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MECHANICS OF CPR PERFORMED WITH THE PATIENT 

ON A SOFT BED VERSUS A HARD SURFACE 
 

John M. Boe, MS*#  and  Charles F. Babbs, MD, PhD*# 

 

Indiana University School of Medicine(*), Biomedical Engineering Center(#),  and Department 

of Basic Medical Sciences(#), Purdue University, West Lafayette, IN 47907, USA 

 

(Academic Emergency Medicine 6: 754-757, 1999) 

 

 

  ABSTRACT 

 

 

Objective:  To study the effects of underlying bed softness versus stiffness on the effectiveness 

of chest compressions in CPR. 

 

Methods: For a wide range of bed stiffness constants, mathematical models describing 

compression of the human chest supported by a hospital bed were created for an adult thorax 

experiencing either a sinusoidal compressive force or a sinusoidal sternal displacement. 

 

Results:  With 5 cm peak displacement, sternum-to-spine compression fell from 4.3 to 1.0 cm, 

and peak power fell from 59 to 23 Watts, as bed stiffness decreased from 50,000 to 5,000 N/m.  

Less than 35% of maximal chest compression occurred at a typical bed stiffness of 10,000 N/m.  

With 400 N peak force, sternum-to-spine compression decreased from 5.0 to 2.0 cm, and peak 

power increased from 82 to 226 Watts, as bed stiffness decreased from 50,000 to 5,000 N/m.  

However, greater than 85% of maximal chest compression was obtained at a typical bed stiffness 

of 10,000 N/m. 

 

Conclusion:  The deterioration of chest compression performed on soft beds is technique 

dependent.  If necessary, CPR can be performed effectively on a softer surface using a constant 

peak force technique.  However, a firm surface is most desirable. 

 

 

Key Words:  Bed, Cardiac Arrest, Cardiopulmonary Resuscitation, Chest Compression,  

  Computers, Hospital, Mathematical Model, Mechanics 
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  INTRODUCTION 

 

Blood flow during CPR is linearly related to the depth of chest compression1.  On a hard surface 

external chest compressions directly displace the sternum toward the spine, invoking either the 

cardiac pump or thoracic pump mechanisms to generate forward flow2,3. According to the 1992 

guidelines for basic life support4: “If the victim is in bed, a board, preferably the full width of the 

bed, should be placed under the patient’s back to avoid the diminished effectiveness of chest 

compression.” For those patients who are large or who are connected to many monitoring and 

life support devices, the placement of a backboard can be difficult and time consuming. 

Sometimes the patient is moved to the floor, requiring interruption of CPR.  These non-ideal 

situations raise the question of the risk versus benefit of performing CPR on a soft surface such 

as a hospital bed. Unable to fund a comprehensive study on the subject, we conducted a 

systematic mechanical analysis of the effects of substrate stiffness on chest compression in CPR. 

 

 

  METHODS 

 

 

Mathematical model of patient bed mechanics:  To capture the essence of CPR mechanics on 

a bed, we created a mathematical model of the chest-and-bed system using standard engineering 

principles5, as shown in Figure 1.  A relatively small mass, m1 (0.1 kg), representing the 

sternum is coupled to the remainder of the thoracic mass, m2 (30 kg), by elastic springs having 

a collective spring constant, k1, and a damping element with damping coefficient, 1.  The 

remainder of the thoracic mass rests upon an idealized mattress and a set of bedsprings, 

represented by parallel elastic elements, k2 , and mattress damping element 2 . 
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FIGURE 1.  Illustration of the basic mechanical elements used to model the human 

chest - bed system. 

 

 

Either a time-varying sinusoidal displacement or a time-varying sinusoidal force was 

used to drive the system.  Compression of the “patient” on a bed during CPR causes the 

combined displacement of the sternum by a distance, x1 , and displacement of the chest as a 

whole (i.e. the mattress surface) by a distance, x2 , from their initial equilibrium positions.  The 

net compression of the chest, which is related to the effectiveness of CPR, is the difference, x1-x2, 

between absolute sternal displacement and bed surface displacement.  Thus, x1-x2 is the 

displacement of the sternum with respect to the spine. 

 

In the CPR-related problem at hand, we are interested in the steady-state oscillations of 

this system when an approximately sinusoidal time varying compression is applied to the 

sternum.  Our goal is to compute the effects of varying bed or substrate stiffness, k2 , upon the net 

chest compression  x1-x2.  To solve this problem mathematically we made the following 

simplifying assumptions:  (1)The sternal mass (0.1 kg) is small with respect to the thoracic 

mass (30 kg). (2) The springs and dashpots of the system are linear, once the bed has been pre-

compressed by the weight of the patient. (3) The applied external force or displacement is 

sinusoidal (50% compression time, 50% relaxation time). (4) The oscillatory motions of the 

system have reached a steady-state, i.e. initial transients from start-up of CPR have dissipated. 

With these assumptions it is possible to solve analytically for  x1  and  x2  as functions of time for 

two modes of chest compression.  In constant peak displacement compression, the sternum is 

displaced a fixed distance (e.g. 5 cm) regardless of any underlying movement of the chest and 

bed.  In constant peak force compression, a sinusoidal time varying force is applied to the 

sternum, regardless of its downward motion, in an attempt to compensate for the softness of the 

underlying bed. 
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The equations of motion (force = mass x acceleration) governing the periodic fluctuations 

of unknowns  x1  and  x2  for either constant peak displacement or constant peak force chest 

compression on a bed or other soft surface are given by steady-state solutions of the following 

generalized second order differential equation: 

 

Ax Bx Cx D t E t F  sin( ) cos( )              (1) 

 

where x is a function of time, t ,  is the angular frequency of compression in radians/sec, the 

symbol x  represents the second time derivative of  x , the symbol  x   represents the first time 

derivative of  x, and A, B, C, D, E, and F are constants in time, which depend on the model 

parameters and the compression mode.  As can be confirmed by differentiation, the general 

steady-state solution of the above equation is the sum the sum of a sine term, a cosine term, and a 

constant.  Table 1 shows the values of constants A, B, C, D, E, and F in expression (1) that 

correspond to specific solutions for the variables  x1  and  x2  for either constant peak 

displacement compression or constant peak force compression of the chest. 

 

 

 

 

TABLE 1   Specific solutions of Ax Bx Cx D t E t F  sin( ) cos( )        ;  where 

x a t b t h    sin( ) cos( )  ,  
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Solutions for constant peak displacement technique: In the specific simulation of chest 

compression with constant peak displacement, the sternum is pushed downward a fixed maximal 

distance, x1 max, regardless of the motion of the bed.  The driving force  x1  as a function of time is 

defined as  )cos(1
2

1
max11 txx   , with x1 = 0 at time t = 0, and maximal value  x1 max ,  

whenever   t  radians.  In response, the value of  x2  as a function of time, t , is given by a 

particular steady-state solution of equation (1), indicated in the rightmost column of Table 1.  

Knowing both  x1  and  x2 , it is possible to compute the sternal compression with respect to the 

spine, x1 – x2 , during constant peak displacement CPR for multiple cases in which mattress 

firmness, k2 , varies. 

 

Solutions for constant peak force technique:  In the specific simulation of compression with 

constant peak force, the sternum is pushed downward with a defined sinusoidal force, regardless 

of the “give” of the underlying bed.  That is, the same force is applied to the sternum even if the 

chest as a whole recedes with compression of the bed.  Here applied force as a function of time, 

F t F t( ) ( cos( ))max    
1

2
1  ,  such that F(0) = 0, and F(t) = Fmax periodically whenever 

  t  radians.  The value of  x2  is given by the solution of the second order differential 

equation (1), when constants A through F are determined as shown in the middle column of 

Table 1.  Having found solutions for  x2  as a function of time, the solution for  x1  with constant 

peak force compression can be computed from (1) when constants A through F are defined as 

shown in the leftmost column of Table 1.  In this way we could compute true sternal 

compression with respect to the spine, x1 - x2, for either constant peak displacement or constant 

peak force compression, given reasonable experimental values for the spring constants, k , and 

damping constants,  , of typical adult chests and hospital beds. 

 

Spring and damping constants of the chest:  Gruben et al.6 have previously characterized the 

elastic and damping properties of the human chest. We chose their values for typical chest 

stiffness and damping coefficients for the model of Figure 1. With the elastic constant of the 

chest equal to 7500 N/m and the damping constant of the chest equal to 275 N/m/s, the model 

reproduced the measured force displacement data for the human chest, including hysteresis. 

 

Spring and damping constants of the bed and mattress:  To estimate experimentally the 

values of the spring constant, k, and damping coefficient,  , for a hospital bed under test, one 

can measure the resonant angular frequency,  , when a series of test masses, m, is applied to the 

bed and the system is set into damped oscillatory motion.  For test mass, m , placed on a bed with 

stiffness  k  and damping   

 

 


   
1

2
4 2

m
k m   ,   where   2 4  k m  (under-damped case)5.   (2) 

 

From expression (2) the spontaneous resonant angular frequency,  , of the system when the 

mass is “let go,” is dependent on constants  k  and  ,  such that  
4

2
22 

  mkm .  In reality, 
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the mattress gets stiffer with increasing weight of compression.  If one assumes a simple linear 

increase in spring constant, k , with slope,  b , as a function of the weight, m g , of the preload 

(i.e.  k m k m g b   0 ), then (2) becomes a quadratic equation in m, 

 

m k m g b m2 2
2

0

2

4
       


.        (3) 

 

 Experimentally, we placed several known masses on a "chest sized"  board (dimensions: 

30 x 44 cm) on the bed to be tested.  The board and mass were then displaced downward.  At the 

moment of their release, a stopwatch was started and the number of cycles of upward movement 

was counted until motion was no longer detectable (< 1 mm of displacement).  The total number 

of cycles was divided by the total time for all of the cycles to obtain the frequency of the 

harmonic motion (cycles per second).  This frequency was then converted to an angular 

frequency for each mass tested  (   2 frequency of oscillation ) and the values of  m22
  were 

plotted as a function of  m, from which  k(m)  and    could be estimated from regression analysis 

(Figure 2).  The test masses were a 22 kg sack of sand and people of varying body weights (31, 

48, 66, 80 and 88 kg), determined on a Detecto Model CN20 digital scale.  These people sat 

down on the target 30 x 44 cm board, placed as close as possible to the center of the tested 

hospital bed, to initiate damped oscillations of the bed-mass system.  The oscillations were 

counted and timed with a stopwatch as long as they were clearly perceptible, while the “test 

mass” endeavored to remain still and balanced on the board. A second order polynomial curve fit 

was applied to the data for m2 2 as a function of  m  in order to evaluate  k(m)  and  , as 

shown in Figure 2.  In this manner values of  k  and    were estimated experimentally for four 

in-service hospital beds with and without CPR-backboards, using only a stopwatch, a wooden 

board, human volunteers of different size, and a bag of sand. 
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FIGURE 2.  Example of m
22

 versus m plot for the Hill-Rom 720 bed and the May & 

Co. Mattress.  Solid data points represent measured values.  Smooth curve represents 

least squares regression used to estimate bed stiffness and damping constants.  The 

experimental value of 
22m   at  m = 0  was taken as 

4

2
  for the value of the 

damping constant,  , which reproduced the observed duration of detectable 

oscillations in the tested bed when inserted into the expression 

x t x e tt m( ) ( ) sin( )/( ) 0 2  . 

 

 

 

Computed Solutions for chest displacement:  Using values for chest and bed stiffness 

constants and damping factors, obtained as just described, and expressions for x1(t) and x2(t) for 

both constant peak displacement compression and constant peak force compression of the chest, 

we conducted a spreadsheet analysis using Microsoft Excel 6.0  to explore the effects of system 

parameters upon sternum-to-spine compression.  The accuracy of mathematical expressions in 

the spreadsheet program was validated using 16 simple test cases for which the results were 

known or for which there exists a simple analytical solution. Models behaved as predicted for all 

test cases. 
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  RESULTS 

 

 

The damping coefficients and spring constants obtained from a variety of bed and 

mattress combinations are summarized in Table 2.  The last column of this table gives a sample 

spring constant for the bed/mattress combination with the application of a 30 kg mass as was 

used in our modeling. Backboards greatly increased the overall stiffness of the bed/mattress 

combination and also caused an increase in damping. We chose to use the Hill-Rom 720 bed 

with the May & Co. mattress as the standard bed/mattress combination for subsequent modeling. 

 

 

 

 

TABLE 2  Experimentally determined bed and mattress constants.  Values are averages for 2 

or 3 trials. 

 

Bed Type Mattress Type k0 (N/m) b (N/m/kg) 2(N/m/s) k2 (N/m) with 

a 30 kg mass 

 

Hill-Rom 720 

 

 

May & Co. 

 

6086 

 

13.2 

 

132 

 

9970 

Hill-Rom 720 

 

May & Co. 

+ backboard 

8884 13.5 335 12860 

Hill-Rom 720 

 

Gel Foam 9256 17.2 503 14320 

Hill-Rom 450 

 

May & Co. 4271 16.2 198 9040 

Hill-Rom 450 

 

May & Co. 

+ backboard 

12240 13.7 519 16270 

Hill-Rom 450 Gel Foam 8475 20.5 545 14510 

 

 

 

Figure 3 is a sample plot of the computed fluctuations in sternal displacement with 

respect to the spine (x1-x2) during CPR at 90 compressions/minute on a mattress of average 

stiffness (12,000 N/m) for the constant peak force and constant peak displacement models. Peak 

compression for the constant peak displacement model is approximately 3 cm under these 

conditions, while that for the constant peak force model is approximately 5 cm. 
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FIGURE 3.  Time variance of sternal displacement with respect to the spine for 

constant peak force model (A) and constant peak displacement model (B) for CPR 

performed at 90 compressions/minute, a mattress stiffness of 12,000 N/m, and a 

mattress damping coefficient of 165 N/m/s. 

 

 

Figure 4 summarizes computed chest displacement and peak power requirements (force 

times velocity) for each model as a function of bed stiffness. Within the dashed “normal” range 

in Figure 4, representing measured hospital mattress stiffness constants, the constant peak force 

technique is capable of generating a much higher degree of chest compression than the constant 

peak displacement technique.  However, power requirements for the constant peak force 

technique are significantly greater than those for the constant peak displacement technique. 
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FIGURE 4.  Chest displacement toward the spine and power requirements at varying 

mattress stiffness for CPR performed at 90 compressions/minute with either a constant 

peak force of 400 N or a constant peak displacement of 5 cm.  A: sternum-to-spine 

compression, constant peak force model;  B: sternum-to-spine compression, constant 

peak displacement model;  C: power, constant peak force model;  D: power, constant 

peak displacement model.  Dashed vertical lines indicate the approximate normal 

range of hospital mattress stiffnesses. 

 

 

  DISCUSSION 

 

 

Current CPR guidelines instruct the rescuer to depress the sternum 4-5 cm with each 

compression.  Such wording is quite appropriate and unambiguous, if the patient is lying on a 

hard surface.  On a soft surface, however, there are at least two possible interpretations.  With 

constant peak displacement technique the rescuer’s hands always travel a fixed distance and may 

tend to compress the bed rather than the chest.  On soft surfaces the overall reduction in actual 

chest compression using this technique is great and the consequences to the patient are grave.  
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Any method increasing the stiffness of an underlying mattress, such as use of a backboard, will 

increase the degree of chest compression and, hence, the efficacy of CPR.  A feasible alterative 

is constant peak force technique, with which the rescuer compresses the sternum using the same 

maximum force regardless of any patient motion.  This mode is similar to that applied by the 

Thumper


 mechanical resuscitator, and also by smaller adult rescuers who focus on using upper 

body weight to apply chest compressions.  The constant peak force technique is capable of 

maintaining a significant degree of chest compression on all but the softest surfaces, at the 

expense of greatly increased work by the rescuer. 

 

 

  LIMITATIONS AND FUTURE QUESTIONS 

 

 

The present study has been done with a mathematical model incorporating linear 

differential equations to approximate the non-linear performance of a chest and bed compressed 

during CPR.  Further research should characterize specialized sleep surfaces and Gurneys as well 

as non-linear breakdown of the chest during prolonged CPR. 

 

 

  CONCLUSIONS 

 

 

The effectiveness of chest compression during standard CPR may be seriously degraded 

on soft supporting surfaces such as hospital beds.  The degradation may be reduced by the use of 

backboards and, if necessary, a constant peak force compression technique. 
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