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Abstract
AIM: To present statistical tools to model and optimize 
the cost of a randomized clinical trial as a function of 
the stringency of patient inclusion criteria.

METHODS: We consider a two treatment, dichoto-
mous outcome trial that includes a proportion of pa-
tients who are strong responders to the tested inter-
vention. Patients are screened for inclusion using an 
arbitrary number of test results that are combined into 
an aggregate suitability score. The screening score is 
regarded as a diagnostic test for the responsive phe-
notype, having a specific cutoff value for inclusion and 
a particular sensitivity and specificity. The cutoff is a 
measure of stringency of inclusion criteria. Total cost is 
modeled as a function of the cutoff value, number of 
patients screened, the number of patients included, the 
case occurrence rate, response probabilities for control 
and experimental treatments, and the trial duration re-
quired to produce a statistically significant result with a 
specified power. Regression methods are developed to 
estimate relevant model parameters from pilot data in 
an adaptive trial design. 

RESULTS: The patient numbers and total cost are 
strongly related to the choice of the cutoff for inclusion. 
Clear cost minimums exist between 5.6 and 6.1 on a 

representative 10-point scale of exclusiveness. Potential 
cost savings for typical trial scenarios range in millions 
of dollars. As the response rate for controls approaches 
50%, the proper choice of inclusion criteria can mean 
the difference between a successful trial and a failed 
trial. 

CONCLUSION: Early formal estimation of optimal in-
clusion criteria allows planning of clinical trials to avoid 
high costs, excessive delays, and moral hazards of Type 
II errors.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Adaptive trial designs; Biomarkers; Clini-
cal trials; Device; Drug therapy; Ethics; Methodology; 
Optimal allocation; Personalized medicine; Sequential 
design

Core tip: This paper presents statistical tools to model 
and optimize the cost of a randomized clinical trial as a 
function of the stringency of patient inclusion criteria. 
The patient numbers and total cost are strongly re-
lated to the choice of the cutoff for inclusion. Clear cost 
minimums exist for many realistic scenarios. Potential 
cost savings for typical trial scenarios range in millions 
of dollars. Early formal estimation of optimal inclusion 
criteria allows planning of clinical trials to avoid high 
costs, excessive delays, and moral hazards of type Ⅱ 
errors.

Babbs CF. Choosing inclusion criteria that minimize the time 
and cost of clinical trials. World J Methodol 2014; 4(2): 109-122  
Available from: URL: http://www.wjgnet.com/2222-0682/full/
v4/i2/109.htm  DOI: http://dx.doi.org/10.5662/wjm.v4.i2.109

INTRODUCTION
Clinical trials are too costly and take too long to com-

ORIGINAL ARTICLE

109 June 26, 2014|Volume 4|Issue 2|WJM|www.wjgnet.com

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.5662/wjm.v4.i2.109

World J Methodol  2014 June 26; 4(2): 109-122
ISSN 2222-0682 (online)

© 2014 Baishideng Publishing Group Inc. All rights reserved.

World Journal of 
MethodologyW J M



plete. High costs of  clinical trials add significantly to the 
ultimate costs of  new medicines and medical devices. 
Delay in completion of  a trial due to inefficient trial de-
sign can postpone, sometimes indefinitely, the transfer of  
promising new therapies from bench to bedside. Assum-
ing that a true positive treatment effect exists, strategies 
are needed for finding the most direct route to a statisti-
cally significant result using the smallest numbers of  pa-
tients. 

When a genuinely responsive subset of  patients is 
diluted with many patients who are genetically or physi-
ologically ill suited to respond to a new experimental 
treatment, the numbers of  patients that must be studied 
to disprove the null hypothesis increases dramatically. 
Type Ⅱ errors in statistical inference (accepting the null 
hypothesis when it is false) can arise, and a useful drug, 
device, or procedure, which could have benefited some 
classes of  patients, may be lost to further development. 
This situation is especially likely when only a fraction of  
patients in the treatment group respond well to the tested 
intervention, and when the control or comparison group 
is treated with a known, effective standard therapy, as is 
often done for ethical reasons. In this situation patient 
selection criteria are crucial.

An era of  personalized medicine is emerging in which 
novel biochemical markers will be found for the diagnosis 
of  cancer and other diseases[1]. When a genetic variation 
is linked to a specific drug effect, it becomes a biomarker 
that helps predict how an individual will react to a drug[2]. 
The treatment of  cancer, in particular, is moving towards 
the use of  more specific therapies that are targeted to 
each tumor type. To facilitate this shift, tests are being de-
veloped to identify those individuals who are most likely 
to benefit from particular treatments on the basis of  the 
genes expressed by their tumors[3]. Such biomarkers may 
identify patients who will experience the most drug benefit 
and fewest side effects. In this setting innovative thinking 
about clinical trial design is needed to increase the propor-
tion of  patients receiving the best individual treatment, and 
to complete the trial more rapidly with fewer patients. There 
is also an ethical dimension to more efficient trial design: 
increasing the probability of  a patient’s being allocated to a 
successful treatment. With targeted, personalized therapy 
the study patients do not have to pay a high price for 
the benefit of  future patients[4]. The challenge moving 
forward is to identify optimal trial design in a population 
with known biomarker levels, based upon screening data, 
and to identify the optimal allocation of  patients to treat-
ment groups, based upon mathematical and computer 
simulation of  the trial.

Here we consider a paradigm in which either a phase 
Ⅱ trial data or an adaptive trial design provides pilot data 
describing responsiveness to the tested intervention in 
various types of  patients. We consider the planning of  
a follow-on phase Ⅲ trial, in particular a two-treatment 
randomized clinical trial, including a control group and 
an experimental group and having a dichotomous end 
point such as response vs non-response to treatment. 
The definition of  response is at the discretion of  the in-

vestigator and is based on clinically desirable outcomes. 
Examples include disease free survival from cancer for a 
period of  one year, induction of  a state of  clinical remis-
sion in leukemia, or resuscitation from cardiac arrest with 
a measurable pulse and blood pressure. The primary end-
points of  the future trial are the proportions of  patients 
that respond in the experimental group and in the control 
group. 

The goal of  the present research is to create a formal 
mathematical model of  the planned randomized trial 
that will allow one to define and predict an optimal set 
of  inclusion criteria. Such criteria would screen out non-
responsive patient types and achieve a statistically signifi-
cant result with the smallest number of  patients and the 
lowest overall cost in both time and resources. In such 
a trial patients who are prospective candidates having 
an appropriate diagnosis would be screened according a 
list of  possible metrics, such as age, tumor stage, or bio-
marker level. The screening metrics, here denoted x1, x2, …, 
etc. are combined mathematically by a classifier function, 
F (x1, x2, …), based on pilot data to obtain a single overall 
score, x = F (x1, x2, …), which is a predictor of  successful 
response. Future patients for whom x equals or exceeds 
a cutoff  value xc will be included in the trial, and patients 
for whom x < xc will be excluded. Combinations of  x1, x2, 
…, etc. yielding values of  x ≥ xc constitute the inclusion 
criteria for the study. The questions addressed by this pa-
per are how to define a satisfactory classifier F (x1, x2, …) 
and how to best choose xc to produce a statistically signifi-
cant positive result with minimal time and cost, assuming 
an alternative hypothesis of  a true treatment effect.

To help predict the most favorable inclusion crite-
ria, it is helpful to regard the screening process and the 
function F (x1, x2, …) as a diagnostic test, for which the 
concepts of  sensitivity and specificity apply. This paper 
demonstrates how one can use data from a one-armed 
phase Ⅱ study or early-stage pilot data from an adaptive 
trail design to create a suitable classifier F (x1, x2, …) for 
discriminating responders from non-responders and also 
to predict the best cutoff, xc, for inclusion of  future pa-
tients. 

MATERIALS AND METHODS
Formulation of the problem
Suppose that a planned, two-arm, randomized clinical 
trial begins with evaluation of  N possible candidates hav-
ing a standard clinical diagnosis such as biopsy proven 
carcinoma of  the breast. Suppose further that this popu-
lation is heterogeneous in the sense that a proportion, 
q, of  the patients are biologically well suited to respond 
to the experimental treatment (call them type 1 patients) 
having success probability π1 ≈ 1, and the remaining pro-
portion, 1 - q, of  the patients are biologically ill suited to 
respond to the experimental treatment (call them type 2 
patients) having success probability π2 ≈ 0. It is normally 
not possible to predict in advance which patients will 
respond, but one can try to establish favorable inclusion 
criteria based on certain screening data. These data may 
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be a simple as age, gender, and stage of  disease or may 
include sophisticated measures of  biomarkers. 

If  the screening procedure had 100% sensitivity and 
100% specificity for detecting guaranteed responsive type 
1 individuals, who are very likely to respond to the new 
therapy, then the inclusion decision would be trivial: only 
type 1s would be included. In the more common situa-
tion potential good responders are difficult to identify, 
and a battery of  imperfect metrics is employed. Suppose 
that such a battery of  tests exists and that the test results 
x1, x2, etc. are combined in a single overall suitability test 
score, x = F (x1, x2, …). Type 1 and type 2 patients are 
likely to be distributed along the x-scale as shown in Fig-
ure 1, with significant overlap. Overlap of  the distribu-
tions leads to meaningful fractions of  false positive evalu-
ations and false negative evaluations for the presence of  
the treatment responsive phenotype, given any chosen 
cutoff, xc , for entry into the study. 

 In this sense we can regard the process of  patient 
selection as a “diagnostic test”, for which the concepts of  
sensitivity (true positive fraction, ftp) and specificity (true 
negative fraction, ftn) apply. The false positive fraction, ffp 
= 1 - ftn. If  q is the fraction of  type 1 individuals in the 
initial population of  N patients and if  1 - q is the fraction 
of  type 2 individuals, then Nqftp type 1s and N (1 - q )ffp 
type 2s will be selected for inclusion in the trial. As the 
cutoff  xc, is raised, the entry criteria become more strict, 
specificity for the responsive type 1 phenotype increases, 
but sensitivity decreases. Some potential good respond-
ers are excluded, and the overall study size is decreased, 
reducing its statistical power. In the limiting case over-
strict inclusion criteria will reject nearly all patients. The 
time required to find perfect candidates will be excessive, 

and study numbers will be small. On the other hand, as 
the cutoff  xc, is reduced, the entry criteria become more 
loose. Sensitivity increases, but specificity decreases. The 
population of  patients included in the trail is diluted with 
more and more non-responding type 2 patients. If  q is 
small, the time and cost required to establish a significant 
treatment effect may become prohibitive. 

It is reasonable to use N, the number of  candidates 
initially considered for the trial before the screening pro-
cess, as a measure of  the cost of  screening and also as 
one measure of  the time required to complete the study. 
(If  extensive long term follow-up is required, a constant 
plus N can be substituted.) It is also reasonable to use 
N’ = Nqftp + N (1 - q )ffp , the actual number of  patients 
enrolled in the study, as a measure of  the cost of  treating 
and managing the patients over the course of  the trial. 

The mathematical treatment that follows includes 
several parts with the following objectives: (1) to create a 
formal mathematical model of  the proposed randomized 
trial, given preliminary screening and outcome data; (2) to 
illustrate how such a model can be used to estimate the 
probability distribution of  a test statistic describing the 
outcome of  the trial; (3) to exercise the model to predict 
the number, N, of  patients that must be screened and 
the number, N’, of  patients that must be included to re-
ject the null hypothesis with a specified power, given the 
sensitivity and specificity of  the screening process; (4) to 
characterize the sensitivity and specificity of  the screen-
ing process as a receiver operating characteristic (ROC) 
curve; and (5) to compute the cost of  the trial as a func-
tion of  N and N’ and to demonstrate how the cost varies 
as a function of  the stringency of  the inclusion criteria, 
based on the cutoff  xc, and in turn to determine if  there 
is a “best” cutoff, xc, for which a cost function of  N and 
N’ is minimized.

Creating a model using binomial distributions
Suppose, as before, that N patients are available to be 
screened for inclusion in a future randomized clinical trial 
comparing experimental and control groups. The end 
point of  the trial is dichotomous. A fraction, 0 < q < 1, 
of  patients will respond well to the experimental treat-
ment based on their genetics or physiology. Denote these 
good responding individuals as type 1 patients and re-
mainder of  non-responding individuals as type 2 patients. 
A screening procedure is performed having overall sen-
sitivity ftp, specificity ftn, and false positive fraction ffp = 1 
- ftn . After screening and evaluation n  = ftpNq type 1 pa-
tients and m = ffp N(1 - q) type 2 patients will be selected 
for inclusion in the trial. These selected patients will be 
randomized into control and treatment groups, which for 
generality need not be equal, having α (n + m) patients in 
the experimental group and (1 - α)(n + m) patients in the 
control group for 0 < α < 1. 

Consider a model in which the probability of  favor-
able outcome after the experimental treatment among 
type 1s is π1 = 1, and the probability of  favorable out-
come after the experimental treatment among type 2s is 
π2 = 0. To allow for the possibility that the type 1s and 
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Figure 1  Separation of patient response phenotypes to a tested treatment 
according to an aggregate predictive variable, x. The fraction of type 1 
responders to the right of the cutoff is the true positive fraction. The fraction of 
type 2 non-responders to the right of the cutoff is the false positive fraction. In 
this general example the units of x are arbitrary.
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for patient inclusion. The distribution of  z is character-
ized by its mean and variance, as follows.

 From Table 1 the expected value, μ, of  the difference 
in sampled proportions between the experimental and 
control groups is 

m = [n(p1 - p3) + m(p2 - p4)]/(n + m)                     (1a). 

The variance of  the difference in proportions is the 
sum of  the variances of  the independent sample propor-
tions σ2 = σ2(pE) + σ2(pC). To find the variances note 
that the true population probabilities for responses in the 
experimental group and the control group are 

pE = (np1 + mp2)/(m + n) 

and 

pC = (np3 + mp4)/(m + n)                                     (1b). 
Hence, using the standard formulas for the variances 

of  binomial distributions[7], 

σ2 (pE) = [pE(1 - pE)]/[a(n + m)] 

and 

σ2 (pC) = [pC(1 - pC)]/[(1 - a)(n + m)]                   (1c) 

with

1-pE = (n + m - np1 - mp2)/(n + m) 
        = [n (1 - p1) + m (1 - p2)]/(n + m) 

and similarly for 1 - πC .
Under the null hypothesis of  zero treatment effect 

compared to control, the expected value of  pE - pC = 0, 
and the test statistic

      z = 
pE - pC

σ2(pE) + σ2(pC)                                    (2)

will have mean value z0 = 0  and a standard deviation of  
one. That is, z will be distributed to good approximation 
as the standard normal distribution under H0. 

Under the alternative hypothesis of  an expected posi-
tive treatment effect the expected value, µ, of  pE - pC will 
be greater than zero, and the test statistic, z, will have 
mean value, z1 > 0 . The value of  z1 under H1 is related 
to the values of  parameters (1a) through (1c) and and 
to the critical values for significance testing and the sta-
tistical power of  the trial. For example, for P < 0.05 the 
critical value is 1.96, and for a power of  84%, that is an 

type 2s may also respond differently after the control 
treatment, let the probability of  favorable outcome after 
the control treatment among type 1s be π3 and the prob-
ability of  favorable outcome to the control treatment 
among type 2s be π4 (Numerical values for π3 and π4 
will be estimated from pilot data or published literature 
as described later). The expected outcome of  the trial 
is shown in Table 1, showing the mean number of  ob-
served responders (successful outcomes) in each group.

Predicting statistical outcomes of the trial
Let us use the difference in proportion test for statistical 
inference for the purpose of  predicting trial size and cost. 
(This choice in no way prevents the use of  other statisti-
cal measures and tests of  significance for reporting later 
results, including internal meta-analysis of  the various 
stages[5,6]). The difference in the proportion of  respond-
ers ∆p = pE - pC between experimental and control groups is 
computed and then divided by an estimate, σ , of  the stan-
dard deviation, σ, of  the difference of  proportions to 
obtain a test statistic z = ∆p/σ . Under the null hypoth-
esis, H0, the expected value of  the z-statistic is zero and 
the standard deviation of  the z-statistic is 1, as shown by 
the thin curve in Figure 2. 

To explore the predicted N required for a statistically 
significant study as a function of  model parameters, we 
can compute the distribution of  the test statistic, z, under 
the alternative hypothesis, H1, of  a positive effect of  ex-
perimental treatment. The form of  this distribution, rep-
resented by the thick curve in Figure 2, is a function of  
model parameters, including probabilities π1, π2, π3, and 
π4, the number, N, of  patients screened and the cutoff  

Experimental group Control group

  Number of successes 
  (responses)

α (np1 + mp2) (1 - α) (np3 + mp4)

  Total α (n + m) (1 - α) (n + m)

Table 1  Expected values of enumeration data in a model trial
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Figure 2  Calculation of power from probability density distributions for 
the null hypothesis (H0) and for an alternative hypothesis (H1). The dashed 
line shows critical value for significance (1.96 for two-tailed P  < 0.05). The area 
under the thick curve to the right of the critical value is the statistical power of 
the test of H0.
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84% probability of  detecting a true effect as significant, 
then  z1 must be 1.0 standard deviation to the right of  
the cutoff  in Figure 2, so that z1 = 2.96 . To find the N 
and inclusion cutoff  required to identify as statistically 
significant a particular treatment effect with a particular 
power we can explicitly evaluate z1  in terms of  model 
parameters. Then

z1 =  
m

s =

n(p1 - p3) + m(p2 - p4)
m + n

pE(1 - pE)
a(n + m)

pC(1 - pC)
(1 - a)(n + m)+

                                                                                    (3a)

Knowing the target location of  z1 , one can estimate the 
statistical distribution of  the results of  the proposed trial, 
based upon the model parameters and the pilot screening 
and outcome data. 

Predicting N and N’ required to reject the null hypothesis 
with a specified power

After squaring (3a), substituting expressions (1), and sim-
plifying the algebra,

z1
2
 = 

[n (p1 - p3) + (p2 - p4)]2

p1 (1 - p1)
a

+ p3 (1 - p3)
1 - a

p1 + p2

a
p3 + p4

1 - a
p1p2

a
p3p4

1 - a

+ 

- 2 - 2

p2 (1 - p2)
a

+ p4 (1 - p4)
1 - a

n2
+ nm + m2

                                                                                   (3b)
Then substituting n = ftpqN and m = ftpN(1 - q) 
gives, 

z1
2 = N .

[ftpq + ffp (1-q)] . [ftpq (p1 - p3) + ffp(1 - q)(p2 - p4)]2

ftp
2q2 

p1 (1-p1)
a

+ p3 (1-p3)
1 - a

p1 + p2

a
p3 + p4

1 - a
p1p2

a
p3p4

1 - a

+ 

- 2 - 2

p2 (1-p2)

p4 (1-p4)
1 - a

a

+ 

+ ftpffpq(1 - q)

+ ffp
2(1 - q)2

                                                                                         
                                                                                     (4)
which can be solved for N as a function of  model param-
eters ftp, ffp, q, zc, π1 through π4 , and the target power and 
level of  significance represented by z1 .

Expression (4) predicts N as a function of  the pro-
portion, q, of  good responders in the population, the 
sensitivity and specificity of  the screening procedure 
for inclusion into the study, and the effectiveness of  the 
treatment in controls. Note since we use the square of   
z1 to get N, the resulting N could be that for a significant 
positive result with pE > pC or a significant negative result 
with pC > pE. As expected, the required N becomes infi-
nite, given the other parameters, when the null hypothesis 
is exactly true and the expected value of  pE equals the 
expected value of  pC.

Characterizing the screening process as an ROC curve
To explore the effects of  more selective vs less selective 
inclusion criteria, one can examine paired combinations 
of  true positive fractions and false positive fractions for 
a typical screening procedure as defined by a ROC curve. 
An ROC curve is a plot of  ftp as a function of  ffp in the 
unit square, as the cutoff  value of  decision variable, x, is 
gradually reduced from the maximum possible value of  x 
toward the minimum possible value. A typical ROC curve 
is illustrated in Figure 3. Each point on the curve repre-
sents a realistic combination of  ftp and ffp (sensitivity and 
1- specificity) for a particular classifier used to distinguish 
type 1 vs type 2 patients. 

In this context the ROC curve describes a family of  
cutoff  values in the x-domain for partially overlapping 
distributions of  good responding, type 1 patients and 
non-responding, type 2 patients. An ROC curve that is 
shifted upward and to the left indicates a better discrimi-
nating screening test. The ROC curve provides a useful 
mathematical model of  stricter vs looser inclusion criteria 
for a clinical trial. 

With this model one can explore the influence of  
inclusion criteria on the size and cost of  the clinical trial. 
The top curve in Figure 4 is a representative plot of  N 
from expression (4) as a function of  cutoff  value xc. N 
represents the number of  patients screened in a hypo-
thetical clinical trial with a statistically significant positive 
result (P = 0.05). 

The number of  patients actually enrolled in the trial 
after screening, according to the definitions of  the model, 
is 

N’ = n + m = ftpNq + ffpN(1 - q)                             (5). 

This number is plotted as the bottom curve in Figure 
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Figure 3  A sample receiver operating characteristic curve for a hypotheti-
cal screening test. In this example type 1 patients had screening scores, x, 
with a mean of 5.5 and a standard deviation of 1; type 2 patients had screening 
scores, x, with a mean of 4 and a standard deviation of 1. As the cutoff value xc 
is swept from 1.0 toward zero, a family of true positive and false positive frac-
tions is created to generate the receiver operating characteristic  (ROC) curve.

m = ftpN (1 - q)
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the study. In this case the total cost of  the study is

Cost = c1N + c2N’ + c3(N/r + t).                                  (6)

Additional cost terms can be added, if  desired, such 
as performance site start-up costs, which would be relat-
ed to N divided by the number of  proposed sites. Figure 
5 shows for the preceding example in Figure 4 the total 
cost calculation for the hypothetical cost constants given 
in the figure legend. 

The anticipated cost of  the study is strongly depen-
dent on the stringency of  the inclusion criteria. A low 
cost sweet spot exists for a narrow range of  inclusion 
cutoff  values in the range of  5.6 to 6.1 for this model. 
The result is consistent with qualitative experience that 
good results occur in a reasonable amount of  time when 
patient selection is targeted and rigorous, but not so rig-
orous as to choke off  the number of  patients entering 
the trial who might benefit.

A particularly interesting situation arises when the 
average response probability for all patients given the 
experimental treatment, which is equal to q, is less than 
that for type 2 patients given the control treatment. In 
Figure 6 we have the situation in which π1 = 1.0 and π2 = 
0, and q = 0.2, as before. However, we have π3 = π4 = 0.4. 
The experimental drug is much less effective than con-
trol treatment for type 2 patients. The cost projections 
include a vertical asymptote when the null hypothesis is 
exactly true, that is the expected value of  pE equals the 
expected value of  pC. To the right of  the dashed line a 
significant positive effect, pE > pC, can be detected at the 
indicated cost. To the left of  the dashed line a significant 
negative effect, pC > pE, can be detected. In such situa-
tions, which may be quite common in practice, choice of  
inclusion criteria could well make the difference between 
a futile study and a successful one. Thus the choice of  
inclusion criteria clearly can have large effects on the cost 
and success of  a clinical trial. 

The next sections develop methods to construct a 
classifier F(x1, x2, … ) and to estimate the model param-

4 for one hypothetical example. 
In this example the mean composite screening score, 

xc, for responders is 5.5 and the standard deviation is 1. 
The mean composite screening score for non-responders 
is 4.0 with a standard deviation of  1. The ROC curve for 
this scenario is that of  Figure 3. A value of  cutoff  xc < 2 
means that all comers were included in the study. That is, 
there was no selection. A cutoff  > 8 means that virtually 
all patients were excluded. In the mid range of  inclusion 
criteria, there remains a strong effect of  screening selec-
tivity on the number of  patients required to produce a 
significant result, given the alternative hypothesis. There 
is a clear optimal cutoff  for patient selection near xc = 5.6 
that minimizes the number of  patients, N, with an initial 
diagnosis needed to produce a statistically significant 
positive result.

Computing the cost of the trial
A total cost model is easily developed from the forgoing. 
The value of  N as a function of  ftp and ffp is a measure 
of  the cost of  screening, since all suitable patients must 
be screened. The value of  N’ as a function of  ftp and ffp 
is a measure of  the cost for treatment and monitoring of  
enrolled patients, since more enrolled patients will require 
more personnel, facilities, coordination, data manage-
ment, etc. The opportunity cost of  delayed revenue from 
a successful new product and the opportunity cost of  di-
version of  resources from other worthwhile projects are 
related to the duration of  the trial.

Let c1 be the cost of  screening per patient. Let c2 be 
the average cost of  treatment per patient in both con-
trol and experimental groups. Let c3 be the opportunity 
cost per year in delay of  marketing a successful drug or 
device, that is, the expected revenue divided by the dura-
tion of  the study. Let r be the case rate, that is, the rate 
at which new cases appear for screening, and let t be the 
time required for follow up of  a patient after entry into 
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Figure 4  Numbers of patients screened and enrolled in a model study 
of heterogeneous responders having a statistically significant positive 
result. For this model the proportion of type 1, good responders q = 0.2, the re-
sponse probability for type 1 patients, p1 = 1.0, the response probability for type 
2, poor responders, p2 = 0. The response probabilities for both phenotypes to 
the control treatment, p3 and p4 both equal 0.2. The mean value of the z statis-
tic for the alternative hypothesis is 2.96 (84% power for the trial). The proportion 
of patients, α, assigned to the experimental group is 0.5.
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Figure 5  Cost estimates in a model study of heterogeneous responders. 
Cost constants in thousands of dollars are as follows: screening cost per case 
c1 = 1, treatment cost c2 = 10, opportunity cost c3 = 100/yr, case rate r = 50/yr, 
follow up time t =1 yr. Other details as in Figure 4. 
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eters in an adaptive clinical trial, based on a phase Ⅱ pilot 
data for treatment outcome and for screening variables, 
x1, x2, …etc. Such calculations would allow estimation of  
the optimal choice of  inclusion criteria in a phase Ⅲ trial 
for lowest cost and highest efficiency.

Building a classifier using screening data
Model based prediction of  optimal inclusion criteria 
requires the creation of  an effective classifier to screen 
for type 1 patients based upon pilot data. Here we de-
rive a relatively simple and effective linear classifier for 
combining an arbitrary number of  screening variables, 
x1, x2, … xk, to obtain a single overall predictor x = F(x1, 
x2, … xk). Using the distributions of  combined screening 
results, x, for responders and for non-responders to the 
experimental treatment, one can estimate the ROC curve 
for detection of  good responding, type 1 patients. Here 
“responders” are those patients observed to have a suc-
cessful outcome from the experimental treatment. “Non-
responders” are those patients observed to have a poor 
outcome from the experimental treatment.

To create a classifier one must first examine screening 
data and outcomes in response to the experimental treat-
ment in available preliminary data for all comers. The 
association between satisfactory response and possible 
predictors x1, x2, … , such as age, sex, tumor stage, or bio-
marker level, can be judged by plotting the distributions 
of  each variable for responders and non-responders. 
Continuous variables are dichotomized in a convenient 
way, using the joint median or a cutoff  suggested by the 
shapes of  the screening data distributions, for example, 
age < 50 years = 0 (young) and age ≥ 50 years = 1 (old). 
An apparent difference in the proportions of  respond-
ers vs non-responders suggests that useful predictive 
information is captured by variable xi. Combining three 
or four features, xi , in different domains of  anatomy and 
physiology will likely lead to more accurate prediction of  
response to therapy. 

As shown in Appendix 1, a near optimal choice of  a 
linear classifier function for k relatively independent or 

poorly correlated predictors, x1 , x2 …, xk, is

 x = F(x1, x2, ....xk) =         aixi .                    

k

i = 1 

                             
                                                                                     (7)

where constant coefficients

 ai = xiR - xiNR = piR - piNR,

and subscript R indicates responders to the experimental 
treatment in the preliminary data set and subscript NR 
indicates non-responders. 

For dichotomous variables xi  (0,1) the mean value 
XiR is the equal to the proportion, piR, of  responders for 
whom xi = 1, and mean value xiNR is the equal to the 
proportion, piNR, of  non-responders for whom xi = 1. 
Each coefficient, ai, is the observed difference between 
the average value of  xi for responders and the average 
value of  xi for non-responders. If  two variables are highly 
correlated, for example blood urea nitrogen and serum 
creatinine concentration, they can be combined for sim-
plicity and validity into a single dichotomous variable 
(renal insufficiency) with a reduction in k. In this way it is 
possible to construct an aggregate measure, x, that best 
separates the distribution of  responders from that of  
non-responders. For k dichotomous screening measures 
there are 2k possible values of  x.

To avoid negative values, the variable x can be re-
scaled to units of  percent with 0 representing the mini-
mum practical value of  x and 100 representing the maxi-
mum practical value, based on coefficients ai. Some of  the 
ai may be < 0. The maximal and minimal values of  x must 
be determined by inspection. Then the re-scaled x-values 
x (%) = 100(x - xmin)/(xmax - xmin). Such units are helpful in 
any future clinical application of  the x-scale, with a patient 
requiring a certain number of  “points”, xc , on a 0 to 100 
scale for inclusion in later stages of  the trial.

In turn, one can estimate various possible combina-
tions of  false positive fraction, ffp, and true positive frac-
tion, ftp, from the distributions of  x-values for responders 
and for non-responders. Then the receiver operating 
characteristic (ROC) curve describing possible pairs of  ftp 
and ffp from phase Ⅱ data can be constructed, using al-
ternative cutoff  values ranging from the maximum to the 
minimum observed values of  x. 

To obtain the true positive and false positive fractions, 
ftp and ffp, for any xc one may proceed in particular as fol-
lows. If  nNR is the total number of  non-responders to the 
experimental treatment in the pilot data set, nR is the total 
number of  responders to the experimental treatment in 
pilot data set, xc is a chosen cutoff  value in the x-domain,  
nNR | x ≥ xc is the number of  non-responders for whom 
x equals or exceeds the cutoff  value, and nR | x ≥ xc is 
the number of  responders for whom x equals or exceeds 
the cutoff  value, xc, then 

 ffp (xc) = 
nB  x ≥ xc

nB
and  

 ffp (xc) = 
nA  x ≥ xc

nA
                                           (8)
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Figure 6  Cost estimates in a scenario with good responsiveness to the 
control treatment in patients who are non-responsive to the experimental 
treatment. p1 = 1.0, p2 = 0, p3 = p4 = 0.4. Other details as in Figure 5. Dashed 
line divides the x-domain into regions of a significant negative effect (to the left) 
vs a significant positive effect (right). Near xc = 4.4 the cost of disproving the 
null hypothesis when it is exactly true becomes infinite.
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Estimating model parameters q, π3, and π4, from pilot 
data
Estimation of  q: Recall that q is defined as the true 
proportion of  good responding patients in the screened 
population. Using the complete pilot data set, the best 
estimate of  q is the proportion of  responders to the ex-
perimental treatment in the initial unscreened population 
for which preliminary data are available. This working 
estimate of  q is denoted q .

Estimation of  π3 and π4: To obtain estimates for the 
remaining control group parameters π3, and π4, indicating 
the response probabilities for type 1 and type 2 patients 
to the control treatment, one needs to examine prelimi-
nary data, or else previously published data, for patients 
given the control treatment and for whom screening 
measures are known or can be estimated. For the patients 
in the control group, we can impose similar selection cri-
teria based on cutoffs, xc, and corresponding values of  ftp, 
ffp, and u = ffp/fp, developed from the distributions of  re-
sponders vs non-responders to experimental (not control) 
therapy. For the model of  Table 1, where, as before, n = 
ffpqN and m = ffp N (1- q)

PC (u) = 
np3 + mp4

n + m =
ftp Nq p3 + ffp N(1 - q)p4

ftpNq + ffp N(1 - q)

=
qp3 + (1-q)p4u

q + (1 - q)u
                                                                                     (9)

If  we define q = q/(1-q)  for the working estimate, q , then 
we can obtain working estimates, p3 and p4 , from the ob-
served relationship

  PC(u) = 
p3q + p4u

q + u
                                         (10)

or 

  y (u) - PC(u). (θ + u) - p3θ - p4u .                            (11)

Expression (11) implies that the following regression 
analysis may be used to estimate π3 and π4 from pilot 
data, given pairs of  data points ftp and ffp , and in turn 
the ratio, u. Since θ is known from experimental group 
data, we can plot for control group data the product y (u) 
= pC(u). (q + u) as a function of  u and fit a linear, least-
squares line to the data. From the slope and intercept of  
the regression line we can obtain estimates, based on all 
the control data for 

 p3 = intercept/q and p4 = slope .                              (12)

Often values p3 and p4 from (12) will differ because 
stronger patients respond better to both experimental 
and control drugs.

In this way one can obtain estimates of  all model 
parameters based on preliminary or published data. For 
each pair of  values, ftp and ffp, on the ROC curve cor-
responding to a given cutoff  value xc, one can evaluate 

expression (4) to obtain projected numbers N of  patients 
that must be screened and using expression (5) the pro-
jected numbers N’ of  patients admitted to the trial that 
will be required to establish a statistically significant ef-
fect under the alternative hypothesis, H1. Incorporation 
of  the cost model (6) allows reasonable projections of  
future trial costs as a function of  inclusion criteria, based 
upon available data. One then can continue in the future, 
operating under inclusion criteria determined by xc. An 
adaptive phase Ⅲ trial design is possible in which the 
cutoff, xc, is revised on the basis of  accrued data at a later 
time.

RESULTS
Classification of pilot data
To demonstrate the technique and benefits of  model 
based selection of  inclusion criteria we can use a realistic 
data set that is similar, but not identical to that published 
by Shaw et al[8] Table 2 shows reconstructed raw data for 
this study of  a novel drug for the treatment for lung can-
cer. Patients are characterized by age, sex, smoking his-
tory, and the presence of  a specific cell surface receptor. 
These four predictor variables are dichotomized. The 16 
possible combinations of  predictors form 16 classes of  
patients indicated by the rows of  Table 2. The class num-
ber is indicated in the left most column. The next four 
columns indicate values of  the four dichotomous vari-
ables. Values of  1 denote old, male, smoking, or receptor 
(biomarker) positive patients. Values of  0 denote young, 
female, non-smoking, or receptor negative patients. The 
next two columns are the counts of  patients treated with 
the experimental drug in each of  the 16 possible classes. 
These were reconstructed from published summary data. 
The column labeled “NR count” indicates the numbers 
of  non-responders in each class. The column labeled “R 
count” indicates the numbers of  responders in each class. 
The next two columns are raw counts of  patients in each 
class treated with the control chemotherapy regimen. 
Controls are similarly divided into non-responders (NR) 
and responders (R).

To create a classifier for predicting responders to 
the experimental drug from the dichotomous screening 
variables, the mean values of  each dichotomous vari-
able, age, sex, etc. for non-responders and responders to 
the experimental treatment are tabulated at the bottom 
of  Table 2 in columns 2 through 5. These averages are 
equal to the proportions of  patients labeled successes or 
failures with predictor variables of  each column equal 
to 1. The responder minus non-responder differences in 
these variables are the coefficients a1, a2, a3, and a4 in the 
linear combination x = a1x1 + a2x2 + a3x3 + a4x4 (ex-
pression (7). The values of  x for each class are computed 
using this function for each of  the 16 classes of  patients 
and shown in the second from the right hand column of  
Table 2. The rightmost column of  Table 2 shows these 
x-values expressed in convenient units of  percent, 100(x 
- xmin)/(xmax - xmin).

n = ffpqN
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The next step in the analysis requires sorting the class-
es by x-value from smallest to largest. Owing to the defi-
nition of  the coefficients ai, responders will be expected 
to cluster toward higher values of  x and non-responders 
will be expected to cluster toward lower values of  x. Table 
3 shows sorted data for the experimental treatment group 
on the left and for the conventional (control) treatment 
group on the right. The rows are now sorted by x-values, 
determined from the experimental data in Table 2. 

Computation of the ROC function
Columns 4 and 5 from the left in Table 3 give the frac-
tions of  non-responders and responders to the ex-

perimental treatment in each class. These values are 
equivalent to the probability density function defined 
over the set of  classes. Figure 7A shows the separation 
of  responders and non-responders to the experimental 
treatment along the x-domain. The fraction of  patients 
with each x-value is shown on the vertical axis. Patients 
with x-scores less than 50% respond better to the control 
treatment. Patients with x-scores over 80 percent respond 
better to the experimental treatment. These results alone 
suggest that future studies of  the experimental drug for 
lung cancer focus on patients with x-scores of  60 or bet-
ter. Other patients are not likely to benefit, and if  these 
are included in future trial statistics, a larger N will be re-

  Class Old Male Smoke Receptor Exp Exp Control Control x x%

NR count R count NR count R count

  1 1 1 1 1 0 0 0 0 -0.072 47
  2 1 1 1 0 5 1 4 2 -0.619 0
  3 1 1 0 1 0 0 0 0 0.211 71
  4 1 1 0 0 6 1 4 2 -0.336 24
  5 1 0 1 1 0 0 1 0 0.113 63
  6 1 0 1 0 9 1 6 3 -0.434 16
  7 1 0 0 1 1 3 2 2 0.396 87
  8 1 0 0 0 9 1 7 3 -0.151 40
  9 0 1 1 1 0 0 0 0 0.078 60
  10 0 1 1 0 4 0 3 1 -0.468 13
  11 0 1 0 1 0 1 1 0 0.362 84
  12 0 1 0 0 4 0 3 2 -0.185 37
  13 0 0 1 1 0 0 0 0 0.263 76
  14 0 0 1 0 6 1 5 2 -0.283 29
  15 0 0 0 1 3 6 4 4 0.547 100
  16 0 0 0 0 4 1 5 3 0 53
  pNR 0.588 0.373 0.471 0.078
  pR 0.438 0.188 0.188 0.625
Coef-
ficients

a1 a2 a3 a4

-0.151 -0.185 -0.283 0.547

Table 2  Raw data from a reconstructed study of cancer treatment
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Figure 7  Fraction of patients. A: Separation of observed responders and non-responders to the experimental treatment along the x-domain in this reconstructed 
preliminary study. The fraction of patients with each x-value is show on the vertical axis. Patients with x-scores over 60% have a much greater likelihood of responding; B: 
ROC curve for the screening procedure.
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quired to reject the null hypothesis at substantially greater 
time and cost.

By integrating the functions plotted in Figure 7A or 
constructing a running sum of  values in Columns 4 and 
5 of  Table 3 one can obtain the true positive fractions 
and false positive fractions using expression (8) for pa-
tients for whom x equals or exceeds a cutoff  value indi-
cated in each row. The values of  ffp and ftp are shown in 
the next two columns. From these values the ROC curve 
for screening (ftp as a function of  ffp) can be plotted, as 
shown in Figure 7B. The values of  ftp and ffp are needed 
to model the size and cost of  the future clinical trial using 
equations (4), (5), and (6).

Estimation of q, the population proportion of responders
The value of  parameter, q, is best estimated as the pro-
portion of  responders for all x-values, or the total of  col-
umn 3 in Table 3 divided by the total of  columns 2 and 3, 
namely q̂ = 16/67 = 0.24. 

Regression analysis of control data for π3 and π4 
The values of  parameters π3 and π4 are obtained by the 
regression analysis of  expressions (9) through (12), using 
the control treatment data on the right of  Table 3. The 
values in column 9, labeled pC|xc ≥ x, are the conditional 
probabilities of  response given that the cutoff  value of  
x is at least as great as the x in any particular row. These 
values are important to explore, because patients that are 
likely to respond to the experimental drug may also tend 
to respond to the control treatment, being stronger by 
virtue of  qualities not measured by x1 through x4. These 
probabilities π3 and π4 of  response to control treatment 
can be estimated from regression analysis of  derived vari-
ables u and y. The value of  u in column 10 equals ffp/ftp , 
based upon the true positive and false positive fractions 
from experimental (not control) data. The value y in col-

umn 11 of  Table 3 is the hybrid variable y = pC(u)(θ + u). 
The slope of  the regression line of  a plot of  y vs u is an 
estimate of  π4, and the intercept divided by θ = q(1 - q) is 
an estimate of  π3.

Figure 8 shows the regression analysis on the right-
most two columns of  Table 3. Both u and y are dimen-
sionless. The intercept of  the regression line is 0.165 
and the slope is 0.291. Using expression (13), we have 
p3 = intercept/q = 0.53 ,  a n d  p4 = slope = 0.29 .  T h e 
lumped control proportion of  responders for all comers 
is 0.35. As expected, those classified as strong responders 
to the experimental treatment are also somewhat more 
likely to respond to the control treatment, an effect that 
should be accounted in modeling.

Summary of model parameters
Parameters for the statistical model in this example are 
therefore q = 0.24, π1 = 1, π2= 0, π3 = 0.53, and π4 = 0.29. 

Exercising the model to predict cost
Figure 9 shows the corresponding cost function for mod-
el parameters q = 0.24, π1 = 1, π2.= 0, π3 = 0.53, and π4 
= 0.29. Cost was computed using equations (4), (5), and 
(6) in succession. Cost coefficients are given in the figure 
legend.

This realistic example demonstrates that the choice 
of  inclusion criteria can have a profound effect on the 
outcome of  a clinical trial and that adjustment of  inclu-
sion criteria by quantitative means can produce protocols 
that achieve more with less. In Figure 9 the costs to the 
right of  the dashed vertical asymptote correspond to a 
significant positive result with the experimental treatment 
better than control. Inclusion criteria of  x > 60 points are 
likely to produce such outcomes. Costs to the left of  the 
dashed vertical asymptote represent a significant nega-
tive result (experimental treatment worse than control). 

y = 0.165 + 0.291 u
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Figure 8  Regression analysis on the last two columns of Table 3. A plot 
of the hybrid variable, y = pC(u)(p + u), vs u can be used to evaluate model 
parameters p3 and p4. The slope of the regression line is p4, and the intercept 
divided by p is p3.
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Figure 9  Cost estimates in a realistic test data set for targeted drug 
therapy of lung cancer, presented in Tables 2 and 3. Cost constants in thou-
sands of dollars are as follows: screening cost per case c1 = 1, treatment cost 
c2 = 10, opportunity cost c3 = 100/year, case rate r = 50/year, follow up time t 
=1 year. Cost to the right of the dashed vertical asymptote are for a significant 
positive result (experimental treatment better than control). Costs to the left of 
the dashed vertical asymptote are for a significant negative result (experimental 
treatment worse than control).
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Inclusion criteria of  x < 20 points would likely produce 
a significant negative outcome. The dashed vertical line 
represents selection criteria that would produce results 
entirely consistent with the null hypothesis. 

DISCUSSION
A major challenge to medical innovation in the modern 
era is that when new improved drugs or other treatments 
are compared with reasonable, effective standard therapy, 
larger and larger trials are needed to detect incremental 
benefits at skyrocketing costs. If  the effect of  experi-
mental treatment is borderline overall and strong in one 
subgroup, the overall conclusion is that the experimental 
treatment is not significantly different from control. The 
potential benefit in the favored subgroup is often not 
pursued, owing to limitations of  time and cost. 

This dilemma has led to the development of  adaptive 
trial designs[9-14]. If  investigators can determine early-on 
which types of  patients are most likely to benefit from a 
novel treatment, then the trail can be re-targeted to favor-
able patients only. Alternatively, if  a particular phenotype, 
such as the diabetic state, is found to have untoward 
complications compared to other types, then such pa-
tients can be excluded going forward, on a rational basis. 

Here we show using a model-based approach how it 
is possible to minimize the time, cost, and probability of  
type Ⅱ error of  a clinical trial, by selection of  optimal 
patient inclusion criteria. This approach provides a route 
to planning of  a staged clinical trial for efficient use of  
resources in the confirmation stage of  an adaptive trial 
design. It might even provide a way to resurrect good 
drugs or devices from failed trials by re-analysis of  inclu-
sion criteria used in the past.

The present model based approach can also be ap-
plied to data from one-armed preliminary trials of  ef-
ficacy. Patients receiving the experimental treatment are 
characterized according to potential measures x1 through 
xk for tightened inclusion criteria. The distributions of  

values xi including all treated patients are tabulated and 
plotted for each metric, i. Continuous data such as age 
or fasting blood sugar concentration are dichotomized, 
based on inspection of  the frequency distributions for 
responders vs non-responders to experimental treatment. 
Inherently dichotomous variables, such as male/female, 
or diabetic/non-diabetic are allowed also. Treated pilot 
patients are sorted into classes of  putative responders 
and putative non-responders. Differences in proportions 
are used to construct a classifier (7), from which one can 
construct an ROC curve similar to Figure 3 using expres-
sion (8) that specifies possible pairs of  ftp and ffp corre-
sponding to different cutoffs for patient inclusion. These 
values, together with those of  π3, π4 and q, estimated as 
described from pilot data and/or from the literature for 
standard (control) therapy, allow construction of  the cost 
function (6) and identification of  minimal cost inclusion 
criteria going forward. 

The present work builds upon the rich literature 
describing adaptive clinical trial designs. An adaptive de-
sign allows the users to modify a trial during its progress 
based on interim results without affecting the validity and 
integrity of  the trial. There are several subtypes of  adap-
tive designs[15]. A group Sequential design allows for pre-
mature termination of  a trial based on evidence of  strong 
efficacy or futility at interim analyses. If  a trial shows a 
positive result at an early stage, the trial is stopped, lead-
ing to an earlier launch of  the new drug. If  trail shows a 
negative result, early stopping avoids wasting resources. 
Sequential methods typically lead to savings in sample 
size, time, and cost when compared to the classical design 
with a fixed sample size[16].

Adaptive design with sample size re-estimation based 
upon interim results avoids inaccurate estimation of  the 
effect size and its variability, which can lead to an under-
powered or overpowered study. If  a trial is underpow-
ered, it will not be able to detect a clinically meaningful 
difference, and consequently could prevent a potentially 
effective drug from being delivered to patients. If  a trial 

  x (%) Sorted experimental data and ROC curve Sorted control data and regression analysis

NRcount R count p (NR|x) p (R|x) ffp ftp NR count R count pc|xc ≥ x u y= pc (q + u)

  0 5 1    0.098 0.063 1.000 1.000 4 2 0.348 1 0.457
  13 4 0    0.078       0 0.902 0.938 3 1 0.349 0.962 0.446
  16 9 1    0.176 0.063 0.824 0.938 6 3 0.356 0.878 0.424
  24 6 1    0.118 0.063 0.647 0.875 4 2 0.360 0.739 0.379
  29 6 1    0.118 0.063 0.529 0.813 5 2 0.364 0.652 0.351
  37 4 0    0.078       0 0.412 0.750 3 2 0.378 0.549 0.326
  40 9 1    0.176 0.063 0.333 0.750 7 3 0.375 0.444 0.284
  47 0 0           0       0 0.157 0.688 0 0 0.409 0.228 0.222
  53 4 1    0.078  0.063 0.157 0.688 5 3 0.409 0.228 0.222
  60 0 0           0       0 0.078 0.625 0 0 0.429 0.125 0.188
  63 0 0           0       0 0.078 0.625 1 0 0.429 0.125 0.188
  71 0 0           0       0 0.078 0.625 0 0 0.462 0.125 0.203
  76 0 0           0       0 0.078 0.625 0 0 0.462 0.125 0.203
  84 0 1           0 0.063 0.078 0.625 1 0 0.462 0.125 0.203
  87 1 3 0.02 0.188 0.078 0.563 2 2 0.500 0.139 0.227
  100 3 6 0.059 0.375 0.059 0.375 4 4 0.500 0.157 0.235

Table 3  Analysis of data sorted by x-value

Babbs CF. Less costly clinical trials

R: Responders; NR: Non-responder.
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is overpowered, it could lead to unnecessary exposure of  
many patients to a potentially harmful compound when 
the drug, in fact, is not effective. Adaptive sample size re-
estimation avoids these pitfalls and can reduce the expect-
ed sample size, and in turn the cost of  the study, under a 
range of  treatment effects. Protocols and procedures for 
re-specification of  sample size are well described in the 
literature[4,17-21]. This type of  adaptive design can arguably 
reduce time and cost, but does not specifically deal with 
optimizing inclusion/exclusion criteria.

Other forms of  adaptation deal with allocation of  
patients to particular treatment groups. A drop-the-loser 
design is an adaptive design consisting of  multiple stages. 
At each stage, interim analyses are performed and the los-
ers (i.e., inferior treatment groups) are dropped. Note that 
this approach does not deal with patient selection but 
with treatment selection. Alternatively, a play-the-winner 
design increases allocation to successful treatments, based 
upon preliminary results. This form of  adaptive design is 
most useful in multiple-arm or dose-ranging trials. They 
allow a shared control group, dropping of  ineffective 
treatments before the end of  the trial and stopping the 
trial early if  sufficient evidence of  a treatment being su-
perior to control is found[22]. These now classical kinds of  
adaptive designs refine how many randomly selected pa-
tients are placed in known treatment groups. They do not 
refine patient selection criteria based upon biomarkers or 
traits that contain information about how individual pa-
tients are likely to respond to individual treatment.

Biomarker adaptive designs, currently being devel-
oped, allow adaptations according to biomarkers that 
indicate biologic or pharmacologic response to a thera-
peutic intervention. In one application biomarkers may 
serve as surrogate end points that predict outcomes such 
as long-term survival[23]. In another application, envi-
sioned in the present study, biomarkers can be used to 
select the most appropriate target population. Recently, 
Jiang et al[24] proposed a statistically rigorous biomarker-
adaptive threshold phase Ⅲ design, in which a putative 
biomarker is used to identify patients who are sensitive to 
the new agent. The biomarker is measured on a continu-
ous or graded scale, and a cut point established to define 
the sensitive subpopulation. Using a proportional hazards 
model that describes the relationship among outcome, 
treatment, and biomarker value for a two-treatment clini-
cal trial, they found that when the proportion of  sensi-
tive patients as identified by the biomarker is low, the 
proposed design provided a substantial improvement in 
efficiency compared with the traditional trial design. Drs. 
Freidlin et al[9] proposed a new adaptive design for ran-
domized clinical trials of  targeted agents in settings where 
an assay or signature that identifies sensitive patients is 
not available at the outset of  the study. They concluded 
that when the proportion of  patients sensitive to the new 
drug is low, the adaptive design substantially reduces the 
chance of  false rejection of  effective new treatments. 
This prior work, as well as the present study, supports the 
idea that biomarkers can add substantial value to current 

medical practice by guiding patient-specific treatment se-
lection in the conduct of  clinical trials[25]. 

As such biomarker adaptive trial designs become 
implemented, more patients will receive a treatment that 
is effective for them. Fewer useful therapies for carefully 
selected patients will be lost to further development. The 
transition from bench to bedside will be faster, future 
patients awaiting better treatments will have less time to 
wait, and the high cost of  conducting clinical trials will be 
minimized.

Coefficients for an approximately optimal linear 
classifier
Let the linear classifier aixi

k

i = 1
x =  for dichotomous predictive 

variables xi  (0,1)  and for xi independent or poorly cor-
related, based upon pilot data. Treat the coefficients, ai, as 
variables to be optimized for best discrimination of  non-
responders, NR, from responders, R. The mean values 
from pilot data for these subgroups are aixiNR

k

i = 1
xNR =  and  

 aixiR

k

i = 1
xR = , and the difference in means between respond-
ers and non-responders for the classifier is 

Δ x = xR - xNR =  ai (xR - xiNR).
k

i = 1
For dichotomous variables the mean value XiR  is the 
equal to the proportion, piR, of  responders for whom xi 
= 1, and mean value XiNR  is the equal to the proportion, 
piNR, of  non-responders for whom xi = 1. Then

Δ x =  ai (pR - piNR) = 
k

i = 1
aibi, 

k

i = 1

for constants, bi, derived from pilot data.
Let V(X) = the variance of  random variable, X, and 

let us choose the ai so that S2 = (Δx)2/V (Δx)  is maxi-
mized as a measure of  the separation of  classes NR and 
R in the x-domain. Here the variance estimate from the 
given pilot data representing nNR non-responders and nR 
responders to experimental therapy (with independent xi) 
is

V (Δx) = 
k

i = 1
 ai

2 piNR (1 - piNR)
nNR

+
piR (1 - piR)

nR
= 

k

i = 1
   ai
2ci ,

for constants, ci, derived from pilot data. Hence, using 
the estimate for the variance in the denominator,

k

i = 1
bici

k

i = 1
ai

2ci

2

S  
2 .

To maximize (or minimize) S2 in the a1, a2, …. ak domain, 
we can solve the set of  normal equations dS2/da1 = 0, 
dS2/da2 = 0,... dS2/da1 = 0 obtained by setting the partial 
derivatives equal to zero, where for any particular dichot-
omous variable, i, 

dS2

dai
= 0

2bi 
k

i = 1
aibi

k

i = 1
ai

2ci

-

2aici  
k

i = 1
aibi

k

i = 1
ai

2ci

2

2
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or

bi - 
aici .  

k

i = 1
aibi

k

i = 1
ai

2ci

≈ 0 for i = 1, 2, … k,

which gives a set of  k equations with k unknown vari-
ables, ai, and 2k known variables, bi and ci, derived from 
the pilot data.

Two solutions are evident from simple inspection 
of  the forgoing normal equations. Trivially, if  bi = 0 for 
all i, that is if  piR = piNR, then we have a minimum with 
S2 = (Δx)2/V (Δx) = 0 . However, if  ai = bi = piR - piNR , 
and if  ci ≈ c, a constant (as is reasonable from inspection 
of  the expression for the variance of  proportions not too 
close to zero or one), we have an approximate solution to 
the normal equations for a maximum S2, given the bi ≠ 
0 and ci ≠ 0 from the training data. Thus we can expect 
roughly maximal separation of  populations NR and R in 
the x domain if  

ai = bi = piR - piNR,

the differences in proportions of  responders vs non-
responders having dichotomous variable scores xi = 1.

Although we assume that the xi are poorly correlated, 
it can be shown numerically that this choice of  the ai is 
insensitive to small inter-correlations between predic-
tors, x. If  two predictors are strongly correlated, they can 
be combined into a single predictor, for example, high 
serum creatinine and high blood urea nitrogen can be 
lumped as “renal insufficiency”, reducing the number of  
dimensions, k. Lumping highly correlated parameters in 
this way can improve separation of  the classes NR and R 
and can avoid undesired over-weighting of  the property 
measured by both correlated variables.
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cific therapies that are targeted to each tumor type. To facilitate this shift, tests 
are being developed to link specific genetic variations to specific drug effects 
using biomarkers that help predict how a given individual will respond to a drug.
Innovations and breakthroughs
This paper demonstrates how one can use biomarkers and other patient char-
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minimize the time and cost of a clinical trial by selection of optimal patient inclu-
sion criteria. Clear cost minimums exist for realistic scenarios with potential 
cost savings in millions of dollars. As the response rate for controls approaches 
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