
Repositories, data dictionaries, and encyclopedias for SQL/DS 

A few months ago, Thomas Ross, 
a subscriber of Database Program­
ming & Design, suggested we rIIn an 
article on the topic of data dictionaries 
and repositories for IBM's SQL /05. 
We responded enth1lsiastically, enlist­
ing the expertise of R. C. Eaton, a de­
veloper in Kansas City, Missouri. If 
you have an issue or problem that YOll 

would like to see addressed in the pages 
of this magazine, feel free to follow 
Mr. Ross's example and give us a call! 

J
USTIFIED CONFU­
sion and wonderment 
exists about the sup­
port of repositories, 
data dictionaries, and 

encyclopedias for the SQL/DS plat­
form. In my role as an SQL/DS 
DBA, I was obliged to design and 
develop my own data dictionary. 
During the process, I developed 
an understanding of the various 
genre of development support data­
bases. At their highest level of def­
ini tion, reposi tories, encyclope­
dias, and data dictionaries are data­
bases that support applications 
development. I may get some ar­
gument about this definition from 
business data modeling people, but 
hey, most of us are paid to deliver 
business systems. A business mod­
el is only valuable (to most of us, 
anyway) if it leads to a business so­
lution. Thus, I refer to repositories, 
encyclopedias, and data dictionaries 
as applications-development sup­
port databases. For our purposes, 
let's agree that designing a busi­
ness model is part of the applica­
tions-development process. 

I classify these specialized 
databases differently. While the 
data dictionary is typically con­
fined to storing specifications 
about a system's information needs, 
the repository includes specifica­
tions about the entire system and 
its environment. The repository 
includes information about the sys-

BY R. G. EATON 

Seeing 
through the 

S oke 
tern's software release levels, source 
code, and operational instructions. 
It may also be used to integrate de­
velopment tools. Encyclopedias fall 
in the middle. Most are used to 
support software development and 
exclude environment specifications. 

When I think of the Reposi­
tory /MVS product from IBM, I ima­
gine an aeronautical engineer de­
signing a jet to save his doomed 
company. The engineer creates the 
ultimate passenger jet-it's virtual­
ly a cruise ship with wings. As the 
engineer and most of the company's 
management proclaim that the cus­
tomers will line up to order the 
new jet, a seasoned engineer offers 
one comment: "Will it fly?" 

If you've followed the devel­
opment of Repository /MVS, you 
can see the parallels. While a good 
idea, the product is having prob­
lems getting off the ground. Al­
though it ,viII support SQL/DS, no 
repository support exists for native 
SQL/DS in either VSE or VM fla­
vors. However, many expect IBM 
to redirect its repository effort to­
ward Unix and OS/2 platforms. 

Another problem with Repos­
itory /MVS is accessing the infor­
mation buried within the reposi­
tory. The repository is a database. 
To access information within this 
database you must obtain an access 
tool such as those supplied by Ar­
lington, Virginia-based Reltech 
Group Inc. and New York City­
based Brownstone Solutions. Both 

DATABASE PROGRAMMING & DESIGN 
21 

vendors offer repOSitories and 
complimentary tools, and their tool 
support includes DB2 administra­
tion, applications-development im­
pact analysis, and CASE interface. 

According to Tom DePasquale, 
president of Reltech, "The role of 
the repository in the '90s will be to 
support a spectrum of DBMSs and 
CASE tools. With the advent of 
PC-based front ends for repositor­
ies, the requirement for the reposi­
tory to utilize multiple DBMSs for 
data store is lessened, \-vhile the 
need to support multiple DBMSs 
(SQL/DS, Teradata, IMS, Sybase, 
and so on) is increased. Our direc­
tion will be to support SQL/DS 
from both a DB2 and client/server 
(open systems) perspecti ve." I be­
lieve Tom is saying that it's more 
likely for repository support for 
SQL/DS to be LAN- or DB2-based 
than actually SQL/DS-based. 

Encyclopedias are to programs 
as data dictionaries are to SQL/ 
DS tables. That is, a data definition 
language (DDL) generator will use 
a data dictionary to provide speci­
fications for code generation, while 
an encyclopedia stores the relevant 
information required by a program 
generator (such as a COBOL code 
generator) for code generation. 
Encyclopedias are necessary com­
ponents of CASE tools. Some tools 
don't use encyclopedias-but that's 
another story. I like to think of an 
encyclopedia as a place to inven­
tory application system compo­
nents, or as a system inventory. 

Mainframe-based central en­
cyclopedias for CASE tools, such as 
Texas Instrument's Information En­
gineering Facility (IEF), offer sup­
port for SQL/DS installations. 
While the workbench component 
will generate program and DDL 
code for an SQL/DS target plat­
form, the encyclopedia requires 
MVS and DB2. According to Kevin 
Green at Texas Instruments, "A 

11 

I 
I 
I , 
I 
'1 I. 

I 
I 



trend is developing toward server­
based encyclopedias including an 
SQLjDS target environment." He 
adds, "A Unix-based approach may 
resolve some of the performance 
issues associated with other lower­
based operating systems." 

Green's scenario highlights 
the flexibility of CASE encyclope­
dia technology. When comparing 
encyclopedias, you should consid­
er support for facilitating check-in 
and check-out of specific encyclo­
pedia objects. If one developer is 
altering an SQL/DS table definition, 
it should be protected from other 
developers changing the same table. 

ITH THIS DESCRIP­
tion of encyclopedias, 
I'd like to return to 
the repository de­
scription. The reposi­

tory should be able to accommo­
date multiple encyclopedias. An 
SQL/DS table defined by one CASE 
tool is stored in its encyclopedia. 
When this encyclopedia is within 
the repository, the SQL/DS table 
definition should be accessible to a 
different CASE tool. According to 
Barry Brown, cofounder and man­
aging director of Brownstone, "Our 
vision of a repository includes pro­
viding bridges between different 
CASE tool encyclopedias." He con­
tinues, "An application object (such 
as an entity type) created by one 
CASE tool should be available to 
other CASE tools. And the original 
object should be locked to ensure 
that competing CASE tool devel­
opers don't change the object." 

CASE tools providing ency­
clopedia support include Analyzer 
from Cambridge, Massachusetts­
based Bachman Information Sys­
tems, Application Development 
Workbench (ADW) from Atlanta­
based KnowledgeWare, and IEF 
from Plano, Texas-based Texas In­
struments. However, none of these 
products provide native SQL/DS 
central encyclopedia support. 

The basic support for appli­
cations development is the data 
dictionary. Therefore, all encyclo­
pedia and repository products pro­
vide data dictionary support of 
one form or another. The data dic­
tionary is a good starting point for 
developers with minimal exposure 
to CASE, encyclopedias, or reposi­
tories since most encyclopedias can 

I I I I I I I I I I I I I I I I 

be populated from a data dictionary. 
In a sense, SQL/DS provides 

a data dictionary with its systems 
catalogs. Using the system catalog 
as a data dictionary can expose the 
installation to some serious re­
source contention problems, how­
ever. In addition, the objects (ta­
bles, indexes, and DBspaces, for 
example) must exist before you can 
receive any value from the cata­
logs. This type of data dictionary 
environ men t is "reactive." 

Products loosely fitting in 
the reactive data dictionary classi­
fication include: SQL/Master from 
IBM, SQL/DS Workbench from 
Houston-based CDB Software Inc., 
and DB/Reorganizer from Vienna, 
Virginia-based Relay Technologies 
(formerly VM Systems Group). I 
say "loosely" because these prod­
ucts actually use the system cata­
logs as a data dictionary. There­
fore, the database objects must exist 
before these tools can be effective. 

Proactive dictionaries let the 
developer or DBA enter informa­
tion about the database objects into 
tables separate from the systems 
catalogs. Developer queries and 
DDL generation can be performed 
from the dictionary tables instead 
of the system catalogs, thereby re­
ducing contention. Furthermore, 
proactive dictionaries enable the 
DBA to perform capacity planning 
and impact analysis before appli­
cations are deployed. 

If you're using the reactive 
approach to database management, 
converting your operation to a pro­
active one can be fairly painless. 
The data dictionary can be initially 
populated from the existing sys­
tem catalogs. Thereafter, all data­
base objects must be created from 
DDL generated by tools that use 
the data dictionary. That is, charac­
teristics about database objects are 
entered into the data dictionary, 
and tools use this information to 
generate the DDL. 

Even though it's the better 
approach, I know of only one pro­
active data dictionary for SQL/DS. 
Silent DBA from Naples, Florida­
based Allen Systems Group pro­
vides DDL generators that are sup­
ported by a data dictionary. Ira 
David, vice president of de~elop­
ment for Allen Systems, revealed 
his company's view of data dictio­
nary support for SQL/DS: "The 

JUNE 1993 
22 

ability to define objects within a 
self-contained dictionary, inde­
pendent of both the application 
and the system catalog, has been 
recognized in the DB2 world for 
some time. In this mode, the infor­
mation flow starts with data needs 
(as defined to the dictionary) and 
progresses to the structural needs 
(the object in the catalog via gen­
erated DDL). This approach allows 
for a more interactive and efficient 
definition process, the ability to 
analyze and report on objects, and 
the potential to study overall effi­
ciencies directly from the data dic­
tionary without the overhead of 
catalog object definition and alter­
ation. Dictionary objects can also 
be defined while the original ob­
jects are in production, without 
any integrity problems or conflicts." 

David continued by saying, 
"For a number of reasons, this 
functionality has not been heavily 
in demand within the SQL/DS are­
na. SQL/DS hasn't had the prolif­
eration of products that we have 
seen in DB2. The products that have 
been released have generally been 
more basic tool kits. The Silent 
DBA addresses this need." 

DeCiding on the correct ap­
plication support database depends 
upon your requirements. For many 
SQL/DS installations, the reposi­
tory is quickly eliminated because 
of the MVS and DB2 requirement. 
Encyclopedias may be the best se­
lection for CASE users since CASE 
tools usually offer their own ency­
clopedias. Not all CASE encyclope­
dias are interchangeable, so you 
will likely purchase the encyclo­
pedia along with a CASE tool. If 
you aren't ready for CASE, a data 
dictionary can be a wise step in 
the transition. These products are 
good ways to organize your busi­
ness's applications development. 
For the SQL/DS installation, it 
seems that the best available sup­
port is in the data dictionary class 
of support databases. 

Again, these classifications 
are what I use to compare apples 
to apples. One vendor may have a 
"repository" while another has an 
"encyclopedia." Use these classifi­
cations as lenses to help you see 
through the smoke. 1111 

R. G. Eaton is a development team leader 
at Twentieth Century Services Inc. in 
Kansas City, Missouri. 


