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ABSTRACT 

ASYMMETRIES IN CYLINDRICAL WAVEGUIDES 

by 

George Z. Forristall 

Cylindrical geometries with axial symmetry are often used 

to model physical systems. Although such a model materially simpli¬ 

fies calculations it may ignore significant effects arising from 

small asymmetries in the system. In order to demonstrate this and 

to examine the nature of such effects a model was analyzed consis¬ 

ting of a cylindrical waveguide with perfectly reflecting walls 

and an isolated point source displaced a small distance from the 

axis of the hole. The subsequent analysis shows two distinct types 

of arrivals associated with the geometry. Both of these produce 

strikingly large asymmetries in the motion of the system. These 

effects are clearly displayed in the closed form solutions obtained 

for the problem and the light which they shed on the nature of the 

reflection process at a cylindrical interface may well be of sig¬ 

nificant value for ray theory methods in diffraction. 
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INTRODUCTION 

Cylindrical geometries with axial symmetry are often used to model 

physical systems. The symmetrical problem for wave propagation in a 

1 2 3 
fluid filled elastic cylinder has been considered by Ingram ’ 9 and 

Biot . These treatments discuss the complications arising from the 

interaction of the fluid and elastic surfaces, but they may neglect sig¬ 

nificant effects arising from small asymmetries in the system. In order 

to demonstrate this and to examine the nature of such effects a model 

was analyzed consisting of an infinite cylindrical waveguide with per¬ 

fectly reflecting walls and an isolated point source displaced a small 

distance from the axis of the hole. The geometry of the intended situa¬ 

tion is shown in Fig. 1. 
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The analysis is begun by taking Laplace and Fourier transforms 

of the acoustic wave equation and applying the boundary conditions, 

first for a free boundary and then for a rigid wall. In each case, the 

inversion of the Fourier transform is carried out by contour integra¬ 

tion, and the Laplace inversion is known. For small asymmetry in source 

placement, approximations permit use of generalized function theory to 

yield a closed form solution. 

The closed form solution shows large asymmetries produced by two 

distinct types of arrivals associated with the geometry, one arrival 

dependent on the source function itself, and the other on the derivative 

of the source function. Only the lengths of the time intervals during 

which the assymetric arrivals are present, and not the magnitudes of the 

arrivals, are dependent on the asymmetry of the source. That is, an 

observer somewhere in the cylinder measuring the asymmetric effects of a 

pulse source would sense repeated bursts of asymmetric motion. These 

bursts would be the same strength regardless of the degree of asymmetry 

of the source, but the percentage of time they were present would be 

small if the source asymmetry were small. The light which these effects 

shed on the nature of the reflection process at a cylindrical interface 

may well be of significant value for ray theory methods in diffraction. 

II. FREE BOUNDARY 

If we define a displacement potential cp such that the displacement 

(u,v,w) = Vcp, then the acoustic wave equation may be written 

where O' = velocity of sound in the fluid. Taking a Laplace transform 

in t and a Fourier transform in z gives 

or, in cylindrical coordinates, 

a) 

2= 2= 2 

(2) 
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If cp is now written as a Fourier series in 9 given by 

a (r) N im9 
I - -2_!+ V Vr>e 

m=-°° 

The coefficients a must have the form 
m 

a (r) = c I (J?2 + s2/or2r) . 
m m m 

(3) 

(4) 

Any wave in the cavity must have the form given by (3) and (4). 

The potential due to the source may be found by taking the Laplace 

transform of (1), given by 

2 2 
_2- , 2- . ,2 s cu V = k cpg , where k   2 = ~2 ' 

c c 

For a point source located at (a, 0, 0) this equation has the solution 

_ \ ikZ 72 2 2 
tf = r e where Z = A/T + a - 2ar cos 9 + z 

S £1 

Identities for Bessel functions yield 

9 s 

K (ry{>2-k2) I 
m 7 m 

K (av(>2-k2) I 
m x r y m 

(ajp2-k2) 

(rjp2-k2) 

^(ipz + im0) 

for r > a 

^(ipz + im0) 

for r < a 

dp 

dp 

(5) 

The potential in the fluid consists of the sum of source potential 

given in (5) and a reflected potential having the form given in (3) and 

(4). If the boundary of the fluid column is to be free, the pressure 
r*2 

at its surface must vanish, i.e., p(R, 0, z) = 0. Since p = -p , 
^ 2 

the sum of the potentials must satisfy 

9R (R) + cpg(R) = 0 . (6) 
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By applying (6) individually to each term in the series (4), we solve 

Km(R.Vp2-k2) I (a'/p2-k2) 

for each c and obtain 
m 

v=f rr s r* (-,/p2-k2) i iyP
2-k2) 

2TT O* ^oo L ' / mv / / 
m m 

/ o o 
I (RVp -k ) m 

* Im e
iTn9 e1^2 + dp dio 

for r > a 

'P = h U I [K (a^p2-k2) I (rjp2-k2) - 

Km(R^2-k2) Im(aV^2-k2) 

Im(Wp2-k2) 

_ , /2 .2.-1 im6 i 
I (rvp -k ) e e 
m J 

(pz + cut) 
dp dcu 

for r < a 
(7) 

The integration with respect to p in (7) is carried out by contour 

integration. For all r, 0 < r < R, the only poles of (7) are located at the 
' "g g* 

zeros of I (Rvp -k ), but since I has no real zeros, it is best to convert 
m m 

to Bessel functions of the first and second kind. If we denote the zeros of 

J^by the sequence ym,, the poles are then located by 
m _ _ 

,y , N2 m2 
p / 2 2 ” 1 

O O' p 
(It 
\R p 

which gives a set of dispersion relations for the frequencies and phase 

velocities in the problem. 

The residue theorem applied to (7) yields 

m ,a m v _ ,r m 
- r f* i .) J TTI\ \ m N 1 i ' m 

<P w 

m=-coi=l J* (y 

..Iff f Y
m<A> VfA> eim« 

2JZJ4J ... m . 
m=-coi= 1 J (Y •) 

m 2 
-1 

] -*[•./5-^> 

Y-, 1 

+ cut 
dco 

(8) 

(9) 

If we define Bm^ = - (ym^) /JM (v™^) > we may compute 

B x = .96, Bi1 = 1.02, B°2 = 1.00, and 
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indeed, asymptotic forms given in Watson 

1/2 
JK(z) ~ (h)

 [cos (z" 2HTT" I ) 
S(-l)m(K,zm) 

(2z)2m 

- sm In fz - ± HIT - i in (z 2 HIT 4) . 2nH-l I 
(2z) -1 

9 1/2 I- 
Y
K (x> “ < TO > [sin (T-izz-I, 

L 2 4 <2z)2m 

- sin (z - — HTT - — ) SHAx.Hzri-n-l sin iz 2 «n 4 ) 2nrt-l 

(2z) J 

show J ' (z) -* -Y (z) , or Bm. “* + 1 
H H w ’ 1 

The inverse Laplace transform for (9) is found in tables, and yields 

the result 

TT 
9 = 2 

00 00 

m= -oo i=l 

. J 
o 

fa y 
m 

i./t2 for t > * 
— a (10) 

0 for t < - 
CV 

This result will be studied further in Section IV. 

III. PERFECTLY RIGID BOUNDARY 

The potential in a fluid column enclosed by a perfectly rigid boundary 

also consists of a source potential and a reflected potential as given in (3), 

(5) and (6). In this case the boundary condition is that there should be no 

outward motion at the boundary r = R, i.e., 

= 0 
r = R 
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If we note the relations 

-T[W‘> +W‘>] 

KV2> '-i[K
n-i<2> + W2>] 

The boundary condition becomes 

,/2 ,2 
k > + W i?) ] (ii) 

l2- 
■ \ <^2-k2>+ c

m-¥
t[I.-i<V''2-k2>+ ^i#"2)]}- o • 

Solving for c^ in (11), we obtain 

00 

= Y im6 
cp = ,) e 

m=-°° 
{\(rj?2-k2) Im (a^-k2) + 

+ 
Km-l(K'/p2-k2) + K

m+1(
R'42-k2) 

Im-l(R^p2"k2) + Iirri-l(lWp2"k2) 

I (rV m 
/ 2 , 2N T , J 2 , 2.1 . (12) 
/p -k ) Im(aVp -k )j ' 

To find the inverse Fourier transform of (12) by contour integration we note 
2 2 2 2 

that its poles occur at the zeros of I n (Rv/p -k ) + I . (R//p -k ) . (13) 
m-1 mri 

Since (13) has no real zeros, we must change to Bessel functions of the 

first and second kind. The poles then occur at the zeros of 

p^) - J^O^-P2) ° o m- 

If we denote these zeros by we obtain the dispersion relations 

(14) 

1 (15) 
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The residue theorem gives 

00 00 

-III .1 
Tn=-°o i = 1 

• ft Y,! (S™.) - Y 1 (6m.) imU m+1 I
7 m-1 i' ^    —   i i. . . .. . — 

J' .. (6m.) -J' l(6
m) m+1 i in-1 l 

v5 * V vf ‘V 

6m. \2 _-l 8m. \2 

• |>) ] -p[* 
I 

n 
+ cut ! doo 

If we let C 
^ - • { 

Y ..(8“) - Y .(fi®. 
m+1 i7 m-1 l 

J' ,,(8m.) - J , (6m.) 
m+1 ix m-1 i7 

til 

and recall J1 (z) - Y (z) , we obtain C™. 1, Then, the inverse m m 1 

Laplace transform of (16) gives 

00 00 

9 
n y y eim« ». J (5 6”.) J (f s”.) 

2 AJ . L, .. l m\R 1/ m\R 1/ 
m^0 i = l 

,<* 6m., /« u /Q? 6 . I „ i\ 

• -r* Jo (-r17'2 - h) 
R R O' 

m 

9 = 0 for t < - . (17) 

IV. SIMPLIFICATION FOR SMALL ASYMMETRY IN SOURCE PLACEMENT 

If the asymmetry of the source is small (a/R « 1), asymptotic expansions 

for Bessel functions may be used to effect considerable simplification in 

formulas (10) and (17). We will consider (10) in some detail, defining 

\ „m , ^a m ^ T /^r m \ ^ l im9 T ( 
Y
 I i_2 z \ /10N o = / B.Jl— Y.jJl— Y.j —o— e J l—S— Jt 1 (18) 

m .Li i m\R 1/ m\R 1/ o\ R V 2/ 
i=l R cv 

. m 
o' Ym. 

First, note that a is symmetrical in 6, and, in fact, differs from the 

solution for symmetrical source placement only by the factor _ /a vm 
o\R Y i/ 
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For m ^ 0 and — « 1, we may use the asymptotic forms: 
R 

Jm(z) a-HCOS 

m mTT ( TT ( (2 k-l\ „ +%+\—J* ■ 

The accuracy of these forms is such that the error in using them for 

J (zy™ ) is of the order (zyra ) ^ J (zy™ ) 
m k' kr mx k' 

We now write the asymmetrical part of the response: 

a = a + (a - a) 
m m m m 

where 

a 
m 

1 [,TT 1 / a im6 V f v (m 1 \ m 1 \ = n J iVTt 6 ,ZJ,
COSTT

1RV2-4 + V- 2 - 4/ 
k = 1 

COS " v2! (! -1+ k) -1}cos [* • f (f • I+ k
)sin"]d" 

and 

-y 
cv 

In writing (19), we have used the approximations above and the relation 

T Jo 

i rn 
J (z) = — cos (mci) - z sin U)) del) 
mw TT Jo m 

The order of magnitude of the error term, (a - a ), is seen to be 
mm 

(19) 

max {(! A)’2 W2} «, 

Trigonometric identies yield: 

Pr .ifl /3I 
m 4TT Jo R V rt 

im9 
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sin 

+ cos 

+ cos 

- sin 

+ cos 

- sin 

ra 
_R 

'm 
v.2 B 

r- 1- at- asinti) )- 
mn 
2 

n 
2 + 

H T/m V mTT n ^ 1 
i0 ?\2 " 4/ )(r + cvt - asmfflJ 

2 " 2 
+ mti) 

p T/m r mn -i V 
l\2 ' 4/ )(r at + as inti)j 

2 - L 

P Vm r v/ mn m 

1 V 
iD l\2 " 4/ Kr at+ asmci)J - — - • mti) 

J 4 1 

l lV . \ mn n 1 V r + at + asinco I - — —- - • moo ) 1 
4/\ / 2 2 J 

L IN/ . \ mTT n l v 
4/\ 

r + at + asiniol - 
2 2 “ 

mcu 
J £1 

L lV . \ mTT - 

1 ^ 1 

T A r - at asinool - + mu> / cos - 
4/\ 2 J U 

L IN/ mTT - 

1 V 1 

4/\ 
r - at asintu) - 

2 
+ mio 

1 /- 
sin - 

-~^r - at + asinti)^ 

■) 

(r + at + asinU)^ 

)"] ^ s^n “j^(r + + asinci)^ 

sin —(^r - at + asintuj 

R 
- at - asinti)^ dcu| 

(20) 

The sine and cosine terms in (20) must be summed using different formulas, 

so we define 

o = sum of sine terms in cr 
m m 

a = sum of cosine terms in a 
m m 

- 1 , 2 
a = a 4- a 
mm m 

(21) 

The sum of the sine terms may be found by using 

00 

y sin kx = sin x 

k«l 
2(1-cos x) 

and various trigonometric identities, along with 
00 00 

Y eiT>kX/L= Ly 6(x_2inL) _ 
m==- 

, X 2TT 

7 

k=-° 

The sums given above must be treated as generalized functions in the sense 

given by Lighthill in Fourier Analysis and Generalized Functions. This is 

permissible since we are not interested in the function itself but in its 

convolution with a suitably continuous source function. 
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In particular0, 

P 6 (x) F (x) dx = F (0) 
ioo 

and 

J°° f1 (x) F(x) dx == - J°° f(x) F'(x) dx 
mm£0 —JOO 

where f(x) is a generalized function 
CO 

Then since cpf = — ) , we have 
2 / 0 m=-°° m 

4? - IT - 2m + sin 2tA ~ TT 
f ■ 1 frR N mT" (1) . v 

G-^-*+3 

- 2m 4 
L._16R V rf 

Tn=-°° 
1 - cos 2TT 

+ CO£jj (| + - 2m + |) - £| sin 2TT(I + _ 2m + ^) 
— — — 

1 - cos 2<i+i2m+!) 

+ c0^I + ^.2m+l)]sin2^4-2m+i) 

1 - cos *"£♦?-*■+3 

C08[K? ~ IT - 2a + 3 - ?] Bln 2KI • TT - 2m - l)| 

(i \ eN 
1- cos 2% - — - 2m+-) 

where the subscripted U)'s satisfy: 

at + r - a sin (i)b = 2R(|- - ^ - 2m + 

r - Qft+a sin (u^ = 2R(i- TT^ " 2m + 

r + art + a sin uu 

I) 

- 2E
(I

+
?- 

2”±3 

(22) 

(23) 
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r cvt - a sin to, 
h 

0). 

TT 
2m + 

Equation (22) has a singular point when any of its cosine functions is 

unity, and it is important to check the integrability of these singularities. 

If the source function to the system is F(t), the response will have the form 

of the convolution: 

CO 

L 

F(t) 
sint cost 

1-cost 
dt 

which is a generalized integral equivalent to 

(t) cost - F(t) sint 1 log (1-cost) dt 

g 
But log (1-cost) is integrable , so the response will be finite except in the 

physically impossible case where the source function is infinite or has infinite 

derivative. 

The largest contributions from (22) of course come when one of the 

cosines is unity, and this can only happen for scattered ranges of Qft. A 

representative plot of the locations of these maximum points is given in 

Fig. 2, where the peaks are seen to describe sections of spirals for 

any given radius r. 

The cosine terms in (20) are summed by use of the formulas 

00 — 

) cos nkx/L = L ) 6(x-2tnL) - - 

k=l m^0 

£ inkx/L = L 

k=*“ 

6(x-2mL) 

Thus 
i 2 _ 1 r / O' im0 

m 4TT JO V?t“e 

{ C0S " ?)(r + " a sin cu) 

[i(f - £)(r - al + a sin <JJ) - 

mTT 

2 
^ + moTl V .(r + cvt - a sin co-2kR) 

J k=-°° 

+ cos 
mTT 

- m(i) ,] l Hr - 
-JkP^00 

Qft + a sin 0) - 2kR) 
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+ cos $3 - *X r + Oft + a sin U) 
) " T" ” ^ ” ^"l Y 6(r + at + a sin co-2kR) 

-* k=-°° 

+ cos r- ^ - i^r - at - a sin u>) - ^ + muTI Y 6(r - 
L J i(4ico 

(24) 

N 

at - a sin (l) - 2kR)J" 

Equation (24) is non-zero only for scattered ranges of at. For 

-r-a+2kR < at < -r + a + 2kR, k any integer, 

00 

c^t -f- 2r ■■ 2kR — 
where ^ = sin ca =   , and m is an integer selected so that the 

a 

delta function will be non-zero for some 0e[O,2tr] 

2 
The other range where cp is non-zero is given by 2kR + r-a < at < 2kR + r + a, k 

some integer, and for at in this range, 

(26) 

where § = 
. ... 2kR + at - r 
sm a)    

a 
and m is an integer. 

The locations of the delta functions of (25) and (26) are plotted in Fig. 3. 

1 2 
We now have the complete asymmetrical response, cp + 9 , and figures 

1 and 2 show that the asymmetry remains no matter how small the source asymmetry a. 

The only effect of reducing the source asymmetry is to shorten the time intervals 

when it is present. 

d(u 
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V. CONCLUSIONS 

The asymetric response to an off-center source in a fluid cylinder consists 

of two types of arrivals, one associated with the source function and the other 

associated with the derivative of the source function. For a short pulse source 

function, both arrivals are characterized by repeated bursts of asymmetric 

motion whose duration but not magnitude is dependent on the source asymmetry. 

This is a strikingly large effect, and since any physical problem must include 

at least small asymrnetries, we may expect the effects to be significant in 

physical applications. 



Fig. 1. Geometry 



Fig. 2. Representative locations of peaks of sine contributions, 

for an integer n, showing contribution from source function ( ), 

and contribution from derivative of source function ( ). 



Fig. 3. Representative locations of peaks of cosine contributions, 

for any integer n. 
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