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Abstract
Bacterial infections present a serious challenge to healthcare practitioners due to the emer-

gence of resistance to numerous conventional antibacterial drugs. Therefore, new bacterial

targets and new antimicrobials are unmet medical needs. Rhodanine derivatives have

been shown to possess potent antimicrobial activity via a novel mechanism. However, their

potential use as antibacterials has not been fully examined. In this study, we determined

the spectrum of activity of seven rhodanine derivatives (compounds Rh 1–7) against clinical

isolates of Gram-positive and Gram-negative bacterial strains and Candida albicans. We

also synthesized and tested three additional compounds, ethyl ester and amide of rhoda-

nine 2 (Rh 8 and Rh 10, respectively) and ethyl ester of rhodanine 3 (Rh 9) to determine the

significance of the carboxyl group modification towards antibacterial activity and human

serum albumin binding. A broth microdilution assay confirmed Rh 1–7 exhibit bactericidal

activity against Gram-positive pathogens. Rh 2 had significant activity against various van-

comycin-resistant (MIC90 = 4 μM) and methicillin-resistant (MIC90 = 4 μM) Staphylococcus

aureus (VRSA and MRSA), Staphylococcus epidermidis (MIC = 4 μM) and vancomycin-

resistant Enterococcus (VRE) strains (MIC90 = 8 μM). The rhodanine compounds exhibited

potent activity against Bacillus spp., including Bacillus anthracis, with MIC range of 2–8 μM.

In addition, they had potent activity against Clostridium difficile. The most potent com-

pound, Rh 2, at 4 and 8 times its MIC, significantly decreased S. epidermidis biofilm mass

by more than 35% and 45%, respectively. None of the rhodanine compounds showed anti-

microbial activity (MIC > 128 μM) against various 1) Gram-negative pathogens (Acineto-

bacter baumannii, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, and

Salmonella Typhimurium) or 2) strains of Candida albicans (MIC > 64 μM). The MTS assay

confirmed that rhodanines were not toxic to mouse murine macrophage (J774.1A) up to

64 μM, human keratinocytes (HaCat) up to 32 μM, and human ileocecal colorectal cell

(HRT-18) up to 128 μM. Overall, these data suggest that certain rhodanine compounds

may have potential use for the treatment of several multidrug-resistant Gram-positive bac-

terial infections.
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Introduction

Infections caused by multidrug-resistant Gram-positive and Gram-negative bacteria have
become a major problem, particularly in hospitalized patients. For example, there are now
strains of multidrug resistant Staphylococcus aureus and Enterococci that have become resistant
to last-resort drugs. In addition, various Gram-negative bacteria, including Pseudomonas aeru-
ginosa, Acinetobacter baumannii, certain Escherichia coli and Klebsiella pneumoniae strains
have acquired genes that produce multidrug resistance.

One potential way to surmount resistance is to synthesize compounds that are structurally
distinct from the currently approved antibiotics. Previously, we reported that certain rhodanine
derivatives had bactericidal activity in vitro (three compounds with MIC = 0.98–1.95 μg/mL
and six compounds with MIC = 1.95–3.90 μg/mL) against methicillin-resistant Staphylococcus
aureus (MRSA) strains from different body areas and global locations [1]. In addition, a num-
ber of the rhodanines were highly active against a multidrug-resistant strains of MRSA (MRSA
ATCC BAA39 which is resistant to at least 9 different antibacterial drugs and MRSA ATCC
700698 which has reduced susceptibility to vancomycin) [1]. Previous structure-activity rela-
tionship studies of this class of rhodanine compounds suggested the important role of 1) a
hydrophobic aromatic group at the 3-position of the benzylidenemoiety, 2) the type and
nature of connecting group between the two aromatic rings of the benzylidenemoiety and 3)
stereochemical configuration at the phenylalanine segment [1]. Subsequently, we showed that
the active rhodanine compounds were producing their antibacterial activity by inhibition of
DNA gyrase and topoisomerase IV via a novel mechanism [2]. However, the effect of our rho-
danine compounds against other strains of MRSA, as well as other Gram-positive and Gram-
negative bacteria and fungi, remained to be determined. Therefore, in this study, we selected
seven representative rhodanine derivatives for extensive antimicrobial evaluation.

The goal of this study was to determine the in vitro antimicrobial activity of seven rhodanine
derivatives 1–7 (Fig 1) against a wider panel of Gram-positive and Gram-negative bacterial
strains as well as Candida albicans. In addition, we wanted to assess whether these compounds
had efficacy against staphylococcal biofilms using an in vitro model of S. epidermidis. Further-
more, we assessed the toxicity of rhodanines against three cell lines that represent three routes
of administration (systemic, topical and oral).

Materials and Methods

Synthesis of compounds 1–10

The syntheses of compounds 1 and 4–6 [3] and 2, 3 and 7 [1] was previously reported by our
group and that for compounds 8–10 is reported herein (see Supporting Information). LogP
and LogS were predicted for all the compounds to assess their lipophilicity and water solubility
using QikProp, version 4.8, Schrödinger, LLC, NY.

Bacterial strains and reagents

The bacterial strains used in this study are presented in S1 Table. Murine macrophage
(J774A.1), human keratinocytes (HaCat) and human ileocecal colorectal (HRT-18) cell lines
were purchased from ATCC (Manassas, VA), vancomycin hydrochloride (Gold Biotechnology,
St. Louis, MO, USA), linezolid, amphotericin B, fusidic acid (Chem-impex International,
Wood Dale, IL, USA), ciprofloxacin, gentamycin (Enzo Life Sciences, Farmingdale, NY, USA),
rifampicin, erythromycin (Sigma-Aldrich, St. Louis,MO, USA), oxacillin (TCI chemicals, Port-
land, OR, USA), fluconazole (Acros, NJ, USA), Daptomycin (Selleckchem,Houston, TX, USA)
and colistin (Alfa Aesar, Ward Hill, MA, USA) were acquired from other commercial vendors.
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Trypticase soy agar (TSA), Trypticase soy broth (TSB), Brain heart infusion, Yeast peptone
dextrose (YPD) agar and broth and Anaerobic blood agar as well as the Anaerobic gas pack sys-
tem were purchased from Becton,Dickinson and Company (Cockeysville,MD). Phosphate
buffered saline (corning), DMEM, Agar, glucose and crystal violet (Sigma-Aldrich),Middleb-
rook 7H9 broth base and the supplementary OADC vials (HiMedia Laboratories, PA, USA),
Middlebrook 7H11 agar base (CRITERION, Santa Maria, CA, USA), Fetal bovine serum
(ATCC), and MTS (Promega, Madison, WI, USA) were also used in the study. For Clostridium
work, Brain heart infusionmediumwas supplemented with yeast extract, L-cysteine, Vitamin
K1 and Hemin (Sigma-Aldrich, St. Louis, MO, USA).

The minimum inhibitory concentration (MIC) and the minimum

bactericidal concentration (MBC) of Rhodanine derivatives

The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration
(MBC) of rhodanine compounds 1 to 7 were determined against various Gram-positive and
Gram-negative pathogens (S1 Table) following the guidelines of the Clinical and Laboratory
Standards Institute (CLSI)[4]. The broth microdilution technique was used, followed by sub-
culturing on agar plates that were rhodanine—free. Bacteria (~1.5x105 CFU/mL) and the test
compounds (1–128 μM) were placed together in a 96 well-plate and incubated at 37°C for 24
hours and the agar plates were incubated at 37°C for 24 hours. The MICs reported represent
the lowest concentration of each compound necessary to inhibit bacterial growth and the
MBCs represent the lowest concentration required to reduce the initial bacterial inoculum
by� 99.9%.

Fig 1. Chemical structures of rhodanine compounds 1–10 utilized in this study.

doi:10.1371/journal.pone.0164227.g001
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MICs of the rhodanine compounds against Clostridium difficile

Clinical isolates of C. difficile were cultured on anaerobic blood agar and incubated anaerobi-
cally using container gas pack system at 37° C for 48 hours. The colonies were then suspended
in pre-reduced phosphate buffered saline (PBS) and adjusted to 0.5 McFarland standard
then diluted 1:300 in pre-reduced Supplemented Brain Heart Infusion broth. The bacterial sus-
pension was then transferred to each well of 96-well plates, the drugs were added to the first
row of wells in the required concentrations and serially diluted along the plates. The plates
were incubated again anaerobically using container gas pack system at 37° C for 48 hours. The
(MIC) recorded was the lowest concentration of the drug showing no visible growth of the
bacteria.

Biofilm eradication activity of Rhodanine compounds

We evaluated the efficacy of the most potent compound (rhodanine 2) to disrupt established
biofilms produced by methicillin-resistant Staphylococcus epidermidis (MRSE) using the
microtiter dish biofilm formation assay [5–9]. We used S. epidermidis ATCC 35984 (NRS 101),
a high-slime producer isolated in septicemic patients, with colonized intravascular catheters
from Tennessee, USA [10]. This strain is a multi-drug resistant strain, showing resistance to
methicillin, erythromycin, kanamycin, gentamicin, clindamycin and trimethoprim [10].
Briefly, an overnight culture of biofilm—producingMRSE was diluted 1:100 in a fresh medium
containing 1% glucose in a 96-well tissue-culture treated plate. Bacteria were incubated at 37°C
for 24 h to permit the formation of an adherent biofilm. The mediumwas removed and the
biofilmwas washed with PBS. Antibacterial drugs (vancomycin and linezolid) and rhodanine
2, at indicated concentration, were added and incubated again at 37°C for 24 h. Plates were
washed again and biofilms were stained with 0.1% (wt/vol) crystal violet. Plates were washed
with PBS, air-dried and biofilmmass was dissolved using 95% ethanol. The intensity of crystal
violet was measured using a micro plate reader (SpectraMax i3x; Molecular Devices, Sunnyvale,
CA, USA). Data are presented as the percent biofilmmass reduction in treated groups in rela-
tion to untreated wells.

The cytotoxicity of Rhodanine compounds against a murine

macrophage (J774.A1) and human keratinocytes (HaCat) cell lines

Rhodanine compounds were assayed at concentrations of 16 μM, 32 μM, 64 μM, and 128 μM
against a murinemacrophage cell line (J774.A1) and human keratinocyte cell line (HaCat) to
determine the potential toxic effect in mammalian cells [11]. Briefly, ~2 x 104 cells /well sus-
pended in 200 μL of DMEM supplemented with 10% fetal bovine serum (FBS), L-glutamine,
NaHCO3, pyridoxine-HCl, and 45,000 mg/L glucose were seeded in 96-well plates and incubated
at 37°C in a 5% CO2 atmosphere. The cells were cultured for 48 hours (60% confluency) before
the assays. The cells were further incubatedwith 16 μM, 32 μM, 64 μM, and 128 μM of rhodanine
compounds for 2 hours. The culture media were discarded, and the cells in each well were
washed with PBS and 100 μL of cell culture media were added prior to addition of the assay
reagent MTS3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium) (Promega, Madison,WI, USA). The plates were incubated for 4 hours at 37°C in a
humidified 5% CO2 atmosphere. The absorbance at 490 nm was recorded and corrected absor-
bance readings (actual absorbance readings for each treatment subtracted from background
absorbance) were taken using a kinetic ELISAmicroplate reader (SpectraMax i3x, Molecular
Devices, Sunnyvale, CA, USA). The quantity of viable cells after treatment with each compound
was expressed as a percentage of the control, DMSO.
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Cytotoxicity of Rhodanine compounds against human ileocecal

colorectal cell line (HRT-18)

Rhodanine compounds were assayed at concentrations of 32 μM, 64 μM, 128 μM, and 256 μM
against a human ileocecal colorectal cell line (HRT-18) to determine the potential toxic effect
in intestinal mammalian cells. Briefly, ~2 x 104 cells suspended in 100 μL of RPMI-1640 sup-
plemented with 10% horse serumwere seeded in a 96-well plate and incubated at 37°C in a 5%
CO2 atmosphere. The cells were cultured for 24 hours (90% confluency) before the assays. The
cells were further treated as above.

Antimicrobial activity of rhodanine compounds in the presence of human

serum albumin

The antimicrobial activity of rhodanine compounds in the presence of 4% human serum albu-
min (HSA) was tested against MRSAUSA300. TheMICs of rhodanine compounds and control
antibiotics (vancomycin and daptomycin) were tested as described in the methods above using
tryptic soy broth spiked with 4% HSA.We also synthesized and tested three more compounds,
ethyl ester and amide of rhodanine 2 (Rh 8 and Rh 10, respectively) and ethyl ester of rhoda-
nine 3 (Rh 9) to determine the influence of a carboxyl group modification toward anti-MRSA
activity and human serum albumin (HSA) binding.

The effect of outer membrane and efflux pump of Gram-negative

bacteria on rhodanines resistance

The MIC of the rhodanines and control antibiotics, in the presence of a sub-inhibitory concen-
tration of colistin or polymixin B nonapeptide (PMBN), against Gram-negative bacteria was
evaluated as describedbefore [7,8]. The antibacterial activity of the rhodanines was further
investigated against E. coli SM1411Δ acrAB, a strain that is deficient in the multidrug-resistant
AcrAB efflux pump, as describedbefore [7,8].

Results

Lipophilicity of rhodanine compounds 1 to 7

Calculated log P and log S (clog P and clog S) values were used to assess the lipophilicity of rho-
danine compounds (Table 1). All of the rhodanine compounds exhibited clog P value of>5 and
a clog S value of< -5, which indicates that these compounds are highly lipophilic and predicted
to bind to plasma proteins[12].

Table 1. Solubility predictors (clog P and clog S) of rhodanine compounds.

Compound clog P clog S

Rh 1 7.405 -8.555

Rh 2 7.586 -8.833

Rh 3 7.895 -9.209

Rh 4 6.258 -5.336

Rh 5 6.408 -7.354

Rh 6 7.627 -8.138

Rh 7 6.81 -7.271

Rh 8 7.69 -8.066

Rh 9 8.082 -8.852

Rh 10 5.981 -7.583

doi:10.1371/journal.pone.0164227.t001
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In vitro antibacterial activity of rhodanine compounds 1 to 7 against

Gram-positive cocci (VRE, MRSA, and VRSA)

The in vitro activity of rhodanine compounds 1–7 was determined initially against vancomy-
cin-resistant Enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and van-
comycin-resistant Staphylococcus aureus (VRSA) as shown in Tables 2–4. The rhodanine
compounds exhibited potent bactericidal activity against all tested bacteria including strains
that are resistant to conventional antimicrobials such as vancomycin and linezolid (Tables 2–
4). The minimum inhibitory concentration (MIC) of rhodanine required to inhibit 50%
(MIC50) and 90% (MIC90) of VRE,MRSA, and VRSA ranged from 4 μM to 32 μM. The rhoda-
nine compounds retained their antibacterial activity against an array of bacterial strains (VRE,
MRSA, and VRSA) exhibiting resistance to numerous antibiotic classes including glycopep-
tides, oxazolidones, tetracycline, β-lactams, macrolides, and aminoglycosides.

Table 2. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of rhodanine compounds (μM) against vanco-

mycin resistant enterococci (VRE).

VRE Strains MIC/MBC μM

Rh 1 Rh 2 Rh 3 Rh 4 Rh 5 Rh 6 Rh 7 Vancomycin Linezolid

E. faecalis R712 HM-335 4/8 4/4 4/4 16/32 8/16 4/8 8/16 > 64/- - 2/32

E. faecalis ERV103 HM-934 8/8 4/4 4/8 32/32 16/16 8/16 16/16 > 64/- - 2/>64

E. faecalis S613 HM-334 8/8 4/4 4/8 32/32 16/16 8/16 16/16 > 64/- - 2/64

E. faecalis TX0104 HM-201 8/8 4/4 4/8 32/32 16/16 8/8 16/16 > 64/- - 2/>64

E. faecalis NR31972 Strain SF 28073 8/32 4/32 4/64 32/32 16/16 8/16 16/16 > 64/- - 2/32

E. faecium NR31914 Strain E0120 8/64 4/32 8/64 32/64 16/>64 8/64 16/32 > 64/- - 2/>64

E. faecium Patient #1–1 NR-31903 4/16 4/64 4/64 16/64 8/64 4/>64 8/16 > 64/- - 16/>64

E. faecium E417 HM-965 8/>64 4/64 4/64 16/>64 8/>64 4/>64 8/64 > 64/- - 2/>64

E. faecium E1071 NR-28978 8/64 8/64 8/>64 32/64 16/>64 8/>64 16/>64 > 64/- - 2/>64

E. faecium HM 968 Strain ERV102 8/32 4/64 4/64 32/64 16/64 8/>64 16/>64 > 64/- - 2/>64

MIC 50 8 4 4 32 16 8 16 >64 2

MIC 90 8 4 8 32 16 8 16 >64 2

doi:10.1371/journal.pone.0164227.t002

Table 3. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of rhodanine compounds (μM) against methicil-

lin-resistant Staphylococcus aureus (MRSA).

MRSA strains NRS number MIC/MBC μM

Rh 1 Rh 2 Rh 3 Rh 4 Rh 5 Rh 6 Rh 7

384 8/32 4/16 16/16 16/64 8/64 4/4 8/64

107 8/8 8/16 8/32 16/32 16/16 8/8 16/16

385 8/8 4/4 16/16 16/32 8/16 4/4 8/16

386 8/16 4/8 8/32 16/>64 8/64 4/32 8/>64

383 8/8 4/4 8/8 32/32 16/16 4/8 16/16

19 8/8 4/4 8/8 16/32 8/16 8/8 8/8

1 8/8 4/4 8/8 16/32 8/16 8/8 8/16

382 8/8 4/4 16/32 16/16 8/8 4/16 16/1

37 8/8 4/4 8/16 32/32 16/16 8/16 16/16

119 8/8 4/4 8/8 16/32 8/8 4/4 8/8

387 8/8 4/4 16/32 16/64 8/8 4/8 8/8

MIC 50 8 4 8 16 8 4 8

MIC 90 8 4 16 32 16 8 16

doi:10.1371/journal.pone.0164227.t003
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In vitro antibacterial activity of rhodanine compounds 1 to 7 against

Bacillus anthracis

The rhodanine compounds exhibitedMIC andMBCvalues of 2–4 μM against B. anthracis
strains, comparable to theMIC andMBC values of vancomycin and linezolid as shown in
Table 5. However, they are less efficacious compared to the ciprofloxacin. Furthermore, the rhoda-
nine compounds retained their antibacterial activity against ciprofloxacin-resistant B. anthracis.
Interestingly, theMIC andMBC values are the same for all of the tested rhodanine compounds.

In vitro antibacterial activity of rhodanine compounds 1 to 7 against

Bacillus strains

In general, rhodanine compounds 1–7, with the exception of compound 4, showedMIC values
ranging from 2 μM to 8 μM against 10 different Bacillus strains (Table 6). Interestingly, the
MBC values are the same or few fold higher as that of MIC values.

In vitro antibacterial activity of rhodanine compounds 1 to 7 against

Clostridium difficile

Rhodanine compounds 1–7 showedMIC values ranging from 1 μM to 8 μM against five strains
of C. difficile (Table 7).

Table 4. Minimum Inhibitory Concentration (MIC) and minimum bactericidal concentration (MBC) of rhodanine compounds (μM) against Vanco-

mycin Resistant Staphylococcus aureus (VRSA) strains.

VRSA strains MIC/MBC μM

Rh 1 Rh 2 Rh 3 Rh 4 Rh 5 Rh 6 Rh 7 Vancomycin

VRSA 13 8/32 4/64 8/32 16/64 8/16 8/32 8/32 > 64/- -

VRSA 12 8/32 4/32 8/32 16/64 8/16 4/32 8/16 > 64/- -

VRSA 11b 8/32 4/64 8/16 16/64 8/16 4/32 8/32 > 64/- -

VRSA 11a 8/16 4/4 8/16 16/64 8/16 4/64 8/16 > 64/- -

VRSA 10 8/32 4/32 8/64 16/32 8/16 4/16 8/16 > 64/- -

VRSA 3a 8/16 4/16 16/16 16/32 8/16 8/8 8/8 > 16

VRSA 2 8/8 4/4 8/16 16/16 8/8 8/8 8/8 > 16

VRSA 3b 8/8 4/4 8/8 16/16 8/16 8/16 8/32 > 16

VRSA 4 8/8 4/4 8/32 16/64 8/16 4/8 8/16 > 64/- -

VRSA 5 8/16 4/64 8/64 16/32 8/16 4/16 8/8 64/>64

VRSA 1 8/8 4/8 8/32 16/64 8/16 8/> 64 16/32 > 64/- -

VRSA 6 4/8 4/16 8/16 16/32 8/16 4/32 8/16 > 64/- -

VRSA 7 8/8 4/32 8/32 16/32 8/32 8/8 8/16 > 64/- -

VRSA 8 4/32 4/8 8/16 16/32 8/16 4/16 8/16 > 64/- -

VRSA 9 8/32 8/32 8/16 32/32 16/16 8/16 16/16 > 64/- -

MIC 50 8 4 8 16 8 4 8 >64

MIC 90 8 4 8 16 8 8 16 >64

doi:10.1371/journal.pone.0164227.t004

Table 5. Minimum Inhibitory Concentration (MIC) and minimum bactericidal concentration (MBC) of rhodanine compounds against Bacillus

anthracis (Anthrax).

Bacillus anthracis strains MIC/MBC μM

Rh 1 Rh 2 Rh 3 Rh 4 Rh 5 Rh 6 Rh 7 Ciprofloxacin Gentamicin

Bacillus anthracis AMES35 2/2 2/2 2/2 4/4 2/2 2/2 2/2 0.125/0.125 0.25/0.25

Bacillus anthracis UM23 2/2 2/2 2/2 4/4 2/2 2/2 2/2 < 0.0625/< 0.0625 0.25/0.25

Bacillus anthracis Weybridge 2/2 2/2 2/2 4/4 2/4 2/2 2/2 >128/- - < 0.0625/< 0.0625

doi:10.1371/journal.pone.0164227.t005
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In vitro antibacterial activity of rhodanine compounds 1 to 7 against

Mycobacterium smegmatis

Rhodanine compounds 1–3 showedMIC value of 4 μM for M. smegmatis. Rhodanine com-
pounds 4–7 were less potent showing MICs value of 16–32 μM (Table 8).

In vitro antibacterial activity of rhodanine compounds 1 to 7 against

Gram-negative bacteria and Candida albicans

None of the rhodanine compounds showed activity against Gram-negative bacteria (P. aerugi-
nosa, K. pneumoniae, Acinetobacter spp., Salmonella typhimurium and E. coli) or C. albicans at
the 128 μM, the highest tested concentration (Tables 9 and 10).

Anti-biofilm activity of rhodanine 2 against Staphylococcus epidermidis

To determine the efficacy of the rhodanine compounds to mitigate the impact of Staphylococ-
cal biofilms, we investigated the effect of rhodanine 2 on pre-formed methicillin-resistant
S. epidermidis biofilms as shown in Fig 2. Rhodanine 2, at 4 and 8 times its MIC, significantly
reduced S. epidermidis biofilmmass by more than 35% and 45%, respectively. In contrast,
even at high concentrations, neither linezolid nor vancomycin significantly reduce biofilm
formation.

Table 6. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of rhodanine compounds (μM) against Bacillus

Strains.

BacillusStrains MIC/MBC μM

Rh 1 Rh 2 Rh 3 Rh 4 Rh 5 Rh 6 Rh 7 Vancomycin Linezolid Ciprofloxacin

B. cereus VD148 NR-22150 4/4 2/2 8/8 8/8 4/4 4/4 4/4 < 0.5/< 0.5 2/2 < 0.25/< 0.25

B. licheniformis NRS 712 NR-2499 4/4 4/4 4/4 16/16 8/8 4/4 8/8 < 0.5/< 0.5 2/4 < 0.25/< 0.25

B. licheniformis Gibson 46 (NCIB 9375) NR-2494 2/2 2/2 2/2 16/16 8/8 4/4 8/8 < 0.5/2 1/2 < 0.25/< 0.25

B. cereus VD115 NR-22148 4/4 4/4 4/4 8/8 4/4 4/4 4/4 < 0.5/< 0.5 < 0.5/1 < 0.25/< 0.25

B. cereus BAG1X1-1 NR-28575 2/2 2/2 2/2 8/8 4/4 4/4 2/4 < 0.5/< 0.5 < 0.5/1 < 0.25/< 0.25

B. cereus BAG1O-2 NR-28582 4/4 4/4 4/4 8/8 4/4 4/4 4/4 < 0.5/< 0.5 2/2 < 0.25/< 0.25

B. cereus BAG1X2-1 NR-28578 4/4 2/4 4/4 8/8 4/4 4/4 4/4 < 0.5/< 0.5 1/2 < 0.25/< 0.25

B. cereus NRS 201 NR-2488 4/4 4/4 4/4 8/> 64 4/4 4/4 4/4 < 0.5/< 0.5 2/4 < 0.25/< 0.25

B. cereus G9241 NR-9564 4/4 4/4 4/4 16/16 8/8 4/4 8/8 < 0.5/< 0.5 1/1 < 0.25/< 0.25

B. cereus VD014 NR-22141 4/4 2/2 4/4 8/8 4/8 4/4 4/4 < 0.5/< 0.5 2/4 < 0.25/< 0.25

MIC 50 4 2 4 8 4 4 4 < 0.5 1 < 0.25

MIC 90 4 4 4 16 8 4 8 < 0.5 2 < 0.25

doi:10.1371/journal.pone.0164227.t006

Table 7. Minimum inhibitory concentration (MIC) of rhodanine compounds (μM) against Clostridium difficile.

C. difficile Strains MIC μM

Rh 1 Rh 2 Rh 3 Rh 4 Rh 5 Rh 6 Rh 7 Vancomycin Metronidazole

HM-746 4 2 2 2 2 2 2 0.25 0.125

HM-88 4 4 2 4 4 4 4 0.5 0.25

Isolate-1 NR-13427 4 2 2 2 4 4 4 1 0.25

Toxigenic Strain P8 NR-32888 4 8 4 4 4 8 4 0.5 1

HM-745 2 2 1 2 4 4 1 0.125 0.5

doi:10.1371/journal.pone.0164227.t007
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Cytotoxicity of rhodanine compounds against J774A.1, HaCat and HRT-

18 cell lines

We determined the cytotoxicity of the rhodanine compounds by using the followingmamma-
lian cell lines: murine macrophage (J774A.1), human keratinocyte (HaCat) and human ileoce-
cal colorectal (HRT-18). (Fig 3A, 3B and 3C) The CC50s (concentration of drug that results in
toxicity to 50% of the cells) of the rhodanine compounds against J774A.1 and HaCat cells
were> 64 μM. The CC50 against HRT-18 cells for all rhodanine compounds was>256 μM.
These results suggest that the tested rhodanine compounds are not cytotoxic to mammalian
cells at concentrations significantly higher than the MIC or MBC.

In vitro antibacterial activity of rhodanine compounds 1 to 10 against

MRSA USA300 in the presence of human serum albumin

The MIC values of rhodanine compounds 1–7 against MRSAUSA300 were increased by 8- to
16-fold in the presence of 4% HSA when compared to the MICs obtained in the absence of
HSA. Rhodanine 2 ethyl ester (Rh 8) and amide (Rh 10) and rhodanine 3 ethyl ester (Rh 9)
were not active in the presence or absence of HSA (Table 11). This finding indicates that the
rhodanines bind to HSA and their antibacterial efficacy is subsequently nullified. It also indi-
cates that free carboxylic acid group is essential for antimicrobial activity and that esterification
or amidation of the carboxylic acid group abolishes the antibacterial activity in vitro.

The effect of outer membrane and efflux pump of Gram-negative

bacteria on rhodanines resistance

Our initial results indicated that the rhodanines did not possess antibacterial activity against
Gram-negative bacteria. The lack of efficacy of the rhodanines led us to investigate if the pres-
ence of the outer membrane (OM) in Gram-negative bacteria contributed to the lack of anti-
bacterial activity observed, by preventing the rhodanines from gaining entry into the bacterial
cell (as has been observedwith conventional antimicrobials such as erythromycin and fusidic
acid) [13,14]. The inclusion of the permeabilizing agent such as subinhibitory concentration of
colistin or polymixin B nonapeptide (PMBN) in the culture broth did not alter the activity of
rhodanine against Gram-negative bacteria. (Tables 12 & 13).

Table 8. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of rhodanine compounds (μM) against Myco-

bacterium smegmatis.

MIC/MBC μM

Rh 1 Rh 2 Rh 3 Rh 4 Rh 5 Rh 6 Rh 7 Vancomycin Linezolid Rifampicin

M. Smegmatis ATCC 14468 4/8 4/8 4/8 32/>64 16/16 16/32 16/16 2/16 4/8 32/>64

doi:10.1371/journal.pone.0164227.t008

Table 9. Minimum Inhibitory Concentration (MIC) of rhodanine compounds Gram-negative pathogens.

Bacterial strain MIC μM

Rh 1 Rh 2 Rh 3 Rh 4 Rh 5 Rh 6 Rh 7 Gentamicin

P. aeruginosa ATCC 15442 >128 >128 >128 >128 >128 >128 >128 1

P. aeruginosa ATCC 9721 >128 >128 >128 >128 >128 >128 >128 0.5

K. pneumoniae NR-15412 >128 >128 >128 >128 >128 >128 >128 8

K. pneumoniae NR-15417 >128 >128 >128 >128 >128 >128 >128 32

Acinetobacter baumannii ATCC 13345 >128 >128 >128 >128 >128 >128 >128 16

Acinetobacter baumannii ATCC 17786 >128 >128 >128 >128 >128 >128 >128 128

doi:10.1371/journal.pone.0164227.t009
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In addition, we tested the effect of efflux pump AcrAB on the lack of efficacy of the rhoda-
nine compounds in E. coli using AcrAB defective strain of E. coli. AcrAB has been shown to
contribute to the antibiotic-resistant phenotype in multiple strains of E. coli and has been
implicated in E. coli resistance to numerous antibiotics including ampicillin, rifampicin, and
chloramphenicol [15]. The lack of antimicrobial efficacy of rhodanine compounds in Gram-
negative pathogens was not related to the presence of efflux pumps (such as AcrAB) as shown
in Table 14. This lack of efficacy against Gram-negative pathogens indicates that these com-
pounds are active only against certain Gram-positive bacteria.

Discussion

Bacterial infections account for a substantial proportion of mortality worldwide. Furthermore,
the pace of antimicrobial drug discovery to combat these infections has slowed down.

Recently, we synthesized compounds known as rhodanines and determined their efficacy in
vitro against various MRSA strains [1,3]. Our results indicated that certain rhodanine deriva-
tives were efficacious against six clinically relevant MRSA strains [1]. However, their efficacy
against other bacterial strains remained to be determined. The rhodanine compounds charac-
terized in this study had in vitro antibacterial efficacy against various strains of VRE,MRSA

Table 10. Minimum inhibitory concentration (MIC) of rhodanine compounds against Candida albicans.

Candida Strains MIC

Rh 1 Rh 2 Rh 3 Rh 4 Rh 5 Rh 6 Rh 7 Fluconazole Amphotericin B

C. albicans NR 29435 >64 >64 >64 >64 >64 >64 >64 < 0.5/>64 1/2

C. albicans ATCC 10231 >64 >64 >64 >64 >64 >64 >64 < 0.5/1 1/1

C. albicans NR 294436 >64 >64 >64 >64 >64 >64 >64 < 0.5/>64 2/2

C. albicans NR 29449 >64 >64 >64 >64 >64 >64 >64 < 0.5/>64 1/2

C. albicans NR29438 >64 >64 >64 >64 >64 >64 >64 < 0.5/>64 1/4

C. albicans NR 29434 >64 >64 >64 >64 >64 >64 >64 < 0.5/1 2/2

C. albicans NR29437 >64/- - >64/- - >64/- - >64/- - >64/- - >64/- - >64/- - 1/ND 2/ND

C. albicans NR 29453 >64/- - >64/- - >64/- - >64/- - >64/- - >64/- - >64/- - < 0.5/< 0.5 1/2

C. albicans NR 29448 >64/- - >64/- - >64/- - >64/- - >64/- - >64/- - >64/- - > 64/- - 2/2

C. albicans NR 29446 >64/- - >64/- - 64/- - 64/- - >64/- - >64/- - 64/- - > 64/- - 1/1

doi:10.1371/journal.pone.0164227.t010

Fig 2. Efficacy of rhodanine compounds 2, vancomycin and linezolid (all at 1, 2, 4, and 8 X MIC μM) in

disrupting an established methicillin-resistant S. epidermidis biofilm.

doi:10.1371/journal.pone.0164227.g002
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and VRSA. In addition, the majority of the rhodanine compounds were bactericidal, which is
congruent with our previous results for MRSA strains [1]. Overall, rhodanine 2 was the most
efficacious compound against the Gram-positive strains tested in this study and this may be
attributed to the combined effect of the biaryl ring system substituted with 3,4-dichloro groups.
Given the increasing rates of resistance among various multidrug-resistant (MDR) Gram-posi-
tive bacterial strains, the rhodanine compounds could offer another treatment modality. In
addition, given that the rhodanines are structurally distinct from all currently approved anti-
bacterials, it is likely that they would be efficacious against the above tested Gram-positive bac-
teria in strains resistant to other clinically used drugs.

Bactericidal antibiotics offer many advantages over bacteriostatic antibiotics due to dimin-
ished emergence of bacterial resistance to the antibiotics, which in turn can limit the spread of
infection [16]. Therefore, rhodanine compounds 1–7 were assessed to find out if their inhibi-
tion of bacterial growth was bacteriostatic or bactericidal. The majority of these rhodanine
compounds were bactericidal as evident from either identical or 2–4 fold higherMBC values
compared to their MIC values. This is in contrast to the positive control drug, linezolid, which
is predominantly bacteriostatic, and this can pose problems in clearing certain bacterial infec-
tions in immune compromised patients and increase the likelihoodof drug resistance with pro-
longed and recurrent infections [17,18].

Rhodanines 1–3 had comparable activity against Mycobacterium smegmatis, Bacillus cereus
and Bacillus anthracis. Most broad-spectrumantibacterials significantly decrease or eradicate
commensal gut microflora. This allows for the colonization of the colon by C. difficile as an
opportunistic bacterium causing colitis. Currently, C. difficile infections can be treated only
with vancomycin, metronidazole or fidaxomicin. In addition, relapse after treatment with van-
comycin and metronidazole can occur due to the spore form of C. difficile [19]. Therefore, new
compounds are needed for the treatment of C. difficile colitis. Rhodanine compounds 1–7may
serve as a potential treatment of C. difficile associated diarrhea. All of the rhodanines were effi-
cacious against all tested strains of C. difficile, with rhodanines 3, 4 and 7 being the most
potent. However, testing in an in vivo model would be required to determine if the rhodanine
compounds are safe and efficacious. In addition, the effect of rhodanines on the normal gastro-
intestinal microflora needs to be determined.

S. epidermidis is generally a harmless commensal bacterium that is present on skin of all
humans. However, under certain conditions, such as implantation of prostheses, S. epidermidis
becomes an invasive species that can produce severe and life-threatening infections. Further-
more, S. epidermidis produces an abundant and thick biofilm, thereby making significantly less

Fig 3. Average absorbance ratio (relative cell viability) for cytotoxicity of rhodanine compounds against

murine macrophage cells (J774.A1) (A), human keratinocytes (HaCat) (B), and human ileocecal colorectal

(HRT-18) (C), using the MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-

2H-tetrazolium) assay. DMSO was used as a negative control to determine a baseline measurement for the

cytotoxic impact of each compound. The absorbance values represent an average of a minimum of three

samples analyzed for each compound. Error bars represent standard deviation values for the corrected

absorbance values. A paired t-test, P-value� 0.05, demonstrated statistical difference between the values

obtained for compounds relative to the cells treated with DMSO.

doi:10.1371/journal.pone.0164227.g003

Table 11. Antimicrobial activity of Rhodanine compounds against MRSA USA300 in the presence of human serum albumin.

Media MIC of Rhodanines (μM) against MRSA USA300

Rh 1 Rh 2 Rh 3 Rh 4 Rh 5 Rh 6 Rh 7 Rh 8 Rh 9 Rh 10 Vancomycin Daptomycin

TSB 8 4 8 16 16 8 16 >64 >64 >64 0.5 4

TSB + 4% HSA >64 >64 >64 >64 >64 >64 >64 >64 >64 >64 0.5 64

doi:10.1371/journal.pone.0164227.t011
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susceptible or even resistant to most antimicrobials [10]. Therefore, we determined the effect
of compound 2, which had the most potent efficacy of all the rhodanines, on the already
formed S. epidermidis biofilms. Rhodanine 2, significantly reduced biofilmmass by 35% and
45% at 4- and 8-times the MIC, respectively. In contrast, biofilmmass was not significantly
decreased at high concentrations of linezolid or vancomycin. These results indicate that rhoda-
nine 2 reduces adherent biofilms produced by S. epidermidis. This is notable because biofilms
can produce protracted infections and increase the likelihood of infection dissemination, drug
resistance and mortality. Our results suggest that rhodanine 2 be tested using in vivo models of
topical S. epidermidis-related biofilms, and other staphylococcal infections.

The excellent antibacterial profile of rhodanine compounds 1–7 prompted us to examine
them for potential cytotoxicity against mammalian cells. The cytotoxicity assays were per-
formed to determine whether bacterial cell killing is specific and not a result of general cellular
toxicity. At concentrations up to 64 μM (a 16 to 32-fold greater than MIC values), none of
these compounds showed significant cytotoxicity against murine macrophage, human kerati-
nocyte and human ileocecal colorectal cell lines.

The rhodanine compounds did not inhibit the growth of the Gram-negative bacteria P. aer-
uginosa, K. pneumoniae, S. typhimurium, E. coli or Acinetobacter spp. We sought to investigate
if the presence of the outer membrane (OM) and/or the action of efflux pumps in Gram-negative
bacteria contributed to the lack of antibacterial activity observed,by preventing rhodanines from
gaining entry into the bacterial cell (as has been observedwith conventional antimicrobials such
as erythromycin and fusidic acid) [13,14]. The inclusion of the permeabilizing agent such as sub-
inhibitory concentration of colistin or PMBN in the culture broth did not alter the activity of rho-
danine against Gram-negative bacteria. The lack of susceptibility of the sensitized-Gramnegative
bacteria to rhodanines suggests either insufficient permeabilization of the OM or that the OM is
not a primary barrier to antimicrobial activity for these compounds.We postulated that the rho-
danines could be a substrate for an efflux pump (or pumps), thereby decreasing their intracellular
levels and thus compromising or eliminating their antibacterial efficacy. However, the rhoda-
nines had no antibacterial efficacy against the E. coli SM1411Δ acrAB strain, which is deficient in
the multidrug-resistant AcrAB efflux pump. Thus, the rhodanines lack of antibacterial activity
was not due to its efflux by AcrAB. However, it is possible that the rhodanines could be substrate
for other efflux pumps, although this remains to be determined.

Previously, it has been reported that certain rhodanine compounds have antifungal activity
[20]. Consequently, we determined the efficacy of the rhodanine derivatives against 10 strains
of C. albicans. Our results indicated that amphotericin B, a wide spectrumantifungal drug, sig-
nificantly inhibited the growth of all of the C. albicans strains. However, none of the rhoda-
nines in this study was efficacious against C. albicans.

In this study, compound 2 was identified as a lead compound as it showed excellent growth
inhibition of a wide range of Gram-positive bacteria. In addition, its toxicity occurred at much
higher concentrations than the MIC. However, compound 2 and the other six compounds
showed a significant shift in MIC in the presence of HSA, which may be a consequence of the
high lipophilicity and acidic nature of these compounds as mentioned before. Therefore,

Table 14. MICs of Rhodanine and control antibiotics against Escherichia coliΔ acrAB.

E. coli

strain

Rh 1

(μM)

Rh 2

(μM)

Rh 3

(μM)

Rh 4

(μM)

Rh 5

(μM)

Rh 6

(μM)

Rh 7

(μM)

Erythromycin

(μM)

Fusidic acid

(μM)

Linezolid

(μM)

Daptomycin

(μM)

E.coli 1411 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64

E.coli 1411

SM

>64 >64 >64 >64 >64 >64 >64 2 4 16 >64

doi:10.1371/journal.pone.0164227.t014
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compound 2 is not suitable for in vivo antibacterial evaluation. Hence, we sought to modify
carboxylic acid group to ester and amide (Rh 8–10) in order to reduce human serumprotein
binding. However, these variations in the chemical structure proved to be detrimental to the
antibacterial activity (Table 11). Therefore, we will initiate structuralmodifications of com-
pound 2 to decrease its binding to HSA and increase its antibacterial potency. These goals can
be achieved by reducing the lipophilicity. Potency enhancement can be achieved by core struc-
ture modifications such as cyclopropanation of the benzylideneC = C bond at the C5 of the
rhodanine core. This is anticipated to increase the three dimensionality of the molecule, which
in turn will decrease lipophilicity[21].Moreover, this molecular configurationwill reveal its
role in enhancing the antibacterial activity profile. We will replace biphenyl moiety with vari-
ous biaryl systems, where one or both phenyl rings would be replaced with heteroaromatic
rings. Saturated heterocycles can also be installed instead of the aromatic ring system.We will
also make cell—penetrating isosteres of the carboxyl group such as tetrazole.

In conclusion, the rhodanine compounds, particularly 2, were active in vitro against a num-
ber of MDR Gram-positive cocci,C. difficile, Bacillus spp., and M. smegmatis. Future studies
include synthesizing and testing derivatives of rhodanine 2 to increase potency and minimize
protein binding.

Supporting Information

S1 Table. Bacterial isolates used in Rhodanines study and synthesis of ester and amide
derivatives.
(DOCX)
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