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Abstract

Let {X,;i=0,1,2,...,} be an irreducible, aperiodic, positive recurrent Markov chain with
state space a subset of {0,1,...} , time-homogeneous transition matrix P= {pi i =PX=jlXo =

i)} and limiting distribution {m;>0}. Based on observing {X; = x;;i = 0,1,2, ..., t}, we study and
compare two estimators of the transition probabilities {p;;}:

(i) The maximum likelihood estimators {p;;} of {p;;}:

Dij=[N;; (£)/N;(£)1{(N;(t)>0),
where
Nij(t) = XiZo Xy = i, X1 = J), Ni(8) = Do 1(X; = 0).

(i1) The symmetrized estimators {ﬁi(f) }:

B0 = [N (D) + Nji(6) /2N (]I (N:(E) > 0).

It is well known that as t—o0, in distribution,

VE@i-pij) — NO, pi;(1-pi)/m;). (D
It was shown in Annis et. al. (2010) that if the chain is reversible, in distribution,
Vt(Bfi-pij) — MO, o (R)), (1)

with al-zj(R) / [pij(1-pij)/m;] € [1/2, 1], implying that for a reversible chain p{*'is asymptotically
as least as good as p, for reversible chains.

We designed and carried out a simulation study, using representative choices of n and P |
to compare the performance, in terms of coverage rate and mean width, of nominal 0.95
confidence intervals for the elements of the transition matrix P constructed using (I) and (II),
where the limiting variances are replaced by appropriate sample estimates. When the chain is
reversible, both intervals are asymptotically correct and the intervals based on II are
asymptotically no wider than those based on I. However, our simulations indicate that for the
finite sample sizes and models used here, the estimated coverage rates based on II appear to be
considerably below their nominal values in some cases. Since the coverage rates for the intervals
based on (I) appear to approach their nominal levels as sample sizes increase, we recommend

using them rather than the more complicated intervals based on II.
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Chapter 1 - Introduction

We consider a stochastic process {X;, t=0,1,2, ...} that takes on a finite or countably
infinite number of possible values, called states, denoted by S < {0,1,2, ...}. If Xi=1, the process
is said to be in state i at time . We suppose that whenever the process is in state i, the probability
p;; that it will next be in state j is the same, regardless of the path it took before reaching state i

and the time ¢ at which the transition takes place. That is, we suppose that
P(X¢ 417 Xe =1, Xeoq Flp—1,e-X1 =i, Xo=lp)
= P(X¢+1 =1 X=1)=P(X 151X 0=1)=Dy; (1.1)
for all states iy, i4,...,i_1, 1, j and all #> 0. Such a stochastic process is known as a Markov chain.

Since probabilities are nonnegative and since the process must make a transition into a different

state or stay where it is, we have that

pi;=0, i, j=0; 2?;0 pi;=l, i=0,1,....
In applications, the transition probabilities {p,} are typically unknown and have to be estimated
from an observed trajectory.

It may be shown that Equation (1.1) is equivalent to stating that, for a Markov chain,

conditional on any present state X;, any finite collection of future states {X;,;; j=1,2,..., m} is
independent of the past states {X, X1,..., X¢_1}. This formulation of the Markov Property makes
no distinction between the ‘past’ and the ‘present.” Hence, for any positive integer n, {Yi(n)=
X, ;1=0,1,2,...,n} is a Markov chain, a type of reversibility that motivated this report. A
precise definition of reversibility is given below.

We now define the n-step transition probabilities p;; to be the probability that a process
in state i will be in state j after » transitions. That is,
pi; = P{Xnsk = jlXx =i} ,n=0,i,j =20,k >0.
Of course, pilj = p;j. Let P= {p;;} denote the matrix of time-homogeneous transition
probabilities and let P = {pl’;} denote the matrix of n-step transition probabilities. By

induction it can be shown that P(Y = P™ where P¥= PP¥~1denotes the transition matrix P



raised to the power k, k = 1,2, ... and P is the identity matrix. That is, the n-step transition
matrix may be obtained by multiplying the matrix P by itself n times.

State j is said to be accessible from state i if p{lj > 0 for some n=> 0. This implies that
state j is accessible from state i if and only if, starting in i, there is positive probability that the
process will at some finite future time enter state j. Two states i and j that are accessible to each
other are said to communicate, and a Markov Chain is said to be irreducible if all states
communicate with each other.

State 7 is said to have period d if p]; = 0 whenever n is not divisible by d, and d is the
largest integer with this property. A state with period 1 is said to be aperiodic.

For any state i we let f; denote the probability that, starting in state 7, the process will re-
enter state . State i is said to be recurrent if f; = 1 and transient if f; < 1. If state i is recurrent,
then it is said to be positive recurrent if, starting in i, the expected time until the process returns
to state 7 is finite.

From now on, we suppose that {X;; i=0,1,2,...} is irreducible, aperiodic, and positive
recurrent. Then, from Ross (2003), Lim(P") =11, a matrix consisting of identical copies of a
probability vector @ = (7,,7,,...) , so that for all possible states i and j

m=lim (P(X,, = j|Xo = 1)) .
Under our assumptions, {7} are the unique nonnegative solutions of
M=Xi20 TiPij» i= 0,
Z?:o mi=1.
The vector mt = {m;>0, j=0,1, 2, ...} is called the stationary distribution of {X;;i=0,1,2,...}. It
follows directly from this definition that for such a chain having a finite number of states and a

symmetric transition matrix, the stationary distribution assigns equal probability to each of its

states. Another simple example is given by the 3x3 transition matrix

.48 .26 .26
P=l .3 .4 .3
17 .17 .66

The stationary distribution, computed using (Appendix)[1], here is given approximately by

n ~(0.2944573, 0.2551963, 0.4503464).



There are many applications of Markov chains to a wide range of disciplines, such as
physics, chemistry, medicine, music, game theory and sports. A famous Markov chain is the
“drunkard’s walk”, a random walk on the integers, where, at each step, the position may change
by +1 or -1 with equal probability. From any position, there are two possible transitions, to the
next or previous integer. The transition probabilities depend only on the current position, not on
the manner in which the position was reached. More generally, a game which is played
repeatedly and whose changes of state are independently determined by the same stochastic
mechanism at each time period is a Markov chain.

In the following chapters, based on having observed {X,,i =0,1,2,...,¢} ,we will design

and carry out simulation studies, using representative choices of # and P, to compare the
performance of the classical maximum likelihood estimator (mle) and the reversible estimator, in
terms of coverage rate and mean width, of nominal 0.95 confidence intervals for the elements of

the transition matrix P. We will replace the limiting variances by appropriate sample estimates.



Chapter 2 - Reversible Markov Chain

A Markov Chain having the properties described above is said to be reversible if
TT;Pij=T;Pji (2.1)
for each pair of states i and j. Reversibility implies that the long-term flow rate from state i to
state j equals the long time flow rate from state j to i. Specifically, suppose that a reversible
chain is started with its stationary distribution, so that for all states

P(X;, = i)=m;, [=0,1,....t.

Then, as shown in Section 6.1 of Bremaud (1998), O = (q;;) = (;p;;/m;) is the transition matrix
of the chain run backward, which is also a Markov Chain, and q;; = P(X;=j|X4+1=1) = p;; forall
t and pairs of states (i, j) and

lim P(X, = jIX; = i) =limp{) = m; (22)

It is well known, see Jiang (2009) for example, that a positive recurrent, irreducible,
homogeneous Markov chain having a finite number of states and a symmetric transition matrix is
reversible. A slight generalization of (2.1) occurs when such a chain is symmetric but only
recurrent and not positive recurrent, which can only happen, as shown in Theorem 3.3 of
Bremaud (1998), when the state space is not finite. Specifically, from Theorem 3.4 of Karlin
(1966), for an irreducible, homogeneous Markov Chain that is recurrent but not necessarily
positive recurrent, the system of equations

Vi=XizoVibij, Vo =1,j =12,..
has a unique solution. Further, when {V; > 0;i =1,2,..},Q = (ql-j) = (V]-pl-j/Vl-) is the
transition matrix of the chain run backwards. This holds, for example, if the transition matrix of
such a chain is symmetric, whence V; = 1 for all states j and the chain is called quasi- reversible
since q;; = p;; for all pairs of states. But, the limiting distribution (2.2) with 7t; replaced by V;
need not hold.

Several broad classes of Markov chains, including those with symmetric transition
matrices, random walks on graphs, and birth and death processes, could be reversible. For one
specific example, consider an arbitrary connected graph having a positive number w;; associated
with arc (7, j). It may be helpful to think of various U.S. cities as the states in the chain, with an

arc existing between cities i and j when it is possible to fly directly from city i to j , where the



cost of traveling directly from city i to j is w;;. Symmetry is assumed in that one can fly directly
from j to i if it is possible to fly directly from i to ;. We also take w;; = wj; and the probability,

regardless of previous states visited, of undergoing a transition from i to j is taken to be

proportional to its cost, so that
Wij

Yjeswij

Dij
For instance, for the graph of Figure 2-1, where weights are given along the lines connecting

nodes, P;,=3/(3+1+2)=1/2.

Figure 2-1

jwij

XiXjwij

This Markov chain is reversible with ;=

A second example is a hypothetical stock market exhibiting a bull market, bear market, or
stagnant market trend during a given week. Suppose a bull week is followed by another bull
week 90% of the time, a bear week 7.5% of the time, and a stagnant week the other 2.5% of the

time. Labelling the state space {1 = bull, 2 = bear, 3 = stagnant} the transition matrix for this

.9 .075 .025
P=(.15 .8 .05 >,
.25 .25 .5

where, respectively, the second and third rows represent transition probabilities from a bear

example is

market and from a stagnant market. This Markov chain is reversible with

nt=(0.625, 0.3125, 0.0625).



Chapter 3 - Estimation in Reversible Markov Chains

According to Annis et. al. (2010), suppose we observe the data consisting of realized
values of Xy, ..., X; and we wish to estimate the one-step-ahead transition probabilities p;; for all

pairs of states 7, j € S. The well-known classical maximum likelihood estimator (mle) of p;; is

~ N;j(t)
Pij(t):ﬁ 1y, 0)>0] (3.1)

where 1(4] is an indicator that is 1 when the event 4 occurs and zero otherwise, N;; (t) is the
number of one-step-ahead transitions from i to j, and N;(t) is the number of times state i is

visited up to time ¢. The indicator 1y, ()>0} In (3.1) is introduced to avoid division by zero. The

counts N;;(t) and N;(t) are explicitly defined by

Ni; (t)=Zf;(} 1[Xz=iﬂXl+1=j] and

N;(O=X{_0 1x,=4)-

For reversible chains, following questions may arise—is the mle the best asymptotic
estimator, does priori knowledge of a chain’s reversibility aid transition probability estimation?
These questions were beautifully answered by Greenwood and Wefelmeyer (1999) and
Greenwood, Schick, and Wefelmeyer (2001) who showed that the symmetrized (reversible)

estimator

~(R N;j(©)+N;; (D)
ng (==L o Lol (3.2)

is not only preferable for i # j , but also asymptotically most efficient.

A heuristic motivation for (3.2) follows from the law of large numbers applied to
irreducible, positive recurrent Markov chains. Specifically, for large ¢, we have that
N;j/N; = p;ij, N;i/N; = pj;, N/t = m; and N;/t = m;. Then, for large # and N;N; > 0, using the
definition of reversibility given in (2.1),

5® _ (Nij/Ni)N; + (N;i/N;)N;

b 2N;



~ [pijN; + pjilN;]/2 N;

= [pij(N;/O)t + p;ji(N;/)t]/[(2 N;/t)t]
= [pl-jnit + pﬁnjt]/z it

=2pym;/ 2 T=py;.

Clearly, the maximum likelihood and reverse estimators are identical when i =j. The
estimator in (3.2) can be viewed as merely averaging forward and backward versions of (3.1).
Annis et. al. (2010) show that the asymptotic variance of the reversible estimator is never lager
than that of the classical estimator, specifically that

Var@,"®©) _
oo Var(®;(6)) Var(p;;(t)) [2 ]

They show that for i # j as t — oo, we have the following distributional convergence.

(R D pi—p})+(py iz iy pji-v};
\/_ (pfj )(t) — pl]) - N (0'( J 1) ( lzni ij ¥ 1) ) (3‘3)
where lp( ) is the “taboo probability” that starting from state i, the chain is in state j at time ¢ and

the first return time to state i is greater than k. Here, the adjective “taboo” indicates that state i
must be avoided during the interior times in the cycle. Mathematically, when k=1, lpl(] )Zpl > and
for k=2,

K _
lPE, )—211 Pii,Pi 1, - plk_lj:(pit)tii(pts){‘(,s:%i(psj) (34)

..... lp—q#i s#i

To use (3.3), we must approximate the infinite sum Y-, ipi(]}.c)p ji» by truncating it. We found,
using the package R (Appendix A[3]), that partial sums Y}, ipi(]}.c)p ;i appeared to converge very
rapidly for m > 75. Consequently, in our estimation of the standard errors of reversible

estimators, we approximated ),y Olpl] p]l by X723 Olpu pﬂ

In addition, it is well known, as shown in Annis et. al. (2010), that for all pairs (i, ;)

€ §, in distribution as t — oo,

VE(pi () - pl,)—>N< 2 p”) (35)

Ti



Note that since p;; = pl(l ) , (3.5) is the appropriate standard error for both estimators when

estimating transitions from a state back to itself.

According to (3.3) and (3.5), we can estimate the standard error of the mle estimator by

pl] pl]

se(Pij)= (3.6)
and for i#j the standard error of the reversible estimator by
SR _(R ® 575, ip® (")A(R) SR
R (p,, —Djj ) ( DI —bj; )
se(P;; )= (3.7)

2N;

(k)
In simulations, since the finite approximation Y22, iﬁl(]R) ﬁ](f) in (3.7) may yield a negative

numerator inside the square root, we set the standard error of the reversible estimator equal to the
standard error of the mle (which is asymptotically never smaller) in such cases and we record the
proportion of times that this happens. For i = j, se(p\®) = se(p,). Since estimating taboo
probabilities adds considerable variability to estimating the standard errors of the reverse
estimators, as shown below, we were not surprised to find that our simulation study failed to find
a systematic finite sample size advantage for this asymptotically better procedure.

In next chapter, we will set up a four-step estimation algorithm and compare 95%
confidence intervals of the mle and reversible estimators. Explicitly, an approximate 1- «

confidence interval for the mle will be
Dij £ z,,se(Dij)
and an approximate 1- & confidence interval for the reversible estimator will be

A(R
Piy % 2,050y ).



Chapter 4 - Simulations

4.1 A Four-step Estimation Algorithm
In this Section we describe and summarize the results of our simulation study of the
performance, in terms of coverage rates and interval widths of 1- o = .95 confidence intervals
for the transition probabilities of a Markov Chain assumed to be reversible. Since, as noted
above, the reversible and maximum likelihood estimators are identical for i = j, the diagonal
entries in the summary matrices below are likewise identical. We start by illustrating our
simulation using the symmetric, and hence reversible, 3-state Markov Chain whose symmetric

transition matrix is given by:

.2500000 .3333333 .4166667

(.5000000 .2500000 .2500000)
P= .
.2500000 .4166667 .3333333

Since P is symmetric, its stationary distribution is the vector

n =(0.3333333, 0.3333333, 0.3333333).

The four steps for generating a trajectory consisting of n observed transitions are as follows.

1. Generate a trajectory Xg,..., X, with X, taken from the stationary distribution. For

example, we generated a 100 steps, resulting in the states visited sequentially as:

3333331313212312211231112222213231112
3332132333213232321132312312221111112
111123122321132323112323113

2. Estimate the maximum likelihood estimators {p;;} and the symmetrized estimators

{ﬁi(f)} of {p;;}. For instance, based on the simulation example from step 1, we estimate

the maximum likelihood estimators {p;;} by (3.1) and the symmetrized estimators {ﬁi(f)}

by (3.2) and get:



~ 0.4444444 0.2592593 0.2962963
P={p;}=(01764706 0.3823529 0.4411765
0.2250000 0.3500000 0.4000000

and
R oy (04444444 02407407 03148148
PO = {p} =(0.1911765 03823529 0.4264706
0.2125000 03625000 0.4000000
respectively.

3. Compute se(p;;) and se(ﬁi(f)) . According formulas (3.6) and (3.7) we get

0.06537870 0.08334181 0.08515380

R 0.09562922 0.08433704 0.08787719
se(P)=
0.06602556 0.07541552 0.07745967

and

~ 0.09562922 0.05772281 0.06215590
se(P®)= [ 0.04751910 0.08334181 0.05880081 |.
0.04573617 0.05374637 0.07745967

4. Construct 95% C.1.’s for {p;;} and {ﬁi(f)}. The matrix of 95% C.L.’s for {p;;} is:

(0.25701118,0.6318777) (0.09395865,0.4245599) (0.1240570, 0.4685356)
(0.04832834,0.3046128) (0.21900299, 0.5457029) (0.2742750,0.6080779)

(0.09558990, 0.3544101) (0.20218559,0.4978144) (0.2481791,0.5518209)
and the matrix of 95% C.I. for {ﬁi(f)} is:

(0.25701118,0.6318777) (0.1276040,0.3538774) (0.1929892,0.4366404)
(0.09803904,0.2843139)  (0.2190030,0.5457029) (0.3112210,0.5417202)
(0.12285711,0.3021429)  (0.2571571,0.4678429) (0.2481791,0.5518209)

From these results, for this particular chain and this particular trajectory, we see that for

i#j ,asexpected, using the reversible estimator we get smaller standard errors and hence

narrower confidence intervals. And for this particular chain and trajectory, for both the mle and

reversible estimator, every interval successfully contains the target p;;. However, to draw more

10



reliable conclusions, we need to check and compare the coverage rates and mean widths of both

estimators obtained from a suitably large number of simulations.

4.2 Simulation of Reversible 3-state Markov Chain

Now, independently repeat steps 1-4 in Section 4.1 one thousand times and calculate the

attained coverage rates and mean lengths. Using ¢ to denote the number of observed transitions,

we constructed tables and summarized the results below:

Table 4-1 Comparing Estimated Coverage Rates of Nominal 95% Confidence Intervals

Table 4-2 Comparing Mean Lengths of a 3-state Markov Chain

11

t Coverage Rate Coverage Rate Proportion of Negative
A A(R
For {p;;} For {ﬁi(]’?)} Numerator For {pl.(j )
25 0.874 0.859 0.846 0.874 0.834 0.846 0.000 0.001 0.002
0.853 0.854 0.886 0.838 0.854 0.818 0.003 0.000 0.007
0.874 0.864 0.886 0.826 0.798 0.886 0.000 0.004 0.000
50 | /0.920 0.911 0.910 0.920 0.852 0.843
0.907 0.904 0.908 0.862 0.904 0.841
0.901 0.934 0.909 0.865 0.835 0.909
75 0.949 0926 0.921 0.949 0.877 0.895
0916 0.927 0.924 0.872 0.927 0.844
0.929 0.944 0.909 0.875 0.868 0.909
100 | /0.946 0.937 0.918 0.946 0.881 0.892
0.953 0.921 0.925 0.869 0.921 0.862
0.925 0.933 0.927 0.876 0.859 0.927
125 | /0.935 0.937 0.925 0.935 0.878 0.882
0.939 0.926 0.944 0.876 0.926 0.873
0.928 0.923 0.926 0.887 0.882 0.926
150 | /0.937 0.932 0.935 0.937 0.883 0.883
0.944 0.923 0.945 0.881 0.923 0.880
0.908 0.935 0.914 0.894 0.861 0.914
175 | /0.934 0.933 0.941 0.934 0.885 0.894
0.945 0.944 0.942 0.873 0944 0.878
0.939 0.938 0.939 0.888 0.868 0.939
200 | /0.941 0.938 0.946 0.941 0.873 0.893
0.926 0.939 0.942 0.873 0.939 0.858
0.951 0.949 0.943 0.877 0.850 0.943



t Mean Length for {p;;} Mean Length for {ﬁi(f)}

25 0.6091309 0.5158375 0.5331273 0.6091309 0.3910093 0.3904539
0.5308894 0.5453941 0.6134530 0.3841363 0.5453941 0.4263079
0.5187765 0.6188529 0.5377003 0.3833964 0.4251637 0.5377003

50 0.4656950 0.4123620 0.4068140 0.4656950 0.2885180 0.2910710
0.4054860 0.4249900 0.4601700 0.2812810 0.4249900 0.3209130
0.3960310 0.4584800 0.4218490 0.2846890 0.3225200 0.4218490

75 0.3876573 0.3381155 0.3395952 0.3876573 0.2385560 0.2364456
0.3306596 0.3585567 0.3805194 0.2364594 0.3585567 0.2659568
0.3344476 0.3788799 0.3576499 0.2374712 0.2665049 0.3576499

100 0.3368830 0.2912000 0.2947190 0.3368830 0.2056140 0.2067460
0.2903310 0.3113930 0.3308150 0.2054170 0.3113930 0.2304730
0.2917050 0.3317860 0.3125170 0.2041480 0.2314550 0.3125170

125 0.3023364 0.2598999 0.2607389 0.3023364 0.1845738 0.1854798
0.2577371 0.2808252 0.2952987 0.1839777 0.2808252 0.2079565
0.2591458 0.2965395 0.2810984 0.1843693 0.2079322 0.2810984

150 0.2756090 0.2364420 0.2379820 0.2756090 0.1681980 0.1695130
0.2378760 0.2570920 0.2710830 0.1674840 0.2570920 0.1907330
0.2382120 0.2714630 0.2570150 0.1687680 0.1913110 0.2570150

175 0.2549996 0.2216255 0.2212562 0.2549996 0.1564232 0.1566066
0.2211639 0.2391926 0.2509283 0.1563496 0.2391926 0.1768742
0.2218496 0.2507953 0.2387933 0.1550236 0.1771447 0.2387933

200 0.2387940 0.2074410 0.2080130 0.2387940 0.1468570 0.1463120
0.2071640 0.2242150 0.2357600 0.1456700 0.2242150 0.1652270
0.2065900 0.2359420 0.2235820 0.1459990 0.1651290 0.2235820

The results of Table 4-1 and Table 4-2 indicate that the mean lengths based on reversible

estimators tend to be smaller than mean lengths of 95% C.1.’s based on maximum likelihood

estimators. However, the estimated coverage rates of intervals based on the reverse estimators

are unacceptably below the target 95% rate for the small values of 7 used in this simulation.

To graphically display these tables, we used scatterplots and boxplots to further compare

coverage rates and mean lengths confidence intervals for all nine {p,} constructed using the mle

and the reversible estimators:
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Figure 4-1 Scatterplots of Coverage Rate for 3-state Chain
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Figure 4-2 Scatterplots of Mean Width for 3-state Chain
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From these results, as expected, we see that the widths of both types of confidence

intervals tend to decrease with increasing 7 and that estimated mean lengths based on reversible

estimator tend to be smaller than mean lengths of 95% C.1.’s based on maximum likelihood

estimator. Unfortunately, as noted above, this advantage is outweighed by coverage rates of

13




intervals based on the reverse estimators appearing to be unacceptably below their nominal .95
values. To better visualize this relationship, we picked one pair of states (i=2, j=1) as an example
and present below side by side box plots of the estimated coverage rates aggregated over the

eight values of ¢ and widths of the two types of confidence intervals for selected values of t.

Figure 4-3 Boxplots Comparing Coverage Rates of 1000 Simulated Confidence Intervals
for p2,
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Figure 4-4 Boxplots Comparing Widths of 1000 Simulated Confidence Intervals for p,4
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From these boxplots we can see that as the number of transitions # increases, the boxes
become very narrow and the widths of the one thousand 95% confidence intervals based on the
mle appear to approach 0.2 and those based on the reversible estimator appear to approach 0.15.
But, again as noted above, this advantage of intervals based on the reverse estimators is undercut
the by the coverage rates of the mle based confidence intervals being much closer to their
nominal .95 target than the coverage rates based on the reversible estimator, which tend to be

unacceptably low.

4.3 Simulation of Reversible 4-state Markov Chain

We used the 4-state chain whose transition matrix is given by

0.2500000
0.1875000
0.5000000
0.1666667

0.2500000
0.3375000
0.2000000
0.5000000

0.1666667

0.3750000
0.1500000 |

0.2333333

0.3333333

0.1000000
0.1500000

0.1000000

P,=

Its stationary distribution is, approximately,

7t =(0.2500000, 0.3333333, 0.1666667, 0.2500000).

Independently repeating steps 1-4 in section 4.1 one thousand times, we obtained:

Table 4-3 Comparing Coverage Rates for a 4-state Markov Chain

n

Coverage Rate

Coverage Rate

Proportion of Negative Numerator
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A ~(R
For {p;;} For {ﬁi(f)} For {p} i g
25 0.709 0.797 0.846 0.677 0.709 0.840 0.807 0.788 0.000 0.004 0.003 0.002
0.810 0.871 0.571 0.885 0.798 0.871 0.798 0.810 0.000 0.000 0.000 0.001
0.758 0.595 0.473 0.472 0.772 0.783 0.473 0.695 0.047 0.009 0.000 0.008
0.666 0.854 0.478 0.721 0.786 0.801 0.698 0.721 0.001 0.022 0.000 0.000
50 0.867 0.891 0.871 0.874 0.867 0.868 0.847 0.865
0.884 0.889 0.832 0.908 0.870 0.889 0.846 0.846
0.881 0.821 0.673 0.731 0.848 0.849 0.673 0.839
0.878 0.884 0.880 0.737 0.874 0.821 0.850 0.737
75 0.898 0907 0.910 0.894 0.898 0.884 0.878 0.880
0.901 0.928 0.905 0.922 0.864 0.928 0.893 0.830
0.894 0.890 0.785 0.844 0.859 0.868 0.785 0.861
0.895 0917 0.864 0.901 0.888 0.853 0.859 0.901




100 0.906 0.930 0.932 0.907 0.906 0.877 0.871 0.904
0.907 0.937 0.878 0.932 0.887 0.937 0.873 0.878
0.923 0.896 0.847 0.897 0.864 0.907 0.847 0.877
0917 0.947 0.883 0.914 0.888 0.875 0.892 0914
125 0.927 0.939 0.921 0.921 0.927 0.906 0.876 0.884
0.937 0.937 0.902 0.945 0.888 0.937 0.900 0.885
0.937 0909 0.881 0.885 0.892 0.909 0.881 0.916
0919 0941 0.870 0.920 0.904 0.864 0.900 0.920
150 0915 0.946 0.927 0.922 0915 0.916 0.890 0.885
0921 0.940 0.912 0.938 0.884 0.940 0.901 0.868
0.930 0.927 0.889 0.892 0.883 0.909 0.889 0.883
0919 0948 0.897 0918 0.894 0.877 0.883 0.918
175 0926 0.944 0.942 0.926 0.926 0.895 0.895 0.906
0.935 0.935 0.927 0.948 0.887 0.935 0.893 0.880
0926 0914 0.895 0.906 0.865 0.906 0.895 0.914
0.925 0.949 0.922 0.917 0.897 0.904 0.892 0.917
200 0.929 0.936 0.923 0.946 0.929 0.916 0.857 0.893
0.936 0.931 0.906 0.936 0.887 0.931 0.886 0.869
0.944 0922 0.889 0.929 0.874 0.911 0.889 0.915
0.939 0.955 0.920 0.926 0.907 0.889 0.913 0.926

Table 4-4 Comparing Mean Lengths for a 4-state Markov Chain

n Mean Length for {;;} Mean Length for {ﬁi(f)}

25 0.4965133 0.5637503 0.6117802 0.4121320 0.4965133 0.4395931 0.4630845 0.3617960
0.4559840 0.5454349 0.3009641 0.6005126 0.3327371 0.5454349 0.2541011 0.4238571
0.7156301 0.4819536 0.3302188 0.3952466 0.5396530 0.4381346 0.3302188 0.3726498
0.4358928 0.7001721 0.2888476 0.4672463 0.3578734 0.4814722 0.2620159 0.4672463

50 0.4247208 0.4576356 0.5031072 0.3806708 0.4247208 0.3239083 0.3564685 0.2830731
0.3565417 0.4249401 0.2540216 0.4538301 0.2596190 0.4249401 0.1919330 0.3168055
0.6381234 0.4772112 0.3481232 0.3882131 0.4401312 0.3602182 0.3481232 0.3134373
0.3611441 0.5340682 0.2665987 0.4089051 0.2807591 0.3666626 0.2147910 0.4089051

75 0.3636156 0.3783744 0.4158473 0.3203648 0.3636156 0.2729880 0.2924387 0.2309972
0.2987004 0.3586700 0.2232104 0.3736334 0.2126301 0.3586700 0.1623520 0.2592844
0.5417038 0.4099529 0.3195284 0.3531060 0.3698469 0.3068654 0.3195284 0.2642671
0.3209954 0.4414457 0.2405822 0.3586932 0.2320489 0.3085292 0.1853728 0.3586932

100 0.3240062 0.3298386 0.3651459 0.2814215 0.3240062 0.2368710 0.2560396 0.2047514
0.2588588 0.3145792 0.1951679 0.3240941 0.1847045 0.3145792 0.1399821 0.2276834
0.4676070 0.3638239 0.2985629 0.3195954 0.3276854 0.2667801 0.2985629 0.2393920
0.2824075 0.3878252 0.2187587 0.3172581 0.2023500 0.2688822 0.1594219 0.3172581

125 0.2938077 0.3012533 0.3267188 0.2557401 0.2938077 0.2132665 0.2276743 0.1794096
0.2337163 0.2812173 0.1765533 0.2904689 0.1661011 0.2812173 0.1259528 0.2040227
0.4222152 0.3326345 0.2743884 0.2902840 0.2940371 0.2403100 0.2743884 0.2130262
0.2552454 0.3444653 0.2007840 0.2860685 0.1829629 0.2430123 0.1452807 0.2860685
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150 0.2685994 0.2735344 0.2984904 0.2342888 0.2685994 0.1940844 0.2095983 0.1683779
0.2138766 0.2572087 0.1630203 0.2652182 0.1520738 0.2572087 0.1159364 0.1871348
0.3880024 0.3073964 0.2569112 0.2663075 0.2736196 0.2184046 0.2569112 0.1955149
0.2373027 0.3177850 0.1839005 0.2637705 0.1651030 0.2219857 0.1327118 0.2637705

175 | /0.2508827 0.2567217 0.2769789 0.2179744 0.2508827 0.1810289 0.1949597 0.1556062
0.1990233 0.2389428 0.1518783 0.2463337 0.1405978 0.2389428 0.1081832 0.1732793
0.3605493 0.2851649 0.2468397 0.2494727 0.2516325 0.2022469 0.2468397 0.1789566
0.2166389 0.2931182 0.1725566 0.2445651 0.1542924 0.2064010 0.1240249 0.2445651

200 0.2350053 0.2390689 0.2588222 0.2047194 0.2350053 0.1687217 0.1826623 0.1434511
0.1862504 0.2244578 0.1424504 0.2309688 0.1314895 0.2244578 0.1011995 0.1631052
0.3369043 0.2698795 0.2289835 0.2372560 0.2369804 0.1901092 0.2289835 0.1705242
0.2018249 0.2751404 0.1615171 0.2304976 0.1447819 0.1931570 0.1146795 0.2304976
Again, let’s draw scatterplots to graphically display these tables:

Figure 4-5 Scatterplots of Coverage Rate for 4-state Reversible Markov Chain
Scatterplot of CovRate vs t Scatterplot of Rev_covrvs t
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Figure 4-6 Scatterplots of Mean Width for 4-state Chain
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Scatterplot of m_width vs t Scatterplot of Rev_mwidth vs t
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From these results we see that with the reversible estimator we obtain slightly smaller
mean lengths of 95% C.1.’s. But, unlike the simulation results reported above for a three state
chain, the estimated coverage rates for this four state chain of intervals based on the reverse
estimators are almost as close to their nominal values as intervals based on the on the mle. One
speculative explanation for this conclusion may be that for fixed time ¢ and state i, there are four
possible transitions here and only three for a three state chain. Hence, some of the numbers of

observed transitions { N, } between states tend to be less for a four state chain than for a three

state chain. Since both estimators improve as the amount of data increases, the reverse

procedure may overcome this small data problem in this example by using both N; and N to

estimate p, . This issue warrants further study.

4.4 Simulation of Non-Reversible Markov Chain

To check how the confidence intervals compare when the chain is not reversible, we

also simulated observations from a non-reversible matrix 3-state Markov Chain whose

.40 .35 .25
Ps=|.16 .50 .34|.
.23 .30 .47

The stationary distribution of the chain is approximately

transition matrix is given by
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7 =(0.2441948, 0.3902622, 0.3655431).
--As we can simply calculate, m;p;, = .35 X .2441948 = .08546818 while m,p,; =.16 X

3902622 = .062441952, m p1, # m,P,41- So by definition, Py is not a reversible chain.

Again, independently repeating the four-steps of our simulation algorithm 1000 times and

calculating the coverage rates and mean lengths, we obtained:

Table 4-5 Comparing Coverage Rates for Non-Reversible Chain

Table 4-6 Comparing Mean Lengths for Non-Reversible Chain

n Coverage Rate Coverage Rate Proportion of Negative
A A(R
For {p;;} For {ﬁi(]’?)} Numerator For {pl.(j )
25 0.807 0.831 0.791 0.807 0.764 0.826 0.000 0.013 0.001
0.806 0.888 0.889 0.850 0.888 0.795 0.000 0.000 0.004
0.869 0.853 0.884 0.782 0.820 0.884 0.000 0.001 0.000
50 | /0918 0.901 0.910 0918 0.823 0.855
0.888 0.922 0.923 0.883 0.922 0.795
0916 0.902 0.909 0.781 0.847 0.909
75 0.928 0.921 0.915 0.928 0.789 0.863
0919 0.930 0.929 0.866 0.930 0.795
0.927 0.935 0.928 0.781 0.836 0.928
100 | /0916 0.921 0.916 0916 0.769 0.861
0914 0.936 0.945 0.868 0.936 0.788
0.926 0.920 0.932 0.798 0.845 0.932
125 | 70.923 0.931 0.929 0.923 0.789 0.849
0.931 0.949 0.953 0.866 0.949 0.820
0.940 0.939 0.938 0.796 0.849 0.938
150 | /0928 0.926 0.927 0.928 0.769 0.845
0.924 0.931 0.947 0.835 0931 0.783
0.946 0.938 0.936 0.765 0.836 0.936
175 | 70.941 0.951 0.955 0.941 0.751 0.820
0.926 0.932 0.936 0.830 0.932 0.766
0.925 0.952 0.949 0.744 0.818 0.949
200 | /0.941 0.937 0.929 0.941 0.755 0.798
0.936 0.941 0.939 0.797 0.941 0.787
0.935 0.939 0.946 0.743 0.787 0.946

n

Mean Length for {p;;}

Mean Length for {ﬁi(f)}
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25 0.5997813 0.6567488 0.5698674 0.5997813 0.4585395 0.4606900
0.3982364 0.5837112 0.5633525 0.3240842 0.5837112 0.3859647
0.5037293 0.5529773 0.5865113 0.3411504 0.4026619 0.5865113

50 0.5088743 0.5212417 0.4644741 0.5088743 0.3529591 0.3534758
0.3092303 0.4339715 0.4156602 0.2372575 0.4339715 0.2852265
0.3726648 0.4035939 0.4443248 0.2543471 0.2982353 0.4443248

75 0.4327030 0.4320070 0.3880221 0.4327030 0.2915338 0.2930284
0.2574282 0.3565660 0.3403778 0.1973266 0.3565660 0.2319027
0.3120188 0.3381066 0.3674832 0.2073922 0.2447498 0.3674832

100 0.3806798 0.3756266 0.3375080 0.3806798 0.2551343 0.2546408
0.2278844 0.3100004 0.2938761 0.1703660 0.3100004 0.2040387
0.2697748 0.2934244 0.3194290 0.1814991 0.2121725 0.3194290

125 0.3429184 0.3366396 0.3058250 0.3429184 0.2292789 0.2268233
0.2033516 0.2789631 0.2641808 0.1552681 0.2789631 0.1816863
0.2403169 0.2633069 0.2871648 0.1623354 0.1906648 0.2871648

150 0.3128851 0.3080420 0.2770469 0.3128851 0.2085113 0.2095178
0.1864277 0.2550182 0.2414901 0.1407088 0.2550182 0.1660126
0.2214468 0.2402122 0.2615401 0.1479519 0.1753484 0.2615401

175 0.2906618 0.2849342 0.2582575 0.2906618 0.1939851 0.1924163
0.1727582 0.2354117 0.2239843 0.1307894 0.2354117 0.1539698
0.2047484 0.2233467 0.2439396 0.1373305 0.1619433 0.2439396

200 0.2708762 0.2676725 0.2417454 0.2708762 0.1821459 0.1820099
0.1620023 0.2207693 0.2093134 0.1217842 0.2207693 0.1445498
0.1904819 0.2089171 0.2269583 0.1294596 0.1522792 0.2269583

Figure 4-7 Scatterplots of Coverage Rate for Non-Reversible Chain
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Figure 4-8 Scatterplots of Mean Width for Non-Reversible Chain

Scatterplot of m_width vs t
of a NonReversible Chain

o
©
° 8
vido 8
o
o]
s g o
T =
=] 0 R
?-lo o g ]
E =] g 8
) o
= 2 o % @ 8
= o § o
5 o 8 8
o~ o
o | o o 5 o
2 o
g | T T T
50 100 150 200

Rev_mwidth

02 0.3 04 0.5 06

01

Scatterplot of Rev_mwidth vs t
of a NonReversible Chain

o]

o0 00

o

00 0O

[e e o]

Q0 @

@@ O a@

@® 0 @

@ 0O @ O

@D O @ O

50

100

150

From these results we see that for a non-reversible Markov Chain, the reversible

200

estimator performs poorly. It does not provide smaller mean lengths of 95% C.1.’s, while the

coverage rates even get worse as the number of observed transitions ¢ increases.
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Chapter 5 - Conclusion

Based on the observed results from Sections 4.2-4.4, we conclude that when the chain is
reversible, the nominal 0.95 confidence intervals constructed by both types of estimators are
asymptotically correct and the intervals based on the reversible estimator are asymptotically no
wider than those based on the mle. However, our simulations indicate that for the finite sample
sizes and models used here, the estimated coverage rates based on the reversible estimator appear
to be considerably below their nominal values for the three-state chain used in this study. But for
the four-state chain used in the study, the reversible estimator performed more reasonably. This
issue warrants further study. Nevertheless, since the coverage rates for the intervals based on the
mle appear to approach their nominal levels as sample sizes increase, we recommend using them

rather than the more complicated intervals based on the reversible estimator.
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Appendix A - R codes

[1] Compute the stationary distribution of matrix P
¢ Pi=function(P){

y=P

n=ncol(P)
Q=matrix(NA,ncol=n,byrow=TRUE)
for (iin 1:25){

y=y%*%P}

for (iin 1:mn){

QILil=yILil}

return(Q)

}

[2] Generate a trajectory from the stationary distribution of matrix P
¢ sim=function(n,P){
Q=Pi(P)
sim<-as.numeric(n+1)
sim[1]<-sample(1:ncol(P),1,prob=Q)
for (iin 2:(n+1)) {
newstate<-sample(1:ncol(P),1,prob=P[sim[i-1],])

sim[i]<-newstate

sim

[3] Estimate the mle’s and reversible mle’s

¢ mle= function(P,x){
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n<-length(x)
t=ncol(P)
N=array(NA,t)
simP<-matrix(NA,t,t,byrow=TRUE)
for (iin 1:t){
N[i]<-sum(x[1:n]==1)}
M=matrix(NA,t,t,byrow=TRUE)
for (iin 1:t){
for (j in 1:t){
if (N[1]==0) {simP[i,j]=0}
else {M[i,j]<-sum(x[-n]==1 & x[-1]==))
simP[1,j]=M[1,j]/N[i]}
b
}

return(simP)

e rmle= function(P,x){

n<-length(x)
t=ncol(P)
N=array(NA,t)
revP<-matrix(NA,t,t,byrow=TRUE)
for (i in 1:t){
N[i]<-sum(x[1:n]==1)}
M=matrix(NA,t,t,byrow=TRUE)
for (iin 1:t){
for (j in 1:t){

M[i,j]<-sum(x[-n]==1 & x[-1]==))
iy
for (iin 1:t){
for (j in 1:t){
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if (N[]==0) {revP[i,j]=0}
else {revP[L,j]=(M[i,j[*M[j.i))/(2*N[i])}
i

return(revP)

[4] Compute the standard errors
e se= function(P,x){

Q=mle(P,x)
n<-nrow(Q)
se=matrix(NA,n,n,byrow=TRUE)
for (iin 1:n){

for (j in 1:n){

se[i,j]=sqrt(Q[ij]-Qlij]"2)/(sum(x—i)))

}

b

return(se)

e rse= function(i,j,m,P,x){
Q=rmle(P,x)
n<-nrow(Q)
for (k in 1:m){
if (k=—=1){T[k]<-Q[i,j]}
else{
T[k]<-array(Q[1i,(1:m)[-1]])%*%(array(Q[(1:n)[-1],(1:n)[-1]],c(n-1,n-1))%"%(k-
2))%*%array(Q[(1:n)[-i],j],c(n-1,1))}
}
A=(Q[1,j]-Q[1,j]"2)HQ[1,j]*sum(T[1:m])*Q[},i]-Q[i,]]*2)
if (A<0) {
rse=se2(P,x)[1,]
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}
else {rse<-sqrt(((Q[i,j]-Q[1,j]"2)+(Q[i,j]*sum(T[1:m])*Q[j,i]-Q[1,j]*2))/(2*(sum(x==0)))) }

return(rse)

¢ Rse= function(m,P,x){
n=ncol(P)
Rse=matrix(NA,n,n,byrow=TRUE)
for (iin 1:n){
for (j in 1:n){
Rse[i,j]=rse(i,j,m,P,x)
§
}

return(Rse)

[5] Construct 95% C.1.’s for mle and rmle

The Lower Bound for mle:
Lm=function(P,x){
Lm=mle(x)-1.96*se(P,x)
return(Lm)
}

The Upper Bound for mle:
Um=function(P,x){
Um=mle(x)+1.96*se(P,x)
return(Um)}

The Lower Bound for rmle:
Lr=function(m,P,x){
Lr=rmle(x)-1.96*Rse(m,P,x)
return(Lr)
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The Upper Bound for rmle:
Ur=function(m,P,x){
Ur=rmle(x)+1.96*Rse(m,P,x)
return(Ur)
b

[6] 1000 times Simulations
rCWNeg=function(t,n,m,P){
s=ncol(P)
Ql=matrix(NA,s,s,byrow=TRUE)
Q2=matrix(NA,s,s,byrow=TRUE)
R=matrix(NA,s,s,byrow=TRUE)
for (iin 1:s){
for (j in 1:s){
a=array(NA,m)
b=array(NA,m)
c=array(NA,m)
for (k in 1:m){
y=sim(n,P)
a[k]=mean(P[1,j]>=Lr2(t,P,y)[1,j] & P[1,j]<=Ur2(t,P,y)[1.j])
b[k]=Dr2(tPy)[ij]
c[k]=Nrse(i,j,t,P,y)
b
Q1[i,j]=mean(a)
Q2[i,j]=mean(b)
R[i,j]=mean(c)
}

¥
return(list(v1=Q1,v2=Q2,v3=R))}
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