∗)

| ToBinOpDO: ∀ s t op e1 e1RT e2 e2RT n ,

op = Div→ toExpRT s t e1 e1RT→

toExpRT s t e2 e2RT→

toExpRT

s t

(BinOp n op e1 e2 )

(BinOpRT n op e1RT e2RT

[ DivCheck , OverflowCheck ] n i l )

. . .

Function toExpRTImpl ( s t : symTab ) ( e : exp ) : expRT : = . . .

As can be observed, ToBinOpO specifies that RT-GEN should generate (interior) OverflowCheck

for addition, substration, or multiplication, and both DivCheck and OverflowCheck for divi-

sion; toExpRT is implemented by toExpRTImpl using Coq’s programming language features

(like ML’s) which is extractable to OCaml to produce an executable.

Evaluation: To certify RT-GEN, we proved that its specification is consistent (sound and
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complete) with respect to the SPARK mechanized semantics. For example, for expressions,

we proved the following consistency lemma:

Lemma toExpRTConsistent : ∀ e eRT s t stRT s v ,

toExpRT s t e eRT→ toSymTabRT s t stRT→

( evalExpRT stRT s eRT v ↔ evalExp s t s e v ) .

where toSymTabRT transforms symTab to symTabRT, which, among other things, maps

procedure names to their AST-RT. We then proved that the RT-GEN implementation is

consistent with respect to its specification, for example:

Lemma toExpRTImplConsistent : ∀ e eRT stRT ,

toExpRTImpl stRT e = eRT ↔ toExpRT stRT e eRT.

Therefore, the implementation is transitively consistent with respect to the SPARK seman-

tics (by transitivity of implication → /↔).

Lemma RTGenConsistent : ∀ p pRT s t stRT s s ’ ,

RTGen s t p pRT→ toSymTabRT s t stRT→

(EvalRT stRT s pRT s ’ ↔ Eval s t s p s ’ ) .

Lemma RTOptConsistent : ∀ pRT pRTOpt stRT s s ’ ,

RTOpt stRT pRT pRTOpt→

(EvalRT stRT s pRT s ’ ↔ EvalRT stRT s pRTOpt s ’ ) .

{τ ≤ τ ′}

{SECRET ≤ SECRET , PUBLIC ≤ PUBLIC}

{SECRET ≤ τ, τ ′ ≤ PUBLIC , τ ≤ τ ′}

{SECRET ≤ SECRET , PUBLIC ≤ PUBLIC ,

SECRET ≤ τ, τ ′ ≤ PUBLIC , τ ≤ τ ′}

{SECRET ≤ SECRET , PUBLIC ≤ PUBLIC ,

SECRET ≤ τ, τ ′ ≤ PUBLIC , τ ≤ τ ′,

SECRET ≤ PUBLIC}
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4.3 Certified Run-Time Check Optimizer

While RT-GEN generates a sufficient set of run-time checks, some of them may not be

necessary. In fact, the GNAT front-end uses optimization techniques to reduce the set of

run-time checks that it generates; in practice, we expect the set generated by GNAT to

be a subset of the RT-GEN generated set (we confirmed through experiments that this is

indeed the case in Section 4.4). The question is then whether GNAT’s optimizations are

(certifiably) sound. Our approach to answer this is to have a certified optimizer – RT-OPT,

that reduces the run-time checks generated by RT-GEN. Now, it is widely known that, in

general, an optimizer cannot actually ever be optimal (due to the halting problem). Thus,

the best we can hope for is to have RT-OPT reduce to the same (or even better, i.e., smaller)

set as GNAT’s (a smaller set implies that GNAT can be improved further).

RT-OPT: transforms AST-RT to another AST-RT by removing some run-time checks whose

corresponding verification conditions (VCs) can be discharged; it discharges the VCs by

employing abstract interpretation48 with interval numeric domain. Similar to RT-GEN, we

first specified RT-OPT as Coq inductively defined relation and then implemented it as a Coq

function. For expressions, RT-OPT produces AST-RT along with the expression’s interval

domain (if any) as follows:

Inductive optExp : symTabRT→

expRT→ (expRT ∗ i n t e r v a l ) → Prop := . . .

Function optExpImpl ( s t : symTabRT)

( e : expRT ) : opt ion (expRT ∗ i n t e r v a l ) := . . .

where optExp is typeset in Figure 4.3 for readability. One invariant of RT-OPT is that in-

teger expression optimization should produce an interval that fits within the compilation

target platform-specific two’s complement integer range, which makes up the default in-

terval [INTMIN , INTMAX ]. Γ holds the abstract interpretation context such as symbol ta-

ble, etc. For notational convenience, interiorChecks and exteriorChecks are not explicitly shown;
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divInterval
(v1, w1, v2, w2) =



[w1/v2,min(v1/w2, INTMAX)], if w2 < 0 ∧ w1 < 0 (4.1)

[w1/w2, v1/v2], if w2 < 0 ∧ v1 > 0 (4.2)

[w1/w2,min(v1/w2, INTMAX)], if w2 < 0 ∧ ¬(w1 < 0 ∨ v1 > 0) (4.3)

[v1/v2, w1/w2], if v2 > 0 ∧ w1 < 0 (4.4)

[v1/w2, w1/v2], if v2 > 0 ∧ v1 > 0 (4.5)

[v1/v2, w1/v2], if v2 > 0 ∧ ¬(w1 < 0 ∨ v1 > 0) (4.6)

[v1,min(|v1|, INTMAX)], if ¬(w2 < 0 ∨ v2 > 0) ∧ w1 < 0 (4.7)

[−w1, w1], if ¬(w2 < 0 ∨ v2 > 0) ∧ v1 > 0 (4.8)

[−max(|v1|, |w1|),min(max(|v1|, |w1|), INTMAX)], otherwise (4.9)

modInterval
(v1, w1, v2, w2) =


[v2 + 1, 0], if w2 < 0 (4.10)

[0, w2 − 1], if v2 > 0 (4.11)

[if v2 = 0 then 0 else v2 + 1, if w2 = 0 then 0 else w2 − 1], otherwise (4.12)

Figure 4.2: Interval Bounds For Divide and Modulus

EraseOverflowCheck and EraseDivCheck remove overflow and division interiorChecks, respectively,

while EraseRangeCheck removes range exteriorChecks.

The Int1 rule in Figure 4.3 optimizes away the overflow check in the case of an integer lit-

eral AST-RT n where n is within the the platform’s integer range; a single-value interval [n, n]

is returned along with the optimized AST-RT (i.e., the tight single-value interval allows for

concrete interpretation). On the other hand, Int2 specifies the case where the overflow check

is kept whenever n is outside the range, thus, the default interval is returned (in this case, an

error message can be generated to notify the developer). Add1 and Add2 first try to optimize

the two operands and compute the expression interval bounds (i.e., [u, v]). Add1 specifies

the case where the bounds are within the platform’s integer range, hence, the overflow

check associated the binary operation can be safely removed; otherwise, Add2 specifies that

run-time checks are preserved, and the resulting interval is the platform’s integer range. Sim-

ilarly, for subtract and multiply operations, Sub1 and Sub2 specify the two cases for run-time

checks optimization for subtract expressions, and Mul1 and Mul2 for optimizations of mul-

tiplication expressions. In Mul1 and Mul2, min(min(v1 ∗ v2 , v1 ∗ w2 ),min(w1 ∗ v2 ,w1 ∗ w2 ))

and max (max (v1 ∗ v2 , v1 ∗ w2 ),max (w1 ∗ v2 ,w1 ∗ w2 )) compute the lower and upper bound

for multiplication of two values within intervals [v1, w1] and [v2, w2] respectively, which has

been proved correct with Coq.
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n ∈ [INTMIN , INTMAX ]

Γ ` optExp(n)=(EraseOverflowCheck(n), [n,n])
Int1

n /∈ [INTMIN , INTMAX ]

Γ ` optExp(n)=(n, [INTMIN , INTMAX ])
Int2

Γ ` optExp(e1)=(e′1,[v1, w1]) Γ ` optExp(e2)=(e′2,[v2, w2]) v=v1+v2 w=w1+w2 {v,w}⊆ [INTMIN ,INTMAX ]

Γ ` optExp(e1 + e2)=(EraseOverflowCheck(e′
1 + e′

2 ), [v ,w ])
Add1

Γ ` optExp(e1)=(e′1,[v1, w1]) Γ ` optExp(e2)=(e′2,[v2, w2]) v=v1+v2 w=w1+w2 {v,w} 6⊆ [INTMIN ,INTMAX ]

Γ ` optExp(e1 + e2)=(e′
1 + e′

2 , [max(v , INTMIN ),min(w , INTMAX )])
Add2

Γ ` optExp(e1)=(e′1,[v1, w1]) Γ ` optExp(e2)=(e′2,[v2, w2]) v=v1−w2 w=w1−v2 {v,w}⊆ [INTMIN ,INTMAX ]

Γ ` optExp(e1 − e2)=(EraseOverflowCheck(e′
1 − e′

2 ), [v ,w ])
Sub1

Γ ` optExp(e1)=(e′1,[v1, w1]) Γ ` optExp(e2)=(e′2,[v2, w2]) v=v1−w2 w=w1−v2 {v,w} 6⊆ [INTMIN ,INTMAX ]

Γ ` optExp(e1 − e2)=(e′1 − e′2, [max(v, INTMIN ),min(w, INTMAX)])
Sub2

Γ ` optExp(e1)=(e′1,[v1, w1]) Γ ` optExp(e2)=(e′2,[v2, w2]) {v,w}⊆ [INTMIN ,INTMAX ]
v=min(min(v1 ∗ v2, v1 ∗ w2),min(w1 ∗ v2, w1 ∗ w2)) w=max(max(v1 ∗ v2, v1 ∗ w2),max(w1 ∗ v2, w1 ∗ w2))

Γ ` optExp(e1 ∗ e2)=(EraseOverflowCheck(e′
1 ∗ e′

2 ), [v ,w ])
Mul1

Γ ` optExp(e1)=(e′1,[v1, w1]) Γ ` optExp(e2)=(e′2,[v2, w2]) {v,w} 6⊆ [INTMIN ,INTMAX ]
v=min(min(v1 ∗ v2, v1 ∗ w2),min(w1 ∗ v2, w1 ∗ w2)) w=max(max(v1 ∗ v2, v1 ∗ w2),max(w1 ∗ v2, w1 ∗ w2))

Γ ` optExp(e1 ∗ e2)=(e′1 ∗ e′2, [max(v, INTMIN ),min(w, INTMAX)])
Mul2

Γ ` optExp(e1)=(e′1, [v1, w1]) Γ ` optExp(e2)=(e′2, [v2, w2]) 0 /∈ [v2 , w2 ] INTMIN /∈ [v1 , w1 ] ∨ −1 /∈ [v2 , w2 ]

Γ ` optExp(e1/e2)=(EraseOverflowCheck(EraseDivCheck(e′
1 /e′

2 )), divInterval(v1 ,w1 , v2 ,w2 ))
Div1

Γ ` optExp(e1)=(e′1, [v1, w1]) Γ ` optExp(e2)=(e′2, [v2, w2]) 0 /∈ [v2 , w2 ] INTMIN ∈ [v1 , w1 ] ∧ −1 ∈ [v2 , w2 ]

Γ ` optExp(e1/e2)=(EraseDivCheck(e′
1 /e′

2 ), divInterval(v1 ,w1 , v2 ,w2 ))
Div2

Γ ` optExp(e1)=(e′1, [v1, w1]) Γ ` optExp(e2)=(e′2, [v2, w2]) 0 ∈ [v2 , w2 ] INTMIN /∈ [v1 , w1 ] ∨ −1 /∈ [v2 , w2 ]

Γ ` optExp(e1/e2)=(EraseOverflowCheck(e′
1 /e′

2 ), divInterval(v1 ,w1 , v2 ,w2 ))
Div3

Γ ` optExp(e1)=(e′1, [v1, w1]) Γ ` optExp(e2)=(e′2, [v2, w2]) 0 ∈ [v2 , w2 ] INTMIN ∈ [v1 , w1 ] ∧ −1 ∈ [v2 , w2 ]

Γ ` optExp(e1/e2)=(e′
1 /e′

2 , divInterval(v1 ,w1 , v2 ,w2 ))
Div4

Γ ` optExp(e1)=(e′1, [v1, w1]) Γ ` optExp(e2)=(e′2, [v2, w2]) 0 /∈ [v2 , w2 ]

Γ ` optExp(e1%e2)=(EraseDivCheck(e′
1 %e′

2 ), modInterval(v1 ,w1 , v2 ,w2 ))
Mod1

Γ ` optExp(e1)=(e′1, [v1, w1]) Γ ` optExp(e2)=(e′2, [v2, w2]) 0 ∈ [v2 , w2 ]

Γ ` optExp(e1%e2)=(e′1%e′2, modInterval(v1, w1, v2, w2))
Mod2

Γ ` optExp(e)=(e′,[v, w]) {−w,−v}⊆ [INTMIN ,INTMAX ]

Γ ` optExp(−e)=(EraseOverflowCheck(−e′), [−w ,−v ])
Neg1

Γ ` optExp(e)=(e′,[v, w]) {−w,−v} 6⊆ [INTMIN ,INTMAX ]

Γ ` optExp(−e)=(−e′, [max(−w, INTMIN ),min(−v, INTMAX)])
Neg2

Γ(x) = τINT [[τINT ]] = [τMIN , τMAX ]

Γ ` optExp(x)=(x, [max(τMIN , INTMIN ),min(τMAX , INTMAX )])
VarInt

Figure 4.3: RT-OPT Specification for Expression (excerpts)
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Γ ` optName(a)=(a′,Aggregate) Γ ` optExp(e)=(e′,[v1, w1])
Γ ` arrayIndexTypeRange(a)=[l, u] Γ ` arrayComponentTypeBound(a)=componentBound {v1,w1}⊆ [l ,u]

Γ ` optName(a[e])=(EraseRangeCheck(a ′[e′]), componentBound)
Array1

Γ ` optName(a)=(a′,Aggregate) Γ ` optExp(e)=(e′,[v1, w1])
Γ ` arrayIndexTypeRange(a)=[l, u] Γ ` arrayComponentTypeBound(a)=componentBound {v1,w1} 6⊆ [l ,u]

Γ ` optName(a[e])=(a ′[e′], componentBound)
Array2

Γ ` optName(r)=(r′,Aggregate) Γ ` recordF ieldTypeBound(r.f)=fieldBound

Γ ` optName(r.f)=(r ′.f , fieldBound)
Record

Figure 4.4: RT-OPT Specification for Array and Record Access

For division, four cases (Div1-4) specify the different situations where division by zero

and/or operation overflow (i.e., when dividing INTMIN by -1) could occur; in all the cases,

the resulting interval is specified by divInterval (see Figure 4.2) that does case analysis

on the positivity/negativity of the interval operands. For example, (5) specifies the case

where both of the operand intervals [v1, w1] and [v2, w2] are positive (i.e, the low bounds

v1 and v2 are positive); in this case, the resulting interval is [v1/w2, w1/v2] where its low

bound v1/w2 is computed by dividing the smallest value of the first operand’s interval with

the largest value of the second operand’s interval, and its high bound w1/v2 is computed

by dividing the largest value of the first operand’s interval with the smallest value of the

second operand’s interval. The divInterval specification illustrates a slice of the RT-OPT’s

complexity for computing tight intervals in order to optimize away many run-time checks;

rest assured however that they are proven to be correct (and tested to boot!). It’s similar for

modulus operator that is specified with Mod1 and Mod2, whose resulting inverval is specified

by modInterval in Figure 4.2.

For unary negative operator, the rule Neg1 safely removes the overflow check for the unary

expression when all possible values of the negative operation on its operand are within the

integer range; and rule Neg2 preserves the check as the result of negation may cause overflow

(i.e. negation of INTMIN ).

Lastly, the VarInt rule specifies that an integer variable reference’s interval is its integer

type range intersected by the platform’s integer range (i.e., leveraging the RT-OPT invariant

55



Γ ` optName(x)=(x′,xBound) Γ ` optExp(e)=(e′,eBound) Γ ` rangeConstrainted(x)=false

Γ ` optStmt(x := e)=(x ′ := e′)
Assign1

Γ ` optName(x)=(x′,[v1, w1]) Γ ` optExp(e)=(e′,[v2, w2]) {v2,w2}⊆ [v1 ,w1 ]

Γ ` optStmt(x := e)=(EraseRangeCheck(x ′ := e′))
Assign2

Γ ` optName(x)=(x′,[v1, w1]) Γ ` optExp(e)=(e′,[v2, w2]) {v2,w2} 6⊆ [v1 ,w1 ]

Γ ` optStmt(x := e)=(x ′ := e′)
Assign3

Γ ` optExp(e)=(e′,eBound) Γ ` optStmt(c1)=(c′1) Γ ` optStmt(c2)=(c′2)

Γ ` optStmt(if e then c1 else c2)=(if e′ then c′
1 else c′

2 )
If

Γ ` optExp(e)=(e′,eBound) Γ ` optStmt(c)=(c′)

Γ ` optStmt(while e do c)=(while e′ do c′)
While

Γ ` optStmt(c1)=(c′1) Γ ` optStmt(c2)=(c′2)

Γ ` optStmt(c1; c2)=(c′
1 ; c′

2 )
Seq

Γ(p) = (Procedure p params procedureBody) Γ ` optArgs(args, params)=(args′)

Γ ` optStmt(call(p, args)=(call(p, args′))
Call

Figure 4.5: RT-OPT Specification for Statement

that all computed integer values are always checked for overflows).

Figure 4.4 shows the check optimization rules for array and record access. As array and

record are defined as name in SPARK AST syntax in Coq (see Figure 3.4), optName is used

for specifying the optimization of name expressions to distinguish with optExp for normal

expressions. Array1 and Array2 define the optimization of both interiorChecks and exteriorChecks for

array expressions. As array can be nested, optName(a[e]) is defined recursively by calling

optName(a), and then do the interiorChecks optimization for indexing expression e by calling

optExp(e); if the value interval [v1 ,w1 ] of optExp(e) falls within the array index type range

[l , u], remove the range exteriorChecks from the array expression as specified in Array1, otherwise,

keep the range check in Array2. The resulting array component bound can be either (a) an

interval [v ,w ], bounded by machine integer range [INTMIN , INTMAX ], if it’s an array of

integer; or (b) Boolval if it’s an array of boolean values; or (c) Aggregate if it’s a nested array

(e.g. array of array, array of record). The rule Record shows the similar optimization for

record expressions, and its resulting bound value fieldBound can also be an integer interval

[v ,w ], Boolval or Aggregate, depending on the type of the visited record field.
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Γ ` optArgs(nil, nil)=(nil)
Args1

Γ ` mode(p) = In Γ ` rangeConstrainted(p)=false
Γ ` optExp(a)=(a′,aBound) Γ ` optArgs(args, params)=(args′)

Γ ` optArgs(a :: args, p :: params)=(a ′ :: args′)
Args2

Γ ` mode(p) = In Γ ` optArgs(args, params)=(args′)
Γ ` paramTypeBound(p)=[v1, w1] Γ ` optExp(a)=(a′,[v2, w2]) {v2,w2}⊆ [v1 ,w1 ]

Γ ` optArgs(a :: args, p :: params)=(EraseRangeCheck(a ′) :: args′)
Args3

Γ ` mode(p) = In Γ ` optArgs(args, params)=(args′)
Γ ` paramTypeBound(p)=[v1, w1] Γ ` optExp(a)=(a′,[v2, w2]) {v2,w2} 6⊆ [v1 ,w1 ]

Γ ` optArgs(a :: args, p :: params)=(a ′ :: args′)
Args4

Γ ` mode(p) = Out Γ ` rangeConstrainted(a)=false
Γ ` optExp(a)=(a′,aBound) Γ ` optArgs(args, params)=(args′)

Γ ` optArgs(a :: args, p :: params)=(a ′ :: args′)
Args5

Γ ` mode(p) = Out Γ ` optArgs(args, params)=(args′)
Γ ` paramTypeBound(p)=[v1, w1] Γ ` optExp(a)=(a′,[v2, w2]) {v1,w1}⊆ [v2 ,w2 ]

Γ ` optArgs(a :: args, p :: params)=(EraseRangeCheckOnReturn(a ′) :: args′)
Args6

Γ ` mode(p) = Out Γ ` optArgs(args, params)=(args′)
Γ ` paramTypeBound(p)=[v1, w1] Γ ` optExp(a)=(a′,[v2, w2]) {v1,w1} 6⊆ [v2 ,w2 ]

Γ ` optArgs(a :: args, p :: params)=(a ′ :: args′)
Args7

Γ ` mode(p) = InOut Γ ` rangeConstrainted(p)=false ∨ rangeConstrainted(a)=false
Γ ` optExp(a)=(a′,aBound) Γ ` optArgs(args, params)=(args′)

Γ ` optArgs(a :: args, p :: params)=(a ′ :: args′)
Args8

Γ ` mode(p) = InOut Γ ` optArgs(args, params)=(args′)
Γ ` paramTypeBound(p)=[v1, w1] Γ ` optExp(a)=(a′,[v2, w2]) v1 =v2 w1 =w2

Γ ` optArgs(a :: args, p :: params)=(EraseRangeCheckOnReturn(EraseRangeCheck(a ′)) :: args′)
Args9

Γ ` mode(p) = InOut Γ ` optArgs(args, params)=(args′)
Γ ` paramTypeBound(p)=[v1, w1] Γ ` optExp(a)=(a′,[v2, w2]) {v1,w1} 6⊆ [v2 ,w2 ] {v2,w2}⊆ [v1 ,w1 ]

Γ ` optArgs(a :: args, p :: params)=(EraseRangeCheck(a ′) :: args′)
Args10

Γ ` mode(p) = InOut Γ ` optArgs(args, params)=(args′)
Γ ` paramTypeBound(p)=[v1, w1] Γ ` optExp(a)=(a′,[v2, w2]) {v1,w1}⊆ [v2 ,w2 ] {v2,w2} 6⊆ [v1 ,w1 ]

Γ ` optArgs(a :: args, p :: params)=(EraseRangeCheckOnReturn(a ′) :: args′)
Args11

Γ ` mode(p) = InOut Γ ` optArgs(args, params)=(args′)
Γ ` paramTypeBound(p)=[v1, w1] Γ ` optExp(a)=(a′,[v2, w2]) {v1,w1} 6⊆ [v2 ,w2 ] {v2,w2} 6⊆ [v1 ,w1 ]

Γ ` optArgs(a :: args, p :: params)=(a ′ :: args′)
Args11

Figure 4.6: RT-OPT Specification for Arguments
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Figure 4.5 lists the optimization rules for statements. For assignments, as illustrated in

Assign1 Assign2 and Assign3, perform optimizations on both left and right side expressions; the

optimization for range exteriorChecks is carried out in Assign2 only when x is a range constrainted

variable and the value bound of e cannot escape the expected value range of x , where the

predicate rangeConstrainted(x ) checks whether x is a variable of range constrainted type.

Rules If, While and Seq define run-time check optimizations recursively on their subcompo-

nents. For procedure call, run-time checks are required when evaluating and passing the

values of arguments to the callee procedure and when returning the result to the calling

procedure. The procedure call rule Call specifies the optimization for its arguments against

to its formal parameters.

Figure 4.6 gives all possible cases for check optimization of arguments with respect to

different In/Out modes of the corresponding parameters. Args1 is a special case for procedure

call without parameters; Args2-4 for arguments that are only readable by the called procedure,

and Args5-7 for arguments that are only writable by the called procedure, and Args8-11 for both

readable and writable arguments. In general, there are two kinds of exteriorChecks optimizations

for arguments when calling and returning from the called procedure: EraseRangeCheck is to

remove the range check RangeCheck and EraseRangeCheckOnReturn is to remove the range

check RangeCheckOnReturn. Both RangeCheck and RangeCheckOnReturn enforce the same kind of range

check, but at different situations and in different directions. RangeCheck enforces the range

check on the values of In/InOut arguments before they are passed into the parameters when

the procedure is called, and RangeCheckOnReturn enforces the range check on the values of

parameters before they are written to the Out/InOut arguments when the procedure returns.

Both range checks reside in arguments AST.

Well-Typed State: VarInt assumes that it can use the variable’s integer type range for the

variable reference’s interval. This holds if all values in the state are well-typed. To discharge

this assumption, we first specified the meaning for a state to be well-typed:

Inductive wellTypedState : symTabRT→ s t a t e → Prop:=
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| WellTypedState : ∀ stRT s ,

(∀ x v , f e t c h x s = Some v→

∃ t , lookup stRT x = Some t ∧

wellTypedValue t v ) →

wellTypedState stRT s .

then proved that EVAL-RT specification (hence, by virtue of consistency transitivity, EVAL

specification) preserve state well-typed-ness, for example, for EVAL-RT statement semantics

that may incur state changes, we proved the following preservation lemma:

Lemma wel lTypedStatePreservat ion : ∀ s s ’ stmt stmtRT s t stRT ,

toSymTabRT s t stRT→

toStmtRT s t stmt stmtRT→

wellTypedStmt stRT stmtRT→

wellTypedState stRT s →

evalStmtRT stRT s stmtRT s ’ →

wellTypedState stRT s ’ .

Evaluation: To certify RT-OPT, we proceeded similarly to RT-GEN certification (albeit

much more complex to prove); that is, we proved that RT-OPT specification is consistent

(sound and complete) with the respect to the RT-GEN specification described in Section 4.2,

and that RT-OPT implementation is consistent with respect to its specification. There-

fore, the implementation is transitively consistent with respect to the SPARK mechanized

semantics. For example, for statements, we proved the following consistency lemma:

Lemma optStmtConsistent : ∀ stmt stmtRT stmtRTOpt s t stRT s s ’ ,

toStmtRT s t stmt stmtRT→

toSymTabRT s t stRT→

wellTypedStmt stRT stmtRT→

wellTypedState stRT s →
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optStmt stRT stmtRT stmtRTOpt→

( evalStmtRT stRT s stmtRT s ’ ↔ evalStmtRT stRT s stmtRTOpt s ’ ) .

We then proved that the RT-OPT implementation is consistent with respect to its specifica-

tion, for example:

Lemma optStmtImplConsistent : ∀ stRT stmt stmtRT ,

optStmtImpl stRT stmt = Some stmtRT ↔ optStmt stRT stmt stmtRT .

Therefore, the implementation is transitively consistent with respect to the SPARK seman-

tics (by transitivity of implication → /↔).

4.4 Certifying GNAT RT Generator

Now that we have RT-GEN and RT-OPT, we can implement a conformance checker that can

establish that, for a SPARK 2014 program p, the run-time check decoration insertion of

the GNAT front-end for p conforms to the mechanized SPARK 2014 reference semantics.

Specifically, for program p, the GNAT front-end generates a fully resolved AST with run-

time check decorations, and we developed a tool called Jago that takes the GNAT AST and

produces: (1) a Coq object of type AST (ast), where the GNAT run-time decorations are

erased, and (2) a Coq object of type AST-RT (ast-rt-gnat), where the GNAT run-time deco-

rations are preserved (Jago also applies some program transformations to desugar language

constructs that lie outside of the language subset to fall within the language subset). Then,

applying RT-GEN on ast produces ast-rt-gen, and applying RT-OPT on ast-rt-gen produces

ast-rt-opt, both of which are of type AST-RT.

To automate the actual AST conformance check, we implemented a tool in Coq – ⊆, that

given two objects of type AST-RT, it determines whether the set of run-time checks in the first

object is a subset of the second’s. Thus, GNAT run-time decoration insertion on program p

is conformant to the SPARK 2014 reference semantics if ast-rt-opt ⊆ ast-rt-gnat ⊆ ast-rt-gen.

This toolchain essentially turns the GNAT front-end into a certifying run-time check dec-
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oration generator; that is, for a given program p, it generates evidence of “conformity to

SPARK 2014 reference semantics for p’s run-time check decorations” that is automatically

machine-checked by certified tools.

Note that this does not guarantee that the actual binary run-time check assertion code

for p subsequently generated by the GNAT compiler back-end is correct; it simply means

that decorations indicating what assertions should be produced is correct. This, alone has

significant value because, for example, it goes a long way toward establishing the corre-

spondence between GNAT and GNATprove’s (as well as any other SPARK backend tools’)

treatment of run-time checks. Moreover, since there are only three categories of run-time

checks relevant for this language subset, since each of these categories can be represented

by a simple code pattern involving a few numerical comparisons, since the pattern itself can

be easily inspected and tested, and since the generation of binary code for the pattern is

reasonable straightforward and can also be easily tested, one might argue that establishing

the correctness of the decorations is one of the more important steps in establishing trust

in the overall end-to-end production of the executable run-time checks.

4.5 Evaluation: Certifying GNAT

We evaluated GNAT according to the methodology described in Section 4.4 on a collection of

programs. Table 4.1 presents the experiment data for various program units (packages/pro-

cedures) from the test programs. The first two SPARK programs come from the Ada Con-

formity Assessment Test Suite (ACATS)49 that all Ada compilers must pass. SPARKSkein

is an implementation of the Skein hash algorithm in SPARK, which was proved free of run-

time errors50. Tetris is the motivating example for run-time check certification, which is

implemented partly in SPARK and partly in Ada (we only checked the SPARK part). All

other examples are representative code from AdaCore, Altran and our own designed bench-

mark covering the core language subset. For each unit, LoC in Table 5.1 gives the unit’s
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Base GNAT Opt Diff
Unit LoC

D O R T D O R T D O R T D O R T
ACATS c53007a 143 – 16 – 16 – 14 – 14 – 14 – 14 – – – –
ACATS c55c02b 74 – 2 5 7 – 2 – 2 – 2 – 2 – – – –
array record package 54 1 11 2 14 1 11 2 14 1 11 2 14 – – – –
array subtype index 12 – 1 1 2 – 1 – 1 – 1 1 2 – – +1 +1
arrayrecord 43 1 9 2 12 1 9 – 10 1 9 – 10 – – – –
assign subtype var 10 – 1 1 2 – 1 – 1 – 1 1 2 – – +1 +1
binary search 40 1 6 12 19 1 – 4 5 – – 4 4 -1 – – -1
bounded in out 17 – 1 4 5 – – 3 3 – – 4 4 – – +1 +1
dependence test suite 01 164 – 2 – 2 – 2 – 2 – 2 – 2 – – – –
dependence test suite 02 249 – 15 – 15 – 15 – 15 – 15 – 15 – – – –
division by non zero 12 1 2 1 4 1 – – 1 – – – – -1 – – -1
faultintegrator 25 – 2 – 2 – 2 – 2 – 2 – 2 – – – –
gcd 18 1 3 – 4 1 3 – 4 1 3 – 4 – – – –
gnatprove test bool 38 – – – – – – – – – – – – – – – –
linear div 21 – 3 – 3 – 3 – 3 – 3 – 3 – – – –
modulus 24 1 2 3 6 1 1 – 2 – 1 – 1 -1 – – -1
odd 14 1 2 – 3 1 1 – 2 – 1 – 1 -1 – – -1
p simple call 36 – 5 – 5 – 5 – 5 – 5 – 5 – – – –
prime 21 1 2 – 3 1 2 – 3 1 2 – 3 – – – –
proceduretest01 25 – 3 – 3 – 3 – 3 – 3 – 3 – – – –
quantifiertest 14 – 1 2 3 – 1 – 1 – 1 – 1 – – – –
recordtest01 23 – – – – – – – – – – – – – – – –
recursive proc pkg 18 – 3 – 3 – 3 – 3 – 3 – 3 – – – –
SPARKSkein 646 7 94 246 347 7 58 29 94 – 52 25 77 -7 -6 -4 -17
sort 43 – 5 6 11 – 5 6 11 – 5 6 11 – – – –
Tetris 373 – 29 58 87 – – 25 25 – – 25 25 – – – –
the stack 42 – 4 6 10 – – 6 6 – – 6 6 – – – –
the stack praxis 35 – 2 4 6 – – 4 4 – – 4 4 – – – –
two way sort 49 – 4 17 21 – – 4 4 – – 4 4 – – – –

Table 4.1: Experiment Data

number of lines of code. Base gives the number of run-time checks in ast-rt-gen, GNAT

gives the number of run-time checks in ast-rt-gnat, Opt gives the number of run-time checks

in ast-rt-opt, and Diff represents the number of run-time checks in GNAT that differs than

the ones in Opt. Dash (“–”) means “none”; a negative number -n in Diff means that

Opt removes n more run-time checks than GNAT; and, a positive number +m means Opt

has m more number of run-time checks than GNAT “somehow”). Sub-column D gives the

number of division by zero run-time checks; O gives the number of overflow run-time checks;

R gives the number of range run-time checks; and, T is the total number of run-time checks

(i.e., D+O+R).
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As can be observed from Table 4.1, the GNAT frontend is a solid tool for run-time

check generation/verification as most of its generated run-time checks match the certified

RT-OPT. This is reasonable because our formalization captures the most commonly used

run-time checks in SPARK and GNAT is quite mature after many years of effort to improve

it, as well as the effort to improve the GNATprove toolchain by AdaCore and Altran (which

drives some of the improvements in GNAT). However, RT-OPT edges out GNAT in some

cases, especially for SPARKSkein. One reason is that GNAT does not take any advanced

optimizations, for the division/modulus binary operator, it does not optimize even with con-

stant; for example, GNAT generates division by zero check for the expression (R + 1) mod 3

while RT-OPT optimized it away.

For SPARKSkein, consider a procedure call Inject Key(R ∗ 2), (for procedure declaration

Inject Key(X: in U32)), R is a variable of type U32, and U32 is a subtype of Integer with

range 0.. INT MAX; an overflow check for R ∗ 2 is enough to guarantee the absence of both

overflow and range error, while GNAT keeps both overflow check and range check for such

cases. For expression (Byte Count − (Blocks Done ∗ 64)), where Byte Count is a variable of

U32 and Block Done is a variable of U32’s subtype with range 1..2 , the overflow check for

both subtract and multiply operators, as requested by GNAT, can be optimized by RT-OPT.

Similarly, for assignment Bytes Hashed := Block Count ∗ 64, the overflow check for multiply

operator and the range check against the type of Bytes Hashed can all be safely removed by

RT-OPT.

There are other cases showing that RT-OPT is better than GNAT’s optimizations: for

binary search example, the division check on expression (Right − Left) / 2 can be safely

removed as specified in RT-OPT, while GNAT makes no optimization on division expressions

with even constant divisor 2; this also applies to the modular operator as shown in modulus

example, where the division check for mod , as required by GNAT, within the array expression

KS((R + I) mod (8 + 1)) will be optimized by RT-OPT. The similar optimizations by RT-

OPT vs GNAT can be found in division by non zero and odd examples.

63



In some cases, GNAT produces fewer run-time checks than RT-OPT; these inconsistencies

are benign because they are due to differences in how GNAT (vs RT-OPT) reports the need

for checks and in how it assumes down-stream translation will interpret decorations for

run-time checks.

Regarding the reporting issue, in procedure array subtype index, there is an assignment

A(0) := 0, where the index type of A is a subtype of integer with range 1 .. 10; thus, accessing

A with the index 0 is out of its required range, so it will cause range error. GNAT gives a

warning at compile time in such case, and it does not generate a range check; on the other

hand, RT-OPT keeps this check. (A similar issue exists for assign subtype var.)

Another inconsistency is due to the fact that a single run-time check decoration in the

GNAT AST can lead downstream translation steps to introduce run-time checking code

that implements multiple checks. Consider bounded in out:

subtype T1 i s I n t e g e r range 0 . . 10 ;

subtype T2 i s I n t e g e r range 5 . . 15 ;

procedure Decrease (X: in out T1) i s

begin X := X − 1 ; end Decrease ;

V: T2 ; . . . ; Decrease (V) ;

when Decrease(V ) is called, according to the SPARK semantics, there should be two dif-

ferent range checks for argument V on both passing in argument and passing out return

value because X is declared using both in and out. However, GNAT only generates one

range check decoration; this is because it is assumed that the check decoration should be

interpreted according to the variable in/out modes. That is, if the variable is (strictly)

either in or out (and not both), then the run-time check decoration should be interpreted

giving rise to code for one run-time check . However, if the variable is both in and out, then

the GNAT run-time check AST decoration should be interpreted as giving rise to code for

two checks, one for each direction. On the other hand, RT-GEN explicitly generates the two

check decorations (which are kept by RT-OPT).
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The inconsistencies above can be easily rectified by either modifying GNAT or RT-

GEN/RT-OPT/⊆; they are kept here to document our findings.

Further Assessment: The fact that RT-OPT is better in some cases illustrates that, despite

its maturity, GNAT can still be improved further, e.g., by adopting the optimization specified

and implemented in RT-OPT; that is, the RT-OPT specification can be used as a reference

for implementing further optimizations in GNAT, and once implemented, they can then

be checked for conformance against the RT-OPT implementation. Furthermore, in the case

where new optimizations are added to GNAT that goes beyond RT-OPT as presented here,

those new optimizations can be added to RT-OPT in order to: (a) mechanically verify that

they are correct, and (b) further keep GNAT as a certifying run-time check generator.

Our research work demonstrates the feasibility of engineering an approach and corre-

sponding tools with mechanized correctness proofs that leverage recent advancements and

maturity of various formal method techniques and tools to make a direct impact in signif-

icantly increasing confidence in industrial tools; in our case, the industrial tools are used

to develop critical systems that require the utmost level of integrity, thus, warranting such

effort.

From a business perspective, we believe it is desirable as it adds to the value proposition

– the trustworthiness of GNAT compiler and associated SPARK 2014 is increased. Fur-

thermore, we believe that the approach can eventually help in tool qualification processes

typically done in software certifications and regulatory reviews associated with standards

(e.g., DO-178C in avionics) that increasingly recognize the value of formal methods and an

official tool qualification process.

Threats To Internal Validity: Our approach is predicated on the assumption that prac-

titioners are willing to trust the approach’s trust-base, which includes Coq and the SPARK

formal language semantics presented in Section 3.3. That is, problems in Coq or in the

formal semantics threaten the internal validity of our approach. As to why this might be a

concern, recent stable releases of Coq (e.g., v8.4pl5) have an unguarded optimization bug
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that cause them to accept a proof of false (⊥) in rare cases where an inductive type is defined

with more than 255 type constructors51; once ⊥ is accepted, any proof can be accepted,

which essentially renders any proof system untrustable. Understandably, the bug has since

been fixed (starting in Coq v8.4pl6). In addition, our current implementation uses: (a) the

parser, symbol resolver, and type checker of GNAT itself, and (b) Jago to build program

representations in Coq; both are not certified tools. Ideally, a certified frontend can be

developed to address this issue; this certified frontend is orthogonal and out of the scope

of the work presented here, and they can be addressed in the future. Moreover, the ⊆ tool

that compares AST-RT objects is manually inspected instead of certified (it is small – 172

LoC, and its functionality is very simple); regardless, it should be considered as part of the

trust-base at this point of time.

Threats To External Validity: One must also consider the extent to which the results

presented for the given test suite would extend to SPARK 2014 programs in general. For

this objective, program size and execution time are not really issues – the cost of insertion

of run-time checks is in general linear in the number of AST nodes. The interval analysis

needed for optimization does add some additional complexity, but not enough to significantly

impact performance. On the other hand, a principle concern is that our test suite provides

appropriate coverage of all the different types of run-time checks specified in the SPARK

2014 language reference manual. In addition, our language subset needs to be expanded to

eventually cover the full programming language (in fact, this work represents our second

iteration; we presented our initial work with a small language subset corresponding to a

simple imperative language with while-loop as a 2-page abstract paper for an industrial

position presentation52).

Overall Perspective: In the end, if GNAT/GNATProve is a run-time checker, our ap-

proach is a checker of checker, and Coq is the checker of a checker of a checker. Both

Coq and the SPARK formal semantics are ultimately checked by manual inspections (which

would improve over time). So, who checks the checkers? It seems the answer lies in a
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well-engineered towering house of checkers with decreasingly unsafe spaces1 as one ascends

the tower and eventually comes to the realization of having to trust (hopefully minimal)

creations of intelligent beings.

1Analogous to “reducing attack surfaces” commonly touted in cybersecurity to manage risks.
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Chapter 5

Declassification Policy for SPARK

There exist a wide range of safety/security critical information systems being used in the

area of finance, healthcare, military and aviation to process multi-level security data, in-

cluding password checking system, online shopping and banking system. In general, there

are three ways to protect information confidentiality and integrity. Cryptography provides

a way to hide information in data and protect data from tampering, but it is costly and

impractical to decrypt and encrypt the data each time we need to process the data. Access

controls can protect data from being read or modified by unauthorized users. However, it

cannot prevent the propagation of information after it has been released for processing by

a program. Information flow is the transfer of information from an input to an output in a

given process. It reflects an end-to-end behavior of a system and information flow control

provides a complementary approach to track and regulate the information flow of a system

to prevent secret data from leaking into public. One promising way to ensure the secure

information flow of a system is to use noninterference, which requires that secret data may

not interfere with (or affect) public data, as an end-to-end semantic security condition to

reason about information flow security.

However, the security requirements enforced by noninterference are too restrictive. In

fact, computing systems often need to deliberately declassify (or release) parts of its confi-
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dential information, for example, in password checking system, it’s necessary to reveal some

information about the stored password, telling the user whether his input password is correct

or not. Declassification of information occurs when the confidentiality of information is de-

creased or becomes less restrictive. It’s an exception to the normal secure information flow.

The major challenge is to design an elegant declassification mechanism to precisely capture

the intentional information release and ensure that the release is safe: the attacker could

neither get around the declassification mechanism nor exploit the declassification mechanism

to reveal more secret information than intended, e.g. secret laundering. A lot of research

has been carried out in the area of declassification according to four dimensions53: what can

be declassified, where declassification can occur, who is able to declassify information and

when it’s allowed to be declassified.

The main contributions of this chapter are:

• a design of a language-based information security policy specification framework to

capture the desired information flow from one domain to another on the event of

certain actions, and show how the framework can be specified and integrated into

SPARK using Ada 2012 aspects decorations. It enhances SPARK current information

flow analysis with ability to declare domains and specify declassification policy between

those domains.

• a design of a static enforcement algorithm that can automatically check whether the

program conforms to the specified information security policy. It’s a type checking

system that based on type constraint generation followed by constraint solving pro-

cedure. The checking algorithm is compositional, and the verification of information

security can be achieved modularly, at the level of individual subprograms, such that

a called procedure can be checked with its inferred type constraint specification.

• formalization of the operational semantics for programs with declassification proce-

dures and proof of the correctness of the policy enforcement algorithm with respect

to the formalized program semantics.
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• evaluation of our designed security policy framework on some examples to assess the

expressiveness of the policy language and the degree of automation provided by the

algorithm to verify that the program behaves as expected.

5.1 Syntax of Security Policy

5.1.1 Policy Design Principles

Our goal is to propose a security policy framework for SPARK that can provide the ability

to specify security domains and control information flow of different domains. Here are some

design principles that we have adopted:

• Simple to use, which means little burden for users to specify policy.

• Easy to integrate into SPARK 2014.

• Easy to check with static analysis.

• Expressive enough to specify and check security policy for real SPARK programs.

5.1.2 Policy Aspects

As SPARK’s contract language is aspect-oriented, to be consistent with this language fea-

ture, we also propose some new aspects to support the security policy, which has ability to

specify:

• the security domains as enumeration types, with or without ordering.

• the association between data and security domains.

• the allowed declassification operations.
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Ordered Aspect We introduce the security type as a natural part of the SPARK language

by adding a new aspect Ordered to the normal enumeration type. With this new aspect,

a type can be annotated to indicate different types of security domains. The symbol ≤ is

used to denote the ordering between two security domains and its antisymmetry. For any

two security domains `1 and `2, `1 ≤ `2 means the security level of `2 is at least as high as

the security level of `1, so any information from the security domain `1 (or annotated with

`1) is allowed to flow into the destination of security domain `2.

Totally ordered security domains can be defined as:

type T i s (`1 , `2 , `3 ) with

Ordered ;

where the defined security domain values are ordered according to their positions in the

declared enumeration type T . That’s `1 ≤ `2 , `2 ≤ `3 and `1 ≤ `3 .

Partially ordered security domains can be defined as:

type T i s (`1 , `2 , `3 ) with

Ordered ⇒ {`1 ≤ `2 } ;

which means T is a security type and only `1 and `2 are ordered with ≤. The security

domain `3 is isolated from the other two security domains.

Totally separated security domains can be defined as:

type T i s (`1 , `2 , `3 ) with

Ordered ⇒ null ;

which means that all security domains defined in security type T should be isolated from

each other.

The same idea could also be used to define integrity domains, where the normal flows go

from critical data to non-critical data. In this work, we mainly focus on the confidentiality

(also referred as security) domains. Specification of multiple dimensional domains (both

confidentiality and integrity) will be included in the future work.
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Domain Aspect With the definition of security types, data can be annotated with the

new aspect Domain to indicate that it belongs to a security domain, for example:

X : I n t e g e r with Domain ⇒ `

where X is defined as an integer variable within security domain `.

The security domains in these annotations are all static, it means that any data should

belong to exactly the listed domain, and it cannot belong to two different incompatible

domains at the same time. The associated domain can be regarded as a invariant property

for the data, whatever information flow involving the domain-associated data should follow

the security policy enforced on its domain.

In this proposal, we are limiting this feature to global variables, as the extension to

library-level variables, subprogram parameters/results, and local variables is likely increasing

the work in the tools for no clear benefit. Furthermore, to make it simpler and more precise,

we can only associate domains for those security-critical global variables that may either

hold sensitive data that should be protected or separated from other domains or work as

source input ports that provide sensitive input information or work as output ports that

deliver information to the public or other sessions.

Declassifier Aspect Verifying that data flows respect the allowed flows between domains

can be achieved modularly, at the level of individual subprograms, based on Depends con-

tracts. Indeed, all dependencies listed in Depends contracts (either manually written or

generated by the tool) should respect the allowed directions of flow. For example, the

following would be allowed if the security domain of Y is at least as high as X:

procedure Secure Copy (X: in T; Y: out T) with

Depends ⇒ (Y ⇒ X) ; −− read as : Y depends on X

while the following would be detected as a violation of the security policy if security domains

of X and Y have no ≤ ordering:

procedure Insecure Copy (X: in T; Y: out T) with
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Depends ⇒ (Y ⇒ X) ; −− read as : Y depends on X

It is almost never the case that all flows respect the simple security policy stated above.

In general, a few operations known as declassifications are allowed to violate the default

security policy, for example the operation that encrypts secret data before sending it on a

public network.

We propose to allow specifying which operations are declassifiers with a new aspect

Declassifier . Such operations should specify fully the possible source and target domains

for the declassification(s). For example:

−− with domains `1 and `2 and `2 ≤ `1

procedure Encrypt (X: in T; Y: out T) with

D e c l a s s i f i e r ,

Domain ⇒ (X ⇒ `1 , Y ⇒ `2 ) ,

Depends ⇒ (Y ⇒ X) ; −− read as : Y depends on X

it means that Encrypt is a declassification procedure that’s allowed to declassify information

from domain `1 to `2. The domain annotations for parameters X and Y also enforce that

whenever calling Encrypt(u, v), the security domain of passed in argument u should be less

than and equal to `1, and when the call returns, `2 should be less than and equal to the

security domain of the passed out argument v.

For those procedures denoted as declassifiers, they are assumed to be trustful and being

implemented correctly. So unlike the non-declassifier procedures, we don’t need to get into

its implementation body during static analysis.

In summary, the security policy language is quite simple and easy to use, what users

need to do is just to define security types of their interest, and then annotate those critical

source/target data with the defined security domains, and specify the trusted declassification

procedures. The enforcement for checking security policy will be performed automatically,

which will be discussed in the next section.
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5.2 Enforcement of Security Policy

The introduction of declassification means that not all subprograms can be analyzed simply

by checking that the final variable dependencies respect the security policy, as violations

may occur which are allowed by some declassification step. Thus, flow analysis should be

updated to analyze each assignment for its respect of security policies, whether this is a

direct assignment (assignment operation) or an indirect one (call to a procedure that has

outputs). In both cases, there are restrictions on the flows from input variables (either

from the expression assigned, or the inputs of the call on which this output depends, or the

control under which this assignment takes place) to the assigned variable. In this chapter,

we propose to effectively enforce these restrictions by a constraint-based typing system,

which is proved to be sound with respect to the operational semantics of program with

declassification procedures. Any program satisfying the type constraint system is called an

information secure program.

Here are some symbols that will be used in the following sections:

• ` : concrete security domain (or security level)

• α : security type variable

• C : set of subtyping constraints, which are in the form of T1 ≤ T2

• p : context security type served to eliminate indirect information flows

• Γg : a mapping from global variables to security types

• Γl : a mapping from local variables to security types

• freshType() : generate fresh security type variable

• freshVar() : generate fresh variable name

• ModVarlocal(c) : set of local variables maybe modified within statement c
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Security Type Expression

T ::= τ | T t T ; τ ::= ` | α ;

Type Inference Rules

Γg ; Γl ` n : ⊥ Literal

Γl(x) = τ

Γg ; Γl ` x : τ
Local-Var

Γl(x) = null ∧ Γg(x) = τ

Γg ; Γl ` x : τ
Global-Var

Γg ; Γl ` e : T

Γg ; Γl ` � e : T
Unary-Exp

Γg ; Γl ` e1 : T1,
Γg ; Γl ` e2 : T2,
T = T1 t T2

Γg ; Γl ` e1 � e2 : T
Binary-Exp

Figure 5.1: Security Type Inference for Expression

A security type constraint (also referred as type constraint) is an ordering (or subtyping)

relationship between two type expressions (see Figure 5.2): T1 ≤ T2, and it’s called an

atomic type constraint if both T1 and T2 are τ , such as α ≤ `, `1 ≤ `2.

5.2.1 Type Constraint Generation

As mentioned before, user only needs to annotate the security types for global variables of

their interests, and the enforcement can infer security types for the rest, including locally

defined variables and parameters of procedures. The security policy is enforced by generating

type constraints at each execution step. The satisfiability of the type constraint system

determines the information security of the program, and any solution for the type constraint

system is also a type inference for the untyped variables.

Figure 5.1 and 5.2 show the type inference rules for expression and type constraint

generation rules for statement respectively. In the type inference rules for expression, a

constant can flow to any domain as denoted by type ⊥ in the rule Literal. We treat differently

for the security types of global and local variables. The security type for a global variable is

fixed, while it’s varied for the local variable depending on its current content. This is because

in the information security, we concern about the security of information flow between global

variables, which maybe accessible to the outside, and local variables are only working as
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Γg ; Γl ` e : T,
Γl(x) 6= null,
α = freshType(),
C = {T ≤ α, p ≤ α},
Γ′
l = Γl[x→ α]

Γg ; Γl; p ` x := e⇒ Γ′
l;C

Assign-Local-Update

Γg ; Γl ` e : T,
Γl(x) = null ∧ Γg(x) = τ,
C = {T ≤ τ, p ≤ τ}
Γg ; Γl; p ` x := e⇒ Γl;C

Assign-Global-Update

Γg ; Γl ` e : T,
Γg ; Γl; p t T ` c1 ⇒ Γ′

l;C
′,

Γg ; Γl; p t T ` c2 ⇒ Γ′′
l ;C′′,

Γ′′′
l = Γ′

l

⊔
Γ′′
l ,

C′′′ = C′ ∪ C′′

Γg ; Γl; p ` if e then c1 else c2 ⇒ Γ′′′
l ;C′′′ If

Γg ; Γl; p ` c1 ⇒ Γ′
l;C

′

Γg ; Γ′
l; p ` c2 ⇒ Γ′′

l ;C′′

C′′′ = C′ ∪ C′′

Γg ; Γl; p ` c1; c2 ⇒ Γ′′
l ;C′′′ Sequence

Ψ = ModV arlocal(c) = {x1, . . . , xk},
Γ′
l = Γl[x1 → α1][. . .][xk → αk], where αi = freshType(), i ∈ [1, k],

Γg ; Γ′
l ` e : T,

Γg ; Γ′
l; p t T ` c⇒ Γ′′

l ;C′,
C0 = {Γl(x) ≤ Γ′

l(x) | x ∈ Ψ},
C1 = {Γ′′

l (x) ≤ Γ′
l(x) | x ∈ Ψ},

C′′ = C0 ∪ C1 ∪ C′

Γg ; Γl; p ` while e do c⇒ Γ′
l;C

′′ While

Γg(f) = (procedure f(x1 : η1, .. , xk : ηk), Cf ), ηi =

{
τi if Mode(xi ) = In/Out
(τi1 , τi2 ) if Mode(xi ) = InOut

λ1(τ) ::= if (τ == Some `) then ` else freshType()
λ2(x, τx) ::= if (Γl (x) 6= null) then freshType() else τx
Γ′
l = Γl C′

f = Cf
for i ∈ [1 , k ] do :

Γg ; Γl ` ai : τai
case Mode(xi ) = In :
Ci = {τai ≤ λ1(τi), p ≤ λ1(τi)} C′

f = C′
f [λ1(τi)/τi]

case Mode(xi ) = Out :
Ci = {λ1(τi) ≤ λ2(ai, τai ), p ≤ λ2(ai, τai )}
C′
f = C′

f [λ1(τi)/τi] Γ′
l = Γ′

l[ai → λ2(ai, τai )]

case Mode(xi ) = InOut :
Ci1 = {τai ≤ λ1(τi1 ), p ≤ λ1(τi1 )}
Ci2 = {λ1(τi2 ) ≤ λ2(ai, τai ), p ≤ λ2(ai, τai )}
C′
f = C′

f [λ1(τi1 )/τi1 ][λ1(τi2 )/τi2 ] Ci = Ci1 ∪ Ci2 Γ′
l = Γ′

l[ai → λ2(ai, τai )]

C′ = C1 ∪ ... ∪ Ck ∪ C′
f

Γg ; Γl; p ` call f (a1 , a2 , .. , ak )⇒ Γ′
l;C

′ Procedure-Call

the same as rule Procedure-Call except that τi1 = τi2 and Cf = ∅

Γg ; Γl; p ` call f Declassify (a1 , a2 , .. , ak )⇒ Γ′
l;C

′ Declassify-Call

Γ′
l = Γl[x1 → α1][. . .][xk → αk], where αi = freshType(), i ∈ [1 , k ]

Γg ; Γ′
l; p ` c⇒ Γ′

l;C
Cf = Reduce(Simplify(Normalize(C )))

Γ′
g = Γg [f → (procedure f (x1 : η1 , .. , xk : ηk ), Cf )], ηi =

 τi if Mode(xi ) = In
Γ′
l(xi) if Mode(xi ) = Out

(τi, Γ′
l(xi)) if Mode(xi ) = InOut

Γg ; Γl; p ` procedure f (x1 , .. , xk ){c} ⇒ Γ′
g

Procedure-Decl

Figure 5.2: Type Constraints Generation Rules
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a mediator for transferring different information. Γg and Γl are used to record types for

global and local variable respectively as specified in the rules Global-Var and Local-Var. Type

inference for both unary and binary expression are defined in rules Unary-Exp and Binary-Exp.

In type constraint generation rules for statement (Γg ; Γl ; p ` c ⇒ Γ ′l ; C ), we define two

different rules, Assign-Global-Update and Assign-Local-Update, for assignments to global and local

variables. The rule Assign-Global-Update defines the type constraint generation for assignment

to global variable: first, we fetch the type τ ′ of the target variable x from Γg and infer

the type T of the right hand side expression e, then, according to information security

constraints, two types of constraints are generated: T ≤ τ ′ and p ≤ τ ′. It means that the

security types of source information (either explicit or implicit) should be lower (or equal)

than the security types of target information. Variable p denotes the security type of the

context where the assignment happens. For the local variable, its security type changes with

each assignment of new values. Thus, in the rule Assign-Local-Update for local assignment, a

fresh type variable α for x is generated with fresh function freshType(), followed by the

generation of two type constraints for α and the update of Γl with new type variable α for

x. For example:

−− assignment to a g l o b a l v a r i a b l e g0 ,

−− where Γg(g0) = τ , Γg; Γl ` x : τ1 , Γg; Γl ` y : τ2

g0 = x + y ;

The produced type constraints for the above statement is {τ1 t τ2 ≤ τ, p ≤ τ} with p

being the type of path condition (or context) leading to this statement execution. While

for assignment to local variables, as shown in the following,

−− assignment to a l o c a l v a r i a b l e l0 ,

−− where Γg; Γl ` x : τ1 , Γg; Γl ` y : τ2

l0 = x + y ;

first, we have to call freshType() to generate a fresh type variable τnew, used for constraints

generation of the above statement {τ1 t τ2 ≤ τnew, p ≤ τnew}, and then update Γl by
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associating x with τnew, which reflects the new type of the content held in x after the

assignment.

In the rule If for conditional statement, executed in the context p, if the type of con-

ditional expression e is T , then generate type constraints separately for c1 and c2 under

context p t T , finally merge the resulting constraints C ′ and C ′′ from both branches to get

C ′′′, for example:

−− c o n d i t i o n a l statement ,

−− where y i s a l o c a l v a r i a b l e , and

−− Γg; Γl ` x : τ1 , Γg; Γl ` m : τ2 , Γg; Γl ` n : τ3

i f x > 0 then

y := m;

else

y := n ;

end i f ;

the type of conditional expression x > 0 is τ1 t ⊥. The type constraints generated along

the true branch are C ′ = {τ2 ≤ τnew1, p t (τ1 t ⊥) ≤ τnew1}, and the type constraints

generated in the false branch are C ′′ = {τ3 ≤ τnew2, p t (τ1 t ⊥) ≤ τnew2}, where τnew1 and

τnew2 are two fresh type variables generated by function freshType(). The final produced

type constraints for conditional statement are C ′′′ = {τ2 ≤ τnew1, p t (τ1 t⊥) ≤ τnew1, τ3 ≤

τnew2, p t (τ1 t ⊥) ≤ τnew2} by merging the resulting constraints of the both branches,

that’s C ′′′ = C ′ ∪ C ′′. The type mapping of local variables at the end of each branch are:

Γ′l = Γl[y → τnew1] and Γ′′l = Γl[y → τnew2]. Thus, the final type mapping for local variables

become Γ′′′l = Γl[y → τnew1 t τnew2], that’s Γ′′′l = Γ′l
⊔

Γ′′l .

For sequent statement, generate type constraints sequentially for c1 and c2, and use the

union of their type constraints as its final constraint set, as specified in rule Sequence.

Rule While defines the type constraint generation procedure for the while loop statement,

where ModVarlocal(c) calculates the set of local variables that maybe modified within the loop
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(b) procedure call 

(c) procedure call constraints (a) while loop 

Figure 5.3: Type Constraints for While Loop

body c, Γl and Γ′l are the type mapping for local variables before and after executing the while

statement, and αi is final fixed point type for the local variable xi, i ∈ [1, k]. As illustrated

in Figure 5.3 (a), the while loop is treated like a procedure call, all used variables, such as

{x1, . . . , xk, y1, . . . , yn}, in while loop are serving as its interfaces/parameters: including

both local variables and global variables. The types of those modified local variables, such

as {x1, . . . , xk}, will reach a fixed point {α1, . . . , αk} after several loop iterations and the

types of other variables, both global variables and those used but unmodified local variables,

such as {y1, . . . , yn}, will keep the same. Box 1 shows the types of used variables before

entering while loop, where τ ′i is type for local variable xi, i ∈ [1, k], corresponding to Γl(xi)

in the rule While. As the type of yi keeps the same during the while loop iteration, they

are ignored to be tracked. Box 2 is fixed point type mapping for variables and it works as

the interface of the while loop, with fresh type variable αi being the fixed point type for xi.

Box 3 is type mapping for variables at the end of each loop iteration. In type constraint

generation rule While, type constraint set C0 corresponds to {τ ′i ≤ αi | 1 ≤ i ≤ k} between

type mapping of Box 1 and Box 2, similar to type constraints for passing in value from
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arguments to parameters in a procedure call; C ′ is type constraint set generated for while

loop body c; and C1 corresponds to type constraint set {τ ′′i ≤ αi | 1 ≤ i ≤ k} between Box

3 and Box 2, similar to type constraints for a recursive call by passing the values at the end

of each iteration to the interface of the loop for next round of iteration. Box 4 is fixed type

mapping after the while loop, which is the same as Box 2. For example:

−− w h i l e loop ,

−− where x , y , z are a l l l o c a l v a r i a b l e s

while x > 0 loop

z := x ;

x := y + z ;

end loop ;

assume that the types of x, y and z are τx0 , τy0 and τz0 when reaching the while loop and

αx, αy and αz, which are final fixed point types, when exiting the while loop. Fixed point

type is the least upper bound type for all possible values that can be held in a local variable

modified within the while loop body. The type of conditional expression x > 0 based on

fixed type of x is αx t ⊥ and it guarantees that the generated type constraints for the while

loop body can capture its all possible information flows. The produced type constraints for

loop body are C ′ = {αx ≤ αz1 , αx t ⊥ ≤ αz1 , αy t αz1 ≤ αx1 , αx t ⊥ ≤ αx1},

where αz1 is the fresh type of z after the first assignment and αx1 is the fresh type of x

after the second assignment. The type constraints C0 = {τx0 ≤ αx, τy0 ≤ αy, τz0 ≤ αz}

and C1 = {αx1 ≤ αx, αy ≤ αy, αz1 ≤ αz} can ensure that the fixed types of x, y and z are

always the upper bound types for whatever number of loop iterations. The complete type

constraints for the while statement are C ′′ = C0 ∪C1 ∪C ′, and the final local type mapping

Γ′l = Γl[x→ αx][y → αy][z → αz].

In the rule Procedure-Call for procedure call f (a1 , a2 , .. , ak), two kinds of constraints are

generated: constraints between types of arguments and parameters Ci with i ∈ [1, k], and

constraints between types of parameters enforced by the procedure itself C ′f , as illustrated
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in Figure 5.3 (b) (c). Type constraint generation for procedure call is similar to the one

for assignments between arguments and parameters depending on the in/out mode of the

parameters. To avoid the mess up for the case of calling the same procedure in multiple

places, fresh type variables are introduced for types of parameters and their type constraints

are updated accordingly with the fresh type variables. Γg(f) extracts the type constraints

for the parameters of the called procedure f , where ηi is the security type of the parameter

xi and Cf is the constraints between ηi, i ∈ [1, k]. If xi is an input (or output) variable, in

In (or Out) mode, ηi = τi, meaning the type of any input arguments (or output parameters)

should be less or equal to (or greater or equal than) τi; if xi is both an input and output

variable, then ηi is a pair (τi1 , τi2), with τi1 enforcing the type constraint for the input

arguments passed into xi and τi2 for the output arguments returned from xi. The function

λ1(τ) produces a fresh type variable to replace τ if τ is a type variable, or returns τ if it’s a

concrete type value, e.g. λ1(High) returns High, but λ1(α) produces a fresh type variable

α′. In function λ2(x, τx), τx is the type of x, after the assignment to x, it produces a fresh

type variable if x is a local variable, or returns τx if it’s a global variable.

In order to do modular analysis for procedure, the types of its parameters and the

associated constraints enforced by the information flow within the procedure body are gen-

erated once and used as a summary for type constraints for arguments whenever the pro-

cedure is called. The rule Procedure-Call specifies type constraints generation for a declared

procedure f (x1 , .. , xk){c}: first assign fresh type variable αi for each parameter xi, and

then generate their type constraints C according to the procedure body. The resulting con-

straints Cf between types of parameters and global variables are stored as a summary for

procedure f in Γ′g. The constraint operators Normalize and Simplify are used for generating

atomic constraints, computing constraint closure and simplifying constraints, which will be

discussed in subsection 5.2.2. The operator Reduce removes all the type constraints except

those about parameters and visible global variables. The parameters work as interface for

receiving/returning the information from/to the external context, and their types and con-
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straints are fixed when the procedure is called. Thus, the types of arguments should satisfy

these constraints enforced on the parameters to guarantee the security of information flow

within the procedure. For parameter xi, if it’s an input variable, it’s security type will

always be τi as it’s only readable; if it’s an output variable, it’s final security type is Γ′l(xi);

and if it’s both an input and output variable, it’s type ηi is a pair (τi ,Γ
′
l (xi)) with τi being

the input type of xi and Γ′l(xi) being the output type of xi. For example:

−− procedure d e c l a r a t i o n

procedure double ( x : in I n t e g e r ; y : out I n t e g e r ) i s

begin

y := 2 ∗ x ;

end double ;

to generate type constraint summary for procedure double, first we assign two fresh type

variables α1 and α2 for parameters x and y, then generate their type constraints according

to the information flow within the procedure body. In this example procedure, there is only

one assignment that requires to enforce the constraints {⊥ t α1 ≤ α3}, where α3 is a fresh

type for y. After performing the normalization and simplification procedure (to be discussed

later), we get the following type constraint summary: procedure double(x : α1 , y : α3 ) asso-

ciated with constraints α1 ≤ α3. It means that the parameter x accepts a value of type α1

and the parameter y outputs a value of type α3, and it holds that α1 ≤ α3. The usage of

the type constraint summary can be illustrated in the following example:

−− procedure c a l l s ,

−− where Γg; Γl ` m : τ1 , Γl ` u : τ2

. . .

double (m, g1 ) ;

double (u , g2 ) ;

if g1 and g2 are global variables with types τ3 and τ4, then the type constraints generated

for the first procedure call are {τ1 ≤ α′1, α
′
3 ≤ τ3, α

′
1 ≤ α′3} and the type constraints for the
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second procedure call are {τ2 ≤ α′′1, α
′′
3 ≤ τ4, α

′′
1 ≤ α′′3}. Each time when the procedure is

called, all the type variables appearing in the procedure’s constraint summary are replaced

with some fresh type variables, e.g., in the first procedure call for double, α1 and α3 are

replaced with fresh type variables α′1 and α′3 (α′′1 and α′′3 in the second procedure call). It

can distinguish the type constraints generated for different procedure calls and reflect the

polymorphism of type constraints for the called procedure.

5.2.2 Type Constraint Simplification

The type constraints produced by constraint generator can be huge and most of them can be

either simplified or optimized away. To achieve this, we have designed a set of simplification

rules for constraints after the normalization operation.

Normalization: It’s a sequence of constraint transformations to finally get a set of atomic

constraints. There are two types of constraints produced by the constraint generation rules,

constraint for direct data flow from source information to target variable and the constraint

for indirect control flow from the execution context to the enclosed execution statements.

As we have discussed before, the target variable can be either global or local variables, and

the type of global variable is fixed and the assignment to a local variable will always assign

a fresh type variable to it, so the type of target variable is always τ , which is either some

type variable or some concrete type value. Source information is expressed as an expression,

whose type is T , having at most type operator t, and the type of context is sequence of

conditional expressions that are joined with t operator, so the final produced constraints

can only be in the form of T ≤ τ that t is the only possible operation within T . The

following is the normalization procedure for produced constraints:

C ∪ {T1 t T2 ≤ τ} ⇒norm C ∪ {T1 ≤ τ, T2 ≤ τ}

It means that for any constraint in the form of T1 t T2 ≤ τ , split it into two sub-constraints

T1 ≤ τ and T2 ≤ τ , and this procedure continues until all constraints are atomic.

In the previous section, we have given an example showing how to generate constraints for
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a while loop, and here we will continue to show how to normalize the resulting constraints

C ′′, which is equal to C0 ∪ C1 ∪ C ′ and C0 = {τx0 ≤ αx, τy0 ≤ αy, τz0 ≤ αz},

C1 = {αx1 ≤ αx, αy ≤ αy, αz1 ≤ αz}, and C ′ = {αx ≤ αz1 , αx t ⊥ ≤ αz1 , αy t αz1 ≤

αx1 , αx t ⊥ ≤ αx1}. Each constraint in C0 and C1 are already atomic, and only C ′ needs

to be normalized. According to the normalization rule, αx t ⊥ ≤ αz1 is normalized to

{αx ≤ αz1 , ⊥ ≤ αz1}, and αy t αz1 ≤ αx1 is normalized to {αy ≤ αx1 , αz1 ≤ αx1}, and

αx t ⊥ ≤ αx1 is normalized to {αx ≤ αx1 , ⊥ ≤ αx1}. The normalization results of C ′′′

is C ′′′n = {τx0 ≤ αx, τy0 ≤ αy, τz0 ≤ αz, αx1 ≤ αx, αy ≤ αy, αz1 ≤ αz, αx ≤ αz1 , αx ≤

αz1 , ⊥ ≤ αz1 , αy ≤ αx1 , αz1 ≤ αx1 , αx ≤ αx1 , ⊥ ≤ αx1}.

Simplification: It’s a procedure to remove redundant constraints, optimize away the con-

straints that are always true, type inference and others, following the above constraint

normalization, which is performed in two steps:

First, compute the closure for the constraint set according to the transitivity rule of

ordering. In other words, if both τ1 ≤ α and α ≤ τ2 are in constraint set, then add τ1 ≤ τ2

into the constraint set too. This procedure is repeated until no new constraints are added,

as shown in the following rule:

C ∪ {τ1 ≤ α, α ≤ τ2} ⇒trans C ∪ {τ1 ≤ α, α ≤ τ2, τ1 ≤ τ2}

Then, do simplification with the following rules.

(1 ) C ∪ {τ1 ≤ τ2, τ1 ≤ τ2} ⇒simp C ∪ {τ1 ≤ τ2}

(2 ) C ∪ {⊥ ≤ τ} ⇒simp C

(3 ) C ∪ {τ ≤ >} ⇒simp C

(4 ) C ∪ {τ ≤ τ} ⇒simp C

(5 ) C ∪ {`1 ≤ `2} ⇒simp C, i f `1 ≤ `2 , o the rw i se r epor t e r r o r

(6 ) C ∪ {α ≤ τ, τ ≤ α} ⇒antisym (C[τ/α], Γg [τ/α])

( 7 ) C ∪ {`1 ≤ α} ∪ {`2 ≤ α} ⇒simp (C[>/α], Γg [>/α]), i f `1 t `2 = >

(8 ) C ∪ {α ≤ `1} ∪ {α ≤ `2} ⇒simp (C[⊥/α], Γg [⊥/α]), i f `1 u `2 = ⊥

(9 ) C ∪ {` ≤ α} ⇒simp (C[`/α], Γg [`/α]), i f the re i s no `′ that ` ≤ `′

(10) C ∪ {α ≤ `} ⇒simp (C[`/α], Γg [`/α]), i f the re i s no `′ that `′ ≤ `

Rule (1) removes the redundant constraint, and rules (2)-(4) optimize away the con-

straints that will always hold, and rule (5) reports error if the constraints enforced by the
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security policy are violated. Rules (6)-(10) infer types for type variable in different cases,

for example, in rule (7), if there are both `1 ≤ α and `2 ≤ α with condition `1 t `2 = >

holds, then we can infer that > = `1 t `2 ≤ α, thus α can only be >. For the rule (9), if

there exists constraint ` ≤ α and there is no `′ other than ` making ` ≤ `′ true, then α is `,

for example, if ` is >, then no type satisfying > ≤ α except > itself.

The final constraint set C is a set of atomic constraints in the form of: α ≤ `, ` ≤ α or

α1 ≤ α2.

To continue on the while loop example, we will show how to apply the simplification rules

to C ′′′n = {τx0 ≤ αx, τy0 ≤ αy, τz0 ≤ αz, αx1 ≤ αx, αy ≤ αy, αz1 ≤ αz, αx ≤ αz1 , αx ≤

αz1 , ⊥ ≤ αz1 , αy ≤ αx1 , αz1 ≤ αx1 , αx ≤ αx1 , ⊥ ≤ αx1}. To be simple, we skip the

computation of the closure set for C ′′′n . The resulting simplified constraint set C ′′′s = {τx0 ≤

αx, τy0 ≤ αy, τz0 ≤ αz, αx1 ≤ αx, αz1 ≤ αz, αx ≤ αz1 , αy ≤ αx1 , αz1 ≤ αx1 , αx ≤ αx1} by

removing ⊥ ≤ αz1 and ⊥ ≤ αx1 with rule (2), removing αy ≤ αy with rule (4), and αx ≤ αz1

with rule (1).

5.2.3 Type Constraint Satisfiability

There have been a lot of work done on the type interference with subtyping constraints.

Some focus on the general algorithms for type inference, such as54,55,56, and some study

the inherent difficulty of the problem such as57,58, which showed that the general constraint

satisfaction problem is PSPACE-complete. Paper58 gives a sound decision procedure for

checking satisfiability of the subtyping constraints, and proves that the satisfiability problem

for subtyping constraints is solvable if the poset of atomic subtypings is a disjoint union of

lattices. Since our goal is to check the security of the program with respect to the security

policy, we only need to check the satisfiability of its type constraint set. In other words, the

program is secure if its type constraints are solvable, otherwise, it’s insecure. In this work,

we will use the checking algorithm proposed in58.
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Theorem 1 (proved in58). Subtyping constraint set C is satisfiable in L iff (1)

it’s weakly satisfiable and (2) ground consistent, where L is a poset which is a

disjoint union of lattices and C is a flat system of constraints.

C is said to be flat if each of its term is atomic constraint, which is satisfied for our

generated type constraints after simplification. User defined partial order set of security

types with Ordered aspect are corresponding to L, which is a disjoint union of lattices

L = L1 ∪ . . . ∪ Lm. Then, the satisfiability problem can be achieved by checking whether

the following two conditions hold:

1. C is weakly satisfiable with respect to L. C = {τ1 ≤ τ ′1, . . . , τn ≤ τ ′n} is weakly

satisfiable if C∗ = {(τ1)∗ = (τ ′1)∗, . . . , (τn)∗ = (τ ′n)∗} is satisfiable, which is a unification

problem and thus can be decidable in polynomial time. (τ)∗ is called a shape of τ

and it’s defined as: (a) (`)∗ = ∗i if ` ∈ Li, (b) (x)∗ = x, where ` denotes a concrete

security type and x is a type variable.

2. C is ground consistent with respect to L. C is ground consistent if for all `, `′ ∈ L,

` ≤ `′ holds in L whenever C `s ` ≤ `′, where ` ≤ `′ is either a term of C or can be

computed from its transitive closure.

For example, if there are two ordered domains LOW and HIGH in the lattice L1, with

LOW ≤ HIGH , and there are two global variables g1 and g2 belonging to domains LOW

and HIGH separately, as shown in the following:

type Domains i s (LOW, HIGH) with Ordered ; −− LOW ≤ HIGH

g1 : I n t e g e r with Domain ⇒ LOW;

g2 : I n t e g e r with Domain ⇒ HIGH;

procedure f 1 (X: in Integer , Y: out I n t e g e r ) i s

begin

Y := g1 + g2 ;
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g2 := X;

end f 1 ;

procedure f 2 (X: in I n t e g e r ) i s

begin

X := g2 ;

g1 := X;

end f 2 ;

For the procedure f1 , given the type variable τ1 for X and τ2 for Y , we will have the

constraint set C = {LOW ≤ τ2 , HIGH ≤ τ2 , τ1 ≤ HIGH } for the procedure by the type

constraint generation rules. According to the above satisfiability conditions, (1) C is weakly

satisfiable as C∗ = {(Low)∗ = (τ2 )∗, (HIGH )∗ = (τ2 )∗, (τ1 )∗ = (HIGH )∗}, which can be

simplified to {∗1 = τ2 , ∗1 = τ2 , τ1 = ∗1}, and it’s satisfiable when both τ1 and τ2 are ∗1,

which can be either LOW or HIGH ; and (2) C is ground consistent with respect to L1 as

there is no HIGH ≤ LOW in C or its transitive closure, thus C is satisfiable.

For the procedure f2 , given the type variable τ for X, we will have the constraint set

C = {HIGH ≤ τ, τ ≤ LOW } for the procedure. According to the above satisfiability condi-

tions, (1) C is weakly satisfiable as C∗ = {(HIGH )∗ = (τ)∗, (τ)∗ = (LOW )∗}, which can be

simplified to {∗1 = τ, τ = ∗1}, and it’s satisfiable when τ is ∗1, which can be either LOW

or HIGH ; but (2) C is not ground consistent as there is HIGH ≤ LOW in the transitive

closure of C, thus C is not satisfiable.

5.3 Example

In SPARK, a method can be defined with either procedure or function, where procedure

allows side-effects to externally visible variables while function cannot.

Figure 5.4 (a) shows excerpts of a SPARK program with four global integer variables

(Key , SSN , BankAccount , Disk) and three procedures (Encrypt , Write, Write E ). Proce-
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Figure 5.4: Illustration of Declassification Policy Framework

dure Encrypt simulates a simple encryption operation by encryping value V with key K and

putting the encrypted result in R. Procedure Write encrypts SSN and writes the result on

Disk , and procedure Write E puts the encrypted BankAccount on Disk .

The security requirements for the information of the system can be described as the

following: all secret information should be encrypted before they are stored on disk, while

top secrets should not allow to be stored on disk even after encryption. We assume that

Key and SSN are classified as secret information, BankAccount as top secret, and Disk is

accessible to the public. Furthermore, procedure Encrypt is assumed to perform our desired

encryption function. Now the question is how can we verify that the program is information

secure with respect to the above specified security requirements.

Figure 5.4 (b) shows the program specified with our proposed security policy frame-

work to automatically enforce the above security requirements, where the code highlighted

with green bars is the specification of the required information security contracts for the

88



program to be analyzed. In this paper, we propose to define security domains as an enumer-

ation type annotated with a special aspect called Ordered . For example, the enumeration

type Domains is defined as a type of security domains and the aspect Ordered by de-

fault means totally ordering between domain values: {Public ≤ Secret , Secret ≤ TopSecret ,

Public ≤ TopSecret}, which means information of lower security domain is allowed to flow

into destination of higher domains. Following the definition of the type of security domain

are the associations of security domains with variables holding information of our interests.

The aspect Domain binds the security domain for the specified variable, for example, Key is

associated with domain Secret . To specify the declassification policy, we introduce another

new aspect called Declassifier , which means the declassification of information from one

domain to another. Encrypt is specified with Declassifier aspect, with security domain as-

sociation for each of its parameters. It means that Encrypt is a trusted declassifier function

to perform declassification of information from Secret domain (K, V ) to Public domain (R).

With user specified information contract, our last step is to check whether the program

satisfies the declassification policy or not. First, we need to build the inter-procedure call

graph, and then do static analysis for each procedure in a bottom-up way. In this example,

Encrypt is called by both Write and Write E , so we start with Encrypt . When we analyze

Encrypt , we find that it’s a Declassifier , so we just skip it as it’s specified by the user as

a trusted declassification function. Then we reach Write and get into its implementation

body. On procedure call Encrypt , it will pass in the value of global variables Key and

SSN to parameters K and V , which would generate type constraints {Secret ≤ Secret ,

Secret ≤ Secret} as required by the secure information flow rules that the security domain of

source information should be less restrictive than the security domain of target information.

On the return of procedure call Encrypt , it will pass out the return value from parameter

R to local variable Result , which will produce type constraints {Public ≤ α} as the local

variable Result is defined without any security domain association so we assign it a fresh

type variable α. For assignment following the Encrypt call, the type constraint {α ≤ Public}
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is generated. Finally, we get the constraints {Secret ≤ Secret , Secret ≤ Secret , Public ≤ α,

α ≤ Public}. Obviously, these constraints are satisfiable when α takes the security domain

Public.

For procedure Write E , we can analyze it in the same way, and finally we will get the

following constraints {Secret ≤ Secret , TopSecret ≤ Secret , Public ≤ α, α ≤ Public}. As we

can see, TopSecret ≤ Secret violates the security requirement. So, from the above analysis,

we can conclude that Write is secure while Write E is not.

This section gives an example to show how we can use the security policy framework to

automatically enforce the information security requirements. In the following sections, we

will discuss in detail about our proposed security policy framework.

5.4 Soundness of Policy Enforcement

5.4.1 Operational Semantics

Usually, an information flow from u to v is said to be secure whenever Γ (u) ≤ Γ (v) holds.

But, the introduction of declassifier procedures makes it possible to allow information flow

that doesn’t need strictly follow the condition Γ (u) ≤ Γ (v) as long as the information flow

goes through some trust declassifiers and satisfies their constraints. A program is secure

with respect to a declassification policy iff (1) either the program is a declassifier to be

trusted, or (2) all information flow incurred in each transition of the program is secure.

To formally define the security of information flow and prove the soundness of the policy

enforcement algorithm, we have given the formal semantics of the language with declassifier

procedures, as shown in Figure 5.5.

The major difference of this semantics is the one for procedure call of declassifier, as

shown in the rule Declassifys. For a declassifier procedure as specified by the user, as long as

the security type of the arguments is compatible with the type of parameters, the information

flow within the procedure is assumed to be secure. For example, for a declassifier procedure
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[[n]]s = n
Lits

[[x]]s = s(x)
Vars [[e]]s = v

[[�e]]s = �v
UnExps

[[e1]]s = v1 [[e2]]s = v2

[[e1 � e2]]s = v1 � v2
BinExps

[[e]]s = v s′ = s[x→ v]

s [[x := e]] s′
Assigns

[[e]]s = true s [[c1]] s′

s [[if e then c1 else c2]] s′
IfTs

[[e]]s = false s [[c2]] s′

s [[if e then c1 else c2]] s′
IfFs

s [[c1]] s1 s1 [[c2]] s′

s [[c1; c2]] s′
Seqs

s PassIn(f (a1 , a2 , .. , ak )) s1 s1 [[fbody ]] s2 s2 PassOut(f (a1 , a2 , .. , ak )) s′

s [[call f(a1, a2, .. , ak)]] s′
Calls

procedure fDeclassify (x1 : τ1, . . . , xk : τk) with τi being specified security type of xi, i ∈ [1, k]

s [[p(x1, a1); . . . ; p(xk, ak)]] s′, p(xi, ai) ::=

{
Dτi := ai if Mode(x) = In/InOut
ai := Sτi if Mode(x) = Out/InOut

i ∈ [1, k]

s [[call fDeclassify(a1, a2, .. , ak)]] s′
Declassifys

[[e]]s = false

s [[while e do c]] s
WhileFs

[[e]]s = true s [[c]] s1 s1 [[while e do c]] s′

s [[while e do c]] s′
WhileTs

Figure 5.5: Operational Semantics

to declassify information from High to Low, as long as the type of the information to

be declassified is less than and equal to High, and the type of the resulting argument is

greater than and equal to Low, then it’s a secure procedure call. So declassifier procedure

is specified to be a trust procedure and work like a black box, we don’t need to track

the information flow within it. Based on this assumption, we define the semantics for

calling declassifier procedure as a sequence of assignments between arguments and some

security domain source and destination. For any security domain τ , we introduce two

global variables Sτ (representing information source from domain τ) and Dτ (representing

information destination to domain τ) such that Dτ is used to receive data from domain τ

and Sτ is used to produces data of domain τ . So, for any input argument ai, if the type of

its corresponding parameter is τi, then we translate it into the assignment Dτi := ai; and for

any output argument aj, if the type of its corresponding parameter is τj, then we translate

it into the assignment aj := Sτj . In the rule Calls, PassIn(f (a1 , a2 , .. , ak )) passes in the

arguments to the procedure f by assigning ai to xi when xi is a parameter with in or in out mode,

and PassOut(f (a1 , a2 , .. , ak )) passes out the resulting values when the procedure call returns

by assigning xj to aj when xj is a parameter with out or in out mode, where i j ∈ [1..k].
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5.4.2 Security of Information Flow

τ-Equal (≡Γ
τ ). ∀ s t , s ≡Γ

τ t iff [[x ]]s = [[x ]]t for all x that Γ (x ) ≤ τ .

For example, for two states s and t, with s = {l : 1 , h : 3} and t = {l : 1 , h : 5}, if Γ(l) =

LOW and Γ(h) = HIGH and LOW ≤ HIGH, then we would say that s ≡Γ
LOW t, but s 6≡Γ

HIGH t

as they don’t agree on the value of HIGH variable h.

Security (Γ ` Secure(c)). ∀ s s ′ t t ′, s [[c]] s ′ and t [[c]] t ′, ∀ τ ∈ security lattice, s ′ ≡Γ
τ t ′ whenever

s ≡Γ
τ t .

The definition of the program security looks similar to the standard end-to-end noninterfer-

ence property, but its based program semantics as shown in Figure 5.5 is different with standard

semantics because of the introduction of declassification. For example,

−− Assume two domains LOW and HIGH, wi th LOW ≤ HIGH, and

−− Γ(l) = LOW

−− Γ(time) = LOW

−− Γ(h) = HIGH

v : I n t e g e r := h + time ;

Encrypt (v , l ) ;

the above program is intended to attach a time property to a HIGH information h before it’s

encrypted and stored on a LOW variable l. The Encrypt(x , y) is a declassifier function that

makes it legal to transfer HIGH information (through parameter x) to LOW destination (through

parameter y) after the encryption. Based on standard end-to-end noninterference property, the

information flow within the program is insecure, which deviates from our expectation, as for any

two initial states s and t, whenever s ≡Γ
LOW t, the conclusion s′ ≡Γ

LOW t′ will not always hold for

the final states s′ and t′ because the LOW variable l depends on the initial values of both LOW

variable time and HIGH variable h. While, in our new semantics for program with declassification,

two global dummy variables are introduced for each domain, that’s SLOW and DLOW for LOW

domain, and SHIGH and DHIGH for HIGH domain, and the program is transformed into the
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following form:

v : I n t e g e r := h + time ;

DHIGH := v ;

l := SLOW ;

The security requirement for assignment DHIGH := v guarantees the compatibility of the domain

of v with the domain HIGH and enforces that the declassifier function Encrypt can only declassify

information from HIGH compatible domains. Similarly, the assignment l := DLOW reflects the

user’s view of information returned by Encrypt , that’s, variable l receives some information from

LOW domain that has been preprocessed (or declassified) from other domain. It does not matter

how the declassification is processed within the declassifier function Encrypt as long as it’s trusted,

and for the user of the delcassifier function, he will be guaranteed to get a value that can be

visible in LOW domain once he gives a value compatible with HIGH domain and there will be

no information leak. So it make sense to do the program transformation for the procedure call

of declassifier functions. Based on the semantics of the transformed program, we can prove the

information flow security for the program: for any two initial states s and t, whenever s ≡Γ
LOW t,

that’s [[l]]s = [[l]]t ∧ [[time]]s = [[time]]t ∧ [[SLOW ]]s = [[SLOW ]]t, the conclusion s′ ≡Γ
LOW t′ will always

hold for the final states s′ and t′, as l only depends on SLOW and time depends on itself.

5.4.3 Soundness of Policy Enforcement

Well-Typedness (Γ `WellTyped(s)): ∀ Γ s,

(∀ x y1 ... yk ,

x in state s ∧ x derives from {y1 , ..., yk} →

Γ (y1 ) ≤ Γ (x ) ∧ ... ∧ Γ (yk ) ≤ Γ (x )

) → Γ `WellTyped(s).

Well-typedness means that for any state variable x of a well typed state s, the types of its

derived values should be less than and equal to its type. In other words, for any state variable x,

there exists a function fx such that the final value of x can be found as: fx (y1 , . . . , yk ), with the
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condition Γ (yi) ≤ Γ (x ), i ∈ [1..k], being satisfied.

Lemma Well-Typedness-Preserve: ∀ Γg Γl Γ ′l C p c s s ′,

Γg ; Γl ; p ` c ⇒ Γ ′l ; C → C is satisfiable →

s [[c]] s ′ → Γg ; Γl `WellTyped(s)→

Γg ; Γ ′l `WellTyped(s ′).

For any well-formed program c, with Γg; Γl; p ` c⇒ Γ′l;C, the program is secure with respect

to the declassification policy if the constraints C is satisfiable.

Theorem Soundness: ∀ Γg Γl Γ ′l C p c,

Γg ; Γl ; p ` c ⇒ Γ ′l ; C →

C is satisfiable →

Γg ` Secure(c).

With the lemma Well-Typedness-Preserve (to be proved later), the proof for the soundness theorem

is straightforward: given assumptions (A1) Γg ; Γl ; p ` c ⇒ Γ ′l ; C , with (A2) C being satisfiable,

and (A3) s [[c]] s ′ and (A4) t [[c]] t ′, our goal is to prove that (Goal) for any security domain τ ,

if s ≡Γg
τ t then s ′ ≡Γg

τ t ′. In our security policy enforcement framework, user has to specify the

security domains for the global variables that are security critical, and make sure that information

of different domains cannot interference with each other unless through the user specified declassi-

fication procedures. At any initial state of the program c, the value of any state variable x depends

on itself, that’s fx (x ) and it holds that Γ(x) ≤ Γ(x). Thus, we get (A5) Γg ; Γl `WellTyped(s) and

(A6) Γg ; Γl `WellTyped(t). By applying the lemma Well-Typedness-Preserve on (A1) (A2) (A3)

and (A5), we get Γg ; Γ ′l `WellTyped(s ′); similar application can lead to Γg ; Γ ′l `WellTyped(t ′).

In other words, for any global variable x of domain τ , where τ = Γg(x ), there exists a function fx

such that the final value of x (in both states s′ and t′) at the end of the program execution can

be represented as fx (y1 , . . . , yk ) and Γg(yi) ≤ τ for i ∈ [1..k], thus [[x ]]s′ = [[x ]]t ′ when s ≡Γg
τ t , and

the conclusion for (Goal) is done.
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Proof for Lemma Well-Typedness-Preserve. The lemma can be proved by a structural

induction on Γg ; Γl ; p ` c ⇒ Γ ′l ; C as shown in the below:

case 1: c is (x := e), and our goal is to prove that Γg ; Γ ′l `WellTyped(s ′). First, assume that

Γg ; Γl ` e : T . If x is a local variable, we will get C = {T ≤ α, p ≤ α} with α = freshType() and

Γ ′l = Γl [x → α]. As Γg ; Γl `WellTyped(s), it can be inferred that, for any used variable xe in e

with type τxe , it holds that τxe ≤ T , and there exists a function fxe such that the value of xe can

be found as fxe (y1 , . . . , ym) with τyi ≤ τxe and τyi being the type of yi, thus τyi ≤ T for i ∈ [1..m].

Similarly, for any variable xc in conditions leading to the assignment, it holds that τxc ≤ p, with

τxc being the type of xc and p being the type of conditions, and there exists a function fxc such

that the value of xc can be found as fxc (z1 , . . . , zn) with τzi ≤ τxc and τzi being the type of zi, thus

τzi ≤ p for i ∈ [1..n]. With constraint C being true, we can infer that τyi ≤ α from τyi ≤ T and

T ≤ α for i ∈ [1..m], and τzi ≤ α from τzi ≤ p and p ≤ α for i ∈ [1..n]. As x is data-depending

on yi, with τyi ≤ α for i ∈ [1..m] and control-depending on zi, with τzi ≤ α for i ∈ [1..n], we get

that x is well-typed in state s′ after the assignment and the well-typedness for other variables will

carry over from s to s′, thus we prove that s′ is well-typed.

If x is a global variable and Γg(x ) = τ , we will get C = {T ≤ τ, p ≤ τ} and Γ ′l = Γl . Similar

to the proof of the assignment to local variables, as Γg ; Γl `WellTyped(s) and in the assignment,

x is updated with the value e under some condition of type p, the truth of the constraints C

can guarantee that the type of the source value domain for the updated x in s ′ is ≤ τ , thus

Γg ; Γl `WellTyped(s ′) holds.

case 2: c is (if e then c1 else c2 ). As an inductive case, it introduces two induction hypothe-

sis: IH1 : ∀ s s ′, C1 is satisfiable → s [[c1 ]] s ′ → Γg ; Γl `WellTyped(s)→ Γg ; Γl1 `WellTyped(s ′),

and IH2 : ∀ s s ′, C2 is satisfiable → s [[c2 ]] s ′ → Γg ; Γl `WellTyped(s)→ Γg ; Γl2 `WellTyped(s ′),

with Γg ; Γl ; p t T ` c1 ⇒ Γl1 ; C1 and Γg ; Γl ; p t T ` c2 ⇒ Γl2 ; C2 and Γg ; Γl ` e : T . The as-

sumption is that constraints C is satisfiable, with C = C1 t C2.

If [[e]]s = true, then s [[if e then c1 else c2 ]] s ′ = s [[c1 ]] s ′. C1 is satisfiable as it’s a subset of

satisfiable C , by applying the induction hypothesis IH1 , we get Γg ; Γl1 `WellTyped(s ′).

If [[e]]s = false, then s [[if e then c1 else c2 ]] s ′ = s [[c2 ]] s ′. C2 is satisfiable as it’s a subset of
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satisfiable C , by applying the induction hypothesis IH2 , we get Γg ; Γl2 `WellTyped(s ′).

Now we have proved that at the end of each branch s′ is well-typed, and our goal is to prove

Γg ; Γ ′l `WellTyped(s ′) at the merging point of the two branches, where Γ ′l = Γl1

⊔
Γl2 . For any

variable x in s ′, if it’s a global variable, we can conclude that there exists a function fxt such that

the value of x can be found as fxt (yt1 , . . . , ytm), with τyti ≤ τx for i ∈ [1..m], in the true branch

and there exists a function fxf such that the value of x can be found as fxf (yf1 , . . . , yfn), with

τyfi ≤ τx for i ∈ [1..n], in the false branch. So, there should exists a function fx such that the

value of x at the end of the conditional statement can be found as fx (yt1 , . . . , ytm , yf1 , . . . , yfn),

with τyti ≤ τx for i ∈ [1..m] and τyfi ≤ τx for i ∈ [1..n]. Similarly, if it’s a local variable, the type

of its source value domain is ≤ Γl1 (x ) in true branch and ≤ Γl2 (x ) in false branch, so it’s ≤ Γ ′l (x )

as Γ ′l (x ) = Γl1 (x ) t Γl2 (x ). Finally, we reach that Γg ; Γ ′l `WellTyped(s ′).

case 3: c is (while e do c1 ). As an inductive case, it introduces the induction hypothe-

sis: IH : ∀ s s ′, C1 is satisfiable → s [[c1 ]] s ′ → Γg ; Γ ′l `WellTyped(s)→ Γg ; Γl1 `WellTyped(s ′),

with Γg ; Γ ′l ; p t T ` c1 ⇒ Γl1 ; C1 and Γ ′l = Γl [x1 → α1 ][. . .][xk → αk ], where αi is the fixed-point

type of local variable xi that maybe modified within loop body, and Γg ; Γ ′l ` e : T .

If [[e]]s = false, then s ′ = s, thus Γg ; Γl `WellTyped(s ′) whenever Γg ; Γl `WellTyped(s). Our

goal is to prove Γg ; Γ ′l `WellTyped(s ′). For any local variable xi that maybe modified within

loop body, it holds that Γl (xi) ≤ Γ ′l (xi) as generated by the constraint generation rule While, and

there exists a function fxi such that the value of xi in state s′ can be found as fxi (y1 , . . . , yn),

with τyj ≤ τxi = Γl(xi) for j ∈ [1..n] because of Γg ; Γl `WellTyped(s ′), by transitive relation of

≤ ordering, we get τyj ≤ Γ′l(xi) for j ∈ [1..n]. For any global variable, its type keeps the same

after the loop iteration, so in state s′, if it’s well typed with respect to Γg ; Γl then it should also

be well-typed with respect to Γg ; Γ ′l . As both local and global variables are well-typed in state s′

with respect to Γg ; Γ ′l , it’s natural to get that Γg ; Γ ′l `WellTyped(s ′).

If [[e]]s = true, then s [[while e do c1 ]] s ′ is the same as s [[c; while e do c1 ]] s ′, and there

should exist a state s1 such that s [[c1 ]] s1 and s1 [[while e do c1 ]] s ′. C1 is a subset of C , if

C is satisfiable, then C1 is satisfiable too. In the case of [[e]]s being false, we have proved that

Γg ; Γ ′l `WellTyped(s) whenever Γg ; Γl `WellTyped(s). By applying the induction hypothesis IH ,
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we get Γg ; Γl1 `WellTyped(s1 ). For any local variable xi that maybe modified within loop body,

it holds that Γl1 (xi) ≤ Γ ′l (xi) as shown in the constraint generation rule While, and there exists a

function fxi such that the value of xi in state s1 can be found as fxi (y1 , . . . , yn), with τyj ≤ τxi =

Γl1(xi) for j ∈ [1..n] because of Γg ; Γl1 `WellTyped(s1 ), by transitive relation of ≤ ordering, we

get τyj ≤ Γ′l(xi) for j ∈ [1..n]. So, after one iteration of while loop, the state s1 is still well-typed

for any local variable xi with respect to Γg ; Γl1 . For the global variables, if they are well-typed with

respect to Γg ; Γl1 , then they are also well-typed with respect to Γg ; Γ ′l , as the type of the global

variables are stored in Γg , which is kept the same. So we can infer that Γg ; Γ ′l `WellTyped(s1 )

whenever Γg ; Γl1 `WellTyped(s1 ). Now we have reached the invariant that ∀ t t ′, t [[c1 ]] t ′ if

Γg ; Γ ′l `WellTyped(t) then Γg ; Γl1 `WellTyped(t ′), which guarantees the well-typedness for loop

ending states after any number of iterations.

case 4: c is (c1 ; c2 ). As an inductive case, it introduces two induction hypothesis:

IH1 : ∀ s s ′, C1 is satisfiable → s [[c1 ]] s ′ → Γg ; Γl `WellTyped(s)→ Γg ; Γl1 `WellTyped(s ′), and

IH2 : ∀ s s ′, C2 is satisfiable → s [[c2 ]] s ′ → Γg ; Γl1 `WellTyped(s)→ Γg ; Γ ′l `WellTyped(s ′), with

Γg ; Γl ; p ` c1 ⇒ Γl1 ; C1 and Γg ; Γl1 ; p ` c2 ⇒ Γ ′l ; C2 .

As C = C1 ∪ C2 , if C is satisfiable, then both C1 and C2 are also satisfiable. Given s [[c1 ; c2 ]] s ′,

there should exist s1 such that s [[c1 ]] s1 and s1 [[c2 ]] s ′. We can get Γg ; Γl1 `WellTyped(s1 ) by

applying the induction hypothesis IH1 . Furthermore, by applying the induction hypothesis IH2 ,

we will get Γg ; Γ ′1 `WellTyped(s ′) and the proof is done.

case 5: c is (call f Declassify(a1 , . . . , ak )). Our goal is to prove Γg ; Γ ′1 `WellTyped(s ′).

For any input argument ai , according to the semantics of procedure call for declassification,

we have Dτi := ai , with τi being the domain type of the corresponding parameter and Dτi being

a global variable of τi . According to the constraint generation rule Procedure-Call, it will generate

type constraint Ci = {τai ≤ τi , p ≤ τi}, where τai is type of ai . Similar to the proof for assignment,

∀ Γg Γl s s ′, if Γg ; Γ1 `WellTyped(s) and s [[Dτi := ai ]] s ′, then Γg ; Γ1 `WellTyped(s ′) as long as

the constraints Ci is satisfiable.

For any output argument aj , we get aj := Sτj , with τj being the domain type of the correspond-

ing parameter and Sτj being a global variable of τj . In constraint generation rule Procedure-Call,
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if aj is a local variable, a fresh type variable τ ′j = freshType() is generated for aj and Γl [aj → τ ′j ],

with type constraints Cj = {τj ≤ τ ′j , p ≤ τ ′j }. Similar to the proof for assignment, ∀ Γg Γl s s ′,

if Γg ; Γ1 `WellTyped(s) and s [[aj := Sτj ]] s ′, then Γg ; Γ1 [aj → τ ′j ] `WellTyped(s ′) as long as the

constraints Cj is satisfiable. If aj is a global variable, then the type constraints Cj = {τj ≤ Γg(aj ), p

≤ Γg(aj )}, and the proof for preserving well-typedness can be established in a similar way.

So, given the initial state s before the procedure call such that Γg ; Γ1 `WellTyped(s), as both

passing in and passing out the values will keep the well-typedness of states, we can finally get

Γg ; Γ ′1 `WellTyped(s ′).

case 6: c is (call f (a1 , . . . , ak )). Cf is the type constraints between parameter types of proce-

dure f and it’s produced by rule Procedure-Decl for Γg ; Γl ; p ` procedure f (x1 , .. , xk ){c1} ⇒ Γ ′g .

Inductively, we have IH : ∀ s s ′, C1 is satisfiable → s [[c1 ]] s ′ → Γg ; Γl1 `WellTyped(s)→ Γg ; Γl2

`WellTyped(s ′), with Γg ; Γl1 ; p ` c1 ⇒ Γl2 ; C1 and Γl1 = Γl [x1 → α1 ][. . .][xk → αk ], where αi =

freshType(), i ∈ [1 , k ]. In the rule Procedure-Call for (call f (a1 , . . . , ak )), each parameter type is

renamed with some fresh type variable and Cf is updated accordingly. As the renaming will not

affect the type constraints and its satisfiability, so it’s a safe action. In our proof here, we can

assume no renaming for parameter types now.

Given s [[call f (a1 , . . . , ak )]] s ′, according to the operational semantics for procedure call, there

exist s1 and s2 such that s PassIn(f (a1 , . . . , ak )) s1 , s1 [[c1 ]] s2 and s2 PassOut(f (a1 , . . . , ak )) s ′.

For any input argument ai , with type τai , there are type constraints {τai ≤ αi , p ≤ αi} being

satisfiable. And it’s easy to prove that if Γg ; Γl `WellTyped(s) then Γg ; Γl1 `WellTyped(s1 ).

C1 is a subset of C , if C is satisfiable then C1 is also satisfiable, and Γg ; Γl2 `WellTyped(s2 )

can be inferred by applying the induction hypothesis IH .

For any output argument aj , the type constraints are generated in the same way as for as-

signment aj := xj , similar to the proof for assignment, if Γg ; Γl2 `WellTyped(s2 ), then the well-

typedness after the copying out operation will still hold. Finally, we get Γg ; Γ ′l `WellTyped(s ′).
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Program Name Constraints# Simp Constraints# SAT Bugs
if stmt 28 17 True 0
if stmt implicit flow 12 6 False 1
mailbox 29 19 True 0
encrypt system 17 5 False 1
password check system 19 8 True 0
procedure call 91 57 False 1
procedure call2 15 4 True 0
procedure call3 20 6 False 2
seq stmt 8 3 True 0
while stmt 106 89 True 0
decryption good59 133 107 True 0
decryption bad 125 101 false 1
thumper good60 69 41 True 0
thumper bad 114 80 false 1

Table 5.1: Experiment Data

5.5 Evaluation

We have implemented an automatic verification tool as an associated part of the proposed declas-

sification policy framework to automatically check whether the program conforms to the specified

security policy. The evaluation is performed on a collection of small representative examples of

SPARK programs. The analysis result for each example program is displayed in Table 5.1.

For each of these examples, Constraint# in Table 5.1 denotes the number of type constraints

generated for each program. Simp Constraint# gives the number of type constraints after

simplifications, SAT shows the satisfiability of the constraints, and Bugs gives the number of

information flow errors that violates user specified information security policy.

From the Table 5.1, we can see that constraint simplification rules can effectively reduce the

number of type constraints to be checked. For the program if stmt implicit flow , the detected in-

formation security violation is caused by the implicit control flow from secret information to public

information. In program encrypt system, the encryption function, which is designed to declassify

information from secret domain to public domain, is used as an information laundering channel

to declassify information from top secret to public. That’s the reason why the program fails the

security policy requirement. In program procedure call , the encryption function is wrapped within

another function, and it’s used to declassify information with higher security level than it’s intended

security level and the violation of the security policy is reported. In program procedure call2 , a de-

classification function called Filter And Clean is specified for declassifying information from top
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secret to public and it demonstrates that it would also be fine to use the same declassification

function to declassify the secret information that are less restricted than top secret. In program

procedure call3 , a top secret information is allowed to be declassified to the public only if it goes

through two separate specific declassification operations, one is for declassification from top secret

to secret and another is for declassification from secret to public. There are two information flow

within procedure call3 that performs information declassification without following the required

security policy.

The decryption example, which is adapted from paper59, is shown in the following:

−− key , msg : s e c r e t in format ion

−− c ipher , r e s u l t : p u b l i c in format ion

msg := c iphe r ∗ key ;

Padding (msg , paddingOk ) ;

i f ( paddingOk ) then

CheckSum(msg , checkSum ) ;

i f ( checkSum /= −1) then

r e s u l t := true ;

else

r e s u l t := f a l s e ;

end i f ;

else

r e s u l t := f a l s e ;

end i f ;

procedure Padding (V: in I n t e g e r ; R: out Boolean ) i s

begin

R := (V mod 256 = 0 ) ;

end Padding ;

procedure CheckSum(V: in I n t e g e r ; R: out I n t e g e r ) i s
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begin

R := (V / 256) mod 256 ;

end CheckSum ;

It decrypts a ciphertext (public) with a decryption key (secret) and returns the result (public)

showing whether the decryption operation is successful or not. It returns true if the cyphertext

has a valid padding and passes the integrity check, otherwise, return false. In our security policy

framework, we define two security domains: {public, secret} and public ≤ secret , with key and msg

annotated with secret domain, cipher and result in public domain. Both procedures Padding and

CheckSum are specified as declassification functions to be allowed to declassify information from

secret domain to public domain. The policy checker will not report any information security bugs

for this program as its generated type constraints are satisfiable. However, if there is a mistake

within the implementation, e.g.

i f ( key /= −1) then −− use key i n s t e a d o f checkSum

r e s u l t := true ;

else

r e s u l t := f a l s e ;

end i f ;

then the policy checker will report a bug for information leak from key (secret) to result (public).

The thumper 60 example is a prototype implementation for a time stamp protocol in SPARK

programming language. It’s still an ongoing project with a lot of major components missing. The

working mechanism of the protocol is that: Alice needs a certificate or signature to prove later that

one of her documents existed at (or before) the current time. She first computes a cryptographic

hash of the document using a suitable secure hash algorithm. She then presents this hash to a

trusted third party time stamping server. The server appends the current time to the end of the

hash, signs the resulting data to make the official time stamp, and returns the time stamp to Alice.

One of the major concerns for this example is to make sure the absence of information leak for the

signature key. In other words, the server only uses the key for signature and all other information
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flow from key is illegal. The following shows part of the implementation code:

−− s e r v e r s i d e −−

Key : I n t e g e r ;

Time : I n t e g e r ;

. . .

procedure Tick (Time : in out I n t e g e r ) i s

begin

Time := Time + 1 ; −− s i m u l a t e the c l o c k ;

end Tick ;

procedure AppendTime(U: in I n t e g e r ; V: out I n t e g e r )

i s begin

Tick (Time ) ;

V := U + Time ; −− s i m u l a t e to append time to U

end AppendTime ;

procedure Sign ( Data : in I n t e g e r ; S ignature : out I n t e g e r )

i s begin

Signature := Data ∗ Key ; −− s i m u l a t e the s i g n a t u r e

end Sign ;

procedure MakeSignature ( Data : in I n t e g e r ;

S ignature : out I n t e g e r ) i s

DataWithTime : I n t e g e r ;

begin

AppendTime( Data , DataWithTime ) ;

Sign ( DataWithTime , S ignature ) ;

end MakeSignature ;

procedure Hash (X: in I n t e g e r ; Y: out I n t e g e r ) i s

begin

102



Y := X mod 100 ; −− s i m u l a t e the hash f u n c t i o n

end Hash ;

−− c l i e n t s i d e −−

Document : I n t e g e r ;

DocSignature : I n t e g e r ;

−− the mediator between c l i e n t and s e r v e r −−

procedure Mediator i s

HashValue : I n t e g e r ;

begin

−− r e c e i v e s the document from the c l i e n t ,

−− and r e t u r n s back the s i g n a t u r e f o r i t

Hash (Document , HashValue ) ;

MakeSignature ( HashValue , DocSignature ) ;

end Mediator ;

On the server side, it has a secret Key for signature and a timer Time to store the current time.

The function Tick is to simulate the clock, AppendTime is to append the current time to a signed

document, Sign is to generate signature and Hash to produce hash code. On the client side, it has

a Document needed to be signed and stored at DocSignature to be visible to the public. If the

program is correct, then there should be no information leak from the secret Key to the Public

DocSignature. Similar to the previous example, we define two security domains: {public, secret}

and public ≤ secret , with Key in secret domain, DocSignature in public domain. The procedure

Sign is specified as declassification functions to be allowed to declassify information from secret

domain to public domain. There is no bug reported by the policy checker as its generated type

constraints are satisfiable. If we make an intentional information leak from Key to DocSignature,
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then it will be detected and reported as a bug.

Further Assessment: The current evaluation of the proposed security policy framework is based

on a collection of small examples that we have collected and adapted from various examples in

related research papers. There are many reasons for why it’s difficult to find bigger examples.

Firstly, the SPARK programming language that we are working on is mainly used for the devel-

opment of safety-critical systems, including commercial aviation, medical and space applications,

it’s so safety-critical that their source codes are usually unavailable to the public. Secondly, in the

current research of the declassification policy, they mainly focus on the development of different se-

mantic principles for declassification mechanism and their soundness proof, thus leads to a variety

of definition of security (from different perspectives of what , when, who and where dimensions).

But, as far as we know, none of these work have ever been used in any real applications to report

any real defects. Usually, the validity of their proposed methods are proved to be correct based on

their proposed semantic principles and illustrated in small examples. Thirdly, the declassification

policy is a language-based security policy, which requires the extension of the existing program-

ming languages to syntactically support the declassification policy. That’s another major obstacle

to apply the declassification policy in much bigger examples. The other reasons include: most of

the current research are working on a toy language and the scalability of the proposed policy and

its enforcement to a more complex language would be another challenge.

Since our proposed declassification policy is designed for SPARK programming language, and

we have close cooperation with the SPARK designer company, which makes it possible for us do

some further assessment on more bigger and practical examples in the future.
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Chapter 6

Conclusion

Creating a highly reliable and robust software is a long existing challenge in the domain of safety-

and security-critical applications. It’s built based on formal verification technique to ensure that

the expected behavior of the program conforms to the software-contract-based specifications. The

contributions of this thesis are to make progress towards this direction to increase our confidence

in the correctness of high integrity applications from two different perspectives: to guarantee the

absence of run-time errors and to ensure the security of information flow.

We have formalized the dynamic/evaluation semantics for a significant subset of the high in-

tegrity language SPARK 2014 (which includes run-time checks as an integral part of the language)

using the Coq proof assistant, and we have illustrated how this formal semantics can be used in

a mechanized proof infrastructure to check that ASTs produced by the GNAT compiler frontend

having correctly incorporated decorations for run-time checks. This included developing an opti-

mizer with mechanized proofs of correctness that achieves run-time check placement optimizations

equal to or better than GNAT. As the compiler and analyzers all share the AST produced by the

frontend, with decorations indicating where run-time checks should be inserted, the certified AST

increases the confidence in the GNAT compiler back-end that embeds run-time assertion checking

when it emits machine code for testing, as well as in the GNATprove verifier that uses the run-time

check decorations to determine what verification conditions to generate. The effectiveness of the
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approach was demonstrated using programs from AdaCore test suites.

To control the information flow between different security domains and ensure the information

security with respect to security requirements, we have proposed a language-based information

security policy specification framework and the associated checking algorithm based on typing

system to automatically check the information security of the program. Furthermore, we have

demonstrated how the proposed security policy framework can be integrated into SPARK 2014

programming language with the introduction of some new security aspects, and we have imple-

mented a prototype tool to show both the expressiveness of the policy language and the effectiveness

of the checking algorithm for automatic enforcement of the security policy.

6.1 Future Work

The work in this thesis opens up a number of interesting opportunities for future work. Some of

them are shown as follows:

– Towards the formalization of language semantics for complete SPARK 2014. Now we have

formalized the semantics for a core subset of SPARK with support of three major categories

of run-time checks. In the future, we are interested in adding more SPARK language features

to support more run-time check certifications in a similar way as done in this thesis. Our

final goal is to define the formal semantics for the complete language of SPARK 2014 as it’s

defined in SPARK reference manual. The formal and unambiguous semantics is beneficial

for machine-verified proof of correctness of SPARK static analysis and translation tools.

– Certified SPARK frontend for CompCert certified compiler framework. The mechanized

SPARK 2014 semantics (which was designed to align with the approach of CompCert6)

along with the Jago translator provides the foundation for producing a mechanically proved

translation from SPARK into CompCert’s Clight, which would then provide a verified com-

piler for SPARK 2014 to the target languages supported by CompCert. In addition, the Jago

translation also enables one to develop in Coq an integrated verification environment that

includes the ability to use Coq to mechanically verify that a SPARK 2014 program conforms
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to its formally specified contracts. In situations where very high confidence is needed, this

type of infrastructure could be used directly by verification engineers, or it could enable ex-

isting automated tools like Kiasan61 or GNATprove62 to emit Coq proofs establishing that

their verification results for a particular program are correct.

– Conditional declassification policy. The proposed security policy framework in this thesis

allows user to specify the trust declassification functions to safely declassify information from

one security domain to another. To capture more precise information flow, the policy can be

extended with guard conditions to trigger the declassification actions, coming with a more

advanced enforcement algorithm. It’s called the conditional information declassification

policy that declassification function can be called only when certain conditions are satisfied.
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