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Abstract 
            Let  be an irreducible, aperiodic, positive recurrent Markov chain with 
state space a subset of , time-homogeneous transition matrix P= = ( = | =
)  and limiting distribution { >0}. Based on observing { = ; = 0,1,2, … , }, we study and 

compare two estimators of the transition probabilities { }:  
 
(i) The maximum likelihood estimators { ̂ } of { }: 

̂ =[ ( ) ( )⁄ ]I( ( )>0), 
where  ( ) = ∑ ( = , = ), ( ) = ∑ ( = ). 

 
(ii) The symmetrized estimators { ̂( )}: 

̂( ) = ( ( ) + ( )) 2 ( )⁄ ( ( ) > 0). 
 
 It is well known that as t→∞, in distribution, 
                              √ ( ̂ - ) → N(0, (1- )/ ).                                                    (I) 
It was shown in Annis et. al. (2010) that if the chain is reversible, in distribution, 
                             √ ( ̂ - ) → N(0, ( )),                                                              (II)  
 
with (R) / [ (1- )/ ]  [1/2, 1], implying that for a reversible chain ( )ˆ R

ijp is asymptotically 
as least as good as ˆ ijp  for reversible chains. 
          We designed and carried out a simulation study, using representative choices of , 
to compare the performance, in terms of coverage rate and mean width, of nominal 0.95 
confidence intervals for the elements of the transition matrix P constructed using (I) and (II), 
where the limiting variances are replaced by appropriate sample estimates. When the chain is 
reversible, both intervals are asymptotically correct and the intervals based on II are 
asymptotically no wider than those based on I. However, our simulations indicate that for the 
finite sample sizes and models used here, the estimated coverage rates based on II appear to be 
considerably below their nominal values in some cases. Since the coverage rates for the intervals 
based on (I) appear to approach their nominal levels as sample sizes increase, we recommend 
using them rather than the more complicated intervals based on II.  

 

{ ; 0,1, 2,...,}iX i 
{0,1,...}

 and n P
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Chapter 1 - Introduction 
We consider a stochastic process { , t = 0,1,2, ...} that takes on a finite or countably 

infinite number of possible values, called states, denoted by S ⊂ {0,1,2, ...}. If Xt= i, the process 
is said to be in state i at time t. We suppose that whenever the process is in state i, the probability 

 that it will next be in state j is the same, regardless of the path it took before reaching state i 
and the time t at which the transition takes place. That is, we suppose that 

                             P(X =j|X  =i, X  =i ,...,X  = , = ) 
                                      = P(  =j| =i)=P( =j| =i)=                                          ( 1.1 ) 
for all states , ,..., , i, j and all t ≥ 0. Such a stochastic process is known as a Markov chain. 
Since probabilities are nonnegative and since the process must make a transition into a different 
state or stay where it is, we have that 

≥0, i, j≥0; ∑ =1, i=0,1,…. 
In applications, the transition probabilities { }ijp  are typically unknown and have to be estimated 
from an observed trajectory.  

It may be shown that Equation (1.1) is equivalent to stating that, for a Markov chain, 
conditional on any present state , any finite collection of future states { ; j=1,2,…, m} is 
independent of the past states { , ,…, }. This formulation of the Markov Property makes 
no distinction between the ‘past’ and the ‘present.’ Hence, for any positive integer n,  { ( )= 

n iX   ; i=0, 1, 2,…, n} is a Markov chain, a type of reversibility that motivated this report. A 
precise definition of reversibility is given below.  

We now define the n-step transition probabilities  to be the probability that a process 
in state i will be in state j after n transitions. That is,  

= { = | = }, ≥ 0, ,  ≥ 0, ≥ 0. 
Of course,  = . Let P = { } denote the matrix of time-homogeneous transition 
probabilities and let ( ) =  denote the matrix of n-step transition probabilities. By 
induction it can be shown that ( ) = , where = denotes the transition matrix P 
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raised to the power k, k = 1,2, … and P0 is the identity matrix. That is, the n-step transition 
matrix may be obtained by multiplying the matrix P by itself n times. 

State j is said to be accessible from state i if > 0 for some n≥ 0. This implies that 
state j is accessible from state i if and only if, starting in i, there is positive probability that the 
process will at some finite future time enter state j. Two states i and j that are accessible to each 
other are said to communicate, and a Markov Chain is said to be irreducible if all states 
communicate with each other.   

State i is said to have period d if = 0 whenever n is not divisible by d, and d is the 
largest integer with this property. A state with period 1 is said to be aperiodic. 

For any state i we let  denote the probability that, starting in state i, the process will re-
enter state i. State i is said to be recurrent if = 1 and transient if < 1. If state i is recurrent, 
then it is said to be positive recurrent if, starting in i, the expected time until the process returns 
to state i is finite.  

From now on, we suppose that { ; i=0,1,2,…} is irreducible, aperiodic, and positive 
recurrent. Then, from Ross (2003), ( )nLim P   , a matrix  consisting of identical copies of a 
probability vector π  = 1 2( , ,...)   , so that for all possible states i and j  

                                 = lim→ ( = | = )  . 
Under our assumptions, { } are the unique nonnegative solutions of 

=∑ , j≥ 0, 
∑ =1. 

The vector π = { >0, j=0,1, 2, …} is called the stationary distribution of { ; i=0,1,2,…}. It 
follows directly from this definition that for such a chain having a finite number of states and a 
symmetric transition matrix, the stationary distribution assigns equal probability to each of its 
states.  Another simple example is given by the 3×3 transition matrix  
 

P= . 48 . 26 . 26. 3 . 4 . 3. 17 . 17 . 66
 

 
The stationary distribution, computed using (Appendix)[1], here is given approximately by 
 

             π   ≈ (0.2944573, 0.2551963, 0.4503464).                  
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There are many applications of Markov chains to a wide range of disciplines, such as 
physics, chemistry, medicine, music, game theory and sports.  A famous Markov chain is the 
“drunkard’s walk”, a random walk on the integers, where, at each step, the position may change 
by +1 or -1 with equal probability. From any position, there are two possible transitions, to the 
next or previous integer. The transition probabilities depend only on the current position, not on 
the manner in which the position was reached.  More generally, a game which is played 
repeatedly and whose changes of state are independently determined by the same stochastic 
mechanism at each time period is a Markov chain. 

In the following chapters, based on having observed { , 0,1,2,..., }iX i t  ,we will design 
and carry out simulation studies, using representative choices of t and P, to compare the 
performance of the classical maximum likelihood estimator (mle) and the reversible estimator, in 
terms of coverage rate and mean width, of nominal 0.95 confidence intervals for the elements of 
the transition matrix P.  We will replace the limiting variances by appropriate sample estimates.  
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Chapter 2 - Reversible Markov Chain 
A Markov Chain having the properties described above is said to be reversible if 

                                                         =          ( 2.1 ) 
for each pair of states i and j. Reversibility implies that the long-term flow rate from state i to 
state j equals the long time flow rate from state j to i.  Specifically, suppose that a reversible 
chain is started with its stationary distribution, so that for all states  

P( = i) = , l=0,1,…,t. 
 
Then, as shown in Section 6.1 of Bremaud (1998), Q = ( ) = ( ⁄ ) is the transition matrix 
of the chain run backward, which is also a Markov Chain, and  = P( =j| =i) =   for all 
t and pairs of states (i, j) and  
                                                → ( = | = ) = →

( ) =   ( 2.2 ) 
It is well known, see Jiang (2009) for example, that a positive recurrent, irreducible, 

homogeneous Markov chain having a finite number of states and a symmetric transition matrix is 
reversible.  A slight generalization of (2.1) occurs when such a chain is symmetric but only 
recurrent and not positive recurrent, which can only happen, as shown in Theorem 3.3 of 
Bremaud (1998), when the state space is not finite. Specifically, from Theorem 3.4 of Karlin 
(1966), for an irreducible, homogeneous Markov Chain that is recurrent but not necessarily 
positive recurrent, the system of equations 

=∑  , = 1, = 1,2, … 
has a unique solution. Further, when { > 0; = 1,2, … }, Q = = ⁄  is the 
transition matrix of the chain run backwards. This holds, for example, if the transition matrix of 
such a chain is symmetric, whence = 1 for all states j and the chain is called quasi- reversible 
since =  for all pairs of states. But, the limiting distribution (2.2) with  replaced by  
need not hold. 

Several broad classes of Markov chains, including those with symmetric transition 
matrices, random walks on graphs, and birth and death processes, could be reversible. For one 
specific example, consider an arbitrary connected graph having a positive number  associated 
with arc (i, j). It may be helpful to think of various U.S. cities as the states in the chain, with an 
arc existing between cities i and j when it is possible to fly directly from city i to j , where  the 
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cost of traveling directly from city i to j is . Symmetry is assumed in that one can fly directly 
from j to i if it is possible to fly directly from i to j. We also take  =  and the probability, 
regardless of previous states visited, of undergoing a transition from i to j is taken to be 
proportional to its cost, so that 

= ∑ ∈ . 
For instance, for the graph of Figure 2-1, where weights are given along the lines connecting 
nodes, =3/(3+1+2)=1/2. 

Figure 2-1 

 
This Markov chain is reversible with = ∑

∑ ∑  and =∑ . 
A second example is a hypothetical stock market exhibiting a bull market, bear market, or 

stagnant market trend during a given week. Suppose a bull week is followed by another bull 
week 90% of the time, a bear week 7.5% of the time, and a stagnant week the other 2.5% of the 
time. Labelling the state space {1 = bull, 2 = bear, 3 = stagnant} the transition matrix for this 
example is  

P= . 9 . 075 . 025. 15 . 8 . 05. 25 . 25 . 5
, 

where, respectively, the second and third rows represent transition probabilities from a bear 
market and from a stagnant market. This Markov chain is reversible with  

 = (0.625, 0.3125, 0.0625). 
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Chapter 3 - Estimation in Reversible Markov Chains 
According to Annis et. al. (2010), suppose we observe the data consisting of realized 

values of , … ,  and we wish to estimate the one-step-ahead transition probabilities  for all 
pairs of states i, j ∊ S. The well-known classical maximum likelihood estimator (mle) of  is 

( )= ( )
( ) [ ( ) ]                                               ( 3.1 ) 

where 1[ ] is an indicator that is 1 when the event A occurs and zero otherwise, ( ) is the 
number of one-step-ahead transitions from i to j, and ( ) is the number of times state i is 
visited up to time t. The indicator 1[ ( ) ] in (3.1) is introduced to avoid division by zero.  The 
counts ( ) and ( ) are explicitly defined by  

( )=∑ 1[ ∩ ]  and 
 

( )=∑ [ ].   
 

For reversible chains, following questions may arise—is the mle the best asymptotic 
estimator, does  priori knowledge of a chain’s reversibility aid transition probability estimation?  
These questions were beautifully answered by Greenwood and Wefelmeyer (1999) and 
Greenwood, Schick, and Wefelmeyer (2001) who showed that the symmetrized (reversible) 
estimator 

( )( )= ( ) ( )
( ) [ ( ) ].                                         ( 3.2 ) 

is not only preferable for i j  , but also asymptotically most efficient. 
A heuristic motivation for (3.2) follows from the law of large numbers applied to 

irreducible, positive recurrent Markov chains. Specifically, for large t, we have that 
≈⁄ , ≈⁄ , ⁄ ≈  and ⁄ ≈ . Then, for large t and > 0, using the 

definition of reversibility given in (2.1), 
̂( ) = ⁄ + ⁄

2  
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≈ [ + ] 2⁄  
                                                           ≈ [ ( / ) + ( / ) ] [(2⁄ / ) ] 
                                                           ≈ + 2⁄  
                                                           =2 2⁄ = . 
 

Clearly, the maximum likelihood and reverse estimators are identical when i = j. The 
estimator in (3.2) can be viewed as merely averaging forward and backward versions of (3.1). 
Annis et. al. (2010) show that the asymptotic variance of the reversible estimator is never lager 
than that of the classical estimator, specifically that 

lim→
( ̂( )( ))
( ̂ ( )) ∈ 1

2 , 1 . 
They show that for i j  as → ∞, we have the following distributional convergence.  

                                       √ ( )( ) − → , ∑ ( )
 . ( 3.3) 

 
where ( ) is the “taboo probability” that starting from state i, the chain is in state j at time t and 
the first return time to state i is greater than k. Here, the adjective “taboo” indicates that state i 
must be avoided during the interior times in the cycle. Mathematically, when k=1, ( )= , and 
for k≥2, 

( )=∑ , , … ,,…, =( ) ( ) , . ( 3.4 ) 
 
To use (3.3), we must approximate the infinite sum ∑ ( ) , by truncating it. We found, 
using the package R (Appendix A[3]), that partial sums ∑ ( )  appeared to converge very 
rapidly for m   75. Consequently, in our estimation of the standard errors of reversible 
estimators, we approximated ∑ ( )  by ∑ ( ) .  
 

In addition, it is well known, as shown in Annis et. al. (2010), that for all pairs ( , )i j  
S , in distribution as → ∞, 

                                               √ ̂ ( ) − → 0,  .                                            ( 3.5 ) 
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Note that since ̂ = ̂( ) , (3.5) is the appropriate standard error for both estimators when 
estimating transitions from a state back to itself.  
. 

According to (3.3) and (3.5), we can estimate the standard error of the mle estimator by  
se( )=   ( 3.6 ) 

and for i≠j the standard error of the reversible estimator by 

se( ( ))=
( ) ( ) ( ) ∑ ( )( ) ( ) ( )

 . (3.7) 
In simulations, since the finite approximation ∑ ̂( )( ) ̂( ) in (3.7) may yield a negative 
numerator inside the square root, we set the standard error of the reversible estimator equal to the 
standard error of the mle (which is asymptotically never smaller) in such cases and we record the 
proportion of times that this happens. For i = j, ( )ˆ( )R

iise p  = ˆ( )iise p . Since estimating taboo 
probabilities adds considerable variability to estimating the standard errors of the reverse 
estimators, as shown below, we were not surprised to find that our simulation study failed to find 
a systematic finite sample size advantage for this asymptotically better procedure.  

In next chapter, we will set up a four-step estimation algorithm and compare 95% 
confidence intervals of the mle and reversible estimators. Explicitly, an approximate 1-   
confidence interval for the mle will be 

̂ ± /2z se( ̂ )  
 

and an approximate 1-   confidence interval for the reversible estimator will be 
 

̂( )± /2z se( ̂( )). 
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 Chapter 4 - Simulations 
 4.1 A Four-step Estimation Algorithm  

In this Section we describe and summarize the results of our simulation study of the 
performance, in terms of coverage rates and interval widths of 1-   = .95 confidence intervals 
for the transition probabilities of a Markov Chain assumed to be reversible. Since, as noted 
above, the reversible and maximum likelihood estimators are identical for i j , the diagonal 
entries in the summary matrices below are likewise identical. We start by illustrating our 
simulation using the symmetric, and hence reversible, 3-state Markov Chain whose symmetric 
transition matrix is given by: 

 
P= . 5000000 . 2500000 . 2500000. 2500000 . 3333333 . 4166667. 2500000 . 4166667 . 3333333

. 
 
Since P  is symmetric, its stationary distribution is the vector  

π  = (0.3333333, 0.3333333, 0.3333333). 
 
The four steps for generating a trajectory consisting of n observed transitions are as follows.  
 

1. Generate a trajectory ,…,  with  taken from the stationary distribution.  For 
example, we generated a 100 steps, resulting in the states visited sequentially as:  
 
3 3 3 3 3 3 1 3 1 3 2 1 2 3 1 2 2 1 1 2 3 1 1 1 2 2 2 2 2 1 3 2 3 1 1 1 2 
3 3 3 2 1 3 2 3 3 3 2 1 3 2 3 2 3 2 1 1 3 2 3 1 2 3 1 2 2 2 1 1 1 1 1 1 2 
1 1 1 1 2 3 1 2 2 3 2 1 1 3 2 3 2 3 1 1 2 3 2 3 1 1 3 
 

2. Estimate the maximum likelihood estimators { ̂ } and the symmetrized estimators 
{ ̂( )} of { }.  For instance, based on the simulation example from step 1, we estimate 
the maximum likelihood estimators { ̂ } by (3.1) and the symmetrized estimators { ̂( )} 
by (3.2) and get: 



10 

= ̂ = 0.4444444 0.2592593 0.29629630.1764706 0.3823529 0.44117650.2250000 0.3500000 0.4000000
 

and 
( ) = ̂( ) = 0.4444444 0.2407407 0.31481480.1911765 0.3823529 0.42647060.2125000 0.3625000 0.4000000

 
respectively. 

3. Compute se( ̂ ) and se( ̂( )) . According formulas (3.6) and (3.7) we get 

se( )= 0.09562922 0.08433704 0.087877190.06537870 0.08334181 0.085153800.06602556 0.07541552 0.07745967
 

                                   
and 

 
se( ( ))=  0.09562922 0.05772281 0.062155900.04751910 0.08334181 0.058800810.04573617 0.05374637 0.07745967

 .      
                                        

4. Construct 95% C.I.’s for { ̂ } and { ̂( )}.  The matrix of 95% C.I.’s for { ̂ } is: 
(0.25701118, 0.6318777) (0.09395865, 0.4245599) (0.1240570, 0.4685356)
(0.04832834, 0.3046128) (0.21900299, 0.5457029) (0.2742750, 0.6080779)
(0.09558990, 0.3544101) (0.20218559, 0.4978144) (0.2481791, 0.5518209)

 

and the matrix of 95% C.I. for { ̂( )} is: 
(0.25701118, 0.6318777) (0.1276040, 0.3538774) (0.1929892, 0.4366404)
(0.09803904, 0.2843139) (0.2190030, 0.5457029) (0.3112210, 0.5417202)
(0.12285711,0.3021429) (0.2571571, 0.4678429) (0.2481791, 0.5518209)

 

From these results, for this particular chain and this particular trajectory, we see that for 
i j  , as expected, using the reversible estimator we get smaller standard errors and hence 
narrower confidence intervals. And for this particular chain and trajectory, for both the mle and 
reversible estimator, every interval successfully contains the target . However, to draw more 
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reliable conclusions, we need to check and compare the coverage rates and mean widths of both 
estimators obtained from a suitably large number of simulations.  

 4.2 Simulation of Reversible 3-state Markov Chain 
Now, independently repeat steps 1-4 in Section 4.1 one thousand times and calculate the 

attained coverage rates and mean lengths.  Using t to denote the number of observed transitions, 
we constructed tables and summarized the results below: 
Table 4-1 Comparing Estimated Coverage Rates of Nominal 95% Confidence Intervals 

t Coverage Rate 
For { ̂ } 

Coverage Rate 
For { ̂( )} 

Proportion of Negative 
Numerator For { ̂( )} 

25 0.874 0.859 0.8460.853 0.854 0.8860.874 0.864 0.886
 0.874 0.834 0.8460.838 0.854 0.8180.826 0.798 0.886

  0.000 0.001 0.0020.003 0.000 0.0070.000 0.004 0.000
  

50 0.920 0.911 0.9100.907 0.904 0.9080.901 0.934 0.909
  0.920 0.852 0.8430.862 0.904 0.8410.865 0.835 0.909

 
75 0.949 0.926 0.9210.916 0.927 0.9240.929 0.944 0.909

  0.949 0.877 0.8950.872 0.927 0.8440.875 0.868 0.909
 

100 0.946 0.937 0.9180.953 0.921 0.9250.925 0.933 0.927
 0.946 0.881 0.8920.869 0.921 0.8620.876 0.859 0.927

 
125 

 
0.935 0.937 0.9250.939 0.926 0.9440.928 0.923 0.926

 0.935 0.878 0.8820.876 0.926 0.8730.887 0.882 0.926
 

150 0.937 0.932 0.9350.944 0.923 0.9450.908 0.935 0.914
 0.937 0.883 0.8830.881 0.923 0.8800.894 0.861 0.914

 
175 0.934 0.933 0.9410.945 0.944 0.9420.939 0.938 0.939

 0.934 0.885 0.8940.873 0.944 0.8780.888 0.868 0.939
 

200 0.941 0.938 0.9460.926 0.939 0.9420.951 0.949 0.943
 0.941 0.873 0.8930.873 0.939 0.8580.877 0.850 0.943

 
 
 
Table 4-2 Comparing Mean Lengths of a 3-state Markov Chain 
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t Mean Length for { ̂ } Mean Length for { ̂( )} 

25 0.6091309 0.5158375 0.53312730.5308894 0.5453941 0.61345300.5187765 0.6188529 0.5377003
 0.6091309 0.3910093 0.39045390.3841363 0.5453941 0.42630790.3833964 0.4251637 0.5377003

  
50 0.4656950 0.4123620 0.40681400.4054860 0.4249900 0.46017000.3960310 0.4584800 0.4218490

 0.4656950 0.2885180 0.29107100.2812810 0.4249900 0.32091300.2846890 0.3225200 0.4218490
 

75 0.3876573 0.3381155 0.33959520.3306596 0.3585567 0.38051940.3344476 0.3788799 0.3576499
 0.3876573 0.2385560 0.23644560.2364594 0.3585567 0.26595680.2374712 0.2665049 0.3576499

 
100 0.3368830 0.2912000 0.29471900.2903310 0.3113930 0.33081500.2917050 0.3317860 0.3125170

 0.3368830 0.2056140 0.20674600.2054170 0.3113930 0.23047300.2041480 0.2314550 0.3125170
 

125 0.3023364 0.2598999 0.26073890.2577371 0.2808252 0.29529870.2591458 0.2965395 0.2810984
 0.3023364 0.1845738 0.18547980.1839777 0.2808252 0.20795650.1843693 0.2079322 0.2810984

 
150 0.2756090 0.2364420 0.23798200.2378760 0.2570920 0.27108300.2382120 0.2714630 0.2570150

 0.2756090 0.1681980 0.16951300.1674840 0.2570920 0.19073300.1687680 0.1913110 0.2570150
 

175 0.2549996 0.2216255 0.22125620.2211639 0.2391926 0.25092830.2218496 0.2507953 0.2387933
 0.2549996 0.1564232 0.15660660.1563496 0.2391926 0.17687420.1550236 0.1771447 0.2387933

 
200 0.2387940 0.2074410 0.20801300.2071640 0.2242150 0.23576000.2065900 0.2359420 0.2235820

 0.2387940 0.1468570 0.14631200.1456700 0.2242150 0.16522700.1459990 0.1651290 0.2235820
 

 
The results of Table 4-1 and Table 4-2 indicate that the mean lengths based on reversible 

estimators tend to be smaller than mean lengths of 95% C.I.’s based on maximum likelihood 
estimators. However, the estimated coverage rates of intervals based on the reverse estimators 
are unacceptably below the target 95% rate for the small values of t used in this simulation.   

To graphically display these tables, we used scatterplots and boxplots to further compare 
coverage rates and mean lengths confidence intervals for all nine { }ijp  constructed using the mle 
and the reversible estimators: 
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  Figure 4-1 Scatterplots of Coverage Rate for 3-state Chain 

Figure 4-2 Scatterplots of Mean Width for 3-state Chain 
 
  

From these results, as expected, we see that the widths of both types of confidence 
intervals tend to decrease with increasing t and that estimated mean lengths based on reversible 
estimator tend to be smaller than mean lengths of 95% C.I.’s based on maximum likelihood 
estimator. Unfortunately, as noted above, this advantage is outweighed by coverage rates of 
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intervals based on the reverse estimators appearing to be unacceptably below their nominal .95 
values. To better visualize this relationship, we picked one pair of states (i=2, j=1) as an example 
and present below side by side box plots of the estimated coverage rates aggregated over the 
eight values of t and widths of the two types of confidence intervals for selected values of t. 
 
Figure 4-3 Boxplots Comparing Coverage Rates of 1000 Simulated Confidence Intervals 
for  

 
Figure 4-4 Boxplots Comparing Widths of 1000 Simulated Confidence Intervals for  
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From these boxplots we can see that as the number of transitions t increases, the boxes 
become very narrow and the widths of the one thousand 95% confidence intervals based on the 
mle appear to approach 0.2 and those based on the reversible estimator appear to approach 0.15.  
But, again as noted above, this advantage of intervals based on the reverse estimators is undercut 
the by the coverage rates of the mle based confidence intervals being much closer to their 
nominal .95 target than the coverage rates based on the reversible estimator, which tend to be 
unacceptably low.  

 

 4.3 Simulation of Reversible 4-state Markov Chain 
We used the 4-state chain whose transition matrix is given by 

 

=
0.2500000 0.2500000 0.3333333 0.16666670.1875000 0.3375000 0.1000000 0.37500000.50000000.1666667 0.20000000.5000000 0.15000000.1000000 0.15000000.2333333

,.  
 
Its stationary distribution is, approximately, 

π = (0.2500000, 0.3333333, 0.1666667, 0.2500000). 
 
Independently repeating steps 1-4 in section 4.1 one thousand times, we obtained: 
 
Table 4-3 Comparing Coverage Rates for a 4-state Markov Chain 

n Coverage Rate 
For { ̂ } 

Coverage Rate 
For { ̂( )} 

Proportion of Negative Numerator 
For { ̂( )} 

25 0.709 0.797 0.846 0.6770.810 0.871 0.571 0.8850.7580.666 0.5950.854 0.4730.478 0.4720.721
 

0.709 0.840 0.807 0.7880.798 0.871 0.798 0.8100.7720.786 0.7830.801 0.4730.698 0.6950.721
  

0.000 0.004 0.003 0.0020.000 0.000 0.000 0.0010.0470.001 0.0090.022 0.0000.000 0.0080.000
 

50 0.867 0.891 0.871 0.8740.884 0.889 0.832 0.9080.8810.878 0.8210.884 0.6730.880 0.7310.737
  

0.867 0.868 0.847 0.8650.870 0.889 0.846 0.8460.8480.874 0.8490.821 0.6730.850 0.8390.737
 

75 0.898 0907 0.910 0.8940.901 0.928 0.905 0.9220.8940.895 0.8900.917 0.7850.864 0.8440.901
  

0.898 0.884 0.878 0.8800.864 0.928 0.893 0.8300.8590.888 0.8680.853 0.7850.859 0.8610.901
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100 0.906 0.930 0.932 0.9070.907 0.937 0.878 0.9320.9230.917 0.8960.947 0.8470.883 0.8970.914
 

0.906 0.877 0.871 0.9040.887 0.937 0.873 0.8780.8640.888 0.9070.875 0.8470.892 0.8770.914
 

125 
 

0.927 0.939 0.921 0.9210.937 0.937 0.902 0.9450.9370.919 0.9090.941 0.8810.870 0.8850.920
 

0.927 0.906 0.876 0.8840.888 0.937 0.900 0.8850.8920.904 0.9090.864 0.8810.900 0.9160.920
 

150 0.915 0.946 0.927 0.9220.921 0.940 0.912 0.9380.9300.919 0.9270.948 0.8890.897 0.8920.918
 

0.915 0.916 0.890 0.8850.884 0.940 0.901 0.8680.8830.894 0.9090.877 0.8890.883 0.8830.918
 

175 0.926 0.944 0.942 0.9260.935 0.935 0.927 0.9480.9260.925 0.9140.949 0.8950.922 0.9060.917
 

0.926 0.895 0.895 0.9060.887 0.935 0.893 0.8800.8650.897 0.9060.904 0.8950.892 0.9140.917
 

200 0.929 0.936 0.923 0.9460.936 0.931 0.906 0.9360.9440.939 0.9220.955 0.8890.920 0.9290.926
 

0.929 0.916 0.857 0.8930.887 0.931 0.886 0.8690.8740.907 0.9110.889 0.8890.913 0.9150.926
 

 
Table 4-4 Comparing Mean Lengths for a 4-state Markov Chain 

n Mean Length for { ̂ } Mean Length for { ̂( )} 

25 0.4965133 0.5637503 0.6117802 0.41213200.4559840 0.5454349 0.3009641 0.60051260.71563010.4358928 0.48195360.7001721 0.33021880.2888476 0.39524660.4672463
 

0.4965133 0.4395931 0.4630845 0.36179600.3327371 0.5454349 0.2541011 0.42385710.53965300.3578734 0.43813460.4814722 0.33021880.2620159 0.37264980.4672463
  

50 0.4247208 0.4576356 0.5031072 0.38067080.3565417 0.4249401 0.2540216 0.45383010.63812340.3611441 0.47721120.5340682 0.34812320.2665987 0.38821310.4089051
 

0.4247208 0.3239083 0.3564685 0.28307310.2596190 0.4249401 0.1919330 0.31680550.44013120.2807591 0.36021820.3666626 0.34812320.2147910 0.31343730.4089051
 

75 0.3636156 0.3783744 0.4158473 0.32036480.2987004 0.3586700 0.2232104 0.37363340.54170380.3209954 0.40995290.4414457 0.31952840.2405822 0.35310600.3586932
 

0.3636156 0.2729880 0.2924387 0.23099720.2126301 0.3586700 0.1623520 0.25928440.36984690.2320489 0.30686540.3085292 0.31952840.1853728 0.26426710.3586932
 

100 0.3240062 0.3298386 0.3651459 0.28142150.2588588 0.3145792 0.1951679 0.32409410.46760700.2824075 0.36382390.3878252 0.29856290.2187587 0.31959540.3172581
 

0.3240062 0.2368710 0.2560396 0.20475140.1847045 0.3145792 0.1399821 0.22768340.32768540.2023500 0.26678010.2688822 0.29856290.1594219 0.23939200.3172581
 

125 0.2938077 0.3012533 0.3267188 0.25574010.2337163 0.2812173 0.1765533 0.29046890.42221520.2552454 0.33263450.3444653 0.27438840.2007840 0.29028400.2860685
 

0.2938077 0.2132665 0.2276743 0.17940960.1661011 0.2812173 0.1259528 0.20402270.29403710.1829629 0.24031000.2430123 0.27438840.1452807 0.21302620.2860685
 



17 

150 0.2685994 0.2735344 0.2984904 0.23428880.2138766 0.2572087 0.1630203 0.26521820.38800240.2373027 0.30739640.3177850 0.25691120.1839005 0.26630750.2637705
 

0.2685994 0.1940844 0.2095983 0.16837790.1520738 0.2572087 0.1159364 0.18713480.27361960.1651030 0.21840460.2219857 0.25691120.1327118 0.19551490.2637705
 

175 0.2508827 0.2567217 0.2769789 0.21797440.1990233 0.2389428 0.1518783 0.24633370.36054930.2166389 0.28516490.2931182 0.24683970.1725566 0.24947270.2445651
 

0.2508827 0.1810289 0.1949597 0.15560620.1405978 0.2389428 0.1081832 0.17327930.25163250.1542924 0.20224690.2064010 0.24683970.1240249 0.17895660.2445651
 

200 0.2350053 0.2390689 0.2588222 0.20471940.1862504 0.2244578 0.1424504 0.23096880.33690430.2018249 0.26987950.2751404 0.22898350.1615171 0.23725600.2304976
 

0.2350053 0.1687217 0.1826623 0.14345110.1314895 0.2244578 0.1011995 0.16310520.23698040.1447819 0.19010920.1931570 0.22898350.1146795 0.17052420.2304976
 

 
Again, let’s draw scatterplots to graphically display these tables: 
Figure 4-5 Scatterplots of Coverage Rate for 4-state Reversible Markov Chain 

    

Figure 4-6 Scatterplots of Mean Width for 4-state Chain 
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From these results we see that with the reversible estimator we obtain slightly smaller 

mean lengths of 95% C.I.’s. But, unlike the simulation results reported above for a three state 
chain, the estimated coverage rates for this four state chain of intervals based on the reverse 
estimators are almost as close to their nominal values as intervals based on the on the mle. One 
speculative explanation for this conclusion may be that for fixed time t and state i, there are four 
possible transitions here and only three for a three state chain. Hence, some of the numbers of 
observed transitions { ijN  } between states tend to be less for a four state chain than for a three 
state chain.  Since both estimators improve as the amount of data increases, the reverse 
procedure may overcome this small data problem in this example by using both ijN  and jiN  to 
estimate ijp  .  This issue warrants further study. 

 4.4 Simulation of Non-Reversible Markov Chain 
To check how the confidence intervals compare when the chain is not reversible, we 

also simulated observations from a non-reversible matrix 3-state Markov Chain whose 
transition matrix is given by   
                                                      = . 40 . 35 . 25. 16 . 50 . 34. 23 . 30 . 47

. 
The stationary distribution of the chain is approximately  
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π = (0.2441948, 0.3902622, 0.3655431). 
--As we can simply calculate, = .35 × .2441948 = .08546818 while  = .16 ×
.3902622 = .062441952, ≠ . So by definition,  is not a reversible chain.  

Again, independently repeating the four-steps of our simulation algorithm 1000 times and 
calculating the coverage rates and mean lengths, we obtained: 
Table 4-5 Comparing Coverage Rates for Non-Reversible Chain 

n Coverage Rate 
For { ̂ } 

Coverage Rate 
For { ̂( )} 

Proportion of Negative 
Numerator For { ̂( )} 

25 0.807 0.831 0.7910.806 0.888 0.8890.869 0.853 0.884
 0.807 0.764 0.8260.850 0.888 0.7950.782 0.820 0.884

  0.000 0.013 0.0010.000 0.000 0.0040.000 0.001 0.000
 

50 0.918 0.901 0.9100.888 0.922 0.9230.916 0.902 0.909
  0.918 0.823 0.8550.883 0.922 0.7950.781 0.847 0.909

 
75 0.928 0.921 0.9150.919 0.930 0.9290.927 0.935 0.928

  0.928 0.789 0.8630.866 0.930 0.7950.781 0.836 0.928
 

100 0.916 0.921 0.9160.914 0.936 0.9450.926 0.920 0.932
 0.916 0.769 0.8610.868 0.936 0.7880.798 0.845 0.932

 
125 

 
0.923 0.931 0.9290.931 0.949 0.9530.940 0.939 0.938

 0.923 0.789 0.8490.866 0.949 0.8200.796 0.849 0.938
 

150 0.928 0.926 0.9270.924 0.931 0.9470.946 0.938 0.936
 0.928 0.769 0.8450.835 0.931 0.7830.765 0.836 0.936

 
175 0.941 0.951 0.9550.926 0.932 0.9360.925 0.952 0.949

 0.941 0.751 0.8200.830 0.932 0.7660.744 0.818 0.949
 

200 0.941 0.937 0.9290.936 0.941 0.9390.935 0.939 0.946
 0.941 0.755 0.7980.797 0.941 0.7870.743 0.787 0.946

 
 

Table 4-6 Comparing Mean Lengths for Non-Reversible Chain 
n Mean Length for { ̂ } Mean Length for { ̂( )} 
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25 0.5997813 0.6567488 0.56986740.3982364 0.5837112 0.56335250.5037293 0.5529773 0.5865113
 0.5997813 0.4585395 0.46069000.3240842 0.5837112 0.38596470.3411504 0.4026619 0.5865113

  
50 0.5088743 0.5212417 0.46447410.3092303 0.4339715 0.41566020.3726648 0.4035939 0.4443248

 0.5088743 0.3529591 0.35347580.2372575 0.4339715 0.28522650.2543471 0.2982353 0.4443248
 

75 0.4327030 0.4320070 0.38802210.2574282 0.3565660 0.34037780.3120188 0.3381066 0.3674832
 0.4327030 0.2915338 0.29302840.1973266 0.3565660 0.23190270.2073922 0.2447498 0.3674832

 
100 0.3806798 0.3756266 0.33750800.2278844 0.3100004 0.29387610.2697748 0.2934244 0.3194290

 0.3806798 0.2551343 0.25464080.1703660 0.3100004 0.20403870.1814991 0.2121725 0.3194290
 

125 0.3429184 0.3366396 0.30582500.2033516 0.2789631 0.26418080.2403169 0.2633069 0.2871648
 0.3429184 0.2292789 0.22682330.1552681 0.2789631 0.18168630.1623354 0.1906648 0.2871648

 
150 0.3128851 0.3080420 0.27704690.1864277 0.2550182 0.24149010.2214468 0.2402122 0.2615401

 0.3128851 0.2085113 0.20951780.1407088 0.2550182 0.16601260.1479519 0.1753484 0.2615401
 

175 0.2906618 0.2849342 0.25825750.1727582 0.2354117 0.22398430.2047484 0.2233467 0.2439396
 0.2906618 0.1939851 0.19241630.1307894 0.2354117 0.15396980.1373305 0.1619433 0.2439396

 
200 0.2708762 0.2676725 0.24174540.1620023 0.2207693 0.20931340.1904819 0.2089171 0.2269583

 0.2708762 0.1821459 0.18200990.1217842 0.2207693 0.14454980.1294596 0.1522792 0.2269583
 

 
 
Figure 4-7 Scatterplots of Coverage Rate for Non-Reversible Chain 
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Figure 4-8 Scatterplots of Mean Width for Non-Reversible Chain 

   
 

From these results we see that for a non-reversible Markov Chain, the reversible 
estimator performs poorly. It does not provide smaller mean lengths of 95% C.I.’s, while the 
coverage rates even get worse as the number of observed transitions t increases. 
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Chapter 5 - Conclusion 
Based on the observed results from Sections 4.2-4.4, we conclude that when the chain is 

reversible, the nominal 0.95 confidence intervals constructed by both types of estimators are 
asymptotically correct and the intervals based on the reversible estimator are asymptotically no 
wider than those based on the mle. However, our simulations indicate that for the finite sample 
sizes and models used here, the estimated coverage rates based on the reversible estimator appear 
to be considerably below their nominal values for the three-state chain used in this study. But for 
the four-state chain used in the study, the reversible estimator performed more reasonably. This 
issue warrants further study. Nevertheless, since the coverage rates for the intervals based on the 
mle appear to approach their nominal levels as sample sizes increase, we recommend using them 
rather than the more complicated intervals based on the reversible estimator.  
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Appendix A - R codes 
[1] Compute the stationary distribution of matrix P 

 Pi=function(P){ 
y=P 
n=ncol(P) 
Q=matrix(NA,ncol=n,byrow=TRUE) 
for (i in 1:25){ 
y=y%*%P} 
for (i in 1:n){ 
Q[1,i]=y[1,i]} 
return(Q) 
} 

[2] Generate a trajectory from the stationary distribution of matrix P 
 sim=function(n,P){ 
  Q=Pi(P) 
  sim<-as.numeric(n+1) 
  sim[1]<-sample(1:ncol(P),1,prob=Q) 
  for (i in 2:(n+1)) { 
        newstate<-sample(1:ncol(P),1,prob=P[sim[i-1],]) 
        sim[i]<-newstate 
    } 
 sim 
 }  

[3] Estimate the mle’s  and reversible mle’s 
 mle= function(P,x){ 
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   n<-length(x) 
   t=ncol(P) 
   N=array(NA,t) 
   simP<-matrix(NA,t,t,byrow=TRUE) 
   for (i in 1:t){ 
    N[i]<-sum(x[1:n]==i)} 
   M=matrix(NA,t,t,byrow=TRUE) 
   for (i in 1:t){ 
    for (j in 1:t){ 
      if (N[i]==0) {simP[i,j]=0} 
      else {M[i,j]<-sum(x[-n]==i & x[-1]==j)  
            simP[i,j]=M[i,j]/N[i]} 
    } 
   } 
   return(simP) 

 } 
 
 rmle= function(P,x){ 

   n<-length(x) 
   t=ncol(P) 
   N=array(NA,t) 
   revP<-matrix(NA,t,t,byrow=TRUE) 
   for (i in 1:t){ 
    N[i]<-sum(x[1:n]==i)} 
   M=matrix(NA,t,t,byrow=TRUE) 
   for (i in 1:t){ 
    for (j in 1:t){ 
      M[i,j]<-sum(x[-n]==i & x[-1]==j)  
    }} 
   for (i in 1:t){ 
    for (j in 1:t){ 
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      if (N[i]==0) {revP[i,j]=0} 
      else {revP[i,j]=(M[i,j]+M[j,i])/(2*N[i])} 
    }} 
   return(revP) 

 } 
[4] Compute the standard errors 

 se= function(P,x){ 
Q=mle(P,x) 
n<-nrow(Q) 
se=matrix(NA,n,n,byrow=TRUE) 
for (i in 1:n){ 
  for (j in 1:n){ 
    se[i,j]=sqrt((Q[i,j]-Q[i,j]^2)/(sum(x==i))) 
  } 
} 
return(se) 

} 
 
 rse= function(i,j,m,P,x){ 

Q=rmle(P,x) 
n<-nrow(Q) 
for (k in 1:m){ 
if (k==1){T[k]<-Q[i,j]} 
else{ 
T[k]<-array(Q[i,(1:n)[-i]])%*%(array(Q[(1:n)[-i],(1:n)[-i]],c(n-1,n-1))%^%(k-

2))%*%array(Q[(1:n)[-i],j],c(n-1,1))} 
} 
A=(Q[i,j]-Q[i,j]^2)+(Q[i,j]*sum(T[1:m])*Q[j,i]-Q[i,j]^2) 
if (A<0) { 
rse=se2(P,x)[i,j] 
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} 
else{rse<-sqrt(((Q[i,j]-Q[i,j]^2)+(Q[i,j]*sum(T[1:m])*Q[j,i]-Q[i,j]^2))/(2*(sum(x==i))))} 
return(rse) 

} 
 
 Rse= function(m,P,x){ 

 n=ncol(P) 
 Rse=matrix(NA,n,n,byrow=TRUE) 
 for (i in 1:n){ 
   for (j in 1:n){ 
    Rse[i,j]=rse(i,j,m,P,x) 
   } 
 } 
 return(Rse) 

}  
[5] Construct 95% C.I.’s for mle and rmle 

The Lower Bound for mle: 
Lm=function(P,x){ 
  Lm=mle(x)-1.96*se(P,x) 
  return(Lm) 
  } 

The Upper Bound for mle: 
Um=function(P,x){ 
  Um=mle(x)+1.96*se(P,x) 
  return(Um)} 

The Lower Bound for rmle: 
 Lr=function(m,P,x){ 
    Lr=rmle(x)-1.96*Rse(m,P,x) 
    return(Lr) 
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 } 
The Upper Bound for rmle: 

 Ur=function(m,P,x){ 
    Ur=rmle(x)+1.96*Rse(m,P,x) 
    return(Ur) 
 } 
 

[6] 1000 times Simulations 
rCWNeg=function(t,n,m,P){ 

s=ncol(P) 
Q1=matrix(NA,s,s,byrow=TRUE) 
Q2=matrix(NA,s,s,byrow=TRUE) 
R=matrix(NA,s,s,byrow=TRUE) 
for (i in 1:s){ 
 for (j in 1:s){ 
   a=array(NA,m) 
   b=array(NA,m) 
   c=array(NA,m) 
   for (k in 1:m){ 
     y=sim(n,P) 
     a[k]=mean(P[i,j]>=Lr2(t,P,y)[i,j] & P[i,j]<=Ur2(t,P,y)[i,j]) 
     b[k]=Dr2(t,P,y)[i,j] 
     c[k]=Nrse(i,j,t,P,y) 
    } 
   Q1[i,j]=mean(a) 
   Q2[i,j]=mean(b) 
   R[i,j]=mean(c) 
  } 
 } 
return(list(v1=Q1,v2=Q2,v3=R))} 


