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Valveless pumping: the reflected pulse wave hypothesis 

 

Charles F. Babbs, MD, PhD 

 

Weldon School of Biomedical Engineering, Purdue University, 

West Lafayette, Indiana 47907, USA 

 

Abstract 

Valveless pumping refers to nonzero mean flow of fluid within a closed loop of 

viscoelastic tubing, when a compliant section of the loop is rhythmically compressed at 

particular frequencies.  Valveless pumping is thought to play a role in blood circulation in 

embryos and in cardiopulmonary resuscitation (CPR).  Heretofore, the physical 

mechanism causing valveless pumping has remained a mystery. 

 

We consider closed loops composed of one length of soft, compliant tubing and one 

length of stiff, non-compliant tubing having equal internal diameters.  The loops are filled 

with water and are compressed toward one end of the soft section.  To model such pumps 

we characterize pulse (pressure) waves in the soft section using the classical wave 

equation assuming complete reflection of the pulse waves at the soft/stiff boundaries.  

Pulse wave velocity is specified by the Moens-Korteweg equation.  The resulting 

instantaneous pressure difference across the fluid in the stiff segment is computed, and 

Newton’s second law is used to describe the instantaneous and time averaged movement 

of fluid through the stiff segment and around the loop. 

 

Mean flow equals zero if compression is performed at the midpoint of the soft segment.  

However, when changes in pulse wave velocity caused by expansion of the 

uncompressed regions of the soft segment are properly accounted for, nonzero mean flow 

develops during asymmetrical compression of the soft segment.  The magnitude and 

direction of mean flow depend upon the compression frequency and can be reversed 

simply by changing from one compression frequency to another.  Other parameters, such 

as compression point location and stiffness constants also act to determine the magnitude 

and direction of flow.  Reflected pulse waves explain the existence and major features of 

valveless pumping on the basis of classical Newtonian physics. 
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I. INTRODUCTION 

 

Imagine a closed loop of flexible rubber tubing filled with water or a similar 

incompressible fluid.  The loop is about 30 cm in circumference, and the tubing is about 1 

cm in diameter.  Now imagine yourself squeezing a short segment of the loop between 

your thumb and forefinger about once each second (Figure 1).  Can you predict the 

motion of the fluid in the loop? 

 

 

 

 

 

 

 

 

 

Figure 1.  A thought experiment. 

 

 

 

 

 

Figure 1. A thought experiment.  Rhythmic compression of a fluid-filled elastic 

tube. 

 

 

Most persons would probably predict that as the tubing is compressed a small amount of 

fluid would flow away from the compression point in both directions equally, distending 

the remainder of the loop slightly.  Then, when compression is released, fluid would flow 

back again with no net flow in either direction around the loop.  This intuitive prediction 

is correct for some cases.  However, several previous reports have described such 

systems in which there is indeed a net flow of fluid in either the counterclockwise or 

clockwise direction
1-3

.  This phenomenon is called “valveless pumping”, because 

unidirectional net flow can occur in a closed circulatory system without valves.  Such 

pumps can be made very inexpensively for the purpose of classroom demonstration. 

 

Flow in valveless pumps is not steady but rather fluctuates.  At certain frequencies there 

is a nonzero mean flow, which typically may be clockwise at one frequency and 

counterclockwise at another.  A key required condition, slyly not indicated in Figure 1, is 

that the stiffness of the tubing is not uniform around the loop.  The stiffness must vary in 

different segments of the loop for valveless pumping to occur, as shown in Figure 2.  

Here the loop includes only two segments, a stiff segment and a complaint segment 

having equal internal diameters.  If the compliant segment is compressed at its exact 

midpoint, no net flow occurs.  However, if the compliant segment is compressed 

asymmetrically at a point, Lc, non-zero average flow in one direction or the other can 
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develop at certain frequencies
2
.  Indeed flow can be reversed in the loop, simply by 

changing frequencies—all without valves. 

 
 

 
     

     
 

 
 

    

     

     

     

     

     
     

     

     

     

     

     

     

     

 

 

Figure 2. More detailed diagram of a valveless pump.  Bold arrow indicates the 

point of rhythmic compression. 

 

 

Valveless pumps may be more than laboratory curiosities.  In developing embryos it is 

known that the heart develops and blood circulates before the development of functional 

heart valves
3, 4

.  Perhaps at these early times the embryonic heart is acting as a valveless 

pump.  In some models of cardiopulmonary resuscitation (CPR) artificial circulation of 

blood may occur when at least some of the cardiac valves are not functioning
5, 6

, leading 

us to speculate that valveless pumping may be one of the mechanisms of blood flow 

during the external chest compressions of CPR.  If valveless pumping occurs at very 

small physical scales, valveless pumps might be easily fabricated for micro machines, 

owing to their simple geometry and requirement for only a single moving part to provide 

external compression.  A piezo crystal, which deforms in response to an applied voltage
7
, 

might be used to power such a miniature pump. 

 

To date the physical mechanism underlying valveless pumping, especially flow reversal 

at different frequencies, has remained a mystery
2
.  Finding an explanation for the 

unidirectional mean flow is a challenging problem.  One of us
2
 has described a partial 

differential equation (PDE) model of a valveless pump using the immersed boundary 

method.  This system is capable of predicting the essential features of valveless pumping 

in two dimensions.  However, the complexity of the system of equations does not provide 

a satisfying intuitive explanation for why valveless pumping occurs. 

 

Lc 

L2 

L1 
r1(t) 

Stiff 

segment 2 

Soft 
segment 1 
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One useful outgrowth of the immersed boundary work was the production of an 

animation showing details of flow around the loop, which may be viewed on the 

Internet
8
.  This animation of a valveless pump of the type shown in Figure 2 suggests that 

as external compression occurs, pulse waves are generated and travel along the walls of 

flexible segment 1.  For the usual case when stiff segment 2 is almost rigid (substantially 

stiffer than segment 1) it is clear that the pulse waves are reflected at the compliant-stiff 

boundary and travel back and forth in the compliant segment.  Further, fluid flow in the 

stiff segment is relatively steady and laminar
2
, while flow in the flexible segment is 

faster, bidirectional, and complex. 

 

These observations led to the pulse wave reflection hypothesis, namely that valveless 

pumping happens because pulse waves are reflected between the ends of the compliant 

segment and in so doing create interference patterns that can generate pressure 

differences across the ends of the stiff segment, which can support nonzero mean flow.  

For simplicity, we assume that the stiff segment is infinitely stiff and that the radius to 

length ratio of the soft segment is small, so that wave propagation becomes one-

dimensional.  If true, the pulse wave reflection hypothesis would provide a relatively 

simple explantation of valveless pumping based upon classical Newtonian physics. 

 

Accordingly, the objective of the present research was to develop a mathematical 

formulation of the pulse wave reflection hypothesis that demonstrates the phenomena of 

valveless pumping and reveals the physical principles that govern flow.  Aspects of the 

requisite analysis include descriptions of pulse waves in an elastic tube, pulse wave 

velocity and reflection, the pressure difference between the ends of the stiff segment, the 

governing equation for motion of fluid in the stiff segment, and numerical results. 
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II. THEORY 

 

A. Overview 

 

According to the reflected pulse wave hypothesis, pulse waves from the external driving 

compressions are largely reflected at the ends of the compliant segment of the loop.  Most 

of the wave energy, rather than circumnavigating the loop, bounces back and forth along 

the compliant segment, becoming gradually attenuated by viscous forces.  The reflected 

waves add in phase or out of phase with more recent pulses depending on the specific 

driving frequency and the geometry and physical properties of the soft segment.  In turn, 

the net pressure on the two ends of the column of fluid in the stiff segment induces its 

motion.  The mass of the fluid in the soft segment is entrained with that in the stiff 

segment and pulled along with it in the circuit.   

 

If the various incident and reflected waves were always sinusoidal in the time domain, 

then the mean pressure at each end of compliant segment 1 would always be zero, 

because the mean value of any whole number of sinusoidal waves in any phase is zero.  

However, because the average radius of compliant segment 1 changes with external 

compression (it becomes larger along most of its length), pulse wave velocity changes 

during the compression cycle, generating somewhat non-sinusoidal waves.  According to 

the reflected pulse wave hypothesis, the resulting waveform distortions can produce a net 

driving pressure causing preferential flow in one direction.  As will be shown, the 

required waveform distortions can be understood in terms of changing pulse propagation 

times from the compression point to the two ends of the soft segment.  These fluctuating 

delays are caused by distension related changes in pulse wave velocity.  Definitions of 

variables used in the following discussion are provided in Table 1. 
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Table 1.  Nomenclature. 

 

Symbol Definition Units 

Known 

variables 

  

A Internal cross-sectional area of stiff segment cm
2
 

f Frequency of external pumping Hz 

r (0) Initial internal radius of soft and stiff segments cm 

r1(t) Time varying internal radius of soft segment cm 

L1, L2 Axial lengths of soft and stiff segments cm 

Lc Distance from compression point to left hand end of soft 

segment 

cm 

h1(t), h2 Thicknesses of soft and stiff segments cm 

E1, E2 Elastic (Young’s) moduli of wall materials of soft and stiff 

segments 

dynes/cm
2
  

 Density of fluid inside valveless pump g/cm
3
   

SV Stroke volume of compression cm
3
   

 Wave attenuation factor  cm
-1

   

 Viscosity of fluid inside valveless pump g/cm/sec 

   

Derived 

variables 

  

 Angular frequency of external pumping Hz 

C1, C2 Compliances of soft and stiff segments cm
5
/dyne 

R1, R2 Resistances of soft and stiff segments cm
5
/dyne 

Rtot Total resistance of soft and stiff segments cm
5
/dyne 

Ltot Total axial length of soft and stiff segments cm 

s(t) Pulse wave velocity in soft segment cm/sec 

)t,(s   Average pulse wave velocity during the last  seconds cm/sec 

xE   Distance from compression point to right hand end of soft 

segment (=L1 - Lc) 

cm 

xW   Distance from compression point to left hand end of soft 

segment (= Lc) 

cm 

y(t) Instantaneous flow in segment 2 cm
3
 

 Pulse wavelength in soft segment 1,  = s/f cm 
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B. Pressure waves in elastic tubes 

 

Pressure waves travel in thin walled, distensible tubes propagate at a particular speed (the 

so-called pulse wave velocity) classically described by the Moens-Korteweg equation
8
 

 

)t(r2

)t(hE
)t(s


  ,          (1) 

 

where  h(t) is the wall thickness of a tube of radius, r(t), at time t .  The tube is composed 

of material having Young’s modulus of elasticity, E, and filled with fluid of density,  . 

 

In addressing the problem of valveless pumping, we are concerned with distensible tubes, 

for which increases in the radius lead to decreases in wall thickness.  For such tubes by 

geometry (assuming conservation of wall volume, i.e. Poisson’s ratio = 0.5, and a thin 

wall h(0)<<r(0) ), then )t(h)t(r2)0(h)0(r2  for any time, t, or 

 

)t(r

)0(h)0(r

)t(r

)t(h
2

 .           (2) 

 

Thus the Moens-Korteweg equation for thin walled, stretched tubes can be re-written as  

 

)t(r

)0(r
)0(s

)t(r

1

2

)0(h)0(rE

)t(r2

)t(hE
)t(s 





       (3) 

 

When the soft segment is squeezed at the compression point, fluid is moved into the 

uncompressed portion of the soft segment and increases its radius.  As  r(t)  increases, 

pulse wave speed, s(t), decreases and pulse wave propagation slows.  This relationship is 

critically important to the problem of valveless pumping. 
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C. Instantaneous pulse wave velocity in a soft tube with changing volume, V(t) 

 

Suppose a thin walled elastic tube of radius, r, and axial length, L, is injected with a small 

volume dV(t) to produce pulses that travel along the tube.  As shown in Figure 3, the 

effect is similar to external compression but is easier to analyze.  For sinusoidal changes, 

the volume of the tube may be written as 

 

))tcos(1(SV
2

1
)0(V)t(dV)0(V)t(V  ,     (4) 

 

where L)0(r)0(V 2  is the initial volume inside compliant segment 1 having initial 

radius, r(0), and the angular frequency and stroke volume for external compression are  

and SV, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Equivalence of injection of a small volume (A) with a small external 

compression (B).  Both maneuvers expand the radius of the soft segment away 

from the compression site to cause small changes in pulse wave velocity.  Only a 

short section near the compression point is shown. 

 

dV 

dV 

(A) 

(B) 
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In the problem of valveless pumping, if a small region of the tube is compressed 

externally, the volume dV(t) swept out by the compression is injected into the remaining 

parts of the tube (Figure 3(B)).  The total volume within the loop is unchanged.  However 

there is a change in volume of the uncompressed regions as if dV(t) were injected at the 

point of compression.  Note that the volume of the compressed segment is small with 

respect to the total volume within segments 1 and 2.  Thus when reflected pulses later 

return to the compression point, they traverse the compression zone without being 

substantially changed.  That is, the differences in pulse transit times through the 

compression zone are small, because its length is small with respect to the rest of  

segment 1. 

 

Now consider a fixed length elastic tube, the volume of which is L)t(r)t(V 2 .  Using 

our standard nomenclature, the pulse wave velocity along the tube is given by Eq. (3), as 

 

)t(V

)0(V
)0(s

)t(r

)0(r
)0(s)t(s  .       (5) 

 

From Eq. (4) 

 

))tcos(1(
)0(V

SV

2

1
1

)0(V

)t(V
 .         (6) 

 

Hence, 

2

1

))tcos(1(
)0(V

SV

2

1
1)0(s)t(s











       (7) 

 

For smaller stroke volumes SV/(2 V(0)) << 1 , and using the Taylor’s series expansion  

 

  x
2

1
1x1 2

1




 , for x << 1 we have 

 









 ))tcos(1(

)0(V

SV

4

1
1)0(s)t(s .        (8) 

 

Thus the instantaneous pulse wave speed in the soft segment at any time t is  

 

  )tcos()0(s)1()0(s))tcos(1(1)0(s)t(s   ,   (9) 

 

where 
)0(V

SV

4

1
  . 
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The pulse wave velocity, s(t), shows small sinusoidal fluctuations about its mean value, 

s(0)(1-). 

 

From Eq. (9) we can find the average pulse wave speed, s , and transit time,  , for a 

pulse wave traveling over a certain fixed distance, x, from the compression point during 

a certain epoch of time.  These values are important in order to determine the net pressure 

at the opposite ends of segment 2 from various reflected waves.  As the effective soft 

segment volume, V(t), changes sinusoidally with time, pulse wave velocity, s(t), varies 

also, as expected from the Moens-Korteweg equation.  It is the average pulse wave 

velocities, and attendant propagation delays, over various intervals, x, that are critical to 

the mechanism of valveless pumping. 

 

 

D. Average pulse wave velocity, s , and transit time,  

 

The mean value of s(t) over the interval t1 to t2 is 

 




2

1

t

t12

21 dt)t(s
tt

1
)t,t(s .        (10) 

 

Substituting for s(t),  

 

 










2

1

2

1

t

t12

t

t12

21 dt)tcos(
tt

)0(s
dt

tt

)1()0(s
)t,t(s  

 
2

1

t

t12

)tsin(
1

tt

)0(s
)1()0(s 













  

 

 
 )tsin()tsin(

tt

)0(s
)1()0(s 12

12





 .    (11) 

 

If tt 2   and  tt1 , then the average wave speed during the last  seconds of pulses 

traveling in segment 1 is  

 

 )t(sin()tsin(
)0(s

)1()0(s)t,(s 



 .     (12) 

 

Suppose pulse transit time 
)t,(s

x
)t,x(




  for some distance, x, just traveled by a 

pulse wave.  Then, 
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 ))t,x(t(sin()tsin(
)t,x(

)0(s
)1)(0(s

)t,x(

x
)t,(s 









   (13) 

 

is a nonlinear equation that can be solved for the transit time, )t,x( , of a pulse wave 

previously arising distance, x, away.  Pulse transit time will be needed in section G. to 

describe pressures in the soft segment of the valveless pump in terms of Eq. (20), which 

is the classical wave equation. 

 

 

E. Reflection of pressure waves in elastic tubes at a stiffness boundary 

 

If the ends of stiff segment 2 are essentially immobile, then as shown in Jung’s movie
8, 9

, 

pulse waves are reflected back and forth in the flexible segment 1 without inversion.  

Unlike pulse waves on a flexible string, which are reflected with inversion at a fixed end, 

here the reflection is similar to waves at the vertical edge of a swimming pool or fish 

tank.  The mass of fluid in a wave peak builds up at the boundary and then falls back 

upon itself in the process of reflection.  Pulse waves depart from the compression point, 

are reflected from the ends of the stiff segment, and return toward the compression point.  

The reflection coefficient is assumed to be +1.0, in agreement with the detailed analysis 

of Alderson and Zamir
10

. 

 

 

F. Governing differential equation for flow in stiff segment 2 

 

In general, the reflected pulse wave hypothesis states that the net pressure difference 

between the ends of the fluid column in stiff segment 2 provides an asymmetrical driving 

pressure that causes forward or backward flow.  In turn, Newton’s second law of motion 

gives the motion of the fluid column in segment 2. 

 

In Figure 4 the parallel lines represent the straightened stiff segment 2 of length, L2.  PE(t) 

and PW(t) are the pressures at opposite (East and West) ends joining the soft segment 1, 

which is not shown.  Flow through segment 2 is denoted y(t) and is defined as positive 

for flow from PE(t) to PW(t).  The classical resistance of segment 2 is a constant, 2R , with 

units of pressure divided by flow.  The mean fluid velocity is A/)t(y)t(v  , 

where
2(0)rA   is the cross sectional area of the stiff segment. 
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Figure 4. Straightened stiff segment 2. 

 

 

 

The force overcoming the resistance to fluid flow in segment 2 (push + pull) is 

 

AR(t)y)t(F 2R  .         (15) 

 

The force overcoming the inertia of the fluid column in segment 2 by Newton’s second 

law (Force = mass*acceleration) is  

 

dt

(t)dy
L

dt

(t)dv
LA)t(F 22I  .       (16) 

 

Adding, 

 

dt

(t)dy
LAR(t)yA)(t)P(t)P()t(F)t(F 22WEIR   .    (17) 

 

If the fluid in segment 2 were disposed in a straight line and otherwise unconstrained, its 

motion would be given by  

 

dt

(t)dy

A

L
R(t)y)(t)P(t)P(

2

2WE


 .      (18) 

 

However, the fluid in segment 2 also must drag the fluid in segment 1 through its 

resistance while overcoming its inertia.  In this sense the fluid in segment 1 is entrained 

with that in segment 2.  The conceptual model is that the fluid in segment 1 is connected 

by massless strings to the fluid in segment 2 and is pulled along with it.  The electrical 

engineering analogy is that of a battery.  Segment 1 acts as a battery, which can be 

modeled as an ideal voltage (pressure) source, connected in series with an internal 

resistance, and in this case inductance
11

.  When the battery is connected to a load 

resistance, flow around the circuit depends upon the sum of the load resistance and a 

fixed internal resistance of the battery.  The equivalent circuit model for the battery is 

useful for computing flow through the load resistance, despite complex internal processes 

PW PE Stiff segment 2                       Cross-sectional Area, A 

 Length, L2   
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and internal architecture of the battery.  Similarly, for a valveless pump circuit we can 

write 

 

dt

(t)dy

A

L
R(t)y)(t)P(t)P( tot

totWE


  ,       (19a) 

 

where 

 

2121tot R)0(RR)t(RR    and  
A

L

A

L

)t(A

L tot2

1

1 






 .   (19b) 

 

Here we ignore fluctuations in the resistance and inertance of the soft segment caused by 

changes in its cross sectional area (a small signal model). 

 

Eq. (19a) is an ordinary differential equation (ODE) that one can solve knowing the 

driving pressure difference, )(t)P(t)P( WE  , between the ends of the stiff segment 2.  The 

result is the flow, y(t) , through the “load” of segment 2, which is of central interest in the 

problem of valveless pumping. 

 

 

G. Expression for driving pressure 

 

Let us represent the driving pressure across segment 2 as (t)P(t)P WE  , where EP (t) is 

the total pressure at the right hand (East) end of segment 1 and WP (t) is the total pressure 

at the left hand (West) end of segment 1.  Thus, positive flow is defined as 

counterclockwise around the loop by analogy with a racetrack or a geometric angle. 

 

Consider reflected pressure waves moving back and forth across soft segment 1 as shown 

in Figure 2, with reflections occurring alternately at its right hand (East) end, distance 

xE from the compression point, and at its left hand (West) end, distance xW from the 

compression point.  (Note that in Figure 2 xE = L1 - Lc and xW = Lc.)  Let 
a

EP (t) 

indicate the pressure at the right hand end of segment 1 due to pulse a, traveling initially 

from the compression point to the right.  Let 
b

EP (t) indicate the pressure at the right hand 

end of segment 1 due to pulse b, traveling initially from the compression point to the left.  

The total pressure at the right hand end of segment 1 is EP (t) = 
a

EP (t) + 
b

EP (t).  Similarly, 

the total pressure at the left hand end of segment 1 is WP (t) = a

WP (t) + b

WP (t).   

 

Suppose that the pressure waves traversing segment 1 are described by the classical wave 

equation
12

, such that the pressure distance x from the compression point at time, t, is 

 

  x

max e))t,x(t(sinP)t,x(F  ,      (20) 
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where (x, t) is the pulse propagation delay experienced by a pulse arriving at time, t, 

some distance, x, from the compression point.  An exact expression for computing  

(x, t) was developed previously in section D.  Angle  is the phase angle between the 

driving flow and the pressure wave, if any.  The damping constant, , describes the 

viscoelastic decay of the pulse wave with distance
13

. 

 

Consider the pressure at the right hand end of segment 1, distance xE from the 

compression point.  Assume that all waves are completely reflected at the compliant/stiff 

boundary without inversion when the stiff segment is completely rigid  

(i.e. E2  )
10

.  Then, accounting for the immediate reflection of each pulse wave
10, 14

, 

by multiplying by a factor of 2, 

 








n

0i

1E

1E1E1EE

a

E

) t,Li2x(F2

) t,L6x(F2) t,L4x(F2) t,L2x(F2) t,x(F2)t(P 

 

           (21) 

 

is the pressure at the east end of the soft segment from addition of  n  successive 

reflections of pulse wave a.  When  n  becomes large, the n-th term becomes negligibly 

small because of the exponential decay in F. 

 

The pressure at the East end from successive arrivals of pulse b, initially traveling to the 

left and reflected an odd number of times is 
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           (22) 

 

Similarly, 
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          (23) 

 

and 
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Now, the driving pressure across stiff segment 2 can be computed numerically as  

 

)t(P)t(P)t(P)t(P)t(P)t(P)t(P b

W

a

W

b

E

a

EWE   

 

  ) t,L3x(F) t,L2x(F) t,Lx(F) t,x(F2 1E1E1EE
 

 

  ) t,L3x(F) t,L2x(F) t,Lx(F) t,x(F2 1W1W1WW . (25) 

 

This driving pressure, P(t) , is readily computed from the given constants and the initial 

conditions describing a particular valveless pump. 

 

 

H. Specification of Pmax 

 

There remains the issue of specifying the constant Pmax in the wave equation F(x, t).  

One approach is to consider Pmax as another given constant.  However, practical valveless 

pumps tend to be specified, not in terms of the applied pressure, but in terms of the length 

and distance of external compression of segment 1, creating a stroke volume, SV.  One 

approach to relating Pmax to SV and other known variables in Table 1 is shown in  

Figure 5. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Sketch of pulse waves departing from compression point in both directions. 

 

 

Imagine an infinitely long soft tube having properties like segment 1 and compressed at 

its midpoint a volume  one half SV in a sinusoidal fashion.  Assume that the viscous 

forces in the wall are small, so that the changes in local radius are directly proportional to 

the change in local pressure, as is typical for thin walled tubes.  A traveling wave will 

propagate away from the compression point in each direction.  Considering the traveling 

waves in space, there are segments of the tube that are alternately expanded and 

contracted by a volume one quarter SV (since one half of one half SV is injected in each 

direction).  Thus sinusoidal compression will create a pattern of bulges and constrictions 

in the tube along its length.  Each outward bulge is one half wavelength, , long, where 

)0(sf  , for compression frequency, f.  (Wavelength, , actually fluctuates slightly, 

because s(t) fluctuates slightly; but for the purpose of estimating Pmax we can ignore this 

small change.)  Each inward constriction is also about one half wavelength,  , long.  

s(0)/f 

+SV/2 

-SV/2 

s(0)/f 
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Thus a sinusoidal variation in volume, distributed along one wavelength, propagates as a 

wave away from the compression point in each direction.  

 

The mean pressure in the half wavelength segment is given approximately by the ratio of 

injected volume to compliance or 
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where 
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is the compliance of an x-length segment of the tube. 

 

Now suppose further that the pressure wave shape is sinusoidal, the ratio of the peak to 

mean value for the quarter wavelength sinusoidal wave is /2.  Substituting 
f
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Note Pmax is an increasing linear function of the frequency when the SV and other 

parameters are fixed. 

 

 

III. NUMERICAL METHODS 

 

Computer programs were developed independently by each co-author for solving Eq. 

(19).  Results of the two programs for instantaneous flow in the valveless pump were 

checked against each other. 

 

A. Specifications 

 

In a typical valveless pump of the type shown in Figure 2, a compliant segment of length 

L1 is connected in series with a stiff walled segment of length L2.  The initial inner radius 

of each segment is r(0), and the segments are connected so that there is no discontinuity 

in diameter at the junctions between the soft and stiff segments.  At the arrow, the left 
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hand portion of compliant segment 1 is compressed externally at a sinusoidal frequency, 

f.  The stroke volume of external compression is SV.  External compression is applied at 

a circumferential distance Lc from the left hand boundary between the two segments.  

Other relevant parameters are defined in Table 1.  Typical values for a test case, similar 

to those described by Jung, are shown in Table 2. 

 

Table 2.  Particular parameters specifying a standard valveless pump. 

Parameter and symbol Value Units 

   

Segment length, L1 10 cm 

Segment length, L2 20 cm 

Initial internal radius, r(0)<< L1 0.5 cm 

Wall thicknesses h1 and h2 0.1 cm 

Elastic modulus, E1  1000 g/cm/sec
2
 

Elastic modulus, E2  Infinite g/cm/sec
2
 

Water density,  1.0 g/cm
3
 

Water viscosity,  0.01 g/cm/sec 

Drive stroke volume, SV 1.0 cm
3
 

 

 

The resistance of each segment of the valveless pump was given by Poiseuille’s law
15

: 

 

4

i

i
i

)0(r

L8
R




   for i = 1 (soft boundary) or i = 2 (stiff boundary),     (29) 

 

where  is the viscosity of the fluid in the tube.  The compliance of each segment is 

readily derived from calculus
16

 and is given by  
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ii

3

ii
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
   for i = 1 (soft wall) or i = 2 (stiff wall).    (30) 

 

 

B. Solving for mean pulse delay time, (x, t) 

 

Equation (13) can be solved recursively in the form 
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with an initial guess of 
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Because  is small (i.e. stroke volume is small with respect to the total volume of segment 

1), )t,x(1  is a good initial guess, easily refined by the iterative process. 

 

 

C. Solving for flow y(t) 

 

Thus, the governing differential equation for flow in segment 2 is 
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This is a first order differential equation of the form )t(Dyby   
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An exact solution for times t  0 is given by 
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for constant, c.  In our case y(0) = 0, so c = 0, and  
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Beginning with initial conditions at t = 0, we found y(t) for various valveless pumps 

described in the results using numerical integration for 




 


t

0

b de)(D .  The time step 

for numerical integration was typically 0.02/f seconds for frequency, f, making for 50 

time steps per compression cycle.  This approach provided fast and accurate numerical 

solutions for flow in segment 2 as a function of time. 

 

 

IV. RESULTS 

 

Figure 6 shows a complete frequency spectrum for the range 0.3 to 5 Hz.  Here mean 

flow in periodic steady state for compressions 95-105 is plotted at each frequency.  The 

compression point location was at cm5.2Lc  .  The curve in Figure 6 represents flow in 

the standard model (Table 2) as described in Methods.  For this model the radius of the 

uncompressed sections of compliant segment 1 expands as fluid is displaced from the 

much shorter compressed section.  As a result, pulse wave velocity, s, in segment 1 

decreases slightly as specified by the Moens-Korteweg equation.  Under these 
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circumstances valveless pumping occurs at particular frequencies shown in Figure 6.  In 

the range of 0.3 to 5 Hz maximums and minimums occur in a complex pattern.  These 

results demonstrate the existence of valveless pumping, strong frequency dependence of 

the phenomenon, and reversal of flow with changes in frequency alone. 
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Figure 6. Frequency spectrum of mean flow in a valveless pump.  Standard 

valveless pump model: Segment 1 length 10 cm, diameter 1 cm, wall thickness, 

0.1 cm, Young’s modulus 1000 dynes/cm
2
, stroke volume 1 ml.  Segment 2 

length 20 cm, diameter 1 cm, wall thickness 0.1 cm, Young’s modulus infinite.  

Damping constant beta = 0.01.  Compression point location is halfway between 

the midpoint of L1 and the left hand end of segment 1 (LC = 2.5 cm).    The time 

step for numerical integration was 0.02/frequency.  Identical results to 3 

significant figures were obtained when dt was halved to 0.01/frequency. 

 

 

If pulse wave velocity in the soft segment is forced to be constant, that is s(t) is set equal 

to s(0) for all times, t, and all other conditions of the simulation are the same as before, 

then mean flow becomes zero for all frequencies tested.  That is, valveless pumping does 

not occur unless pulse wave velocity varies properly as a function of segment 1 radius. 

 

Results on the vertical axis of Figure 7 are plotted in terms of pump efficiency, defined as 

mean flow around the loop, divided by the product of frequency and stroke volume.  The 

later product represents flow in a similar pump with properly functioning input and 

output valves, forcing unidirectional flow.  In Figure 7 otherwise identical simulations are 

performed with stroke volumes decreasing from 1 to 0.25 ml.  Pump efficiency decreases 

as stroke volume decreases and appears to extrapolate to zero as stroke volume 

approaches zero.  Since pulsatile changes in radius of the flexible segment are directly 
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related to stroke volume, these results support the concept that radius related changes in 

pulse wave velocity are critical in sustaining nonzero mean flow around the loop. 
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Figure 7. Pump efficiencies with varying stroke volume.  Other details similar to 

Figure 6. 

 

 

Instantaneous flow vs. time in a typical valveless pump of the type shown in Figure 2 is 

plotted in Figure 8 in the neighborhood of the 100
th

 compression cycle after the 

achievement of periodic steady state.  The two compression frequencies depict near 

maximal negative or clockwise flow (a) and near maximal positive or counterclockwise 

flow (b) from Figure 6.  Only a very small change in frequency is needed to shift between 

these two states. 
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Figure 8. Time domain plots of instantaneous flow in a valveless pump reaching 

periodic steady state.  Top curve: frequency = 4.35 Hz near a positive flow 

maximum in the frequency domain.  Bottom curve: frequency = 4.40 Hz near a 

negative flow maximum.  Flow reversal can occur with a small change in 

frequency.  Standard valveless pump model: Segment 1 length 10 cm, diameter 1 

cm, wall thickness, 0.1 cm, Young’s modulus 1000 dynes/cm
2
, stroke volume 1 

ml, Segment 2 length 20 cm, diameter 1 cm, wall thickness 0.1 cm, Young’s 

modulus infinite.  Beta 0.01.  
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Figure 9 illustrates mean flow as a function of the location of the compression point in 

segment 1.  As expected, zero flow in segment 2 occurs when the compression point is 

located at the exact midpoint of segment 1.  An unexpected but logical result is that flow 

varies as a sinusoidal function of the distance from the midpoint of segment 1.  The 

spatial wavelength of this sinusoidal function is f/)0(s .  Also, as expected from 

symmetry, compression to the right of the midpoint of segment 1 produces mean flow 

that is reversed in direction, compared with that caused by compression an equal distance 

to the left of the midpoint. 
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Figure 9. Flow in a standard model of a valveless pump as a function of 

compression point location.  Compression frequency is 3.30 Hz.  Standard 

valveless pump model: Segment 1 length 10 cm, diameter 1 cm, wall thickness, 

0.1 cm, Young’s modulus 1000 dynes/cm
2
, stroke volume 1 ml.  Segment 2 

length 20 cm, diameter 1 cm, wall thickness 0.1 cm, Young’s modulus infinite.  

Beta 0.01.  Here wavelength cm0.33.3/10f/)r2()hE(f/s  . 

 

An exhaustive description of all parameter effects in the pulse wave reflection model is 

beyond the scope of this paper, however, one important class of effects should be 

mentioned.  Changes in factors that affect baseline pulse wave velocity, s(0), produce 

characteristic shifts in the peaks of the frequency spectrum toward higher or lower 

frequency values.  One important such factor is wall stiffness, or the product of wall 

stiffness and wall thickness.  As illustrated in Figure 10, peak frequency shifts with 

stiffness and wall thickness of segment 1 according to the expression 
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Figure 10. Peak frequency shifts with stiffness and wall thickness.  
11
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Amplitude of flow increases in proportion to stiffness and wall thickness.  Other 

details similar to Figure 6. 

 

 

Substituting a stiffer segment 1 shifts peaks in the flow spectrum to the right, toward 

higher frequencies.  Substituting a softer segment 1 shifts peaks in the flow spectrum to 

the left, toward lower frequencies.  Eq. 34 summarizes numerous computational 

examples and is based upon the concept that a given pressure difference across the end of 

the soft segment will occur when the east end of the soft segment is a particular number 

of wavelengths from the compression point and when the west end of the soft segment is 

another particular number of wavelengths from the compression point.  Combinations of 

frequency and other parameters that give the same wavelength will have the same 

pressure difference and mean flow for the same stroke volume.  Recognizing that impulse 

wavelength equals pulse wave velocity divided by frequency, f/s , then  
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V. DISCUSSION 

 

The phenomenon of valveless pumping is counterintuitive but real.  The present research 

shows that valveless pumping may be explained on the basis of Newton’s second law of 

motion by modeling a mass of fluid in the stiff segment driven by fluctuating pressure 

differences across its ends and pulling with it the entrained fluid in the compliant 

segment.  The electrical analogy is that of a battery driving current in an electrical circuit 

through a load and also through the internal resistance of the battery.  In a valveless pump 

the driving pressure difference is created by the reflection of pulse waves back and forth 

between the ends of the soft segment.  These pulse waves are described by the classical 

wave equation and the Moens-Korteweg equation. 

 

The pulse wave reflection hypothesis contains four essential assumptions: 

 

(1) There are two segments connected in a loop, one of which is rigid and one of 

which is flexible 

 

(2) Pressure waves are reflected without inversion between the ends of the flexible 

segment, creating a driving pressure across the ends of the stiff segment 

 

(3) The velocity of the pressure waves is not constant, but varies with time 

 

(4) The flexible segment acts like a battery that generates a certain mean pressure 

across its ends that can be used to drive flow through a "load", namely the stiff 

segment. 

 

Variation in pulse wave velocity according to the Moens-Korteweg equation allows non-

sinusoidal distortions to develop in the pressure waves, which are critical to generation of 

a mean pressure difference across the stiff segment.  Non-linear elasticity of wall material 

is not needed to produce valveless pumping, because pulse wave velocity changes as a 

function of distension in a simple tube of constant elastic modulus, E. 

 

The present analysis does not predict the details of fluid flow in flexible segment 1.  

However, since we consider an incompressible fluid, the average flow in any cross 

section of the loop of tubing should be the same after development of periodic steady 

state.  Hence it is reasonable to choose the stiff part to show the existence of net flow.  By 

using the "battery" metaphor, we avoid solving the hard problem of detailed flow in the 

soft segment, substituting the easier problem of flow in the stiff segment.  This approach 

provides a relatively simple description of the physics of valveless pumps that permits 

calculation of several key values of interest, including instantaneous flow (averaged 

across the cross sectional area of the stiff segment) and time averaged mean flow in the 

stiff segment.  These variables have been of most interest in previous discussions of 

valveless pumping
1, 2, 17

.  As a result many heretofore unexplained and counterintuitive 

phenomena of at least one type of valveless pump can be understood on the basis of 
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Newton’s second law of motion.  These include the existence of nonzero average flow at 

certain frequencies, the existence of nonzero average flow in the opposite direction at 

other frequencies, the lack of substantial mean flow at some frequencies, the 

characteristic efficiency of valveless pumps, and flow reversal following abrupt change 

from one particular frequency to another. 

 

 

VI. PROBLEMS AND EXERCISES 

 

1. Suppose the relevant thicknesses h1 and h2 in Eq. (34) are the time averaged mean 

values during a compression cycle.  Explain the small differences in calculated frequency 

peaks in Figure 7 for stroke volume = 0.25 ml versus stroke volume = 1.0 ml. 

 

2. Using a slightly more general version of Eq. (35), predict shifts in peak frequency for 

valveless pumping if fluid density within the pump were changed from that of water  

(1.0 g/ml) to that of liquid mercury (13.6 g/ml). 

 

3. Build a valveless pump as shown in Figure 2 from stiff laboratory tubing, such as clear 

Tygon
®

, and very thin, soft latex tubing such as a Penrose surgical drain.  Include within 

the stiff segment a T-shaped filling port.  Fill the system with water including a non-

sticky marker material to visualize flow (shredded toilet paper works well).  Place the 

pump on an overhead projector for classroom demonstration. 

 

4. Predict behavior of a valveless pump such as that described in exercise (3).  Weights, 

bent paperclips, a sample of the soft segment tubing, and a millimeter ruler are sufficient 

equipment.  Cut a short ring shaped segment of tubing having axial width, a, about 0.5 

cm.  Let the tubing thickness be h, and the circumference be 2L, for flattened length, L.  

Study the elastic properties of the tubing by stretching the ring vertically between two 

bent paperclips, using a known weight, m, which exerts downward force mg.  Proceed as 

follows.  (a) First recall that Young’s modulus E = stress/strain.  Stress is force per unit 

area, and strain is fractional elongation L/L.  Show algebraically that the numerator of 

the Moens-Korteweg equation is 
)L/L(a2

gm
hE


 .  (b) For weights producing about 

20% strain, measure L/L experimentally, and estimate Eh for the tubing material.  The 

experimental value may be much larger than that for the standard model in Table 2 of this 

paper, since theoretical studies, including ours, have used very soft materials.  (c) Now 

compute pulse wave velocity for the tube filled with water at low pressure using the 

Moens-Korteweg equation.  (d) Using f = s, predict the locations of nodes and sweet 

spots, as shown in Figure 9, for compression of a valveless pump with a 100 cm long soft 

segment of such material.  Nodes are compression points with zero net flow; sweet spots 

are compression points with maximal net flow.  (e) Construct such a pump and compare 

predictions with experimental observations.  Can you improve the experiment or the 

theory? 
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