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Abstract 

 

This study explores the hypothesis that the sharper, high frequency Korotkoff sounds come from 

resonant motion of the arterial wall, which begins after the artery transitions from a buckled state 

to an expanding state.  The motion of one mass, two nonlinear springs, and one damper, driven 

by transmural pressure under the cuff, are used to model and compute the Korotkoff sounds 

according to principles of classical Newtonian physics.  The natural resonance of this spring-

mass-damper system provides a concise, yet rigorous, explanation for the origin of Korotkoff 

sounds.  Fundamentally, wall stretching in expansion requires more force than wall bending in 

buckling.  At cuff pressures between systolic and diastolic arterial pressure, audible vibrations  

(> 40 Hz) occur during early expansion of the artery wall beyond its zero pressure radius after 

the outward moving mass of tissue experiences sudden deceleration, caused by the discontinuity 

in stiffness between bucked and expanded states.  The idealized spring-mass-damper model 

faithfully reproduces the time domain waveforms of actual Korotkoff sounds in humans.  

Appearance of arterial sounds occurs at or just above the level of systolic pressure. 

Disappearance of arterial sounds occurs at or just above the level of diastolic pressure.  Muffling 

of the sounds is explained by increased resistance of the artery to collapse, caused by 

downstream venous engorgement.  A simple analytical model can define the physical origin of 

Korotkoff sounds, suggesting improved mechanical or electronic filters for their selective 

detection, and confirming the disappearance of the Korotkoff sounds as the optimal diastolic 

endpoint. 

 

Keywords: biomechanics; brachial artery; buckling; diastolic dilemma; muffling; 

sphygmomanometry. 
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Introduction 

 

The origin of Korotkoff sounds has remained a subject of debate for over 100 years.  These 

arterial sounds occur during the indirect measurement of blood pressure using an air-filled cuff, 

usually placed around the upper arm and inflated initially to above the maximal or systolic blood 

pressure.  As cuff pressure is slowly released, arterial sounds can be heard through a stethoscope 

placed over the artery distal to the cuff or by a microphone placed inside the cuff
1
.  Sounds 

appear as cuff pressure approaches systolic pressure, increase in amplitude, then generally 

diminish, and finally disappear at a cuff pressure close to the minimal or diastolic blood pressure.  

Korotkoff himself described three, and later, five phases to the arterial sounds
2-5

: appearance, 

softening, sharpening, muffling, and disappearance.  He speculated that opening and closing of 

the artery, as net transmural pressure cycled from positive to negative, was responsible for the 

sounds.  This technique has come to be known as the auscultatory method
4, 5

.  However, the 

physical basis of the method remains poorly understood to this day, especially exact biophysical 

mechanism producing the sounds.  

 

Uncertain also is the temporal relationship of the sounds to true systolic and diastolic pressures.  

The uncertainty in the end-point for diastolic pressure, in particular, whether it should be taken 

as the point of muffling or the point of disappearance of the sounds, is known as the diastolic 

dilemma
3, 6, 7

.  The difference between diastolic pressures at muffling and at disappearance of the 

Korotkoff sounds (as much as 10 mmHg
2, 7

) is clinically significant, because this difference 

approaches the difference between nominal normal diastolic pressure (80 mmHg) and the 

threshold for diagnosis and treatment (90 mmHg).  Hence the choice of diastolic endpoint can be 

biologically meaningful and potentially life-changing for patients. 

 

In the absence of a strong theoretical basis for interpreting Korotkoff sounds the clinical 

community has relied on empirical studies comparing pressures recorded directly with intra-

arterial catheters to simultaneous pressures measured by the auscultatory method.  A working 

consensus has evolved that in adults the point of disappearance of arterial sounds is the better 

indicator of diastolic pressure
2
.  However, in children

8
, in pregnancy

9
, and in exercise

10
 there is 

some evidence that muffling may be a more accurate endpoint.  Some authorities recommend 

recording all three endpoints, for example 120/80/65, to indicate appearance, muffling, and 

disappearance, although the phenomenon of muffling itself has remained the subject of 

conjecture rather than biomechanics, and is difficult to define objectively
7
. 

 

Accordingly, the objective of the present study was to create and exercise a mathematical model 

to explore the genesis of Korotkoff sounds and to compute these arterial sounds on the basis of 

first-principles biomechanics.  In particular, the analysis tests the hypothesis that transient 

resonant vibrations of the arterial wall constitute the underlying mechanism of sound generation.  

The resulting equations faithfully reproduce the characteristic frequencies and time domain 

waveforms of the arterial sounds and show that the appearance of the arterial sounds occurs just 

above the true systolic blood pressure and that the disappearance of the arterial sounds occurs at 

or just above true diastolic blood pressure.  An explanation for the phenomenon of muffling, and 

simple ways to minimize it, are also presented. 
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Methods 

 

Approach 

 

Consider a transverse cross section of an artery that is compressed under a blood pressure cuff, 

as shown in Figure 1.  For simplicity, tapering or coning of the vessel in the axial dimension, 

parallel to the artery
3, 4, 11

 is ignored and the forces analyzed are those in the collapsing sub-

segment only.  To isolate the effects of wall motion, the model also explicitly neglects wave 

propagation and axial blood flow. 
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Figure 1.  Schematic cross section of an artery in expansion (a) and buckling (b).  Shading 

indicates artery wall.  Dotted circles indicate the zero pressure state, and r0 denotes zero pressure 

radius.   denotes a specific radial sector.  Wall displacement, x = r – r0. 
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Under positive transmural pressure (inside > outside) expansion of the artery beyond its zero 

pressure radius, r0, occurs with radial symmetry.  However, under negative transmural pressure 

(inside < outside) elastic tubes do not shrink with radial symmetry, but rather buckle, when the 

outside pressure minus the inside pressure, exceeds a threshold buckling pressure
12-15

, as shown 

in Figure 1(b).  As the negative transmural pressure increases further, the cross section becomes 

somewhat elliptical, and then bi-concave or hourglass shaped.  Ultimately opposite sides touch at 

one point and then flatten against one another along a straight-line segment, which increases in 

length as external pressure increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Tube law relating reactive force to change in vessel radius, x, perpendicular to the 

plane of flattening.  During expansion the stretched artery generates inward directed (negative) 

force.  During buckling the compressed artery generates outward directed (positive) force.  At 

the point of buckling there is a sharp discontinuity.  In extreme flattening, after opposite walls 

touch (x < r0), the apparent stiffness of the system in compression, which is related to the slope 

of the curve, increases to approach, and ultimately exceed, the stiffness of the tube in radial 

expansion. 

 

 

Unlike expansion, buckling occurs rapidly with modest negative transmural pressures
11, 13, 16

.  

This phenomenon means that the slope of the pressure-area curve, which is related to vessel 

stiffness, abruptly changes at the collapse pressure.  The collapse pressure is equal to, or slightly 

less than zero (Figure 2).  Vessel compliance is greatest when the transmural pressure is 

moderately negative.  Importantly in the present context, there is a large discontinuity in the 

 r0 

 (r0 + h0) 

Reactive force 

x 

0 

Discontinuity 

Buckling Expansion 
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value of the compliance at the collapse pressure
12-14

.  Bertram
12

, for example, studied pressure-

area curves in silicone rubber tubing, finding that the compliance was one to two orders of 

magnitude greater during bucking than during distension (and stiffness one to two orders of 

magnitude less).  The obvious differences in the magnitudes of the forces involved in stretching 

and buckling can be appreciated by any reader using an ordinary rubber band.  The hypothesis 

underlying the present work is that the discontinuity at the point of buckling
12-15, 17, 18

 is key to 

production of Korotkoff sounds.  In particular, transient harmonic oscillation in artery wall 

position, or ringing, occurs just after the expanding artery transitions from the buckled state to 

the radially expanded state.  This state transition causes a sudden deceleration of wall motion, 

which produces ringing. 

 

 

One dimensional model 

 

Let  x  represent the displacement of the inner wall of the artery from its zero pressure 

equilibrium radius, r0, in a direction perpendicular to the plane of flattening, as shown in Figure 

1.  Let 0r*x   for 0   << 1 be the point in the x-domain at which buckling begins.  During 

expansion  x  is greater than zero, and the outward motion of the wall and surrounding fluid is 

symmetrically radial.  During buckling  x  is less than 0r , and there is collapse with ultimate 

flattening.  For purposes of the present model, the inward motion of the majority of surrounding 

fluid mass during buckling phase is regarded as approximately radial, as sketched in Figure 3(a).  

This insight leads to an equivalent one dimensional motion problem, in which the time domain 

waveform x(t) essentially describes artery wall motion.  The fat and loose connective tissues 

surrounding the artery are represented by mass only, without significant elasticity. 

 

Thus the physics of arterial wall motion under the cuff can be modeled in one dimension, as 

shown in Figure 3(b).  A mass, m, representing the effective mass of a given length of artery and 

surrounding fluid, as specified subsequently, is constrained by two nonlinear springs.  Spring k1 

represents the reactive elastic force resisting expansion under positive transmural pressure for x 

> x* = r0.  This inward directed force,  k1x, is produced by circumferential elastic fibers and 

collagen in the artery wall.  Spring k2 represents the reactive elastic force resisting collapse under 

negative transmural pressure with buckling when x < x* =  r0.  This outward directed force, 

  k2x > 0, is produced by bending of the artery wall. 

 

Only one of the two springs in Figure 3 is compressed at any one time, as indicated by the 

bumpers at the far right and far left.  At the zero pressure equilibrium point (x = 0) neither spring 

is compressed, and the reactive force is zero.  Both k1 and k2 are in general non-linear; although 

during expansion k1 can be regarded as constant for simplicity.  During early buckling the elastic 

force,  k2x, is weak compared to a comparable amount of expansion.  The nonlinear property of 

k2 begins to dominate as  x  becomes more negative and approaches r0, owing to the more 

complex bending producing the hourglass shaped cross section.  Then, as  x  approaches (r0 + 

h0), the value of  k2 approaches infinity, owing to the boundary condition enforced by the plane 

of symmetry.  In this regime the gradual, rather than abrupt, increase in  k2 tends to cushion 

sudden deceleration of the artery wall. 
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Figure 3.  Equivalent spring-mass-damper system for pulsating artery under a blood pressure 

cuff.  (a) Generally radial motion of fluid mass.  (b) Nonlinear springs for expansion, k1, and 

buckling, k2, and damper, . 
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Elastic forces in expansion 

 

As shown in Appendix 1 the spring constant, k1, for small positive displacements is given from 

first principles of physics as 

 


0

0
1

r

h
ELk ,          (1) 

 

where E is Young’s modulus of elasticity of the artery wall, L is axial length of the segment, h0 

is the zero pressure wall thickness, r0 is the zero pressure internal radius of the artery, and  is 

the angular sector of artery wall, as shown in Figure 1.  As the artery stretches slightly, E 

increases, owing to the nonlinear elastic properties of biomaterials, and h/r decreases by 

geometry and by conservation of wall volume, so for modest distensions of the artery under the 

relatively small transmural pressures during cuff deflation, k1 can be taken as a constant.  The 

reactive force in Figure 2 is xk)x(F 1  for x > x*. 

 

 

Elastic forces in buckling 

 

In general, the variable spring coefficient, k2, can be regarded as the total reactive force in the x-

dimension during buckling, divided by the compressed distance, x .  This “spring back” force 

increases nonlinearly as  x  becomes increasingly negative.  The total force resisting flattening 

can be modeled by a curvilinear function with positive constants  a  and  b  of the form 

 

xb

ax
)x(F


 , for x  x*.         (2) 

 

In turn, 

 

xb

a

x

)x(F
)x(k 2


 .         (3) 

 

By inspection,  b  must equal )hr( 00  , the ultimate physically possible degree of flattening, so 

that as )hr(x 00  , F(x)   .  As shown in Appendix 2, based on elementary mechanics, 





2

0

2

0

202
r

hEL
4)r(k .  For the nonlinear spring model we have, for x =  r0 

 

00

2

0

2

0

202
h

a

rb

a

r

hEL
4)r(k 





 ,        (4) 
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giving a useful expression for constant, a, namely 

 





2

0

3

0

2 r

hEL
4a .          (5) 

 

Then using (2) in (5), with b = r0 + h0,  

 








xhr

h

r

hEL
4)x(k

00

0

2

0

2

0

22
,   for x < x*.      (6) 

 

Equation (6) gives a formula for spring coefficient, k2(x), in terms of basic model parameters. 

 

In relative terms for 
0

0
1

r

h
ELk , the ratio  

 

xhr

h

r

h4

k

)x(k

00

0

0

0

2

1

2





 .         (7) 

 

Hence for  x  near zero, the local spring constant for buckling is substantially less than that for 

expansion.  For example, if h0/r0 = 1/3 and x* = 0, then k2(0)/k1 = 0.101.  The artery is 10 times 

stiffer in expansion than in buckling, with a sharp discontinuity at x*.  As displacement  x  

becomes progressively more negative, indicating a greater degree of flattening, k2(x) gradually 

increases to a value 
0

0

2 r

h4



 , or about 13% of k1 when x = r0 , and then rapidly increases with 

further flattening.  Thus, in a fundamental sense wall bending in buckling requires much less 

force than wall stretching in expansion.  Hence, k2(x)/k1(x) << 1 for small values of  x  is an 

expected and constant feature of collapsible elastic tubes, such as arteries. 

 

 

Effective mass 

 

As shown in Appendix 3 the effective mass of the tissue that is accelerated by radial motion of 

the arterial wall is a function of the tissue mass density, , the axial length, L, the zero pressure 

radius, r0, and the mean radius of tissue surrounding the artery, Rmax, so that in this model of 

cylindrical symmetry 

 

max0RLrm  .          (8) 

 

 

Damping 

 

The lumped energy loss due to viscous damping in the system is represented by a single dashpot 

shown in Figure 3.  The value of the damping modulus, D, can be estimated from measured 
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viscoelastic properties of arterial wall during expansion at the frequencies of Korotkoff sounds.  

In turn, by analogy with Equation (1) the lumped damping constant, , can be expressed as 

 


0

0

r

h
DL .          (9) 

 

 

Driving force 

 

Regarding the artery as a relatively thin walled cylinder, the driving force for motion of the 

arterial wall is provided by the difference between internal pressure, Pi, and external pressure, Po, 

on the artery wall, multiplied by the surface area over which the pressure acts.  Both in limited 

radial expansion and in buckling the relevant surface area for a particular sector, , of the artery 

wall is Lr0.  In turn, the driving force becomes 

 

   0oi Lr)t(P)t(P)t,x(F .        (10) 

 

 

Equation of motion for the system 

 

Combining the forgoing parts from Equations (1), (6), (8), and (9), using Newton’s second law 

of motion (net force = mass x acceleration) with “dot”  and “double dot” notation for the first and 

second time derivatives (
22 dt/xdx,dt/dxx   ), we have after cancelling the L terms, the 

following equations of motion for the arterial wall: 

 

  xRrx
r

h
Dx

r

h
Er)t(P)t(P max0

0

0

0

0
0oi

      for x > x*     (11a) 

 

  xRrx
r

h
Dx

xhr

h

r

hE
4r)t(P)t(P max0

0

0

00

0

2

0

2

0

20oi
 





     for x  x*.  (11b) 

 

These equations can be solved for wall displacement, x, as a function of time to characterize any 

arterial wall vibrations, or lack thereof, during cuff deflation. 

 

 

Numerical values of model parameters 

 

Arteries are composite materials, and the more they are stretched the stiffer they become, owing 

to the recruitment of collagen fibers and uncoiling of elastic fibers in the arterial wall.  Hence 

Young’s elastic modulus, E, for arteries is nonlinearly dependent on the distending pressure
4, 19

.  

In the context of the present problem what is needed is a numerical value for Young’s modulus 

of arteries experiencing transmural pressures during cuff deflation ranging from  40 to + 40 

mmHg in individuals with normal blood pressure.  Bank
20

, for example, found for human 
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brachial arteries in vivo that Young’s modulus at normal arterial pressures is about four times 

greater than that at lower pressures of cuff deflation (0 to 40 mmHg).  Similarly, Holzapfel and 

Ogden
18

 showed theoretically that Young’s modulus at normal arterial pressure is about four 

times greater than Young’s modulus in the range of 0 to 40 mmHg.  However, most experimental 

data are obtained at normal arterial pressures.  Cox
21

 summarized measured elastic moduli at 

mean arterial pressures near 140 mmHg ranging from 1 to 4 x 10
6
 dynes/cm

2 
.  Taking one 

quarter of these values would translate to 0.25 to 1 x 10
6
 dynes/cm

2  
transmural pressure during 

cuff deflation.  Gow
22

 in living dogs found arterial elastic moduli ranging from 0.4 to 8 and 

averaging about 2 x 10
6
 dynes/cm

2
, which would translate to 0.1 to 2  x 10

6
 dynes/cm

2 
during 

cuff deflation.  Young’s modulus is given directly for pressures ranging from 20 to 40 mmHg in 

Bergel’s thesis
23

 (Figure 14, p. 123) and averages 2 x 10
6
 dynes/cm

2
.  Bank

20
, using ultrasound 

measurements in living human subjects found values of E ranging from 0.5 to 5 x 10
6
 dynes/cm

2
 

and averaging about 2 x 10
6
 dynes/cm

2
 in the pressure range of 0 to 40 mmHg.  In aggregate 

these data suggest a working value for E near 1.4 x 10
6
 dynes/cm

2
 for the low transmural 

pressures operative during cuff deflation. 

 

In assigning a numerical value for the damping modulus, D, of the arterial wall it is important to 

realize that arterial wall viscosity is highly frequency dependent.  If one regards the arterial wall 

as being represented by a simple Kelvin-Voigt element consisting of a spring and dashpot in 

parallel, then the viscous constant for the dashpot can be determined from experimental data.  

The classic study of Lawton
24

 on isolated aortic strips of the dog found a hyperbolic relation 

between frequency and the ratio of damping modulus to elastic modulus (D/E).  Extrapolating 

this hyperbolic relationship to the frequency range of Korotkoff sounds near 60Hz with E = 1.4 x 

10
6
 dynes/cm

2
 gives the value 286 dyne-sec/cm

2
 for D.  The data of Gow and Taylor

22
 reveal a 

damping modulus of about 1300 dyne-sec/cm
2
 at 60 Hz.  The synthetic model of Cox

21
 (Figure 6 

in Cox) used to fit the experimental data of Bergel predicts that the value of the elastic modulus 

levels out at about 400 dyne-sec/cm
2
 at angular frequencies over 100 radians/sec.  A similar 

analysis of the data of Learoyd
25

 gives a damping modulus of 845 dyne-sec/cm
2
 at 60 Hz natural 

frequency.  Averaging these estimates gives a damping modulus for the standard arterial model 

of 708 dyne-sec/cm
2
 at the frequency of Korotkoff sounds. 

 

Zero pressure wall radius is 1.5 mm or 0.l5 cm according to Bank
20

.  Learoyd and Taylor
25

 give 

wall thickness ratio h/r of about 0.15 at low pressures < 50 mmHg, so that the wall thickness 

would be 0.225 mm or 0.022 cm.  Betik et al.
26

 found in control subjects using ultrasound at 

normal arterial pressures brachial artery radii averaging 0.22 cm.  Iwamoto et al.
27

, using 

ultrasound in adult human subjects with normal blood pressure found brachial artery radius 

averaging 0.2 cm and wall thickness 0.03 cm.  Weidinger
28

 in patients without coronary artery 

disease found brachial artery wall thickness averaging 0.035 cm, and Suessenbacher
29

 found 

0.037 cm value in a similar study.  Aggregating these data gives a working estimate of zero 

pressure artery radius, r0, of 0.2 cm and zero pressure wall thickness, h0, of 0.03 cm for the 

human brachial artery. 

 

Tissue density is taken as 1.0 g/cm
3
, that of water.  The average radius of the arm, Rmax, is taken 

as 5 cm, according to Wijnhoven
30

, and used as a measure of the typical artery to skin surface 

distance, here ignoring any effects of bone for the sake of simplicity. 
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Table 1 lists numerical values of standard model parameters obtained from the literature.  There 

are no free or fitted parameters, except for   .  For initial simulation it was assumed that 

buckling begins at  x = 0, and  r = r0, so that   = 0 and  x* = 0.  In later simulations the 

consequences of bucking happening at increasingly more negative fractions of the zero pressure 

radius were explored, with  = 0.01 to 0.04, and x* = 0.01r0 to 0.04r0. 

 

 

Table 1: Model Parameters 

 

Symbol Variable description Standard 

value 

Units References 

E Elastic (Young’s) modulus 1.4 x 10
6
 dyne/cm

2
 Bank

20
, Cox

21
, Gow

22
, 

Holzapfel
18

, Bergel
23

 

D Damping modulus 738 dyne-sec/cm
2
 Lawton

24
, Gow

22
, Cox

21
, 

Learoyd
25

 

r0 Zero pressure internal 

radius 

0.2 cm Bank
20

, Betik
11

, 

Iwamoto
31

) 

h0 Zero pressure wall 

thickness 

0.03 cm Learoyd
25

, Iwamoto
27

, 

Weidinger
28

) 

Pi Internal artery pressure 80  120 mmHg Boron
32

 

Po External artery (cuff) 

pressure 
60  130 mmHg Geddes

4
 

Rmax Average adult human arm 

radius 

5 cm Wijnhoven
30

  

 Fraction of zero pressure 

radius where buckling 

begins 

0 – 0.04 
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Simulated blood pressure waveform 

 

To initiate wall motion, internal artery pressure Pi(t) was simulated using a simplified Fourier 

series to approximate the arterial pulse waveform as a function of time, t, as described by Geddes 

and Baker
33

: 

 









 )t3sin(

4

1
)t2sin(

2

1
)tsin(PP36.0PP5.0DBP)t(Pi

,   (12) 

 

where DBP is diastolic blood pressure (normally 80 mmHg), PP (normally 40 mmHg) is pulse 

pressure (systolic minus diastolic), and  ω  is the angular frequency of the heart beat, that is,   = 

2f  for cardiac frequency, f, in Hz.  

 

External artery or cuff pressure was taken as a linear ramp from 130 mmHg at the beginning of a 

blood pressure determination to 70 mmHg at the end of the run for the normal pressure case, 

namely, SBP/DBP = 120/80 mmHg.  The cuff deflation rate was 3 mmHg/sec, and the pulse 

frequency was one per second.  In some simulations cuff pressure was held constant to examine 

details of simulated arterial sound waveforms. 

 

 

Numerical methods 

 

Equations (11) were solved numerically as follows, beginning with suitable initial conditions.  

Acceleration was computed from the governing equations as 

 

  










 x

r

h
Dx

r

h
Er)t(P)t(P

Rr

1
x

0

0

0

0
0oi

max0

   for x > x*    (13a) 

 

and 

 

  
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Then for successive small time steps t = 0.01 msec the simple Euler method was implemented 

to create marching solution:  txxx     and  txxx   .  The raw output of the model 

equations is a record of wall velocity, x , and wall displacement, x, as a function of time, t. 

 

To simulate sonic waves caused by compression and rarefaction of molecules, the time 

derivative of wall displacement, x , was used as a surrogate for sound pressure level and 

tabulated each millisecond .  To simulate the frequency response of a stethoscope in the range of 

20 to 100 Hz
17

, the wall velocity data were high pass filtered such that frequencies below 20 Hz 
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were attenuated by 90 percent and frequencies above 100 Hz were attenuated between zero and 

five percent. 

 

 

Results 

 

Arterial sounds and the diastolic endpoint 

 

Figure 4 shows the result of a simulated blood pressure determination with linear cuff deflation 

from 10 mmHg above normal systolic pressure to 10 mmHg below normal diastolic pressure.  

The time base is condensed to 20 sec to show the complete event.  The top record (a) shows 

arterial pressure and cuff pressures.  The second record (b) shows raw arterial wall velocity 

(dx/dt), and the third (c) shows high pass filtered arterial wall velocity (filtered dx/dt) as a 

surrogate for sound entering the ear canals of the examiner.  The bottom record (d) shows arterial 

wall position, x, as a function of time.  As the cuff is deflated below systolic pressure, the arterial 

wall begins to expand and collapse in response to the cycling of transmural pressure from 

positive to negative.  Higher frequency vibrations, the arterial sounds, appear near systolic 

pressure and cease near diastolic pressure.  The envelope of the simulated arterial sounds on the 

compressed time scale is similar to that of classically recorded Korotkoff sounds
34

.  The quality 

and nature of the high pass filtered sounds change over the course of the cuff deflation run, with 

some of the beats having a double or split sound and some of the beats having a single sound.  

After 16 seconds, when wall position no longer cycles into negative territory, the arterial sounds 

cease. 
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Figure 4.  Simulated auscultatory blood pressure measurement with the standard model.  (a) 

Arterial pulses, Pi(t), and cuff pressure, Po(t) in the time domain.  (b) Raw arterial wall velocity 

(dx/dt) as a surrogate for sound pressure.  (c)  High pass filtered wall velocity (filtered dx/dt) 

simulating sound heard at end of stethoscope.  (d) Absolute wall position, x, as a function of 

time. 

 

 

Arterial wall vibrations are better appreciated by examining single beats at a specific, constant 

cuff pressure on an expanded time scale.  Figure 5 shows the sound (filtered dx/dt) and arterial 

wall motion channels for cuff pressure at 122 mmHg, just slightly above the systolic intra-

arterial pressure of 120 mmHg.  The arterial pressure approaches cuff pressure, and the 

transmural pressure approaches, but does not reach, zero.  In turn, the wall position changes from 

a maximally flattened state to a nearly half open state.  Thereafter, as transmural pressure returns 

toward the maximal negative value, there is a deceleration with slight ringing in the motion of 

the effective mass moved by the pulsating artery.  This collapse phase ringing is accentuated at a 

cuff pressure equal to systolic pressure (Figure 6). 
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Figure 5.  Simulated wall motion on an expanded time scale with cuff pressure slightly above 

true systolic pressure.  (a) Arterial pulses, Pi(t), and cuff pressure, Po(t) in the time domain.  (b) 

High pass filtered wall velocity (filtered dx/dt) showing faint sonic vibrations as wall returns to 

flattened state.  (c) Absolute wall position, x, as a function of time. 
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Figure 6.  Simulated wall motion with cuff pressure equal to true systolic pressure.  Details 

similar to Figure 5.  Middle plot (b) shows audible sounds (filtered dx/dt).  Collapse to a 

flattened state near time 2.2 sec produces a transient, low amplitude sound. 
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When transmural pressure becomes briefly positive at cuff pressure 118 mmHg, a new pattern of 

wall vibration is seen (Figure 7), with resonance occurring first at the upstroke of the arterial 

pulse, as wall position crosses briefly from the collapsed state to the expanded state.  This 

resonance leads the previously described collapse phase resonance in time, and causes a splitting 

of the arterial sound.  At 115 mmHg cuff pressure (Figure 8) the expanded state lasts much 

longer than the collapsed state, and the expanded state resonance is more prominent and higher 

in frequency than the collapsed state resonance.  Sonic frequencies are evident in the wall motion 

tracings, especially after the wall displacement transitions from negative to positive.  The 

analytically calculated resonant frequency of the artery wall in the expanded state is 72 Hz.  The 

numerically calculated resonant frequency of the artery wall in the expanded state is near 75 Hz.   
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Figure 7.  Simulated wall motion with cuff pressure at 118 mmHg, 2 mmHg below true systolic 

pressure.  Details similar to Figure 5.  Middle plot (b) shows audible sounds (filtered dx/dt).  

Both expansion and collapse produce transient, low amplitude sounds.  The expansion phase 

sound has higher frequency, associated with the larger effective spring constant of the expanded 

arterial wall. 
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Figure 8.  Simulated wall motion with cuff pressure at 115 mmHg.  Middle plot (b) shows 

audible sounds (filtered dx/dt).  Details similar to Figure 5. 
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At 100 mmHg near mean aortic pressure (Figure 9) the expanded state resonance dominates the 

sound channel and the collapsed state resonance is greatly attenuated.  This trend continues as 

cuff pressure is further reduced.  At 85 and 82 mmHg cuff pressures, which are just above true 

diastolic blood pressure (Figures 10 and 11) sonic frequencies of wall oscillation occur almost 

exclusively just after transition from the collapsed to the expanded state.  In general, the 

expanded state resonances dominate, with changes in amplitude and subtle changes in frequency.  

The collapsed state resonances occur at somewhat lower frequencies than the expanded state 

resonances.  These simulations show that wall vibrations can produce sounds in the audible 

frequency range > 20 Hz. 
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Figure 9.  Simulated wall motion with cuff pressure at 100 mmHg.  Middle plot (b) shows 

audible sounds (filtered dx/dt).  Details similar to Figure 5. 
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Figure 10.  Simulated wall motion with cuff pressure at 85 mmHg.  Middle plot (b) shows 

audible sounds (filtered dx/dt).  Details similar to Figure 5. 
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Figure 11.  Simulated wall motion with cuff pressure at 82 mmHg.  Middle plot (b) shows 

audible sounds (filtered dx/dt).  Details similar to Figure 5.    

 

Interestingly as shown in Figure 12, at a cuff pressure exactly equal to true diastolic pressure (80 

mmHg), the sounds disappear.  The artery is always distended and in the regime of expansion.  
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This result supports the choice of the disappearance of arterial sounds as the correct endpoint for 

diastolic pressure. 
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Figure 12.  Simulated wall motion with cuff pressure at 80 mmHg equal to true diastolic 

pressure.  There are no sounds (b).  Details similar to Figure 5. 
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The forgoing simulations raise the question of what might happen near diastolic blood pressure if 

the transition between expanded state and the collapsed, or buckled, state occurred a level x < 0, 

for example x =  0.03 r0.  In this case buckling begins at a threshold negative displacement 

somewhat less than the zero pressure radius, as suggested by the work of Cohen and Dinar
35

 on 

elastic tubes.  Figure 13 compares time domain records of wall position for state transition at x* 

= 0 versus state transition at x* =  0.03r0.  If radial contraction without buckling is allowed at 

small negative transmural pressures, such as occur during cuff deflation just before the diastolic 

end point, there is no state transition and no sound.  This effect pushes the disappearance of 

arterial sounds higher than true diastolic pressure. 

 

The phenomenon indicated in Figure 13 suggests that, if anything, the point of disappearance of 

arterial sounds may slightly overestimate true diastolic pressure.  Since buckling is unlikely to 

begin exactly at the zero pressure artery radius (x* = 0) but rather at a point slightly below it (x* 

< 0), the disappearance of arterial sounds will occur at a cuff pressure slightly above true 

diastolic pressure, on average, depending on how the beats fall in the time domain.  This 

observation strengthens the choice of the point of disappearance of the sounds, rather than 

muffling, as the better endpoint, and may help resolve the diastolic dilemma. 
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Figure 13.  Wall position versus time during cuff deflation with buckling beginning at x* = 0 (a) 

and buckling beginning at x* = 0.03r0 (b).  Large swings in wall motion cease one heartbeat 

earlier at t = 15 sec in the case of delayed buckling, causing an over-estimate of diastolic 

pressure. 

 

 

Critical role of state transition 

 

The role of state transition in generating arterial sounds can be explored by simulating varying 

degrees of mismatch between wall stiffness during buckling vs. wall stiffness during expansion.   

Figure 14(a) shows a simulation in which there is no discontinuity between collapse and 

expansion phases.  (This condition was created by setting x* << r0.)  In this case there are no 

audible sounds.  The record of wall motion shows a smooth following of the arterial pressure 

waveform.  As the degree of mismatch is increased by decreasing collapse phase stiffness, 

sounds appear and get louder.  Figures 14(b) shows high pass filtered sounds, labeled filtered 

dx/dt,  during cuff deflation for collapse phase arterial stiffnesses 10 times the nominal value, but 

still less than expansion phase stiffness.  This case represents a smaller than normal mismatch in 

stiffness.  Figure 14(c) shows sounds for collapse phase stiffness one half the nominal value, or 

about 1/20
th

 expansion phase stiffness.  This case represents a larger than normal mismatch is 
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stiffness.  Sound intensity increases as collapse phase stiffness becomes smaller with respect to 

expansion phase stiffness.  Also splitting of the sounds becomes more prominent, since sudden 

deceleration in late buckling begins to occur, owing to the nonlinear increase in stiffness as 

buckling proceeds toward complete flattening.  These effects support the hypothesis that it is 

sudden deceleration of wall motion, either in expansion or in flattening, that produces arterial 

sounds. 
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Figure 14.  Effects of changing collapse phase stiffness.  (a) Wall motion with collapse phase 

stiffness equal to expansion phase stiffness.  There are no sounds.  (b) High pass filtered sounds 

with collapse phase stiffness ten times the nominal value, but still less than expansion phase 

stiffness.  (c) High pass filtered sounds with collapse phase stiffness half the nominal value, and 

substantially less than expansion phase stiffness.  Greater mismatch in stiffness between collapse 

and expansion phases results in louder simulated arterial sounds. 
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Narrowing of the mismatch between collapse phase and expansion phase stiffness can be 

regarded as the cause of muffling associated with venous congestion in the limb that is being 

used for the measurement.  As blood accumulates in the arteries, capillaries, and veins 

downstream of the cuff, it cannot drain back to the heart via brachial and cephalic veins because 

of total venous occlusion by the cuff.  The resulting back pressure makes it more difficult for the 

artery segment beneath the cuff to collapse, splinting the artery and increasing the effective k2.  

The increased effective  k2 attenuates the amplitude of the Korotkoff sounds, as just 

demonstrated, accounting for muffling.  This idea is also supported by the practical observations 

of the author and his mentor, L.A. Geddes, that muffling can be reduced by raising he arm prior 

to cuff inflation to drain venous blood from downstream vessels, by initially inflating the cuff as 

rapidly as possible, and by deflating the cuff more quickly between the systolic and diastolic end 

points to minimize accumulation of blood distal to the cuff during the measurement. 

 

 

Other effects of changing parameters 

 

The present one dimensional model of arterial wall mechanics allows exploration of other 

variables influencing arterial sound generation (data not shown).  In summary, increasing pulse 

pressure, as in exercise, increases the amplitude of the arterial sounds, and low pulse pressure, as 

in heart failure or subclavian stenosis, decreases the amplitude of the arterial sounds.  Larger 

scale arteries, characterized by larger r0 and h0, in adults produce increased arterial sound 

amplitude, and smaller arteries in children produce decreased arterial sound amplitude.  

Increasing artery wall stiffness, as in older individuals, increases arterial sound frequency.  

Decreasing artery wall stiffness, as in younger individuals, decreases arterial sound frequency.  

Similarly, increasing effective mass, as in obesity, decreases arterial sound frequency and vis 

versa. 

 

 

Audio playback of simulated arterial sounds 

 

As a final subjective validation of the one dimensional model of artery wall motion, the 

computed arterial sounds were converted to .wav files using open source software written by 

Axel Brink, 21-May-2002 (www.freevbcode.com) and played on a harman/kardon (Northridge, 

CA) Model HK695 subwoffer multimedia speaker, having a frequency response of 35 Hz – 

20,000Hz.  Unlike standard speakers for desktop or laptop computers, the harman/kardon 

speaker is able to reproduce deep bass tones characteristic of the arterial sounds.  The experiment 

was highly successful in that the playback of simulated arterial sounds sounded very much like 

real Korotkoff sounds heard with a stethoscope over the brachial arteries of normal human 

subjects. 
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Discussion 

 

In the early to mid-twentieth century Korns
36

 and Groedel and Miller
37

 published rare high speed 

time-domain tracings of Korotkoff sounds from normal human adults that clearly show transient 

damped sinusoidal waves.   These actual sounds can be compared to modeled sounds as a point 

of validation.  As shown, for example, in Figure 9, the frequencies of model Korotkoff sounds 

for a normal case were about 72 Hz.  The frequencies of real human Korotkoff sounds recorded 

by Korns and by Groedel and Miller ranged from 60 to 80 Hz.  Also the durations of typical 

model transients averaged 90 milliseconds.  The durations measured by Korns and by Groedel 

and Miller for human Korotkoff sounds ranged from 70 to 100 milliseconds.  If one examines at 

the published waveforms recorded from human subjects on an expanded time scale, they closely 

resemble the model results.  That is, the shapes or envelopes of simulated and real Korotkoff 

sounds are the same.  Hence the frequencies, durations, and shapes of simulated waveforms 

match those of actual Korotkoff sounds, validating the one-dimensional spring-mass-damper 

model of Figure 3. 

 

Such transient resonances are well explained by the physics of wall motion alone.  In particular, 

the sudden deceleration of the expanding arterial wall as it transitions from the buckled state to 

the expanding state causes ringing at a natural resonant frequency determined by the elasticity 

and dimensions of the artery wall and the mass of outward moving tissue.  The stiffness of spring 

k1 must be substantially greater than that of spring k2 to provide such abrupt deceleration of the 

arterial wall at the beginning of the expansion phase.  This condition is met because wall 

stretching in expansion requires fundamentally more force than wall bending in buckling.  There 

will be only one Korotkoff sound per heartbeat if spring k2 is stiff enough and appropriately 

nonlinear so as to gradually decelerate the collapsing artery wall during buckling.  In some 

situations a second sound occurs with each pulse during the collapse phase if there is abrupt 

deceleration prior to wall-to-wall contact. 

 

The present mathematical model of artery wall motion during cuff deflation also sheds light on 

the diastolic dilemma and the practical choice of an end point for determination of diastolic 

pressure.  If cuff pressure is completely transferred to the outside wall of the artery, and if 

buckling begins at radius r = r0, then the disappearance of Korotkoff sounds corresponds exactly 

to diastolic pressure.  If cuff pressure is inefficiently transferred to the outside of the artery or if 

buckling begins at a radius r < r0, then the disappearance of Korotkoff sounds will occur at a cuff 

pressure slightly above true diastolic arterial pressure.  Any sounds that occur after this diastolic 

end point should have different frequency characteristics, perhaps being caused by blood flow 

rather than wall motion.  In this case it should be possible to design physical or electronic filters 

to distinguish them and make the diastolic end point more accurate in clinical practice. 

 

 

Alternative theories 

 

Many alternative hypotheses have been proposed for the generation of Korotkoff sounds, 

including including the water hammer mechanism, in which the jet of blood released upon 

opening of the lumen of the artery collides with static downstream blood to produce a shock 
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wave; the pistol shot mechanism, in which the rapid motion of the arterial wall causes 

downstream turbulent blood flow; turbulent blood flow through a partially collapsed and 

restricted artery segment; shock waves induced by the leading edge of the blood pressure pulse; 

cavitation; and, as in the present paper, phenomena related to buckling and unbuckling of the 

arterial wall
4, 6, 39-41

.  The various concepts regarding the genesis of Korotkoff sounds can be 

classified into two main categories: fluid turbulence and oscillations of the arterial wall beneath 

or distal to the cuff.  The strengths and weaknesses of various competing theories have been well 

discussed previously
4, 40

. 

 

Notably, the experiments of McCutcheon and Rushmer
31

, using dual Doppler ultrasound to track 

both arterial wall motion and blood flow, demonstrated that the Korotkoff sounds and wall 

velocity spikes were coincident in time and terminated long before peak blood flow velocity was 

attained.  Also, recorded oscillations in blood flow velocity, perhaps representing turbulence, 

persisted long after the end of the Korotkoff sounds.  Moreover, the ultrasonically measured 

blood flow velocity patterns “displayed no consistent recognizable change in form as cuff 

pressure passed through the level of diastolic pressure, except under conditions of extreme 

vasodilation (i.e., reactive hyperemia).” 

 

After their extensive experimental studies McCutcheon and Rushmer
31

 concluded that the initial 

high frequency component of the Korotkoff sound “occurs at the very onset of flow under the 

cuff and probably represents an acceleration transient producing abrupt displacement of the 

arterial wall and surrounding tissues distal to the point of compression”.  They further concluded 

that the appearance and disappearance of the “initial transient sound”, which “contains 

frequencies in the range between 60 and 180 cycle/sec” constitutes the criterion for determining 

both systolic and diastolic pressures.  The present biomechanical investigation comes to 

essentially the same conclusion.   

 

Nonetheless, studies and discussion of blood flow and turbulence as contributers to the genesis 

of Korotkoff remain prominent in the literature.  For example Chungcharoen
42

 studied sounds 

produced when a small rubber cuff, about one centimeter wide, was placed loosly around a 

surgically isolated carotid artery in anesthetized dogs and found that weaker, Korotkoff-like 

sounds could still be detected when an arterial segment was replaced by a constricted glass tube, 

suggesting that wall motion could not be their origin.  The waveform and frequency of sounds 

downstream of the glass tube were similar to those recorded with a natural artery.  However, the 

very narrow cuff used in this study may well have produced turbulent flow by virtue of creating 

a local stenosis, rather than mimicing the mechanics of the human arm and external cuff. 

 

Drzewiecki, Melbin, and Noordergraaf
40

 conducted perhaps the most extensive modern 

investigation into possible flow-related mechanisms for generation of Korotkoff sounds.  They 

employed an electrical analogy and equivalent circuit to formulate the governing state equaitons 

for fluid dynamic components and the nonlinear lumped compliance of a collapsible artery 

segment.  There were five collapsible vessel parameters, adjusted by method of nonlinear least-

squares estimation to minimize a chi-square figure of merit.  The model Korotkoff sound was 

derived from the distal pulse pressure and high pass filtered to determine sound content.  The 

frequency of the sound was in the range of 5 to 10 Hz with maximal power less than 20 Hz in 

most cases.  Individual computed sounds consisted of one or two cycles per heartbeat.  The 
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envelope of the computed Korotkoff sound amplitude during cuff deflation resembled a 

descending ramp, which is not typical for recorded Korotkoff sounds in man.  This detailed 

simulation study showed that flow pulses can contain sub-audible sonic information under 

realistic conditons.  However, the sound is near 10 Hz, below the typical human threshold for 

hearing, and not near 70 Hz as demonstrated in vivo by high speed recordings
36, 37

.  This study 

may well have correctly rendered the low frequency and largely inaudible components of arterial 

sounds, but may it have missed the source of the higher frequency, sharper sounds that are used 

clinically to measure blood pressure by the ausculatatory method. 

 

 

Audible vs. inaudible frequencies 

 

Because of the design and function of the human cochlea, humans are not able to hear tones 

below 20 Hz 
43

.  The accepted value for the frequency range of human hearing is 20 to 20,000 

Hz.
44

  Both the frequency transmission of the stethoscope
17

 and the sensitivity of the human ear 

drop off dramatically at low frequencies approaching 20 Hz and below.  The difference in each 

case is about 20 dB or 10-fold in sound pressure between 100 and 20 Hz.  Most likely it is the 

high frequency components of the Korotokoff sounds, namely the “K1” components caused by 

wall resonance, at frequencies of 50 Hz and above that are heard in clinical practice.  Lower 

frequency sounds in the neighborhood of 10 Hz that are associated with other propossed 

mechanisms such as blood acceleration or the water hammer effect are simply not heard. 

 

 

Conclusions 

 

The simple act of measuring blood pressure with a cuff and stethoscope by the auscultatory 

method can have profound implications for a patient
2
.  A falsely high reading can lead to costly 

diagnostic studies or possible life-long drug therapy.  Further, since the auscultatory method is 

used to evaluate the accuracy of automatic blood pressure devices
45-47

, there can be propagation 

of errors across technologies.  Although the accuracy of cuff-based measurements is often taken 

for granted, many subtle factors can cause clinically significant errors, including: cuff size, cuff 

deflation rate, the starting point for cuff deflation, psychological factors, arm elevation and 

tension, the presence of atrial fibrillation, the observer’s terminal digit preference (even 5’s or 

0’), the type of manometer, and the frequency response of the stethoscope or recording 

microphone
34, 35

.  Included also in this list is the choice of endpoint and especially the diastolic 

dilemma. 

 

By offering a simple mechanical explanation for the origin of the audible Korotkoff sounds, the 

wall resonance hypothesis provides a biophysical solution to the diastolic dilemma, helping to 

resolve a longstanding debate about one of the most basic aspects of clinical care.  Better 

theoretical understanding of wall resonance also suggests the possibility of creating special 

purpose mechanical stethoscopes or electronic filters for use in blood pressure determinations 

that would even better separate the higher frequency tones of arterial resonance, from the lower 

frequency and/or broadband sounds of turbulent blood flow.  Such technologies could 

objectively resolve in a quantitative way the difference between muffling and disappearance of 

the Korotkoff sounds, providing a more accurate end point for true diastolic pressure.  By 
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example, the present research also demonstrates how mathematical modeling can be used as a 

tool for discovery as well as for research synthesis. 

 

 

Appendix 1: force vs. displacement and spring constant during expansion  

 

Figure 15 shows a diagram of a thin walled cylindrical elastic tube of inner radius, r, wall 

thickness, h, and length, L, subjected to internal pressure, Pi, and external pressure Po, with 

transmural pressure  oi PPP  .  The zero pressure internal radius is r0 and the zero pressure 

wall thickness is h0.  A sector of the tube, , is shown.  The normal force, F, on the sector 

created by the transmural pressure difference is  rLPF .  The pressure induces stress, , 

in the tube wall in the hoop dimension.  By deduction from Figure 15 the opposite directed 

reactive force from elastic stretch of the segment is )2/sin(2hLFR  . 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15.  Diagram of thin walled elastic tube.  Arrows indicate forces on ends of segment 

r0, resolved into components parallel and normal to radius r. 

r 
θ/2 

Pi 

Po 

L 

h 



36 

 

 

As in the main body text, let x = r, the change in radius during expansion.  Then Young’s 

modulus of the wall material is )r/x/(E 0 , that is, stress divided by strain, and in turn 

 

)2/sin(2hL
r

Ex
F

0

R  .         (14) 

 

Using u)usin(   for small angles, u, in radians 

 

 hL
r

Ex
F

0

R
.          (15) 

 

The spring constant, k1, during expansion is FR/x or 

 


0

1
r

EhL
k .           (16) 

 

For small positive r in an artery with typical nonlinear characteristics of a biomaterial, E will 

increase and  h  will decrease as  x  increases, producing offsetting errors, so that 

 


0

0
1

r

LEh
k ,          (17) 

 

which is constant. 

 

 

 

Appendix 2: force vs. displacement and spring coefficient during buckling 

 

Figure 16 shows the strained shape adopted by the cross-section of one half of a fully flattened 

elastic tube.  The zero pressure internal radius is r0 and the zero pressure wall thickness is h0.  

The length of the half segment perpendicular to the page is L.  The fully flattened shape can be 

closely approximated by a rectangle of height 2h0 capped by a semicircle of radius h0.  Young’s 

modulus of the wall material is denoted E.  The spring coefficient, k2, for wall displacement x = 

r0 can be approximated as the force required for complete flattening, divided by the absolute 

value of the distance, r0, moved by the inner wall of the tube orthogonal to the plane of 

flattening, as follows. 
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Figure 16.  Sketch of one half of completely flattened elastic tube.  Bending moments, M1 and 

M2 are indicated by curved arrows.  

 

 

In Figure 16 the dashed line represents a curved surface at uniform distance, u, from the inner 

wall of the compressed tube.  The circular path length at  u  before bending is  urp 0  .  The 

path length at  u  after complete flattening is   puru
2

r
2 0

0 






 
.  Hence, there is no 

stretching; only bending of the wall material. 

 

The force required to produce maximal bending can be calculated as follows.  Consider bending 

moment M1 about point P.  Compression of the outer regions of straight segment, s, adds to 

bending moment M1.  Also stretching of curved segment, c, further adds to bending moment M1.  

Let 
  00

0

r/u1

1

ur

r







  be the fractional path at level  u  that is straight.  Length p is 

shortened or compressed by factor 


1
ur

u

0

; the absolute compression at level  u  is 

)1(p  .  At the same time length p)1(   is stretched by amount )1(p  , also adding to 

bending moment M1, by virtue of the continuity of the straight and curved segments.  Noting that 

the spring constant in compression or stretching of a rectangular volume of elastic material 

having Young’s modulus, E, is Earea/length, the combined compression and stretching will 

produce an incremental bending moment 

 

u
p)1(

ELdu
p)1(u

p

ELdu
p)1(dM1 





















 , or      (18) 
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duELuduELuduELu)1(dM1  .       (19) 

 

In turn, 

 

2

0

h

0
11 ELh

2

1
duuELdMM

0

  .        (20) 

 

The incremental counterbalancing bending moment, dM2, created by external pressure acting on 

straight segment, s, at distance  y  from point, P, in Figure 16 is y)dyL(PdM2  , and 

 

4

r

2

1
LPdyyPLdMM

2

0

2
2/r

0
22

0 
 



.      (21) 

 

Setting M1 = M2 gives 

 

2

0

2

0

2 r

hE4
P 


 .          (22a) 

 

As a reality check suppose E = 1.4 x 10
6
 dynes/cm

2
 and h0/r0 = 0.15, as in the standard model.  

Then the collapse pressure for an artery would be  

 

mmHg6.9
cm/dynes1333

mmHg1

cm

dynes
)15.0(

)14.3(

E104.14
P

22

2

2

6




 ,   (22b) 

 

or about 10 mmHg outside greater than inside, which is physically reasonable and consistent 

with overpressures required to suppress cuff pressure oscillations
4
. 

 

Now consider the small sector of the collapsed tube of surface area, Lr0  , perpendicular to the 

plane of flattening.  The reactive elastic force in buckling on this sector is 

 

Lr
r

hE4
LrPF 02

0

2

0

20R 


 ,        (23) 

 

and the effective, positive signed, spring “constant” or coefficient at x =  r0 is FR/r0 , or 

 





2

0

2

0

202
r

hEL4
)r(k .         (24) 
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Appendix 3: effective mass 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.  Expanding cylindrical shell of incompressible fluid. 

 

 

Figure 17 shows a cross section of the inner wall of an expanding cylindrical elastic tube having 

zero pressure radius r0, and time varying radius r = r0 + r.  As the tube expands it pushes 

surrounding fluid outward, and as it contracts it draws surrounding fluid inward.  Consider a 

shell of incompressible fluid at radius, p, having thickness dp and containing fluid of density, .  

Let  u  represent the velocity of radial movement of the fluid in the shell at radius, p.  For an 

incompressible fluid, we must have 

 

upL2
dt

dr
rL2  ,         (25) 

 

r0 

r0 + r 

p 

p + dp 
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which gives 
dt

dr

p

r
u  .  At increasingly farther radii, p, the outward movement of fluid becomes 

slower.  For the small displacement case 0rr   the acceleration of the cylindrical shell at radius p 

is 

 

2

2

0

dt

rd

p

r

dt

du
 .           (26) 

 

This simplification allows straightforward calculation of the resonant frequency of the system by 

means of an analytical formula for an ordinary second order differential equation.   

 

For concentric shells of constant thickness, dp, the incremental “mass x acceleration” of the shell 

is  

 

2

2

0

dt

rd

p

r
dppL2

dt

du
dppL2  .        (27) 

 

The total “mass x acceleration” of all shells added together from radius 0 to the outer radius of 

tissue, Rmax, surrounding the artery is 

 

max2

2

0

R

02

2

0 R
dt

rd
Lr2dp

dt

rd
Lr2"ma"

max

  .      (28) 

 

Since, as defined in the body text, the acceleration of the artery wall model, x
dt

rd
2

2

 ;  the 

effective mass of the system is 

 

max0RLr2m  .          (9) 

 

For a sector of the tube having angle, , the effective mass is 

 

max0RLrm  .          (30) 

 

(For larger excursions in which  r  becomes much greater than r0, the corresponding expression 

for “mass x acceleration” (derivation not shown) is 

 

 2

maxmax0 xLRxR)xr(L"ma"   ,       (31) 

 

which can be substituted into an equation of motion that can be solved numerically.  However, 

for the present problem of artery wall motion the simpler solution assuming that  r  is close to r0 

is sufficient, since the stiffness of the artery in expansion is much greater than the stiffness in 
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buckling and also since the transmural wall pressures during an auscultatory reading are 

relatively small.)  
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