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ABSTRACT 

Allan, Mikaela L. M.S., Purdue University, August 2014. Role of resveratrol metabolites 
in adipose function. Major Professor: Kee-Hong Kim. 
 
 

The rise in obesity rate has drastically increased over the last few decades and has 

quickly grown into a worldwide epidemic. Large increases in visceral adipose tissue 

accumulation increase risk for metabolic disorders including insulin resistance, type 2 

diabetes, and cardiovascular diseases. Currently, increased levels of circulating non-

esterified fatty acids (NEFA) have been suggested to be the mediator linking obesity and 

type 2 diabetes. Studies identifying ways to alleviate mobilization of NEFA in adipose 

tissue via dietary phytochemicals may useful as a therapeutic approach. Despite the 

established benefits of resveratrol in health and in the development of obesity, the role of 

resveratrol metabolites in lipid metabolism remains unknown.  

The objectives of this study were to determine the role of resveratrol metabolites 

in adipose function with a focus on the effect in lipolysis and lipogenesis. Resveratrol 

metabolite, piceatannol, previously demonstrated its role as an antilipolytic agent through 

the suppression of lipolysis via protein degradation of adipose triglyceride lipase (ATGL) 

and comparative gene identification-58 (CGI-58). We hypothesized other resveratrol 

metabolites exhibit similar effects in modulating the lipolysis process. In our study, we 

examined several resveratrol metabolites and identified trans-�� ��� �-trimethoxy 

resveratrol (TMR) having ability to suppress lipolysis in basal and stimulated conditions 

in mature murine adipocytes at non-cytotoxic levels. Upon further mechanistic studies, 

TMR at 50 µM reduces ATGL and CGI-58 protein expression with greatest efficacy in 

an acute, three hour treatment. mRNA expression analysis displayed that TMR may also 

play a role in transcriptionally regulating lipolytic genes. Additionally, we investigated 
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the role of TMR in lipogenesis in maturing preadipocytes. Although TMR did not display 

significant reductions in lipid accumulation during lipogenesis, gene expression profiling 

indicates it may induce transcriptional remodeling of adipocyte function. Of interest, 

TMR upregulates expression of genes involved in mitochondria function suggesting 

increased catabolic processes, thermogenesis, and potential enhanced capacity for energy 

expenditure during development. Collectively, our study provides evidence that TMR, a 

resveratrol metabolite, might have a therapeutic potential in attenuating adiposity and its 

associated metabolic disorders. 
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CHAPTER 1. REVIEW OF THE LITERATURE 

1.1 Introduction 

The rise in obesity rate has drastically increased over the last 30 years and has 

quickly grown in to worldwide epidemic (Rosen and Spiegelman 2006; Van Gaal et al. 

2006). Obesity, a disease of excess body fat, has attracted more attention due to the 

influence it has on regulation of overall energy homeostasis and coordinated responses 

(Rosen and Spiegelman 2006). Individuals with large visceral (central) adipose tissue 

deposition have elevated risk for metabolic disorders, morbidity, and mortality (Van Gaal 

et al. 2006). The large energy imbalance seen in obesity can be attributed to a variety of 

different factors including environmental, genetic, and metabolic function of central 

tissues (Kim et al. 2013).  

Currently, investigations identifying the role of phytochemicals on human health 

is being done, however there is less work examining the modulation obesity via action by 

phytochemicals (Kim et al. 2013). The role of natural bioactive components have been 

shown to have a wide range of action in signaling pathways and cellular functions (Kim 

et al. 2013). In this review of the literature, several molecular pathways involved in 

adipose function and lipid metabolism are outlined in regards to the development of 

obesity and its associated metabolic disorders. Additionally, dietary compounds, 

specifically resveratrol metabolites, are defined and examined as a potential therapeutic 

strategy in specific adipocyte functions related to the development of obesity and its 

associated diseases. Taken together, this review offers a central background of 

information for further understanding concerning the selected research goals and 

objectives of our study.  
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1.2 Obesity 

Obesity is defined as an excess accumulation of body fat to the ration of lean 

body mass. Obesity is determined with a numerical value of body mass index (BMI) of 

30 or greater (CDC 2012). BMI is calculated with a formula based on weight in 

kilograms divided the height of adult in meters (CDC 2011). Although obesity is 

commonly associated with extreme body weight, it is a heterogeneous group of 

conditions which have compounded by multiple causes and determined by genetics, 

environmental factors, energy intake and expenditure, and culture (Kopelman 2000). 

Until recently, obesity has only been considered a metabolic condition, and primarily 

isolated to developed western civilization. However within the 20th century, global 

increases in body weight have been on the rise in developing countries as well (Caballero 

2007). Changes in global food systems have caused a complex issues resulting in 

overnutrition and the promotion of obesity meanwhile nearly one billion people are 

malnourished (Swinburn et al.). The World Health Organization estimated that in 2008, 

1.4 billion adults were overweight and 500 million obese (WHO 2013). Over the last two 

decades, the rapid rise in obesity rate in the United States has drastically increased to an 

astonishing level of more than one-third the population , 35.7% , with 17% of adolescents 

and children, who are obese (Ogden et al. 2014). The development of obesity and 

increased adiposity is coupled with physiological changes in function and in the 

distribution of adipose tissue. With contribution by obesogenic factors, obesity expansion 

is caused by increased intake of energy-dense foods, reduced physical activity, with 

increases in sedentary lifestyles. The imbalance between energy intake and energy 

expenditure over time results in positive energy balance with increased energy stores, as 

adipose mass, and weight gain (Bleich et al. 2011). 

The American Medical Association recently recognized obesity as a disease 

which now requires medical interventions and is altering the way the medical community 

treats the complex issue and other chronic illness related to obesity (Breymaier 2013). 

Obesity is associated with many other metabolic disorders including cardiovascular 

disease, type 2 diabetes, inflammation, and certain cancers (Despres and Lemieux 2006). 

Also widely seen with excess fat accumulation is a composite of metabolic syndrome; a 
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combination of health issues that is largely seen with visceral obesity which is not 

exclusive to hyperlipidemia, insulin resistance, high blood pressure, and hypertension 

(Despres and Lemieux 2006). Moreover, obesity has also been reported as the underlying 

cause of sleep apnoea and sleep-related strokes which can lead to pulmonary 

hypertension, heart and respiratory failure (Kopelman 2000). Not only does the obesity 

rate cause a threat to global health, there is causation of severe financial implications. A 

conservative estimate for US national healthcare expenditures was estimated at $3.5 

trillion in 2012, and that number is projected to increase to $5 trillion by 2020 (CMS 

2010; 2014) with $150 billion attributed solely to obesity (Finkelstein et al. 2009). 

Defining strategies to alleviate not only the medical affliction of the obesity epidemic, but 

also the financial spending magnitude are imperative. It has been reported that modest 

weight loss can help to reduce risk factors for obesity associated diseases (Ben-

Menachem 2007; NIH 2005). Nonetheless, of the 51% of Americans who desire to lose 

weight, less than half are actively working to shed pounds (Brown 2013). Therefore, 

identifying therapeutic approaches is critical to help prevent or treat obesity and its 

associated metabolic disorders. 

 

1.3 Adipose biology 

Adipocytes play a critical role in whole body energy homeostasis and metabolism. 

Adipose tissue stores fatty acids (FA) in the efficient form of triglycerides via 

esterification to glycerol, and in times of excess energy expenditure or an energy shortage, 

it releases them into circulation (Galic et al. 2010). There are two types of adipose tissue: 

white and brown adipose tissue (BAT), each containing specific physiological roles 

(Mohamed-Ali et al. 1998). White adipose tissue (WAT) is the primary adipose tissue 

depot in humans and is largely characterized by unilocular adipocytes with single lipid 

inclusion used for storage and mobilization (Ahima and Flier 2000). Excess energy is 

stored as triacylglycerides in adipose tissue and can increase in tissue volume through 

increases in size of an adipocyte lipid droplet (LD), hypertrophy, and in number of 

adipocytes, hyperplasia, or both (Spiegelman and Flier 1996). In adults, most expansion 

of adipocytes occurs from increased LD size in adipocytes due to tight regulation of the 
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number of fat cells, holding constant throughout adulthood in lean and obese individuals 

(Spalding et al. 2008). Although, changes in body weight are primarily due to increase 

ad������� ��	
��� ���� �� � ��������	 ��� ��		 ������ ���� �� �������� ��� ���������

hyperplasia, and induces the conversion of preadipocytes to adipocytes. Therefore, after 

losing body weight, it can be particularly hard to maintain a lean weight due to the 

constant number of adipocyte cells (Arner and Spalding 2010). 

Adipose tissue is a complex, active, and essential metabolic endocrine organ 

comprised of two-thirds adipocytes, and one-third connective tissue, nerve tissue, 

stromovascular cells, and immune cells. The traditional idea of adipose tissue solely used 

for energy storage is no longer relevant, as it has been widely studied for its metabolism 

and endocrine functions (Kershaw and Flier 2004). Adipose tissue is responsible for 

secreting endocrine, paracrine, and autocrine signals which include a range of proteins 

termed adipokines and lipoprotein regulators; such as leptin, tumor necrosis factor-�

(TNF-��� �����	�
���-6 (IL-6), adiponectin, resistin, lipoprotein lipase, cholesterol ester 

transfer protein, and apoliporotein E (Mohamed-Ali et al. 1998). Adipokines participate 

in a variety of metabolic action via physiological processes which include inflammation 

and immune health (Lago et al. 2007). Overall, excess accumulation of adipose tissue 

poses a public health threat as whole body health and metabolism is affected and 

negatively effecting longevity and reduceing life expectancy (Olshansky et al. 2005). 

Moreover, identifying therapeutic strategies to specific adipose tissue targets may have 

large potential in curbing obesity and its associated syndromes.  

 

1.4 Adipogenesis 

Adipocytes are derived from multipotent mesenchymal stem cells which allow 

them to have a two-step process in becoming mature adipocytes (Rosen and MacDougald 

2006). This process begins with commitment to the adipocyte lineage followed by 

induction of terminal differentiation (Otto and Lane 2005). The first step of determination 

results in a preadipocyte that has lost its ability to differentiate into other cell lines. 

Widely used and accepted as a model for adipocyte biology include 3T3-L1 cells, 

originally clonally isolated from Swiss 3T3 mouse embryos (Green and Kehinde 1975; 
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Green and Meuth 1974; Gregoire et al. 1998). Preadipocytes are morphologically similar 

to that of fibroblasts and expansion of preadipocytes via hyperplasia occurs until 

confluence, when appropriate induction of differentiation causes the cell to acquire 

characteristics of mature adipocytes (Rosen and MacDougald 2006). In order for the 

differentiation process to occur, there are several steps that are completed, including 

development and growth arrest, allowance of mitogenic and adipogenic signals, and 

biochemical transformation, shown in Figure 1.1. Induction of differentiation in 3T3-L1 

cell culture requires a cocktail of hormonal stimulation that is given to cells comprising 

of dexamethasone (DEX), methylisobuthylxanthine (MIX), and insulin. Mitotic clonal 

expansion (MCE) occurs unique to non-primary preadipocytes which permits one or two 

more rounds of DNA replication. Terminal differentiation is accompanied by a 

transcriptional cascade which creates a distinctive spherical shape and accumulates LDs 

(Gregoire 2001; Gregoire et al. 1998; Otto and Lane 2005).  

 

1.4.1 Preadipocyte development, growth arrest, and differentiation 

In order to differentiate, preadipose cell lines which have proliferated and display 

a fibroblastic morphology are required to reach a level of confluence (Gregoire et al. 

1998; Hausman et al. 1980; Reichert and Eick 1999). The physical contact of cells results 

in growth arrest at which point preadipocyte cells withdraw from the cell cycle to 

undergo adipose conversion. It has been noted that cell to cell contact is not a sole 

requirement for this conversion into adipocytes, as it has been observed that cells plated 

at low density still maintain and go through differentiation (Gregoire 2001; Gregoire et al. 

1998). Pre-confluent proliferation and growth arrest are necessary for preadipocytes to 

experience the appropriate morphological and distinct gene expression before their 

transformation to adipocytes.  

Subsequent to growth arrest, preadipocytes must receive signals to further their 

development through differentiation which allow them to make specific biochemical 

alterations. CCAAT/enh����� ������	 
������  ������� ��� 
��������� 
�����������-

��������� ����
��� � ������� ���� ���� ���������� �� ��� 	���� ����� �������������

specific adipocyte genes (Gregoire et al. 1998). Nonetheless, normal preadipocytes 
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maintain high levels of preadipocyte factor-1 (pref-1), C/EBP homologous protein 

(CHOP-10), and GATA transcription factors until they are down-regulated upon 

differentiation (Mei et al. 2002; Tang and Lane 2000; Tong et al. 2000). Pref-1 is a 

transmembrane protein inhibitor of adipogenesis (Mei et al. 2002), and is highly abundant 

in the stromal-vascular fraction of preadipocytes yet absent in mature adipocytes (Smas et 

al. 1999). Growth arrested preadipocytes express CHOP-10 which is responsible for 

������ ��	
�	����	��
�� ����� ��� ����� �� ������ 	��� �� ������


	�����
��
��� 	����
�� ���� �� ������ ��
�
� ��� �
�
�� �� ���������� (Ron and 

Habener 1992; Tang and Lane 2000). GATA-2 and GATA-3 transcription factors bind 

specifically to DNA sequences, and are found in high levels in WAT and solely 

expressed in preadipocytes (Tong et al. 2000). Inherent expression of both represses 

differentiation in adipocytes, however with induction of differentiation these factors are 

down-regulated (Tong et al. 2005).  

In order for these transcription factors to be expressed, cells are stimulated to 

differentiate with a standard adipogenic mixture supplemented to fetal bovine serum 

(FBS) containing medium including the glucocorticoid DEX, cyclic adenosine 

monophosphate (cAMP)-phosphodiesterase inhibitor MIX, and a high dose of insulin 

(Macdougald and Lane 1995; Rosen and Spiegelman 2000; Sadowski et al. 1992). It is 

important to note that different cell models require diverse cocktails for the induction of 

differentiation due to the nature of the reagents used (Gregoire 2001). In 3T3-L1 cell 

linage culture, this standard mix is used to induce the cells to begin their transformation 

into adipocytes. As mentioned, DEX is a synthetic glucocorticoid responsible for the 

����
�� �� ������ ���	����� ��� �	����
�� (Hajduch et al. 1995; Wu et al. 1996), 

meanwhile blunting the expression of Pref-1 (Smas et al. 1999). MIX heightens 

differentiation by increasing cAMP levels and through the downstream actions of the 

cAMP pathway (Pantoja et al. 2008) �� �������� ������ �� ������ (Cao et al. 1991). 

Insulin is required for efficient differentiation of adipocytes because it not only increases 

the amount of lipid accumulation, but also it reduces apoptotic activity through insulin-

like growth factor-I (IGF-I) (Kiess and Gallaher 1998). Insulin action in differentiation is 

via cross-activation of IGF-I receptors inducing downstream signaling, stimulating many 
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adipogenic effects (Rosen and Spiegelman 2000). Taken together, MIX, DEX, and 

insulin create favorable conditions for 3T3-L1 cells to undergo morphological and 

metabolic changes during differentiation to allow for cytoplasmic lipid accumulation 

(Zhou et al. 1992).  

 

1.4.2 Mitotic clonal expansion 

Once differentiation has occurred in growth arrested cells at G0/G1 cycle, they are 

able to return to the cell cycle for one or two more rounds of DNA replication and cell 

doubling; a progression known as MCE (Tang et al. 2003). MCE occurs approximately 

24 hours after differentiation has been induced and is thought to be a necessary process to 

allow for the unwinding of DNA, subsequently allowing access for transcription factors 

to begin appropriate regulatory responses for the development of a mature adipocyte 

phenotype (Ntambi and Kim 2000). This DNA replication during mitosis also alters the 

promoter control elements helping to activate regulatory genes which initiate 

differentiation (Cornelius et al. 1994). However, whether MCE is truly required for 

differentiation has been deemed controversial; yet studies have identified evidence 

showing it is a prerequisite and that certain proteins acting as checkpoints for mitosis are 

important in the regulation of adipogenesis (Otto and Lane 2005; Rosen and MacDougald 

2006). Insulin was able to induce MCE solely, similarly to when 3T3-L1 cells are 

induced into the differentiation process through an adipogenic cocktail (Qiu et al. 2001). 

Certain growth proteins are essential during clonal expansion and include retinoblastoma 

proteins such as pRB, p107, p130 each which bind to E2F/DP resulting in an inactivation 

specific transcriptional growth factors (Gregoire et al. 1998). When there is inhibition of 

MCE in 3T3-L1 cells, differentiation of preadipocytes has been shown to be blocked 

(Nam et al. 2008). To note, cell division in primary adipocytes stemming from human 

adipose tissue is not a requirement when proceeding through differentiation. It is 

suggested that these specific type of cells have previously experienced the necessary cell 

divisions in vivo, and are already in the late stage of adipocyte development (Entenmann 

and Hauner 1996). 
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1.4.3 Adipogenic transcriptional cascade 

Necessary communication of extracellular signals by differentiating adipocytes to 

the nucleus give rise to the introduction of a transcriptional cascade (Gregoire et al. 1998). 

The coordination of gene-expression events including the expression of PPA�� ���

���	
�� ����������� ���	
�� ��� ������������ ��� ��� ���������� ��� ��������

differentiation (Rosen and MacDougald 2006). These factors trigger terminal 

differentiation and commitment of cells to the adipocyte lineage (Dani 1999). These 

changes compound a result of morphological changes and developed fat droplets.  

 

1.4.3.1 PPAR family 



��� �� � ������ �� 

��� ����� ��� ������-dependent transcription factors 

that bind the ligand of receptors leading to activation of a target gene (Kersten et al. 

2000). PPARs behave similar to hormone receptors in which they bind the promoter 

region of a specific gene and form a heterodimer with retinoid X receptor (RXR), which 

results in activation responses in transcription when bound to the ligand hormone 

(Kersten et al. 2000)� 

��� ��� ���� �������� �� ��������� ���� �� ���� ���� �����

adipose, brown adipose, liver, kidney, heart, and skeletal muscle (Kersten et al. 2000). 



��� �!���� �� ����� ��������� �������� ���� ���� 

���"� 

���#� ��� 

���$� ����

are transcribed from the same gene only with different splicing and promoters (Otto and 

Lane 2005)� 

���# �� ��� �������� ������� ������� ��� �� �� ��������� �� ���� �����!��



��� �� � ��������� %������& ��� ����� ����� � ������� �� ���� ������ ������� �����

and its early binding in the differentiation process is required for the development of 

mature adipocytes (Spiegelman and Flier 1996; Tontonoz et al. 1994). 

��� �� ��������

in transcription of genes in FA uptake, storage, and specifically adipocyte P2 (aP2), 

lipoprotein lipase, acyl-coenzyme A synthase and others (Otto and Lane 2005). It has 

also been demonstrated that expression of P
��� �� ��� ������ �� ���� ��� ����������

ability to go through adipogenesis (Wu et al. 1999b), as well as having no formation of 

WAT and little amounts of BAT (Mohamed-Ali et al. 1998). Animals that contain natural 



��� � ������� ���� ������� ������ � ������������ ���������� �� �����������

(Mohamed-Ali et al. 1998)� '� (���(� � ���� ������ �� 

���� ����� ��� ��� ���
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adipose tissue mass and mouse embryonic fibroblasts resulted in impaired adipogenesis. 

����� ����	 
��
��� ��� ������� ���� ����� ������� ��������� ������� ����������

however they maintained normal levels of adipose mass and morphology (Rosen and 

MacDougald 2006). ����� ���������� �� ����	 ������������ ��� �������� ���������

�� ����������� �� ��������� ���� ������� ���� ����	 ��������� �� �������� ��� �� � ������

of its regulatory transcriptional activity (Spiegelman and Flier 1996; Tontonoz et al. 

1994). In 3T3-L1 cell culture model, its activity has been aptly demonstrated and shown 

to increase with insulin (Hu et al. 1995). Additionally, overexpression of the adipokine, 

����������� ���� �������� �� �� ������� �� ����	 ������������ ������� (Attie and Scherer 

2009).  

 

1.4.3.2 C/EBP family 

The transcription factor family of C/EBPs contains a basic luecine zipper domain, 

allowing activation via homo-and hetero-dimerization (Gregoire et al. 1998). This 

dimerization is a criterion for DNA-binding (Otto and Lane 2005). For the regulation of 

������������� ������� ��������� � �!�� ��� �������" � �!�#� � �!�$� ��� � �!�%

(Otto and Lane 2005). Upon hormonal stimulated differentiation in vitro� � �!�# ���

� �!�$ ��� ������� �������� ��� �� ��������� �� &�' ��� ()'� ����������� (Yeh et al. 

1995). They are early regulators in the program of preadipocyte differentiation 

demonstrated by their ability to accelerate adipogenesis with protein overexpression, 

specifically in 3T3-L1 cells (Otto and Lane 2005). � �!�#, though rapidly expressed 

after differentiation stimulators, does not possess the DNA binding ability until its 

phosphorylation occurs and it loses its association with CHOP-10, thus gaining DNA 

binding activity (Tang et al. 2004)* +���� � �!�# �� ����������� �� ��� ������ ����� ��

can participate in DNA binding after a 12 to 16 hour lag phase, simultaneously with the 

S-phase of MCE (Tang and Lane 1999). Subsequent to DNA binding� � �!�# ��������

���� � �!� ���������� �������� ������ ����� �������� ������� �� � �!�% ��� ����	� ��

initiate the transcription activation (Zhang et al. 2004). The transcriptional activators 

������� ��� ���������� �� � �!�% ��� ����	� ���� ��������� ��� ����������� �� ����

adipogenic genes and terminal differentiation action (Fajas et al. 1999). It is also been 
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�������� �	
� ���	 ����� 
�� ����� ����
�� �	� ���������� ������ �� ����� ������

day two of differentiation to approximately day five after differentiation induction 

(Ntambi and Kim 2000). To note, embryonic fibroblasts which did not contain both 

������ �� ����� ���� ���
���� ���
��� �� �	��� ����������� 
�� �
���
���� 
�

adipocytes (Tanaka et al. 1997). Furthermore, a dominant-negative C/EBP compound, 

termed A-����� �
� 
������� ���� ����� !"# ������� ���������� �	� ��
�����
����

�� ����� �� �	� ������� 
�� ����������� �� $� 
�� 
����������� (Zhang et al. 2004).  

����� �� �����
���� �� �	� ����������� �� 
���ose tissue due to its ability to 

induce adipocyte genes directly (Rosen and MacDougald 2006)% ����� ���� ���������

contain C/EBP regulatory elements, and thereby can act as a positive feedback loop that, 

���� ���������� 
������� ��� �	� �
�����
��� �� ���	 ����� 
�� ��#&' ����������

(Tang et al. 2004)% ����� 	
� ���� ��������� 
� ��� �� �	� �����
� �����
���� ��� ������

metabolism, due to its modulation of adipocyte genes and encoding proteins specific to 

adipose tissue (Darlington et al. 1995)% (� 
 ����� ����� �����  ��� ��� ���� ����

��
��� �� 
��)�
���� ����� ���� �
�% ����� �� ������
�� ��� ����
� ������ ��������
����

in liver, and in white and brown adipose tissues (Wang et al. 1995). In 3T3-L1 

preadipocytes, C/E��� �������������� �������� �� ��������� 
������ �� ������
���

differentiate into mature adipocytes; demonstrating its important role in modulating 

differentiation (Freytag et al. 1994)% "�� ���� �� ����� necessary for differentiation, it 

has been reported as sufficient to activate growth arrested cells without use of hormonal 

stimulation (Lin and Lane 1994)% ����� 	
� ���� �������� �� 	
�� 
��i-mitotic activity, 

thus early expression of this gene would inhibit preadipocytes from entering MCE, a 

necessary requirement for 3T3-L1 differentiation (Otto and Lane 2005). Importantly, 

PPAR' 
�� ����� �
� �����
�� 
�� ������
�� �����	�� ��������� �� ������ 
���������

responses to maintain terminal differentiation (Spiegelman 1998).  

 

1.4.4 Terminal differentiation 

Terminal differentiation is a state in which adipocytes have largely increased in de 

novo lipogenesis and are sensitive to insulin (Gregoire et al. 1998). Cells are no longer 

participating in the cell cycle and lose their capacity to proliferate; although after 
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differentiation, preadipocytes may be able to de-differentiate and re-enter mitosis 

(Cornelius et al. 1994). Nonetheless, once cells have surpassed the GD point, they have 

become fully committed to terminal differentiation (Otto and Lane 2005). Observable 

changes take place with increased lipogenesis and LD formation. Mature adipocytes have 

lost their preadipocyte fibroblastic characteristics and appear spherical with the 

acquisition of biochemical and morphological traits of adipocytes (Macdougald and Lane 

1995). Cells have also increased in protein levels related to lipid metabolism and 

enhanced expression of adipose tissue specific products, such as aP2 and FA binding 

protein (FABP). Furthermore, lipogenic enzymes and adipokines are highly expressed 

including leptin, adiponectin, and resistin (Gregoire et al. 1998; Otto and Lane 2005).   

 

1.5 Lipogenesis 

Triacylglycerides (TAG) are made up of a glycerol backbone esterified with three 

FA chains. TAG synthesis activity in WAT is an imperative factor for determination of 

adipose tissue mass and the release of non-esterified FA (NEFA). As seen in fasting rats, 

approximately 57% of newly hydrolyzed FA were recirculated for TAG synthesis (Wang 

et al. 2008). Although FA mainly come from the diet, 1-2% are made in adipose tissue 

itself (Wang et al. 2008). The carbon movement from glucose to FA is highly regulated 

by lipogenesis and involves a series of enzymatic reactions (Ameer et al. 2014). During 

FA synthesis, the first step includes a series of conversion reactions of citrate to acetyl-

CoA by ATP-citrate lyase (ACL) (Ameer et al. 2014). Carbons coming from acetyl-CoA 

are added to a growing chain of FA. The key rate limiting step is ATP dependent on 

acetyl-CoA carboxylation to malonyl-CoA carboxylase 1 by acetyl-CoA carboxylase 1 

(ACC1) (Gathercole et al. 2013). Malonyl-CoA is then transformed by multiple steps into 

a 16 carbon FA, palmitate, by fatty acid synthase (FAS), the major enzyme accounting 

for FA biogenesis (Zaidi et al. 2013). Further reactions lead to the production of 

complicated FA originating from palmitate, resulting in de novo lipogenesis (DNL) 

products of palmitate, and small amounts of stearate and shorter FA (Ameer et al. 2014).  

Once FA have been generated by DNL, they are converted into substrates for 

TAG formation by becoming saturated and transformed into monounsaturated FA 
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(MUFAs) by stearoyl-CoA desaturase 1 (SCD1). SCD1 has preference to convert 

saturated stearate and palmitate to their MUFAs oleate and palmitoleate, respectively. 

SCD1 is a rate limiting reaction and its desaturase activity has been proposed to reduce 

FA oxidation and stimulate DNL (Hulver et al. 2005). Biogenesis of TAG is a series of 

esterification of FA moieties that are consecutively added to a glycerol backbone (Farese 

and Walther 2009). The acylation of a glycerol-3-phosphate and the first FA occurs by 

glycerol-3-phophate acyltransferase (GPAT) and the second by diacylglycerol 

acyltransferase (DGAT) yielding phosphatidic acid (PA), which is then dephosphorylated 

to produce diacylglycerol (DAG) (Gathercole et al. 2013; Kuerschner et al. 2008). DAG, 

by a third acylation, then becomes TAG, but could be used as a prerequisite for 

phospholipids. DGAT2, which is highly associated with adipocytes, is localized to the 

endoplasmic reticulum (ER) and is responsible for the catalyzed reaction into TAG 

(Kuerschner et al. 2008). Of the enzymes which are involved in TAG synthesis, they are 

commonly found in the ER as well as the mitochondria, or in mitochondrial-associated 

membranes and have different isoforms. Newly generated TAG have been suggested to 

be at large to go into an associated lipid bilayer and locating to cytosolic LD, or to cells 

which secrete TAG (Yen et al. 2008).  

The biogenesis of LDs are defined as the initial accumulation of neutral lipids 

tightly connected at the ER (Digel et al. 2010). LDs are linked to a wide variety of 

functions which include lipid storage, energy and membrane formation, and protein 

degradation. LD synthesis occurs de novo and are generated in the ER (Walther and 

Farese 2012). LDs are primarily comprised of an organic phase of TAG and sterol esters 

in the core, yet other neutral lipids are present such as free cholesterol and retinol ester 

(Thiele and Spandl 2008). However the majority of the volume in adipocytes is TAG. 

The initial step is followed a gathering of proteins and increased lipid synthesis to create 

a globular LD. LDs have been observed in contact with the ER when formed and the 

specific membrane associated proteins moved between the two complexes (Walther and 

Farese 2012). In periods of excess energy, TAG need to be stored in LD and allowance 

for growth in LD requires local coordinated TAG synthesis or a translocation from the 

ER. This involves large amounts of TAG being located to its core (Farese and Walther 
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2009). LD droplet formation include ER budding which allows LD to grow from the ER 

bilayer and then bud off (Walther and Farese 2012). The main thought is that TAG 

biosynthesis is done between the leaflets of the ER membrane, prior to budding off and 

forming a LD. It was demonstrated that TAG is synthesized near the surface of the LD, 

accordingly indicated LDs grow by influx. Thus LDs can grow in size with droplet to 

droplet fusion and via increasing TAG levels (Kuerschner et al. 2008).  

In adipose tissue, all the major lipogenic enzymes are present, however only low 

levels have been observed compared to rodents (Gathercole et al. 2013). The low levels 

of ACL, which produces cytosolic acetyl-CoA for FA synthesis, is suggested to be reason 

DNL in adipose tissue accounts for a small percentage of lipid generation (Gathercole et 

al. 2013; Wang et al. 2008). Nonetheless, DNL in vitro is regulated partly by hormones 

and the dysregulation of the lipogenic pathway can cause disruption to overall lipid 

metabolism and homeostasis (Ameer et al. 2014). 

 

1.6 Lipolysis 

LDs are a critical and active organelle found in the intracellular cytoplasm of 

many cells. Previously, adipose tissue and LDs were considered only inert storage 

locations for excess fat (Ahmadian et al. 2009). However in recent years, LD biology has 

been an increasing interest due to studies identifying proteins and mechanistic pathways 

specific to LDs and represent a progressive area in cell biology (Farese and Walther 2009; 

Walther and Farese 2012). Within the core of the LD, TAG, which are highly 

hydrophobic, reduced and concentrated, are used for storing energy, occupying much of 

the space in the cytoplasm (Farese and Walther 2009). Surrounding the LD is a 

phospholipid monolayer covered with proteins functioning to stabilize and regulate 

(Brasaemle 2007).  

The mobilization of the stored energy stems from lipolysis; the hydrolysis of TAG 

into NEFA and a single glycerol backbone (Zechner et al. 2012) as shown in Figure 1.2. 

Lipolysis is an absolute prerequisite for cellular uptake and of release of FA to and from 

the bloodstream, first observed by Whitehead in 1909 (Whitehead 1909). This catabolic 

process allows for NEFA to be released during fasting, in times of metabolic need, as 
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well as when TAGs are in a surplus amount (Zechner et al. 2012). Nonetheless, the 

process of lipolysis is an intricate phenomenon which orchestrates the use of cellular 

lipases, plasma membrane transporters, FA binding proteins, and LD associated proteins 

(Langin 2006a). This mobilization of NEFA from adipose tissue via lipolysis, can be 

released to enter the bloodstream and ����� �� �	 
���� 
� ��� �
� �-oxidation and 

further for ATP formation. NEFA may also be transported to the liver in order to be used 

as substrates for ketogenesis, and glycerol for gluconeogenesis (Ahmadian et al. 2010).  

 

1.6.1 Lipolytic cascade 

Lipolysis occurs in periods of increased energy demand or expenditure, and is 

activated by hormones (Zimmermann et al. 2004). The concentration of NEFA is highly 

regulated between a balance of triglyceride hydrolysis and NEFA esterification (Langin 

2006b). Hydrolysis points occur at the primary and secondary ester bonds between the 

FA and the glycerol backbone (Zimmermann et al. 2004). Adipocyte lipolysis occurs in a 

meticulous order of events and in a regulated fashion, with each step utilizing a different 

enzyme; sequentially adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), 

and monoglyceride lipase (MGL) (Ahmadian et al. 2009; Walther and Farese 2012; 

Zechner et al. 2012). ATGL performing the initial cleavage of the first FA is the rate 

limiting step in which it transforms the TAG to form a diacylglyceride (DAG) and a 

NEFA. The second lipase, HSL, is a multifunctioning enzyme in that it has the capacity 

to hydrolyze TAG, DAG, and monoacylglyeride (MAG); its cleavage of FA from the 

acylesters contain a breadth (Lass et al. 2011). In fact, HSL was formerly thought to be 

the rate limiting lipase in TAG hydrolysis (Duncan et al. 2007), however, Haemmerle 

demonstrated through HSL knockout mice a shift in composition of fat: rather than 

accumulating TAG, KO mice increased in DAG levels, observably showing that HSL is 

primarily responsible for DAG hydrolysis (Haemmerle et al. 2002). Lastly, MGL 

removes the final FA, freeing the last NEFA and glycerol (Duncan et al. 2007; Lass et al. 

2011). This simple explanation for describing the lipolysis process is tightly regulated by 

a highly complex system of signals and mechanisms.  
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Increased levels of NEFA and glycerol in serum to be used as oxidative substrates 

are products of stimulated lipolysis (Duncan et al. 2007). Catecholamines are the major 

regulators in fasting induced lipolysis and are considered the starting point in the 

metabolic pathway that modulates TAG hydrolysis and NEFA release (Duncan et al. 

2007). Catecholamines are able to impact lipolysis once they bind to different 

adrenoceptor ��������� ��	
 �� �1-3 and 1-2, each linked to a G-protein (Jocken and Blaak 

2008). Norepinephrine, a catecholamine, binds to �-adrenergic receptors, on the 

adipocyte plasma membrane, which is coupled to a G-�������� �� �
� �
��� �-

��������	������� �� 
����� �
� ����� ��� ��	��� ��� 
��
�� �	����� �
����� �� ������� �3 is 

most active (Barbe et al. 1996; Jocken and Blaak 2008). The G-������� �������� s, then 

sends a signal to adenylyl cyclase (AC) which then activates the production of cAMP 

(Duncan et al. 2007). The increase in cAMP intracellular levels leads to the activation of 

a cAMP dependent protein kinase (PKA) (Carmen and Víctor 2006). Once cAMP binds 

PKA, this results in the controlling subunits to disassociate with the catalytically active 

stretch, thus increasing activity of the complex (Kim et al. 2005). This activation of PKA 

results in the phosphorylation of HSL and perilipin, a LD surface protein, and to further 

the catalysis of TAG to release NEFA and glycerol (Carmen and Víctor 2006) (Jocken 

and Blaak 2008). In addition, in the fasted state high levels of glucocorticoids also 

increase ATGL transcription and generate a signaling cascade (Villena et al. 2004). There 

are other signaling pathways which also induce lipolytic reactions in 3T3-L1 cells 

including protein kinase C and its stimulation by phorbol ester PMA in a dependent 

mitogen-activated protein kinase (MAPKs) and independent MAPK pathway (Carmen 

and Víctor 2006)� ����	
�������� 	�� ���� ���� �� 2-adrenoceptors that are coupled to 

inhibitory G-proteins (Gi). These Gis will inactive AC, thus reducing cAMP levels and 

muting PKA activity (Jocken and Blaak 2008).   

During a fed state, insulin acts as an antilipolytic agent via a regulatory pathway 

which involves both cAMP dependent and independent pathways (Duncan et al. 2007). In 

adipocytes, the cAMP dependent cascade involves insulin binding to its receptor which 

transmits a signal resulting in activation of phosphodiesterase 3B by phosphorylation, in 

turn degrading cAMP levels (Ahmadian et al. 2010). This reduction of cAMP levels 
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relieves PKA from activation and blunting the phosphorylation mediated activity of HSL 

and perilipin (Duncan et al. 2007). The cAMP independent modulating pathway by 

insulin is through the stimulating phosphorylation of protein phosphatase-1(PP-1) 

causing an alteration in its regulatory subunit. Activating phosphorylation of PP-1 results 

in the dephosphorylation and inactivation of HSL, reducing the lipolytic rate (Duncan et 

al. 2007; Razani et al. 1999). Insulin also has action in regulating the expression of 

ATGL; insulin has been shown in 3T3-L1 cells to down-regulate ATGL possibly through 

FoxO1 (Ahmadian et al. 2010; Kershaw et al. 2006).  

The physiological relevance of the controlling pathways of lipid metabolism is 

critical due to the volume of fat that is predominately found in adipose tissue (Jocken and 

Blaak 2008). Dysregulation of lipolysis and lipid metabolism can lead to severe 

physiological consequences. Specifically in a high fat diet-induced obesogenic state, 

there is increased basal lipolysis resulting in increased levels of circulating NEFA 

(Gaidhu et al. 2010). Defective regulation of lipolysis leads to excessive NEFA 

accumulation in visceral adipose tissue, and is highly correlated to insulin resistance 

which can result in impairment of the this hormone to act as an antilipolytic agent 

(Gaidhu et al. 2010). Overall, alternations in the regulation of this catabolic process can 

induce physiological impacts that can lead to defective mechanisms and lead to metabolic 

disorders.  

 

1.6.2 ATGL 

In 2004, three different groups identified a novel lipolytic enzyme which was 

responsible for TAG hydrolysis, and each gave the lipase a different name including 

ATGL (Zimmermann et al. 2004), desnutrin (Villena et al. 2004), and phospholipase A2�

(Jenkins et al. 2004). In the scope of this review, ATGL will be the name utilized. ATGL 

is a 54 kDa protein that has an N-terminal domain similar to patatin, a plant acyl 

hydrolase, which encompasses its catalytic activity that cleaves at the primary ester bond 

at sn-1(3) position (Duncan et al. 2007; Lass et al. 2011; Walther and Farese 2012). 

ATGL is tightly associated with the LD in differentiated 3T3-L1 cells and maintains a 

hydrophobic region for binding to the LD (Duncan et al. 2007); loss of this domain 
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results in loss of intracellular activity because of its inability to locate and bind the LD 

(Zechner et al. 2012). ATGL is considered to be the major lipase in adipose tissue 

lipolysis with its high substrate specificity to TAG (Ahmadian et al. 2010), showing 

minimal activity toward other lipids including DAG, MAG, cholesterylesters or 

retinylesters (Lass et al. 2006; Lass et al. 2011). The localization of ATGL has been 

determined, with the majority of ATGL locating in the cytoplasm (approximately 50%), 

yet a portion of it is found to be tightly associated to the LD, around 10% (Zimmermann 

et al. 2004). This amount of ATGL localized with the LD is not affected by the 

stimulation of lipolysis, with Zimmermann observing the co-localization to the LD in 

3T3-L1 cells (Zimmermann et al. 2004). In energy demand, increased levels of ATGL 

translocate from the cytosol to the surface of the LD upon activation (Bezaire et al. 2009). 

When ATGL is genetically altered in vivo, NEFA release by lipolysis was reduced 

greater than 75% in ATGL-deficient mice (Haemmerle et al. 2006; Haemmerle et al. 

2002).  

ATGL expression and enzymatic activity is tightly regulated. ATGL requires an 

activator protein which markedly increases its activity known as comparative gene 

identification -58 (CGI-��� �� ��� 	
������ ���ain containing protein 5 (ABHD5) 

(Zimmermann et al. 2009) (Lass et al. 2011). Through interaction of ATGL and CGI-58, 

maximum stimulation is seen at equal concentrations of both proteins (Lass et al. 2006). 

Studi�� �������
��� 	�� �	� �������� ������ �� ����������� ������  ���� �����

������ �	� ��� ������	 ���� �� ��� ����!�� ��� ��� ������
 �	��� "�#-58 interaction also 

occurs. The C-terminal end of the ATGL includes its regulatory function and location of 

its LD interaction (Lass et al. 2011). The activation of ATGL by CGI-58 is necessary for 

lipolytic action and acts independently of HSL (Bezaire et al. 2009). Another key 

regulator for ATGL involves its interaction with perilipins; proteins which are highly 

associated with LD surface, in which many are phosphorylated by AMP-dependent PKA 

upon lipolytic stimulation (Clifford et al. 1998). Studies identifying the complex system 

of how ATGL is activated as the initial step in lipolysis suggest CGI-58 and perilipins 

engage the enzyme and mediate ATGLs LD targeting and hydrolysis of TAG (Walther 

and Farese 2012). Hydrolytic activity of ATGL in fat cell lipolysis, in both the basal and 
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hormone stimulated conditions, to proceed is necessary and maintains as the first step in 

the sequential regulation of lipolysis (Lafontan and Langin 2009).  

Studies observed ATGL ablation in 3T3-L1 cells showed that with compromised 

lipolysis, cells were not able to compensate, even with the presence of other lipases 

(Duncan et al. 2007). ATGL-null mice have extreme TAG accumulation in the heart 

which resulted in premature heart failure (Brasaemle 2007), as well as reduced lipolysis 

which lead to fat deposition in many tissues, including fat, liver, muscle, kidney, spleen, 

and lung tissues (Lass et al. 2011). This has also been demonstrated with patients that 

contain ATGL gene mutations. Similar to ATGL null mice, there is massive TAG 

accumulation located in multiple tissues as well as the development of cardio myopathy, 

which is highly lethal (Lass et al. 2011). ATGL mediated TAG catabolism is an essential 

in all cells and when deficient, there is inability to maintain normal energy metabolism 

during fasting or energy expenditure (Lass et al. 2011). However, in studies analyzing the 

effect of high fat diet included obesity, there is disrupted signaling in the lipolytic 

cascade inducing upregulation of ATGL and its co-activator CGI-58. This results in 

increased basal lipolysis but blunted catecholamine-induced lipolysis yielding a 

dysfunctional mechanism, increased circulating NEFA, and contributing to obesity 

induced metabolic disease state (Gaidhu et al. 2010). 

 

1.6.3 HSL 

HSL was first discovered in the 1960s in which its isolation and characterization 

in adipose tissue demonstrated its innate ability to hydrolyze both DAG and TAG 

(Zechner et al. 2012). However, this 84 kDa cytoplasmic enzyme has a much greater 

affinity for DAG with relatively an eleven fold higher hydrolase activity toward DAG 

than TAG and preference for FA in the sn-1 or sn-3 position (Duncan et al. 2007; 

Lafontan and Langin 2009; Raclot 1997). Much of the recent knowledge of HSL stems 

from a study done with HSL-null mice, which demonstrated no changes in TAG 

accumulation in adipose tissues and nonadipose tissue, yet the level of DAG was 

enhanced (Haemmerle et al. 2002; Zechner et al. 2012). This led to the accepted thought 

that HSL is the second rate-limiting step in lipolysis and ATGL is responsible for initial 



19 

 

TAG hydrolysis. HSL also retains specificity to other lipid ester bonds such as 

cholesteryl esters, retinyl esters, and short-chain carbonic acid esters (Duncan et al. 2007; 

Zechner et al. 2012). The largest expression concentrations of HSL mRNA and protein 

include white and brown adipose tissues, although there is some low levels seen in other 

organs (Zechner et al. 2012). To date, there are three regions of HSL which make up its 

functional capacities including the N-terminal domain, C-terminal domain, and a third 

region presenting as the controlling component (Lafontan and Langin 2009). The N-

terminal region has been suggested as the modulator of lipid binding, dimerization of the 

enzyme, and interface with FA binding protein 4 (FABP4) (Lass et al. 2011). The action 

of HSL is increased by the presence of aP2 and FABP4, both which interact and aid in 

the movement to the surface of LD (Wang et al. 2008). The C-terminal domain contains a 

�������� ���� ��	��
��� �� ������
�� ����� ��� �����
���� ������ �� ����� �� ���

�
�
����� ���
�� ����� ����� ���� ����������
���� ����� 
�� ���
��� (Lass et al. 2011; 

Yeaman 1990).  

HSL is regulated by hormones, similar to ATGL, and thus results in the second 

���� �� ���������� ������� �-adrenergic stimulation, HSL is the target of PKA 

phosphorylation and other kinases which regulate its enzymatic activity (Lass et al. 2011) 

(Zechner et al. 2012). HSL phosphorylation at 5 serine residue sites by PKA, AMPK and 

MAPK are a critical regulatory steps for hormone-induced lipolysis and increases HSL 

lipolytic activity (Zimmermann et al. 2009) (Walther and Farese 2012). Through overall 

modulation of cAMP levels, catecholamines and insulin levels play a role in the 

regulation of HSL action (Lafontan and Langin 2009). This phosphorylation also allows 

for the recruitment of HSL to the surface of the LD and increased HSL activity 100 fold 

(Schweiger et al. 2006). The regulation of HSL induces a two-step process of activation: 

PKA phosphorylates HSL at several serine sites (Ser81, Ser222, and Ser276) resulting in 

translocation from the cytosol to the LD and binds HSL to a perilipin adipose 

differentiation-related protein, and secondary phosphorylation of serine-660 (Ser660) is 

responsible for the imperative LD interfacial activation and hydrolysis (Walther and 

Farese 2012; Wang et al. 2009). The activation of the signaling kinase pathway which 

stimulates lipolysis via phosphorylating HSL at Ser660 has been demonstrated in vitro 
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(Greenberg et al. 2001). The lack of HSL greatly affects overall adipocyte function and 

the hydrolysis of DAG and release of NEFA (Zimmermann et al. 2009).  

 

1.6.4 MGL 

The final step in lipolysis is catalyzed by MGL, the rate-limiting point for 

�������� 	
� ����� � ���� 	
� �������� ��������� ����� ��������� �� �� ��

resultant after the intracellular TAG hydrolysis by ATGL and DAG by HSL, and occurs 

in the cytoplasm of the cell (Zechner et al. 2012). This 33 kDa lipase was found in 1975 

and purified from rat adipose tissue with its role clarified as the monoacylglyeride 

enzyme (Tornqvist and Belfrage 1976). MGL is responsible for cleaving the 1(3)- or 2- 

ester bonds of MAG, with specificity to only MAG, and no observed activity against 

TAG, DAG, or cholesteryl esters (Duncan et al. 2007). Similar to the other lipolytic 

�������� ��� 
�� ���
��
���� �
����	�� ��� ���� ���	���� � � ! 
�������� ��ld 

(Karlsson et al. 1997)� "	�#�	#������ ����� ��	���	�� 	���� 
��� ���� �������� �� "��$%%�

in a GXSXG motif, Ap239, and HIS 269; mutation at any of these sites results in 

complete ablation of its lipase ad esterase activity (Duncan et al. 2007; Lafontan and 

Langin 2009; Lass et al. 2011). MGL is highly expressed in adipose tissue, but has been 

seen in other tissues (such as kidney and testis), and has demonstrated its ability to 

degrade MAG has been studied intensively via mutant mouse models (Chanda et al. 2010; 

Lass et al. 2011; Zechner et al. 2012). Without MGL activity in adipose tissue the 

lipolysis process is compromised and increases in levels of MAG are observed (Zechner 

et al. 2012). Recently, a new role for MGL in endocannabinoid signaling has been 

suggested, yet more investigations to fully understand its role in regulating appetite, pain 

sensations, and mood control need to be addressed (Lass et al. 2011). Currently, the 

literature reveals that the activity of MGL is not dependent upon hormonal stimulation, 

but necessary for complete degradation of TAG in vitro (Zimmermann et al. 2009). MGL 

activity has not been observed as rate limiting due to the abundance of the enzyme. 

Nonetheless, it plays a pivotal role as a modulator of 2-acylglyerol level release of the 

final NEFA, and is the last, but necessary step for the lipolysis process (Chanda et al. 

2010; Zimmermann et al. 2009).  
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1.6.5 Perilipin 

Perilipins are proteins which are tightly associated with adipocyte LD at the 

surface (Clifford et al. 1998). There are three protein isoforms stemming from the 

translation of alternatively spliced mRNA. These include perilipin A, which the largest 

with 517 amino acids (AA) and found in high numbers on the surface of the LD in 

adipocytes; perilipin B, that shares 405 AA with perilipin A , and perilipin C (Brasaemle 

2007). Perilipin C is the shortest isoform of the three and is expressed solely in 

steroidogenic tissue cells (Brasaemle 2007).  

For lipolysis to occur, soluble lipases need to access a hydrophobic LD and begin 

action on the TAG substrate, and perilipin proteins are a prerequisite for their action and 

contact with the LD (Duncan et al. 2007). During lipolysis perilipins are highly 

phosphorylated and stimulated by PKA, alongside HSL. Perilipins which lack 

phosphorylation by PKA, act as a barrier to lipid lipases and protect against hydrolysis 

(Clifford et al. 1998). The primary LD associated protein that is present in mature 

adipocytes is perilipin A(1), both in differentiated 3T3-L1 cells and murine primary cells 

(Brasaemle et al. 2000) (Shen et al. 2009). Perilipin A is a member of the PAT family and 

regulates WAT breakdown by controlling ATGL and HSL via mediating activity (Lass et 

al. 2011). It is highly expressed in adipocytes and interacts with the LD, specifically at 

the three C-terminal hydrophobic stretch (these are able to penetrate the LD) (Walther 

and Farese 2012). At the surface of the LD, perilipin A contains an amphipathic area, 

which has been suggested to add to lipid binding (Walther and Farese 2012). In 

unstimulated conditions, ATGL and HSL are located at the surface of the LD and are 

seen up to 50%; perilipin A and B which coat the LD are the only functional barrier that 

inhibit their action (Brasaemle et al. 2000). Perilipin A, the greatest phosphorylated 

protein behind PKA, plays an imperative role in the modulation of both basal and 

stimulated lipolysis. This is demonstrated by increased basal lipolysis and perilipin null 

mice loss of PKA-stimulated lipolysis (Martinez-Botas et al. 2000; Shen et al. 2009). 

Simultaneous to HSL phosphorylation, PKA also phosphorylates perilipin A on six 

different serine residues (Shen et al. 2009; Wang et al. 2009; Zechner et al. 2012). 

Increased TAG storage and inhibition of lipolysis has been observed with increased 



22 

 

expression of perilipin A. Discovered in 3T3-L1 cells, preadipocytes subjected to 

perilipin A transfection showed large reductions in lipolytic rates and even larger 

increases in TAG storage (Brasaemle et al. 2000; Duncan et al. 2007). Perilipin proteins 

located on the LD are critical for PKA stimulation of HSL translocation, and has been 

shown to be necessary for maximal lipolysis (Miyoshi et al. 2006). The phosphorylation 

of perilipin by PKA may also enable interaction with HSL on the LD, thus increasing 

enzymatic activity (Duncan et al. 2007; Miyoshi et al. 2006). Perilipin, during fasting 

conditions, also allows for the recruitment of ATGL and CGI-58 to the LD via 

dissociation of CGI-58 from perilipin A and activation of ATGL (Ho et al. 2011) (Lass et 

al. 2011; Zechner et al. 2012). Although these proteins are not critical for LD 

establishment, they are necessary in regulating lipid metabolism (Walther and Farese 

2012). Overall perilipin A plays an important dual role in regulating lipolysis, first in 

preventing basal lipolysis and second upon PKA stimulation, increasing the process 

(Langin 2006a; Shen et al. 2009).  

 

1.7 NEFA 

Under normal conditions, NEFA have the ability to act as a fuel source alternative 

to glucose, occurring most often during times of fasting or increased energy expenditure 

(Unger 1995). In a fed state, insulin acts as an antilipolytic agent by suppressing NEFA 

levels and allowing glucose to be metabolized (Unger 1995). In obesity and type 2 

diabetes, plasma NEFA are elevated in these conditions due to their lack of suppression 

by feeding as a result of insensitivity to insulin by adipocytes or increase in adipocyte 

mass (Kahn et al. 2006; Unger 1995). Excess NEFA toxicity, along with reduced normal 

oxidative metabolism frequently results in ectopic fat accumulation in non-adipose 

������� �����	
 �� ��	����� �-cell dysfunction, cardiomyopathy and hepatic steatosis; 

termed lipotoxicity (Weinberg 2006). Excess lipid accumulation in other tissues other 

than adipose tissue can result in severe metabolic complications, including insulin 

resistance, diabetes, coronary heart disease, and even heart failure (Listenberger et al. 

2003). Evidence has shown that increased circulating NEFA are contributors to this 

deposition to non-adipose tissues causing lipotoxicity and subsequent disorders 
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(Listenberger et al. 2003) as shown in Figure 1.3. Multiple pathways can be altered as a 

result of both acute and chronic effects of excess NEFA concentrations (Weinberg 2006). 

NEFA are imp������ ��� ������ 	��
�����
 -cell function and adaptive response to 

�������� �������� -cell dysfunction leads to weakened glucose tolerance and fasting 

glucose, and can lead to insulin resistance and type 2 diabetes (Kahn et al. 2006). The 

���� �� -cell function is progressed by increased NEFA plasma levels, with chronic 

exposure of NEFA resulting in impaired glucose stimulated insulin secretion, insulin 

biogenesis and induction of apoptotic 	������� �� 	��
�����
 -cells (Sarafidis and 

Bakris 2007). Thus, NEFA at amplified levels are a primary factor mediating the link 

������� ������� ��� ��	� � �������� ��� �� ��� 
�������� �� ������� ��������
� ��� -cell 

dysfunction (Kahn et al. 2006).  

NEFA plasma concentrations are increased in an obesogenic condition and are 

highly indicative of the dysregulation of lipolysis (Lafontan and Langin 2009). Two 

components of lipolysis which could contribute to obesity include reduced plasma 

delivery from adipose tissue during energy expenditure or fasting, or impaired 

suppression of NEFA by insulin. The latter leads to the therapeutic potential of 

identifying antilipolytic agents due to the fact excessive lipolysis results in high 

circulating levels of NEFA and development of dyslipidemia and metabolic syndrome 

(Langin 2006a). Insulin mediated glucose uptake in cells as well glucose tolerance has 

been shown to improve upon acute action with an antilipolytic agents which helps to 

reduce NEFA levels (Kahn et al. 2006). It has been shown that cellular TAG 

accumulation is not toxic and in fact, accumulation in TAG pools of surplus NEFA, 

rather than locating to other pathways (in non-adipose tissues) that lead to cytotoxicity, 

act as a buffer against lipotoxicity (Listenberger et al. 2003). Thus, identifying 

antilipolytic agents which prevent lipolysis can be used as a therapeutic approach to 

avoid amplified NEFA levels all together.  

 

1.8 Lipolysis as a therapeutic target for metabolic disease 

With obesity, a state of sufficient increase in adipose tissue mass causing adverse 

health effects, dramatically increased, so has the amount metabolic disorders (Spiegelman 
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and Flier 2001). Metabolic syndrome is described as an array of contributing factors 

which negatively impact human health which includes insulin resistance, visceral (central) 

obesity, hypertension, a proinflammatory state, and increased circulating TAG and NEFA 

concentrations (Gertow et al. 2006). Obesity is associated with many metabolic 

syndromes, but specifically obesity results in an increase in basal levels of lipolysis, 

which can lead to insulin resistance (Duncan et al. 2007). Although basal lipolysis can be 

cut in half upon weight loss, often the desire to lose is greater than action taken (Brown 

2013; Reynisdottir et al. 1995). Insulin insensitivity in adipocytes is a contributing factor 

�� ������	�
 ��	�� �����	�	 �	 ���� �	 �-adrenergic receptors to stimulated lipolysis are 

often compromised in an obese individual (Duncan et al. 2007). Increased levels of 

lipolysis results in enhanced levels of circulating NEFA which are highly correlated to 

harmful whole body metabolic effects as discussed above. 

There is therapeutic potential in regulating and manipulating lipolysis as a means 

to reduce levels of NEFA. In an obesogenic condition, multiple disorders can arise as a 

result of adipocyte lipolysis including ketogenesis, ketolysis, mitochondrial disease, and 

glycogen storage diseases (Wang et al. 2008). It was observed that both obese and non-

obese relatives of obese patients alike share in atypical lipolytic processes (Wang et al. 

2008). Lipolysis suppression could be very beneficial with inborn errors of fatty acid 

oxidation (FAO) and ketone metabolism (Wang et al. 2008). Altering lipolysis has large 

potential in re-balancing NEFA flux and regulating fat mass as a way to reduce the risk of 

obesity-induced complications in metabolic syndrome.  

Currently, identification of mechanisms and potential targets to develop anti-

obesity drugs are being done, many which relate to metabolic syndrome (Grundy 2006). 

Specifically in adipose tissue, there are metabolic pathways which could be significant in 

targeting as obesity contributors to metabolic syndrome conditions. However, drug 

development is in preliminary stages and remains to be safe and effective, especially if 

chronic use is needed with minimal side effects (Grundy 2006). Specifically, identifying 

compounds which inhibit lipolysis in an effort to lower serum levels of NEFA is a 

strategy to manage obesity associated diseases, like type 2 diabetes (Ahmadian et al. 

2010). Increased NEFA being released at higher rates than oxidative capacity can also 
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cause ectopic TAG storage and lipodystrophy; and chronic levels of NEFA in circulating 

plasma can have a lipotoxic effects (Ahmadian et al. 2010; Lass et al. 2006). Taken 

together a vicious cycle ensues with increased mobilization of NEFA from adipose tissue, 

typically suppressed by insulin, yet adipocytes that become insulin resistant, 

consequently lipolysis is further increased (Karpe et al. 2011). Therefore identifying was 

to alleviate lipolysis and NEFA release will in turn produce approaches to treat obesity-

induced metabolic syndromes.  

 

1.8.1 Lipolysis and cancer cachexia 

Lipolysis may also be involved in cancer-associated cachexia (Zechner et al. 

2012). Cancer cachexia is defined as an intricate metabolic syndrome commonly 

associated with illness and characterized by persistent erosion of body mass due to a 

malignant growth. It has also been termed as an auto-cannibalism or wasting disease 

(Evans et al. 2008). Also commonly associated with cancer cachexia is anorexia, 

inflammation, insulin resistance, anemia, and hypogonadism (Evans et al. 2008). This 

wasting disease is primary due to the involuntary loss of skeletal muscle and adipose 

tissue, which are the majority and best studied targets of cachexia (Beutler and Cerami 

1988). Typically, there are increased circulating factors that can induce lipolysis which 

include TNF-�� ��-6 and zinc-�-glycoprotein 1 (Zechner et al. 2012). TNF-� ��� ��	
���

as a mediator of cachexia via its stimulation of adipocyte breakdown (Tracey et al. 1988). 

Cancer patients with cachexia have been observed to have higher activity of lipolytic 

enzymes, NEFA and glycerol levels, suggesting that lipolysis signaling is involved in the 

severe loss of adipose tissue and muscle. Although the fundamental mechanisms remain 

unknown, inhibition of lipolysis may play a role in helping to prevent or attenuate 

cachexia in people with cancer or other diseases (Evans et al. 2008; Zechner et al. 2012).  

 

1.9 Dietary intervention of obesity 

As the obesity epidemic continues to progress, there is large opportunity for 

functional ingredients that may be beneficial for weight control to be used in food 

product development (Kovacs and Mela 2006). Therefore, to establish a dietary 
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intervention strategy to combat obesity, a variety of factors need to be taken into 

consideration for practical feasibility. In addition, to mechanistic and clinical efficacy 

evidence, a proposed food ingredient should satisfy other criteria including safety, 

stability in processing and shelf life, raw ingredient quality and reliable sourcing, 

regulatory usage levels and dosing schedule, cost, and adequate and appealing food 

vehicle (Kovacs and Mela 2006). Bioactive components from food are attractive due to 

their extensive history of safe consumption as well as their health benefits, including 

weight control. The following focuses on dietary sources of functional components that 

help to prevent weight gain, aid in weight control, or reduce risk factors associated with 

excessive adipose mass.  

 

1.9.1 Role of phytochemicals in adipose function 

The potential for natural products to combat obesity is large due to the 

dissatisfaction of current anti-obesity drugs on the market (Yun 2010). Natural products 

that could be used to treat obesity include crude extracts or plant sourced isolated 

compounds. There have been many studies identifying and demonstrating the benefit of 

different dietary components in regards to their impact on energy balance (Astrup et al. 

2010). Specifically, research has aimed to improve our understanding how bioactive food 

component help to inhibit energy storage, reduce lipid uptake or formation, stimulate fat 

mobilization, or increase levels of fat oxidation via different mechanisms (Kovacs and 

Mela 2006).   

Adipocytes play a large role in overall homeostasis and energy balance by storing 

TAG and releasing NEFA based on energy demand as previously described. Studies have 

looked to identify anti-obesity biomaterials which inhibit adipocyte proliferation or 

differentiation (Yun 2010). However, contemporary research have suggested that 

inhibiting adipogenesis can be unhealthy and may lead to pathogenesis of type 2 diabetes 

or other metabolic diseases (Lefterova and Lazar 2009). Therefore pharmacological 

targeting of lipolysis has been investigated to help partially block the release of the 

already high levels of circulating NEFA in obesity and dyslipidemia. Many of the natural 

components which had been found to affect lipolysis do so by stimulation or activation of 
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the lipolytic pathway rather than reduce it. It was found that Nobiletin, a 

polymethoxylated flavone found in citrus fruits, dose-dependently stimulated lipolysis in 

3T3-L1 adipocytes through activation of cAMP/PKA pathway (Saito et al. 2007). Toona 

sinesis leaf extracts have also been shown to enhance lipolysis in differentiated 3T3-L1 

cells (Hsu et al. 2003). The aromatic compound of red raspberries, raspberry ketone, has 

the ability to increase norepinephrine�induced lipolysis in white adipocytes through 

enhanced translocation of HSL to the surface of the LD (Morimoto et al. 2005). The hot 

water soluble extract of Salacia reticulata, which is a Hippocrateaceae plant, 

demonstrated stimulation of lipolysis in rat epididylmal adipocytes (Yoshikawa et al. 

2002). Oolong tea also has anti-obesity properties through its major bioactive component, 

caffeine, that acts on the lipolysis process via interactions with LD lipases (Han et al. 

1999; Yun 2010). In fact, caffeine and other methylxanthines stemming from tea and 

coffee are well characterized and known to stimulate lipolysis through increases in cAMP 

levels (Duncan et al. 2007). Flavonoids genistein, diadzein, coumestrol, and zeralenone 

all show a dose-dependent effect in enhancing lipolysis in rat adipocytes, along with 

quercetin, luteolin, and fisetin, imposing dose- and time-dependent increases (Rayalam et 

al. 2008a). Resveratrol, a highly studied polyphenol found in grapes, has also been 

studied in regards to its stimulatory effect on lipolysis through activation of ATGL (Lasa 

et al. 2012b). Ethanol contains acute antilipolytic effects resulting in reduced levels of 

FFA in serum as well as in chronic conditions adipocytes show s���������	 �
 �-

adrenergic receptor mediated lipolysis (Duncan et al. 2007; Kang et al. 2007). Of these 

dietary sources, most show an induction of lipolysis, and few food components have 

demonstrated an antilipolytic effect. 

 

1.10 Resveratrol and resveratrol metabolites 

 Resveratrol (trans-����-trihydroxystilbene) is a phytoalexin polyphenolic, 

naturally occurring compound that is produced in plants when there is a pathogenic attack 

or induced stress, not exclusive to fluctuations in climate, sunlight, and heavy metals 

(Athar et al. 2007; Fremont 2000). It is present in food such as berries, grapes, and 

peanuts and has many biological activities which include acting as an antioxidant, anti-
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inflammatory, neuroprotective, anti-aging, anti-cancer, and cardioprotective (Baur and 

Sinclair 2006; Fremont 2000; Wang et al. 2004). The efficacy of oral administration of 

resveratrol depends on absorption, metabolism, and tissue distribution, yet rapid 

metabolism generally leads to the production of sulfates and glucuronides (Baur and 

Sinclair 2006; Hoshino et al. 2010). Due to the nature of the breakdown, it has been 

suggested that the physiological significance of having increased concentrations of 

resveratrol, used in in vivo studies, more likely should be given to resveratrol metabolites 

and their effects (Hoshino et al. 2010), structurally shown in Figure 1.4. Levels of 

resveratrol are generally exceeded by resveratrol metabolites due to phase II metabolism 

and longer plasma half-life of its metabolites; resveratrol has a short plasma half-life 

while the metabolites can maintain a plasma half-life of 9.2 hours (Athar et al. 2007; 

Patel et al. 2010). Due to its rapid breakdown and extensive metabolism, there is a 20 

fold higher concentration of resveratrol conjugates which circulate, than resveratrol itself, 

equating to less than 1% (Andres-Lacueva et al. 2012). This is a major issue in 

����������� ��	
�������	 ����� �	 ��� ��������� functional compound, and raises the 

question of the biological activities and the effect of resveratrol metabolites themselves 

(Lasa et al. 2012a). 

 Research that has investigated resveratrol and its metabolites in vivo has detected 

glucuronide and sulfate conjugates, with only a small amount of resveratrol that was left 

unaltered (Hoshino et al. 2010; Urpi-Sarda et al. 2005). For example, it was shown that 

with oral ingestion of 25 mg of dietary relevant resveratrol, plasma concentration 

detected was in the nanomolar range, whilst its metabolites maintained levels in the 

micromolar range (Calamini et al. 2010; Walle et al. 2004). It has also been reported that 

generally speaking, glucuronides have been the leading metabolite in rodents, whereas 

sulfates are more prevalent in human plasma (Burkon and Somoza 2008; Emilia Juan et 

al. 2010; Lasa et al. 2012a). After glucuronidation and sulfation of resveratrol in both the 

gut and liver, resveratrol metabolites are taken up dependently by ABC transporters 

(Kenealey et al. 2011). The distribution of the resveratrol metabolites also depends on 

specific location, the concentration delivered, and the species (Andres-Lacueva et al. 

2012). These facts suggest that if not most, some of the biological effects stimulated by 
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resveratrol should be attributed to its metabolites (Hoshino et al. 2010) and their activity 

(Wenzel and Somoza 2005). Furthermore, resveratrol metabolites have shown significant 

effects in biological activities (Lasa et al. 2012a).   

 Research identifying tissue distribution of resveratrol metabolites has primarily 

focused on profiling the liver, kidney, lungs, brain, and testis, however more recently, 

resveratrol metabolites were found located at intermediate levels in adipose tissue and 

even low levels in skeletal muscle (Andres-Lacueva et al. 2012). The majority 

investigations of resveratrol metabolites are researched in regards to their distribution and 

profile of their relative levels in tissues, with limited studies focusing their action. 

Resveratrol metabolites do exhibit levels of antioxidant activity, yet it is lower than the 

parent compound because their radical scavenging �OH groups may be blocked by 

sulphation, glucuronidation, or methylation (Halliwell 2007). In a study investigating the 

chemoprotective activity of sulfate metabolites of resveratrol, two were able to inhibit 

COX activity and NO production (Hoshino et al. 2010). It has also been demonstrated 

that resveratrol metabolite, resveratrol-��-O-sulfate inhibits COX-1 and COX-2 activity, 

which help to exert cardioprotective and anticancer effects. Other sulfate metabolites, 

have been suggested to promote longevity through inhibition of SIRT1 (Calamini et al. 

2010). Resveratrol-3-O-sulfate was able to inhibit colon cancer cell proliferation having 

the potential to act as a chemotherapeutic drug to induce apoptosis (Aires et al. 2013). 

Interestingly, a mixture of metabolites, resveratrol-3-O-sulfate, resveratrol-3-O-D-

glucuronide and resveratrol-��-O-D-glucuronide, induced anti-proliferative activity 

greater than resveratrol (Aires et al. 2013). It has also been reported that the sulfate 

conjugates have anti-inflammation properties (Hoshino et al. 2010; Lasa et al. 2012a). 

Piceatannol (3, 3�� �� ��-trans-trihydroxy stilbene) another resveratrol metabolite, has also 

shown potential to have activity in activation of AMPK and GLUT4 translocation, 

suggesting prevention and improvement for diseases such as type 2 diabetes (Minakawa 

et al. 2012). Also it has been studied for its antioxidant, anti-cancer, and apoptotic effects 

(Piotrowska et al. 2012). Accordingly, resveratrol metabolites are involved in diverse 

biochemical processes that have the potential to exert positive health promoting effects; 

yet their action is dependent on the specific function investigated.  
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1.10.1 Resveratrol metabolites in lipid metabolism 

 Currently, there is minimal knowledge of the effect of resveratrol metabolites in 

adipose tissue and lipid metabolism. One study demonstrated several resveratrol 

metabolites had a significant reduction of TAG levels in maturing pre-adipocytes and 

mature adipocytes (Lasa et al. 2012a). Resveratrol-��-O-glucuronide and resveratrol 3-O-

sulfate both showed significant reductions in lipid species in maturing pre-adipocytes 

greater than resveratrol. Resveratrol-3-O-glucuronide and resveratrol-��-O-glucuronide 

both showed delipidating effects in mature adipocytes. Taken together, resveratrol 

metabolites, target both maturing pre-adipocytes as well as mature adipocytes and may 

been involved in anti-obesity effects (Lasa et al. 2012a) 

In studies identifying the tissue distribution and levels of resveratrol metabolites, 

have noted that not all the metabolites have been identified (Cottart et al. 2010). There is 

large inter-individual variability in metabolism and the fate of up to 30% of resveratrol 

dosage may not be recovered in urine or feces. Due to the various distribution of 

resveratrol and its metabolites, there may be other metabolites which have been bound to 

cellular membranes of lipophilic fractions and tissue and gone undetected (Cottart et al. 

2010). Therefore other resveratrol metabolites, such as trans-�� ��� �-trimethoxy 

resveratrol could also have potential and bioactive functionality. Identification of 

���	��
��� ���
������ �
� �� ������ �� ��� ����	� ��� ������ �� ���	��
����� ����

bioavailability and rapid metabolism, and be a an alternative source for increasing health 

(Minakawa et al. 2012).  

 

1.11 Trans-�� ��� �-trimethoxy resveratrol 

Stilbenes are widely available in foods such as mulberries, grapes, red wine, and 

peanuts (Shi et al. 2012). Food and herbs which contain beneficial phytochemicals have 

potential at curbing the increase of metabolic disorders and diseases. Although studies 

have supported the use of resveratrol in prevention of diseases, stilbenes related to 

resveratrol with the same backbone but differing substituents may contain greater 

potency (Dias et al. 2013). In an attempt to understand the role of resveratrol analogs that 

possess biological effects, new attention has been turned to trans-�� ��� �- 
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trimethoxystilbene or trans-�� ��� �-trimethoxy resveratrol (TMR). It is naturally found in 

the Pterobolium hexapetallum plant (Aggarwal et al. 2004) and has also be isolated from 

Virola cuspidata (Blair et al. 1969). The methoxy groups attached to TMR enhances the 

transportation to cells as well as metabolic stability; it is partially protected from further 

metabolism by enzymatic glucuronidation or sulfation. Also, TMR has greater 

lipophilicity and is highly likely to be distributed into fat tissues, and generally found in 

larger amounts in major organs than plasma (Dias et al. 2013). In a pharmacokinetic 

study, TMR maintains enhanced properties in clearance, plasma exposure, as well as 

absolute bioavailability (Lin et al. 2009).  

 

1.11.1 Anti-cancer activity 

Dietary factors that have the ability to modify progression and carcinogenesis are 

of large interest in epidemiological studies. Several studies have identified TMR as a 

potential anti-cancer agent, acting in vitro and in vivo, for its chemoprotective properties 

in various cancer types which include colon, leukemia, breast, and prostate. TMR has 

been shown to be different that other stilbenes in regards to its mechanism of cytotoxicity 

on neoplastic cells; suggesting its efficacy in different cancers (Simoni et al. 2006). TMR 

observed in HL60 cells, was highly active due to its structure-function activity 

relationship. The methoxy derivatives from resveratrol showed significantly better 

activity against HL60 leukemic cells (Simoni et al. 2006). Also noted, was that in many 

studies, stilbenes act as phase-specific drugs, blocking cells in a specific phases of the 

cell cycle. For example, resveratrol and piceatannol induced a block in the S phase, 

suggesting that they act as phase-specific cytotoxic agents. However, TMR demonstrated 

no modification in cell cycle distribution (G0-G1, S, or G2-M) compared to the control. 

Overall, TMR maintained cytotoxic and apoptotic-induced activity and an ability to 

reduce neoplastic cells in all phases of the cell cycle (Simoni et al. 2006). TMR also was 

more potent than resveratrol against different human cancer cells lines including HT-29 

(human colon adenocarcinoma), PC-3 (human prostate cancer), and COLO25 (human 

colorectal carcinoma) (Pan et al. 2008). The presence and location of the methoxy groups 

can be attributed for the biological activity, seen within hours of treatment. The induction 
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of apoptosis with TMR treatment is credited to its strong inhibition of cell viability, 

causing potent apoptosis and DNA laddering in COLO25 cells (Pan et al. 2008). TMR is 

thought to trigger apoptosis via p53 dependent proteins and effecting mitochondrial 

function. In vivo, TMR significantly reduced tumor growth in SCID mice with no 

cytotoxic effects in the mice when dosed at 50 mg/kg (Pan et al. 2008). Taken together, 

TMR may have potential in inhibiting cancer proliferation in colorectal carcinomas.  

Similarly, in human prostate cells, TMR showed limited DNA damage, which 

could trigger reduced stimulation of p53 and subsequently p21 (Hsieh et al. 2011a). TMR 

maintained little effect on the cell cycle transition in CWR22Rv1 cells, but did decrease 

G1 and expanded G2M in PC-3 cells, different from other resveratrol metabolites. This 

suggests that TMR is active against different stages in prostate cancer cells and may use 

distinct mechanisms (Hsieh et al. 2011a). TMR studies in cell proliferation assays in 

three types of cells, LNcaP, Du145, and PC3M, demonstrated higher potency in growth 

inhibition than resveratrol with highest potency in LNCaP cells (Dias et al. 2013). Also, 

TMR dose-dependently inhibited colony formation in LNCaP-Luc cells in vivo with large 

reductions in size and number of colonies (Dias et al. 2013). Finally, to elucidate the anti-

cancer effects in vivo using xenografts with prostate cancer cells, TMR pretreatment in 

mice helped to attenuate tumor development and progression. It was proposed that the 

phytochemicals created a microenvironment in which tumor initiation and development 

was reduced. Reported data shows TMR had enhanced anti-proliferative, anti-clonogenic, 

and anti-inflammatory properties, also higher amounts of TMR located in serum and 

target tumor tissue compared with resveratrol (Dias et al. 2013). With in vitro studies 

with breast cancer cell lines, TMR was able to induce apoptosis. And in biochemical 

analysis it is suggested that upon ������� ��� 	
 ��	����� ���� � ���� ���������

pathway is stimulated leading to p53 activation and apoptosis which is different than 

routes seen with resveratrol and piceatannol (Hsieh et al. 2011b).  

 

1.11.2 Antiangiogenic activity 

Uncontrolled endothelial cell proliferation is commonly seen in tumor 

neovascularization and angioproliferative diseases. Two models to affect 
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neovascularization include identification of antiangiogenic compounds which prevent 

new blood vessel development, and disruption by vascular-targeting agents within 

neovasculature (Belleri et al. 2005). TMR has demonstrated efficacy in both areas and is 

identified as a microtubule-destabilizing agent, causing rapid, microtubule 

depolymerization in endothelial cells. Results indicated that TMR has antiangiogenic and 

vascular-targeting capacity and inhibits tumor proliferation (Belleri et al. 2005).  

TMR evaluated for its cytotoxicity in human cancer lines was studied in human 

endothelial cells and zebra fish blood-vessel formation in vivo (Alex et al. 2010). TMR 

demonstrated its high potency as an antiangiogenic and vascular disrupting agent, greater 

than resveratrol in vitro and in vivo. TMR showed different efficacy in three cancer cells 

lines (HepG2 (human hepatoma), and human breast adenocarcinoma (MCF-7 and MDA-

MB-231)) in vitro, compared to resveratrol. And in HUVECs (human umbilical vein 

endothelial cells) in vitro and zebra fish embryo in vivo, ����� ���	��
	�
��	 ��	�	��

was more potent and expressed greater specific cytotoxic effects on endothelial cells. 

Mechanistically, further insight showed TMR may act through down regulation VEGFR2 

expression in the VEGF/VEGR pathway and cause cell-arrest at G2/M phase (Alex et al. 

2010).  

 

1.11.3 Other bioactive properties 

�����
	�� ��� �����
	 ����	��� ���� ���� ���������	�	�	�� �� � �������� 	�����

system which induces a defense system to harmless substances (Matsuda et al. 2004). 

��� ��� ���� �� �	
�	�	����� 	��	�	� ��� ������� �� �-hexosaminidase by ionomycin in 

RBL-2H3 cells, which correlates to anti-allergenic activity (Matsuda et al. 2004). In 

murine hippocampal HT22 cells, TMR failed to protect the cells from glutamine-induced 

cytotoxicity and was unable to increase HO-1 expression and SIRT1 activation. HO-1 has 

been reported as one of the main mediator of antioxidant activity and cytoprotection 

(Kim et al. 2012). Therefore increased expression HO-1 is partially responsible for 

cytoprotective actions in HT22 cells. The data suggests that the methoxy groups of TMR 

interfere with its ability to resist oxidative stress (Kim et al. 2012).  
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Overall, TMR presents as a biologically active resveratrol metabolite and analog 

in variety of cellular functions and in different cells types. However, its specific role in 

����� ����	
���� �� ����� �
 	� ������������ ������������� ����� ������� �� 
���� systems 

reveals its activity and suggests it may have potential in a wide range of areas for 

beneficial health effects.  

 

1.12 In vitro model 

In vitro systems used to study adipocyte function have been used for the last 30 

years and helped to identify molecular mechanisms and distinct cellular events (Gregoire 

et al. 1998). Cell lines which are morphologically similar to primary preadipocytes in a 

fibroblast like shape, and are able to transform into round, lipid accumulating mature fat 

cells have been established. Preadipose cell lines have already committed to adipocyte 

lineage and are able to represent different stages of adipocyte differentiation (Cornelius et 

al. 1994; Gregoire et al. 1998). One of most frequently used and studied cell lines 

includes 3T3-L1 cells. They are beneficial in studying molecular events in adipocyte 

biology because they are well characterized, a reliable model, and can be passaged 

indefinitely allowing for a consistent source for investigation (Ntambi and Kim 2000). 

Additionally, since these cells are derived from cloning their homogeneity helps to yield 

conclusive results to different treatments. 3T3-L1 cells were initially selected as a 

consistent model for preadipocyte differentiation because of their ability to accumulate 

TAG (Cornelius et al. 1994). When injected into mice, 3T3-L1 preadipocytes not only 

differentiated and formed fat pads, they were histologically indistinguishable from the 

normal adipose tissue (Cornelius et al. 1994; Ntambi and Kim 2000). In cell culture 

protocols, 3T3-L1 rapidly and in sync can proliferate and differentiate with very similar 

characteristics of adipocytes from animal tissue; formation of LD are also very similar to 

those seen in vivo adipose mass (Ntambi and Kim 2000). These cells are also very 

coordinated to the pathways of de novo FA and TAG biogenesis demonstrated through 

expression of every enzyme involved (Macdougald and Lane 1995).  

Nonetheless, there are some disadvantages to using cell lines in studying 

adipocyte biology. Being that these cells are aneupolid, they may not always accurately 
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resemble preadipocytes found in vivo  along with the fact that they are out of the context 

of a normal extracellular matrix (Ntambi and Kim 2000; Rosen et al. 2000). And while 

these types of cell lines have similar characteristics, across the board there may be 

differences between the established lines. Presumably, these differences are due to the 

stage of preadipocyte differentiation that the cloning occurred (Macdougald and Lane 

1995). Preadipocytes in these cell lines represent early, intermediate, or late stage 

development, therefore the response to different hormones or treatments may be varied 

(Macdougald and Lane 1995; Ntambi and Kim 2000). Most all cell lines differentiate into 

WAT exclusively, and do not represent any changes to BAT. Finally, preadipose cells 

lines may not be derived from the same fat depot, which is an important consideration 

because there are known differences in metabolic behavior of mature adipocytes between 

visceral and subcutaneous fat pads (Rosen et al. 2000). However, almost all work in 

investigating adipogenesis and other adipocyte functions have used clonal cells lines, 

stemming from the stromal vascular fraction. Overall, established preadipose cells lines 

used in vitro represent a useful tool in preliminary understanding of in vivo systems.  

 

1.13 Conclusions and research objectives 

Metabolic syndrome is associated with a variety of health risk factors including 

abdominal obesity, blood lipid disorders, inflammation, insulin insensitivity, type 2 

diabetes, and elevated risk of cardiovascular disease (Despres and Lemieux 2006). In an 

obesogenic condition, dysfunctional adipose tissue is unable to appropriately store excess 

energy and increased basal lipolysis occurs; leading to increased levels of circulating 

NEFA which can have severe metabolic consequences (Duncan et al. 2007). A surplus of 

NEFA results in uptake in non-adipose tissue and ectopic fat deposition which can induce 

other conditions including dyslipidemia, hyperglycemia, inflammation, and insulin 

resistance (Despres and Lemieux 2006). Studies identifying novel ways to alleviate 

adipose lipolysis and NEFA release may provide approaches to treat obesity-induced type 

2 diabetes and other metabolic syndromes. Identification of dietary components as a 

strategy to combat obesity and its associated disorders may be via phytochemicals. 

Currently, there is a knowledge gap in investigation the regulation of adipose tissue 
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lipolysis by dietary components. To date, there is no clear evidence of adipose lipolysis 

modulation by dietary components, expect one report recognizing resveratrol action on 

the stimulation of lipolysis (Lasa et al. 2012b). Our lab has previously demonstrated that 

piceatannol, a resveratrol metabolite, has antilipolytic activity in vitro and in vivo (Kwon, 

unpublished). However, little is known about resveratrol metabolites, specifically, TMR, 

in lipid metabolism and its affect in specific adipose functions. Thus, the work in this 

thesis has been completed with the following objective, aims, and hypothesis.  

 

Our overall working hypothesis is that resveratrol metabolites affect lipid metabolism by 

modulating the lipolysis process.  

 

Objective: Identify and determine the effect of different resveratrol metabolites and their 

role in adipose function 

Aim 1: Determine the effect of resveratrol metabolites on lipolysis in adipocytes in vitro 

Aim 2: Determine the effect of resveratrol metabolites on lipogenesis in adipocytes in 

vitro 
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Figure 1.1 Cascade of 3T3-L1 preadipocyte differentiation and adipogenic program 
in vitro. With the appropriate environment and gene expression induction, preadipocytes 
undergo mitotic clonal expansion which is then followed by terminal differentiation. The 
conversion is a result of up- and down-regulation of specific transcription factors and 
genes. The process of differentiation takes place over the course of 6 days, beginning 
with a fibroblast-like preadipocyte until full maturation of a round lipid-containing 
adipocyte. Adapted from Gregoire and Ali (Ali et al. 2013; Gregoire et al. 1998). 
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Figure 1.2 Lipolytic cascade in adipocytes. ATGL binds to CGI-58 and facilitates 
lipolysis via hydrolysis of TAG to DAG and NEFA. With signal transduction from 
����������	
�� �	� -adrenergic receptors (-AR) and G protein-mediated signaling (Gs), 
activates adenylyl cyclase(AC), resulting in increased levels of cAMP, activating PKA, 
which phosphorylates HSL and perilipin A. Conformational changes occur in perilipin A, 
and pHSL translocates to the surface of the LD and hydrolyzes DAG to MAG and NEFA. 
Cytosolic MAG hydrolyzes MAG into NEFA and a glycerol backbone. NEFA and 
glycerol are released into circulation. Adapted from Lafontan and Brasaemle (Brasaemle 
2007; Lafontan and Langin 2009). 
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Figure 1.3 Metabolic syndromes with ectopic fat distribution. Excess visceral fat 
accumulation is associated with insulin resistance and also a marker of dysfunctional 
adipose tissue due to inability for the body to appropriately store surplus energy. In 
metabolic dysfunction, with high levels of circulating NEFA, fat deposition is stored in 
undesirable locations including the liver, heart and muscle. Metabolic syndrome ensures 
with this condition as well as other metabolic consequences including visceral obesity, 
insulin resistance, dyslipidemia, and inflammation, which could result in increased risk of 
other obesity associated disorders. Adapted from Despres (Despres and Lemieux 2006) 
.  
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Figure 1.4 Structure of resveratrol and resveratrol metabolites. (A) Resveratrol, (B) 

Piceatannol, (C) Resveratrol-��-O-glucuronide, (D) Resveratrol-3-O-glucuronide, (E) 

Trans-������-trimethoxy resveratrol.  
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CHAPTER 2.  MATERIALS AND METHODS 

2.1 Introduction 

To test our overall goal and achieve our specific aims we used a variety of 

techniques to elucidate the effects of resveratrol metabolites. We utilized an in vitro 

model by means of 3T3-L1 cells as an established cell line. The cells were passaged as 

preadipocytes and differentiated into mature adipocytes and incubated in the presence of 

different resveratrol metabolite treatments to understand their role in lipolysis. Upon 

further investigation, preadipocyte cells were differentiated in the presence or absence of 

trans-�� ��� �-trimethoxyresveratrol (TMR) to gain understanding its role in lipogenesis. 

We utilized both qualitative and quantitative techniques to investigate our findings. 

Additionally, biochemical and molecular tools were used to gain knowledge into specific 

mechanisms of action. The following accounts for the materials and methods used during 

our research processes.  

 

2.2 Materials and methods 

 

2.2.1 Materials and reagents 

Trans-�� ��� �-trismethoxy resveratrol (TMR) was provided by Cayman Chemical 

(Ann Arbor, MI). Trans-resveratrol-3-O-�-D-glucuronide (3G) and trans-resveratrol-��-

O-�-D-glucuronide (4G) were obtained from Toronto Research Chemicals (North York, 

ON, Canada). Piceatannol (PIC) was purchased from Alexis Biochemicals (Lausen, 

��	
�������� ���������� ���	�	�� ������� ���	�� ������ ���  ��!���� ���

Thermo Scientific (Waltham, MA). Penicillin-streptomycin, sodium pyruvate, and 0.25% 

trypsin EDTA were purchased from VWR (Randor, PA). Dexamethasone (DEX), 
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3-isobutyl-1-methylxanthine (IBMX), insulin, free glycerol reagent and RNase Away 

were purchased from Sigma-Aldrich (St. Louis, MO). Fetal calf serum (FCS) and fetal 

bovine serum (FBS) were obtained from PAA (Darthmouth, MA). TRIzol® reagent as 

well as SuperScriptII was bought from Invitrogen. Protein assay kit was from Bio-Rad 

laboratories (Hercules, CA). 3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) was purchased from Alfa Aesar (Ward Hill, MA). Antibodies against 

����� �-actin, and secondary mouse antibodies were from Santa Cruz Biotechnology 

(Santa Cruz, MA). Phospho-HSL (ser660) and secondary rabbit antibodies were obtained 

from Cell Signaling Biotechnology (Beverly, MA). CGI-58 was used from BioVision 

(Milpitas, CA). Acetonitrile, methanol, water (Mallinckrodt-Baker, Phillipsburg NJ), and 

formic acid (Sigma-Aldrich St. Louis, MO) used in sample preparation and analysis were 

certified HPLC-MS and ACS grade.  

 

2.2.2 3T3-L1 cell culture 

3T3-L1 preadipocytes were sourced from American Type Culture Collection and 

were cultured in 10% (v/v) FCS-DMEM in a humidified environment with 5% CO2 at 

37oC. Cells were designated known passages and were not cultured past passage nine. 

Preadipocytes had new FCS-DMEM changes every two days until growth had reached 

approximately 80% confluence, at which point cells were split and expanded into 100mm, 

60mm, 6-, 12-, or 24-well plates for further proliferation until differentiation. 

Preadipocytes were kept in a sub-confluent state until induced to differentiate after two 

days of post-confluence (entitled Day 0), with standard adipogenic cocktail (DMI) 

comprising of 1 µg/ml insulin, 5 µg/ml DEX, and 0.5 mM IBMX in 10% FBS-DMEM 

for two days. After two days of incubation, 10% FBS-DMEM medium including only 

insulin was added to the maturing adipocytes and at day four to solely 10% FBS-DMEM, 

and was changed every two days until adipocytes are fully differentiated to mature cells 

(day 8-10) when lipid droplets are clearly visible. Cells which had differentiated with 

greater than 90% into mature adipocytes were used for experiments. All media consisted 

of 100 U/ml penicillin, 100 µg/ml streptomycin and 0.11 g/L sodium pyruvate.  
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2.2.3 Treatment condition 

Purchased metabolites (TMR, 3G, 4G, and PIC) were each dissolved in dimethyl 

sulfoxide (DMSO) as recommended by the supplier. Stock solutions were diluted to 50 or 

100 mM and aliquots were generated to keep freeze-thaw cycles to a minimum, with a 

maximum thaw number of three times. For treatment of cells, stock solutions were 

diluted into DMEM media to a final working concentration and applied to cells. 

Preadipocytes were induced to differentiate with the adipogenic cocktail and in the 

presence or absence of a specific treatment and continued to receive treatment every two 

days until day 6.  Mature adipocytes at day 8 to day 10 after differentiation were treated 

in serum free medium for a set period of time with the designated treatment conditional 

to the experimental design.  

 

2.2.4 Oil Red O (ORO) staining 

ORO staining was done on day six to visualize and quantify intercellular lipid 

droplet accumulation (Koopman et al. 2001). 3T3-L1 cells were subjected to oil red O 

lipid soluble dye as described with protocol adjustments (Ramirezzacarias et al. 1992). 

Briefly, medium was removed from cells in each well and washed twice with phosphate 

buffered saline (PBS). Cells were then subjected to 3.7% formaldehyde for 0.5-1 hour at 

room temperature or overnight at 4oC to fix the cells. Plates were then washed with 

double distilled water twice and a filtered working solution of ORO was applied to fixed 

cells and incubated at room temperature for greater than 30 minutes. Cells were then 

rinsed with distilled water by submersion and dried. Scanned images were taken of ORO-

stained cells. Quantification of ORO-stained lipid droplets was done with isopropyl 

alcohol extraction and absorbance measured spectrophotometrically at 490 nm with a 

microplate reader (Bio-Rad). The quantification was calculated based on the ORO stain 

as a percent of the control.  

 

2.2.5 Cell viability assay 

A 3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction 

was utilized in order to determine the effect of different concentrations of trans-�� ��� �-
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trismethoxy resveratrol (TMR) on cell viability. This assay allows for the quantification 

of active mitochondrial function based on their ability to reduce the yellow MTT solution 

in the presence of dehydrogenase enzymes into a purple formazan product (Gerlier and 

Thomasset 1986). Both proliferating preadipocytes and mature adipocytes were incubated 

with different concentrations of TMR for 24 hours in serum free DMEM. The cells were 

then incubated with the MTT assay solution (0.5 mg/ml) for one hour at 37oC in 5% CO2. 

Upon development of the violet precipitate, the contents were then dissolved in DMSO 

and quantified by absorbance measured spectrophotometrically with a microplate reader 

(Bio Rad) at a wavelength of 595 nm. The amount of formazan, calculated as a percent of 

control, is representative of final cell viability.  

 

2.2.6 Lipolysis assay 

The measure of free glycerol in media samples is representative to the amount of 

lipolysis that occurs in samples based on hydrolysis of triglycerides into free fatty acids 

and a glycerol backbone. This method was used to determine the level of lipolysis in both 

basal and stimulated conditions of fully differentiated cells. The free glycerol reagent 

measures free glycerol by using the same coupled enzymes reactions and produces a 

quinoneimine dye, observed as a purple hue. Serum free DMEM with 10 µM 

isoproterenol and 0.5 mM IBMX (stimulated) or without (basal) added was added to 

mature adipocytes in the presence or absence of the different resveratrol metabolite 

treatments at different concentrations. After incubation periods, aliquots of the medium 

were collected and analyzed for free glycerol. Samples of the media were gently mixed 

with the free glycerol reagent and incubated at 37oC for 5 minutes according to supplier 

protocol. Quantification of the product was measured spectrophotometrically at minimum 

absorbance of 540 nm using a microplate reader (Bio Rad). The increase in absorbance is 

directly proportional to the free glycerol concentration in the sample. Glycerol release 

measurement was normalized by protein concentration.  
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2.2.7 Immunoblot assay 

Western blot analysis was employed to measure the amount of protein expressed 

by cells treated with different experimental groups as described (Burnette 1981) with 

modifications. The cells were cultured and treated as specified in each experiment and 

collected by scrapping in phosphate buffer saline (PBS). Samples were immediately 

centrifuged to remove excess PBS. Cell pellets were then transferred to lysis buffer 

comprising of Tris-HCl (100mM (pH 8.0)), NaCl (100mM), 0.5% Triton X-100, protease 

inhibitor blend, sodium fluoride (10mM) and sodium orthovanadate (1mM). The 

concentration of protein was quantified with the Bradford method (Bio-Rad Laboratories, 

Hercules, CA). 100 µg of protein sample were separated with a 10% sodium dodecyl 

sulfate-polyacrylamide gel (SDS-PAGE) and transmitted to a nitrocellulose membrane. A 

protein ladder, Precision Plus Protein Standards Kaleidoscope (Bio-Rad) was employed 

to identify protein size (kDa). Membranes were blocked in 5% non-fat dry milk in 1% 

Tween-Tris Buffered Saline (TTBS) for two hours at room temperature. Immunoblotting 

was completed with respective primary antibodies at 4oC overnight, followed by washing 

in 1% TTBS (3 times for 5 minutes). Signals were seen with horseradish peroxidase-

conjugated secondary antibodies (Santa Cruz Biotechnology) which were incubated for 

two hours at room temperature, followed by washing (3 times for 6 minutes) and 

enhanced with Pierce enhanced chemiluminescence plus Western Blotting reagents with 

autoradiography. Film was scanned and protein band intensity was quantified with NIH 

������ ��	
���� ��� ������ ���������� 
� ���� ��
����
� �	 �-actin. Membranes were 

stripped with a mild stripping buffer (0.2 M glycine, 0.1% SDS, 1% Tween20, pH 2.2 1 L 

dd water) at room temperature, and re-blocked. 

 

2.2.8 Total RNA isolation and real time reverse transcription polymerase chain reaction 

(RT-PCR) 

TRIzol® (Invitrogen, Carlsbad, CA) was used to extract total RNA from 3T3-L1 

����� �� ��
����� �� ����	��
������  ��
����� !�
��� ��� ocyte cells were treated for 

duration of time depending on experimental design or during differentiation at various 

concentrations of TMR. Media was aspirated and cells were washed with PBS. TRIzol ® 
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was added to the cells, harvested, and stored at -80oC until subjected to RNA isolation. 

The integrity of the isolated RNA was determined with NanoDrop 2000c 

(ThermoScientific) using the 260nm/280nm ration. Samples that maintained a ratio 

greater than 1.8 were used. 1µg/µl of isolated RNA was subjected to the reverse 

transcriptase reaction utilizing SuperScriptII system, and cDNA was synthesized. Newly 

synthesized cDNA was used for real time reverse transcription PCR reactions using 

Applied Biosystems Step One real time PCR thermocycler. The cDNA was diluted and 

amplified using a SYBR premixed Taq reaction mixture with PCR primers. Reactions 

were performed in triplicate for each pair of 100 n/ml PCR primers with values 

��������	
 �� ���	�		���� �	�	� �-actin, expression. The forward and reverse primer 

sequences used in the study are shown in Table 2.1. Analysis of RT-PCR data was 

�	�����	
 ����� ���T scheme and calculated as relative changes in gene expression.  
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Table 2.1. Primer sequences corresponding to genes used in quantitative RT-PCR 

(F) represents nucleotide sequence for the forward primer and (R) represents nucleotide 

sequence for the reverse primer.  

Gene (F) 5'- 3' sequence (R) 5'- 3' sequence 

PPA�� CCC AAT GGT TGC TGA TTA CAA T CTA CTT TGA TCG CAC TTT GGT ATT CT 

FAS GCC ACC CAC CGT CAG AAG 
TGT CAC ATC AGC CAC TTG AGT GT 

ACC GAA TCT CCT GGT GAC AAT GCT TAT T GGT CTT GCT GAG TTG GGT TAG CT 

SCD1 GGT GAT GTT CCA GAG GAG GTA CTA C AGC GTG GGC AGG ATG AAG 

MGAT1 CTG GTT CTG TTT CCC GTT GT TGG GTC AAG GCC ATC TTA AC 

DGAT2 GCC GTG TGG CGC TAC TTC GTG GTC AGC AGG TTG TGT GTC T 

SREBP1c GGC ACT GAA GCA AAG CTG AAT GGC ACT GAA GCA AAG CTG AAT 

Resistin TGC CAG TGT GCA AGG ATA GAC T CGC TCA CTT CCC CGA CAT 

Leptin CAC ACA CGC AGT CGG TAT CC AGC CCA GGA ATG AAG TCC AA  

Adiponectin GAT GCA GGT CTT CTT GGT CCT AA GGC CCT TCA GCT CCT GTC A 

Adipsin GCT ATC CCA GAA TGC CTC GTT TTC CAC TTC TTT GTC CTC GTA TTG 

UCP1 GCC AAA GTC CGC  CTT CAG AT TGA TTT GCC TCT GAA TGC CC 

PGC-�� CCC AGG CAG TAG ATC CTC TTC AA CCT TTC GTG CTC ATA GGC TTC ATA 

Tfam TCC TGA GGA AAA GCA GGC ATA T CAT TTC ATT GTC GTA ACG AAT CCT A 

NRF1 GCC GTC GGA GCA CTT ACT G GGC CAT GAT TTC TGG AAG CA- 

NRF2 TCC CAGGTT GCC CAC ATT TGC CAA AAG CTG CAT ACA GTC T 

MCAD CAA CAC TCG AAA GCG GCT CA ACTTGCGGGCAGTTGCTTG 

CPT1 GCT GCT TCC CCT CAC AAG TTC C GCT TTG GCT GCC TGT GTC AGT ATG C 

Tbx1 GGC AGG CAG ACG AAT GTT C TTG TCA TCT ACG GGC ACA AAG 

Tmem26 ACC CTG TCA TCC CAC AGA G TGT TTG GTG GAG TCC TAA GGT 

Prdm16 CAG CAC GGT GAA GCC ATT C GCG TGC ATC CGC TTG TG  

ATGL GAG ACC AAG TGG AAC ATC GTA GAT GTG AGT GGC GTT 

CGI-58 GGT TAA GTC TAG TGC AGC AAG CTG TCT CAC CAC 

HSL TGT GGC ACA GAC CTC TAA AT GGCATATCCGCTCTC 

Perilipin TGC TGG ATG GAG ACC TC ACC GGC TCC ATG CTC CA 

�-actin AGA TGA CCC AGA TCA TGT TTG AGA CAC AGC CTG GAT GGC TAC GT 
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2.2.9 Stimulated Raman scattering (SRS) and two-photon excitation fluorescence (TPEF) 

imaging 

Stimulated Raman scattering (SRS) imaging was performed on a femto-second 

laser (InSight DeepSee, Spectra-Physics, Mountain View, CA) system, as described 

previously (Wang et al. 2013; Zhang et al. 2011). Mature adipocytes were treated for 

three hours with 50µM TMR and subjected to both SRS and TPEF imaging. Briefly, with 

the stokes beam fixed at 1040 nm, the pump beam is tuned to 800 nm to match the CH2 

stretch vibration at 2850 cm-1. A water immersion objective lens (60X, UPlanSApo, 

Olympus, Tokyo, Japan) with numerical aperture of 1.2 was used to focus the light on the 

sample. The average power used is 30 mW for the pump beam and 75 mW for the stokes 

beam. For Two-Photon Excited Fluorescence (TPEF) imaging of intracellular TMR 

compound, the pump beam at 800 nm was used as the excitation source. Forward signal 

was detected by a PMT (H7422-40, Hamamatsu) after a 410/40 nm bandpass filter. The 

imaging acquisition time is 10 µs per pixel. Images were analyzed using Image J software.  

 

2.2.10 High performance liquid chromatography (HPLC) with ultraviolet (UV) detection 

In order to determine the effect of TMR stability in media an HPLC system with 

UV-VIS detector was used as previously described (Lin and Ho 2009; Lin et al. 2010) 

with modifications. Briefly, TMR at 50 µM added to serum free medium incubated at 

37�C were collected at 0, 3, 6, 9 and 24 hours and stored at -80 �C.  Samples with 2% 

formic acid in acetonitrile were vortexed and centrifuged at 14,000 x g for 5 minutes to 

precipitate any proteins in the sample. Finally the supernatants were filtered through a 

���� �� �	
� ������ ��� ������� ���� �� � ������ ����  �!������ "��#�� �$����

equipped and a Waters 2996 Photodiode Array Detector. Separation was achieved with a 

RPC18column (XBridge BEH Shield RP18 2.5 µm, 2.1 x 100mm) through delivery of a 

mobile phase of 95% acetonitrile-water (75:25, v/v) containing 5% and  0.1% formic acid 

respectively at a flow rate of 0.25 ml/min with a run time of 10 minutes. TMR was 

detected at a wavelength of 300 nm and quantified using calibration curves constructed 

from serially diluted stock solutions of TMR prepared in the range of 500, 250, 75, and 

�� �"� 
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2.2.11 Statistical analysis 

Data are displayed as means ± SEM. Statistical analysis was performed using 

SAS 9.3 software. One-way analysis of variance was used to determine significance of 

treatment interactions and effect. Statistical significant comparisons between each group 

���� ��� ����	�
 ��	� ���
��� �� ���������� ��
���
� �����	����� ���� ����	����� ���

performed in duplicate or triplicate, with representative images. P values lower than 0.05 

were regarded as statistically significant.  
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CHAPTER 3. RESULTS AND DISCUSSION 

3.1 Introduction 

The prevalence and growth of obesity has drastically increased and expanded into a 

global health issue (Kim et al. 2013). Currently two thirds of the population in the United 

States are overweight, with a third being considered obese (Ogden et al. 2014). 

Consequently, obesity is highly associated with other metabolic diseases including 

insulin resistance and type 2 diabetes, cardiovascular diseases, and certain cancers 

(Despres and Lemieux 2006). Adipose tissue plays a critical role in whole body energy 

homeostasis and lipid metabolism. Adipocyte development is a result of hypertrophy, an 

increase in cell size, as well as hyperplasia, an increase in cell number (Kim et al. 2013). 

Hypertrophy occurs in mature adipocytes and this process is critical for lipid storage and 

secretion of hormones which maintain overall energy balance. Hyperplasia is responsible 

for generation of new adipocytes primarily seen in adolescence and adult adipocyte 

turnover (Kim et al. 2013). Both processes are targets for the prevention and or treatment 

of obesity in therapeutic strategies.  

 Obesity is associated with metabolic diseases that include type 2 diabetes. 

Currently, NEFA at amplified levels have suggested as a mediator linking the two 

conditions (Despres and Lemieux 2006). Lipolysis is the process in adipose tissue 

responsible for the mobilization of these NEFA into circulation and it commonly seen at 

an increased level in obese patients, which can be precursor to other detrimental 

metabolic syndromes (Duncan et al. 2007). Therefore, studies investigating strategies to 

attenuate lipolysis and subsequent NEFA release may be an approach to treating obesity-

induced type 2 diabetes. Currently, there is limited knowledge in regards to examining 

the role of dietary components and their regulation of adipose lipolysis. Our lab has  
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previously shown a resveratrol metabolite, piceatannol, has antilipolytic activity (Kwon, 

unpublished). Thus, we hypothesized that other resveratrol metabolites may also have an 

effect in in modulating lipid metabolism and play a role in reducing adipose lipolysis. 

Furthermore, the objective of this study is to identify and determine the effect of different 

resveratrol metabolites and their role in adipose function. Using cellular and biochemical 

techniques, we examined the role of the resveratrol metabolite, TMR, in lipid metabolism, 

with a focus on lipolysis and lipogenesis.  

 

3.2 Adipose function: Lipolysis 

WAT are fat stores and major energy reserves in mammals. With food intake, 

NEFA are esterified to a glycerol backbone and stored as neutral lipids in the form of 

TAGs and deposited in LD (Lass et al. 2011). During fasting or increased energy 

expenditure, TAGs are mobilized and FA are sequentially cleaved by lipases, released, 

and circulated to peripheral tissues to undergo �-oxidation and generate ATP (Lass et al. 

2011). This mobilization and hydrolysis of FA from the glycerol backbone is known as 

lipolysis (Zechner et al. 2012). Adipocyte lipolysis occurs sequentially and is a highly 

regulated process in that each step is carried out by a different lipolytic enzymes (Walther 

and Farese 2012). The first FA cleaved from TAG is done by ATGL, the second is 

removed by HSL, and the third by MGL resulting in three NEFA and a glycerol 

backbone (Ahmadian et al. 2009).  

 NEFA plasma concentrations are increased in obesogenic conditions and are a 

common cause for the dysregulation of lipolysis (Lafontan and Langin 2009). Currently, 

there is evidence that shows impaired NEFA metabolism is a contributing factor for 

insulin resistance in visceral obesity (Despres and Lemieux 2006). Increased circulating 

NEFA pose a serious issue in that with excess fat accumulation and dysfunctional 

metabolic state, ectopic fat disposition occurs where excess energy is stored in 

undesirable locations including the heart, liver, and muscle (Despres and Lemieux 2006). 

Additionally, NEFA at increased levels are thought to be a mediator linking obesity and 

type 2 diabetes through �-cell dysfunction, and as previously mentioned, insulin 

resistance (Kahn et al. 2006). Therefore, it has been proposed that identifying 
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antilipolytic agents to partially inhibit lipolysis may help to attenuate the level of 

circulating NEFA, and the development of dyslipidemia and metabolic syndromes 

(Langin 2006a).  

 

3.2.1 Impact of resveratrol metabolites on lipolysis in 3T3-L1 adipocytes 

As reviewed in the literature, resveratrol metabolites have varying function and 

effects in different types of cells and their role is dependent on the function being 

analyzed. To better understand the effects of different resveratrol metabolites, specifically 

in lipolysis, several metabolites were tested on mature 3T3-L1 cells which had greater 

than 90% lipid accumulation. 3T3-L1 cells were treated with resveratrol metabolites 

inc������ ���	
�
���� �� �� ��� ��-trans-tetrahydroxystilbene) (PIC), trans-�� ��� �-

trimethoxy resveratrol (TMR), resveratrol-3-O-glucuronide (3G), resveratrol-��-O-

glucuronide (4G) compared to the control vehicle, DMSO. Mature adipocytes were 

incubated with serum free medium and treated in both the basal and stimulated conditions. 

Incubating mature adipocytes in these two different conditions are necessary to mimic 

two different physiological conditions. The basal condition imitates a resting metabolic 

state in a neutrally temperate environment, or in other words, the energy that is expended 

by humans at rest, in a post-absorptive state sufficient for only functioning organs. A 

stimulated condition mimics a fasting condition such as after an acute exercise state 

where lipolysis is induced. In this cellular model, 3T3-L1 cells were treated in both 

conditions and stimulated by addition of isoproterenol (ISP) or forskolin (FSK). FSK 

works to stimulate and increase accumulation of cAMP in intact cellular systems 

(Seamon et al. 1981), and ISP is a �-adrenergic agonist that stimulates �-adrenergic 

receptors and increases levels of cAMP and AMPK to promote the lipolytic pathway 

(Fasshauer et al. 2002a; Minokoshi et al. 2002). Quantification of glycerol release, 

normalized by protein, allowed us to see the effect of metabolite action on lipolysis. Each 

metabolite was screened at a concentration of 50 µM; this is an intermediate range used 

in treatment of phytochemicals (Minakawa et al. 2012) and a level that has been 

previously used in our lab. Additionally, 50 µM is a frequently used with in vitro studies, 

including those examining the effects of resveratrol (RES) on 3T3-L1 adipocytes (Park et 
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al. 2008; Rayalam et al. 2008b). From an acute 1.5 hour treatment, PIC, TMR, and 3G 

show a significant reduction in lipolysis in the basal condition compared to the control 

(Figure 3.1 A). The significant inhibition of PIC on lipolysis has been demonstrated in 

our lab both in vitro and in vivo (Kwon, unpublished) and is confirmed in these data. Our 

new finding of the partial, significant inhibition of lipolysis by TMR and 3G in an acute, 

basal treatment has not been reported. The extent at which TMR reduced the level of 

lipolysis is similar to the efficacy seen with PIC. 4G demonstrated a slight reduction in 

the level of glycerol release, however, it was not reduced to a significantly different level 

as compared to the control. In a stimulated, acute treatment (Figure 3.1 B) we observed 

significant reduction in lipolysis by PIC as well as TMR, with similar inhibition level. 4G 

also significantly reduced the level of glycerol release in a lipolysis-induced environment 

in contrast to a basal condition. Interestingly, we note that 3G was unable to significantly 

reduce lipolysis, in this condition with an acute treatment, although we did observe a 

slight reduction. Overall, we observed, as hypothesized, that other resveratrol metabolites 

were able to partially inhibit lipolysis. To our knowledge, this is the first report of the 

effect of different resveratrol metabolites and their effect on lipolysis with short treatment 

time. Collectively, these results demonstrate the rapid action that resveratrol metabolites 

have on lipolysis in mature adipocytes in vitro. 

The next question addressed was the impact of these resveratrol metabolites in an 

extended, chronic treatment in basal and stimulated conditions. A 24 hour treatment of 

the resveratrol metabolites at 50 µM was added to mature 3T3-L1 cells with greater than 

90% lipid accumulation. Compared to the control, all the metabolites examined, PIC, 

TMR, 3G, and 4G demonstrated lipolysis-lowering ability in a chronic, basal 

environment (Figure 3.2 A). PIC and TMR significantly reduced lipolysis at similar 

levels, consistent with an acute treatment. 3G and 4G significantly diminished the 

glycerol release the most. This suggests that efficacy of 3G and 4G is enhanced with a 

longer treatment time. In the literature, there is one report identifying RES enhancing the 

level of lipolysis through increase in free fatty acid (FFA) release in mature 3T3-L1 

adipocytes (Lasa et al. 2012b). Observed by Lasa, RES significantly increased FFA in 

both chronic (24 hours) basal and stimulated conditions, however, glycerol levels 
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remained unchanged. Consistent with this report, RES treated for 24 hours in the basal 

condition revealed no significant difference as compared to the control. However, we did 

not observe the same large induction detected by Lasa (Lasa et al. 2012b). There is 

greater variability observed with the chronic stimulated condition (Figure 3.2 B). Of the 

treatments, PIC and TMR alone were able to reduce lipolysis significantly. We observed 

similar levels between the control, 3G, and 4G. Interestingly, we observed a significant 

reduction in lipolysis by RES, contrasting with reported data. However, it must be noted 

that the concentration levels used in our experiment was half the dosage of that reported 

induction by RES. This may be a contributor to the discrepancy between the chronic, 

stimulated condition treatment of RES as well as the different lipolytic-stimulant utilized.  

The distinct reduction in glycerol release correlating to the partial inhibition of 

lipolysis by resveratrol metabolites is not unreasonable. Treatment with TMR 

demonstrated significant reductions in both acute and chronic conditions in both basal 

and stimulated conditions. This resveratrol analogue gave rise to great interest as it was 

able to cause an effect in levels similar to PIC. To our knowledge, TMR has not been 

studied in lipid metabolism, although it has been shown to have anti-cancer activities in a 

variety of other in vitro cell systems (Dias et al. 2013; Hsieh et al. 2011b; Pan et al. 2008). 

The structure of TMR, containing three methoxy groups, lends itself to be more lipophilic 

and making it more favorable to be studied in a cellular adipocyte system. Although there 

has been no report of resveratrol metabolites in lipolysis, 3G and 4G have been 

previously studied for their delipidating effect in both maturing and mature 3T3-L1 

adipocytes (Lasa et al. 2012a). It was reported that 3G was able to significantly reduce 

the TAG content in mature adipocytes upon a 24 hour treatment at both 10 and 25 µM. In 

comparison to a control, 3G was described as having slightly increased mRNA 

expression of ATGL and HSL levels, however this increase was not significant (Lasa et al. 

2012a). This previous report is consistent with our results in the chronic, stimulated 

condition, where 3G shows very little action in reducing lipolysis. 4G was observed in 

the same study to have action in reducing TAGs significantly both in maturing and 

mature adipocytes at 25 µM. 4G also faintly increased ATGL mRNA expression and 

significantly increased HSL (Lasa et al. 2012a). Like 3G, these reported findings for 4G 
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are similar to our observation in Figure 3.2 A; where there is a significant reduction in 

lipolysis. RES was additionally examined in this experiment to demonstrate the structure-

function differences that occur with slight molecular modifications. Although RES has 

been reported to significantly increase serum FFA in 3T3-L1 cells (Lasa et al. 2012b), it 

only slightly increased FFA release in SGBS cells in the basal condition, while glycerol 

levels remained unchanged in both cell lines. This is comparable to our results. Notably, 

SBGS are human adipocytes, and the effect in these cells are of higher resemblance to an 

actual human effect (Lasa et al. 2012b). Also, previously reported in our lab with 3T3-L1 

cells, lipolysis was unaffected by RES, showing no difference from control cells in 

glycerol release or FFA (Kwon, unpublished). RES has been show as most active at 

reducing TAG levels (Lasa et al. 2012a), while its metabolites maintain action in other 

functions; indicating that resveratrol metabolites maintain relevancy in reducing lipolysis.  

In obesity, there is increased level of basal lipolysis, as previously described, and 

in this system, that condition may be most similar to a chronic, stimulated condition in 

our in vitro model. Therefore in looking at these results (Figure 3.2 B), we see that PIC 

and TMR have the greatest potency in reducing the level of glycerol release. 3G and 4G 

did not elicit the same effectiveness and there is variability seen between basal and 

stimulated conditions. Additionally, 3G and 4G have already been studied in lipid 

metabolism with some emphasis of their role in the lipolytic pathway. For these reasons, 

we pursed the role of TMR in adipose function and studied deeper into identifying the 

mechanistic pathways in which it partially inhibits lipolysis in vitro.  
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Figure 3.1 Effect of resveratrol metabolites on acute release of glycerol on mature 
adipocytes. Glycerol release in 3T3-L1 mature adipocytes treated for 1.5 hours at day 10 
after differentiation in the presence of the vehicle (control [C]), dimethyl sulfoxide 
(DMSO), or at 50 µM with piceatannol (PIC), trans-�� ��� �-trimethoxyresveratrol (TMR), 
resveratrol-3-O-glucuronide (3G), resveratrol-��-O-glucuronide (4G) in DMSO. 
Comparisons between each treatment with control; subjected to basal (A) and stimulated 
(B) conditions. Data are represented as means ± SEM, n=3. *, P <0.05.  
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A 

 

 

B 

 

 

Figure 3.2 Effect of resveratrol metabolites on chronic release of glycerol on mature 
adipocytes. Glycerol release in 3T3-L1 mature adipocytes treated for 24 hours at day 10 
after differentiation in the presence of the vehicle (control [C]), dimethyl sulfoxide 
(DMSO), or at 50 µM with resveratrol (RES), piceatannol (PIC), trans-�� ��� �-
trimethoxyresveratrol (TMR), resveratrol-3-O-glucuronide (3G), resveratrol-��-O-
glucuronide (4G) in DMSO. Comparisons between each treatment with control; subjected 
to basal (A) and stimulated (B) conditions. Data are presented as means ± SEM, n=3. *, P 
<0.05. 
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3.2.2 Impact of trans-�� ��� �-trimethoxyresveratrol (TMR) on cell viability 

TMR has been shown to possess the capacity to inhibit cell viability as well as 

stimulate apoptosis in a variety of cell systems including colon, prostate, and breast 

tumors in vitro and in vivo (Dias et al. 2013; Hsieh et al. 2011a; Pan et al. 2008; Simoni 

et al. 2006). Therefore, we wanted to ensure the partial inhibition of lipolysis by TMR 

was not due to action inhibiting cell viability, but through other antilipolytic action. Thus, 

the MTT assay was used to determine the effect of TMR in both proliferating 3T3-L1 

preadipocytes along with mature adipocytes. Cells were treated with varying 

concentrations of TMR (0, 5, 10, 25, and 50 µM) for 24 hours. These conditions 

represent the maximum treatment concentration and time that was used in our study. 

Proliferating preadipocytes showed no significant reductions in cell viability (Figure 3.3). 

In fact with lower concentrations of TMR at 5 and 10 µM, we note slightly enhanced 

viability. At higher concentrations of TMR, 25 and 50 µM, we did observe some slight 

inhibition on viability, however these effects were not greater than 25% nor significant. 

Mature adipocytes were also examined. Two day, post-confluent cells were stimulated to 

differentiate with an adipogenic cocktail of DMI and grown to mature adipocytes with 

lipid accumulation. At day 10 after differentiation, cells were incubated with TMR and 

consistent with preadipocytes, TMR had very little effect on cell viability (Figure 3.4). At 

its highest concentration, TMR maintained the same level of cell viability as the control. 

Taken together, our results demonstrate that TMR does not contain cytotoxic effects in 

3T3-L1 preadipocytes or mature adipocytes, and this data suggests that the reduction of 

lipolysis observed is caused by an alternative pathway.  
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Figure 3.3 Effect of trans-�� ��� �-trimethoxyresveratrol (TMR) on 3T3-L1 
proliferating cell viability. Post-confluent 3T3-L1 preadipocytes were incubated with 
various concentrations of TMR for 24 hours and the viability of these cells was assessed 
by MTT assay. Data are presented as means ± SEM, n=3. Not significant denoted as N.S. 
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Figure 3.4 Effect of trans-�� ��� �-trimethoxyresveratrol (TMR) on mature 3T3-L1 
adipocyte cell viability. Mature 3T3-L1 adipocytes at day 8 after differentiation were 
incubated with various concentrations of TMR for 24 hours and the viability of these 
cells was assessed by MTT assay. Data are presented as means ± SEM, n=4. Not 
significant denoted as N.S.  
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3.2.3 TMR stability and intracellular localization 

In order attribute the effects observed to TMR, a stability assay was performed to 

understand its degradation pattern in DMEM media. This assay is necessary and often an 

overlooked factor, with some phenolic compounds undergoing reactions with the cell 

culture medium (Halliwell 2008; Long et al. 2010). Modifications in stability, chemical 

structure, and interactions with other biomolecules may affect molecular targets (Delmas 

et al. 2011). RES incubated in DMEM at 37oC results in some instability overtime (24 

hours); however amounts of hydrogen peroxide, indicative of oxidation, were not 

significant (Long et al. 2010). This demonstrates the benefit of TMR having a degree of 

protection against extensive metabolism or oxidation due to its methoxylation (Lin and 

Ho 2009). Currently, there is little information on the stability of resveratrol metabolites 

in reference to their biological effects (Delmas et al. 2011). Resveratrol metabolite, PIC, 

has been shown to be present more intact than that of RES when studied in rats 

(Setoguchi et al. 2014). The pharmacokinetic profile of TMR was evaluated in rat plasma 

and found to have greater plasma exposure, longer half-life and lower clearance 

compared to RES, however this model was with TMR fully dissolved in hydroxypropyl-

�-cyclodextrin (HP-�-CyD) (Lin and Ho 2009). In our in vitro model, the stability of 

TMR was analyzed to ensure its efficacy. TMR was added to medium, incubated at 37oC, 

and collected at different time points (Figure 3.5). The half-life of TMR, as a percentage 

of the control, was determined to approximately 4 hours. Currently there are no published 

data on the stability of TMR in DMEM media, the closest comparison is relatively 

similar at approximately 5.8 hours seen in rat plasma dissolved in HP-�-CyD (Lin and 

Ho 2009). Between 6 and 9 hours, TMR concentration was undermined, which suggests a 

degree of degradation. However, the majority of the experiments completed in this study 

were well within the range of 6 hours, with most common treatment times of 1.5 and 3 

hours.  

In determination of stability, we also wanted to identify where in the cell TMR 

localizes. Mature 3T3-L1 cells were treated with TMR and incubated for 3 hours at 37oC. 

Images of cells and accumulated lipid were captured by SRS imaging, while the 

fluorescence of TMR was photographed with TPEF (Figure 3.6). The fluorescence signal 
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of TMR is strong, and the green color (TMR) indicates its high intensity. These images 

allow us to see that TMR co-localizes very strongly with the LD. The merged picture of 

TMR and the LD demonstrate its lipophilicity and where its action may occur. 

Interestingly, images taken previously by our lab show RES and in the intracellular space 

of the cytosol (unpublished). Noting this, it distinctly sets apart TMR, in location and its 

action in the cell may be due to its more lipophilic structure. TMR has been described as 

being distributed in higher levels in major organs than in plasma and is highly likely to be 

found fat tissues (Dias et al. 2013). 

Collectively, although the stability of TMR in media is found in low levels after 6 

hours, it is important to note that TMR is highly located with the LD within 3 hours of 

treatment. This suggests that when given to the cells, much of TMR is taken up rapidly 

and can have action in cellular processes, such as lipolysis, within a short period of time 

in vitro.  
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Figure 3.5 Stability of trans-�� ��� �-trimethoxyresveratrol (TMR) in DMEM media. 
TMR was added to serum free media at 50 µM and incubated at 37 �C. Aliquots were 
collected at various incubation time points. Samples were quantified by fluorescence at 
300 nm. Data are presented as relative TMR present as a percent at time 0 hour.  
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Figure 3.6 Trans-�� ��� �-trimethoxyresveratrol (TMR) intracellular localization in 
adipocyte. 3T3-L1 mature adipocytes treated for 3 hours at day 11 after differentiation in 
serum free DMEM media in the presence or absence of TMR (0 and 50 µM). Mature 
adipocytes were subjected to SRS imaging to visualize lipid droplet accumulation (red 
color) and TPEF imaging to observe intracellular TMR (green color). Image dimensions 
100µm x 100µm. Representative data shown; multiple images demonstrated similar 
results.  
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3.2.4 Dose-dependent effect of TMR on lipolysis in mature adipocytes 

TMR has been studied as an anti-cancer agent; however, its role in lipid 

metabolism has not yet been investigated. Here we elucidate its impact on 3T3-L1 mature 

adipocyte lipolysis and its underlying molecular mechanism. In order to achieve this, 

fully differentiated cells were treated at day 10 in the presence or absence of TMR at 

increasing concentrations. Based on MTT assay, each concentration up to 50 µM is non-

toxic and maintains no adverse effects on cell viability. Treatment of cells was done 

acutely at 1.5 hours. This is based on previous results which indicated TMR had a 

significant effect with a low treatment time. TMR was administered to cells at 0, 5, 10, 25, 

and 50 µM in both the basal and stimulated condition (Figure 3.7 A and B). In both 

conditions, TMR demonstrates significant, partial inhibition of lipolysis observed with 

reduced levels of glycerol released. This reduction in lipolysis is seen at each 

concentration of TMR. The efficacy of TMR and other resveratrol metabolites have been 

reported to show effects even at low concentrations (Hsieh et al. 2011a; Lasa et al. 

2012a). Identifying a low concentration threshold with adequate efficacy is critical for 

making animal and human physiological comparisons for dosage. Furthermore, 

identifying this dose-dependent response in glycerol release indicates another model 

system in which the resveratrol analogue, TMR, has action.  
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Figure 3.7 Dose-dependent effect of trans-�� ��� �-trimethoxyresveratrol (TMR) on 
release of glycerol on mature adipocytes. Glycerol release in 3T3-L1 mature adipocytes 
treated for 1.5 hours at day 10 after differentiation in the presence or absence of TMR (0, 
5, 10, 25, and 50 µM). Comparisons between each treatment with control; subjected to 
basal (A) and stimulated (B) conditions. Data are represented as means ± SEM, n=4. *, P 
<0.001.  
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3.2.5 Time-dependent impact of TMR on lipolysis in mature adipocytes 

In order to understand the difference between an acute and chronic treatment, we 

turned our attention to the aspect of time and the role it plays in affecting lipolysis 

inhibition by TMR. Most treatments of RES and its metabolites on 3T3-L1 cells were 

done a longer treatment times; a 24 hour treatment in mature adipocytes or treatment was 

given every 48 hours in maturing adipocytes (Lasa et al. 2012a; Lasa et al. 2012b). In one 

report by Lasa, were cells treated for a shorter, 12 hour time period with RES. As 

mentioned in the literature review, the lipolysis process, though a simplistic idea, it is a 

highly regulated, complex system (Zechner et al. 2012). The cascade of events which 

occur by proteins and different transcription factors may be altered in their action due to 

the amount time that the cell is exposed to an antilipolytic agent. We proposed that 

perhaps there is an optimal time that TMR is able to modulate the lipolysis process. 

TMR demonstrated an antilipolytic effect at 25 µM in glycerol release. We treated 

mature 3T3-L1 cells in the presence or absence of TMR (25 µM) for 3, 6, 21 and 24 

hours (Figure 3.8). We observed that TMR has a significant reduction in the glycerol 

release at an acute treatment time of 3 hours, and we also noted a significant difference at 

21 hours. Additionally, we also incubated mature adipocytes with 50 µM for 1.5 and 6 

hours, in both basal and stimulated conditions (Figure 3.9 A and B). Similarly, we note 

that the shorter, acute treatment of TMR is most effective in partially blunting glycerol 

release. These results indicate that TMR acts rapidly in influencing major components in 

the lipolytic cascade.   
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Figure 3.8 Time-dependent effect of trans-�� ��� �-trimethoxyresveratrol (TMR) on 
release of glycerol on mature adipocytes with 25 µM. Glycerol release in 3T3-L1 
mature adipocytes treated at different time points (1.5, 6, 21, and 24 hours) at day 10 after 
differentiation in the presence or absence of TMR (25 µM). Comparisons between each 
treatment with control; subjected to a basal conditions. Data are represented as means ± 
SEM, n=3. *, P <0.05. 
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Figure 3.9 Time-dependent effect of trans-�� ��� �-trimethoxyresveratrol (TMR) on 
release of glycerol on mature adipocytes with 50 µM. Glycerol release in 3T3-L1 
mature adipocytes treated at different time points (1.5 and 6 hours) at day 10 after 
differentiation in the presence or absence of TMR (50 µM). Comparisons between each 
treatment with control; subjected to basal (A) and stimulated (B) conditions. Data are 
represented as means ± SEM, n=3. *, P <0.05. 
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3.2.6 Mechanistic effect of TMR on lipolysis in mature adipocytes 

The next question we inquired involved the determination by what molecular 

mechanism does TMR elicit its partial inhibition of lipolysis. Lipolysis involves three 

different enzymes which work to hydrolyze LD TAGs into three FA and a glycerol 

backbone (Duncan et al. 2007; Zechner et al. 2012). This catabolic process and 

mobilization of NEFA into the bloodstream occurs during times of energy expenditure or 

fasting (Langin 2006a). As previously described, the first enzyme which acts primary on 

TAG is ATGL with activation by CGI-58, followed HSL which has high affinity to 

remove the second FA on DAG, and finally MGL acts to remove the final FA from the 

glycerol backbone (Ahmadian et al. 2010; Walther and Farese 2012). Formerly studied in 

our lab was the action of PIC on lipolysis. It has been shown that PIC works to partially 

inhibit lipolysis through protein degradation of ATGL and co-activator, CGI-58 (Figure 

3.10), primarily through activation of autophagy pathway targeting ATGL and CGI-58 

(Kwon, unpublished). Therefore, based on our results of PIC and TMR both inhibiting 

lipolysis at similar levels, the molecular mechanisms at which they suppress lipolysis 

may also be similar due to resemblance in their structure.  

Immunoblot analysis of lipolytic enzymes was done with mature 3T3-L1 

adipocytes that were treated in the presence or absence of TMR at varying concentrations 

(0, 5, 10, 25, and 50 µM) and PIC at 50 µM was used as a positive control. Western blot 

analysis was performed both in basal and stimulated conditions at an acute treatment time 

of 1.5 hours (Figure 3.11). In the basal condition, there is a dose-dependent response that 

mimics the effect seen in glycerol release. ATGL is observably reduced as compared to 

the control with different concentrations of TMR. Not surprisingly, we see that TMR is 

has greatest potency at its highest concentration of 50 µM. However, the level of ATGL 

reduction is not as substantial as PIC. Based on the quantification of band intensity 

(Figure 3.12 A), TMR is able to reduce ATGL protein expression by 40%, whereas PIC 

reduces it greater than 80%. TMR is also shows action in reducing CGI-58 protein 

expression. CGI-58 is necessary for activation and maximum stimulation of ATGL as 

well as regulation of the hydrolytic protein (Lass et al. 2006). TMR activity in the 

reducing CGI-58 is comparable to that of PIC, in which we see just over 50% reduced by 
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TMR and approximately 80% reduced by PIC. The second major lipolytic enzyme is 

HSL. Phosphorylation of HSL is the major regulator for activation of the enzyme as well 

as for the translocation to the surface of the LD (Schweiger et al. 2006). HSL 

phosphorylation occurs at multiple sites, but phosphorylation at serine-660 is responsible 

for interfacial activation and hydrolytic action of DAG (Walther and Farese 2012). 

Phosphorylation of HSL (pHSL) was also analyzed. TMR action of pHSL was 

surprisingly different than PIC in the basal condition. We observed slight reduction in the 

level of pHSL by TMR, whereas we see a large induction of pHSL of PIC. Overall, the 

level of reduction in lipolysis by glycerol release of TMR and PIC is very similar, yet the 

reduction level of ATGL and CGI-58 is greater in PIC than TMR. This discrepancy may 

be due to TMRs slight action inhibiting HSL activation in an acute basal treatment.   

In the acute stimulated condition, we observe a similar, more pronounced trend in 

the action of TMR on lipolytic enzymes. ATGL protein expression is greatly reduced by 

TMR, similar to PIC (Figure 3.11 B) at approximately 80% (Figure 3.12 B). TMR only 

reduced CGI-58 by 20% as compared to the control, whereas we still observe a large 

reduction by PIC. The pHSL in this condition by TMR is slightly reduced maintaining a 

similar trend as seen in the basal condition. Again, this contrasts with action by PIC, 

which increases pHSL. This data suggests that TMR action on lipolysis in an acute 

condition is predominantly through reduction of protein expression of ATGL. However, 

it is worth noting, that TMR does have small action in reducing both CGI-58 and pHSL. 

The ability of TMR to interact and affect, at least in part, these major lipolytic enzymes 

may be attributed to its capacity to locate with the LD. The lipolysis process is occurs at 

the surface of the LD, accordingly, the catabolic enzymes are equipped with a 

hydrophobic region which allows binding (Duncan et al. 2007). Advantageously, the 

structure of TMR lends itself to be more lipophilic, and perhaps have greater versatility 

surrounding the LD.  

To further confirm that greatest effect of TMR action is seen with an acute 

treatment. Immunoblot analysis was performed on mature murine 3T3-L1 adipocytes 

which were treated for 3 hours in the presence or absence of TMR at 0, 25, and 50 µM 

concentrations (Figure 3.13). We observed large reductions in the levels of ATGL and 
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CGI-58 protein expression (Figure 3.14). These results show the reduction of lipolytic 

enzymes by TMR dose-dependently. The reductions in protein expression are similar to 

the levels observed by PIC with a 1.5 hour treatment. TMR, at 50 µM was able to 

effectively reduce ATGL expression by approximately 80% and CGI-58 by 70%. The 

level of pHSL was also consistent with our previous results, indicting slight action in 

blocking its phosphorylation. These data suggest the largest reduction of lipolytic 

enzymes observed by TMR at 3 hours. For comparison, TMR was treated for 6 hours on 

mature adipocytes and immunoblot analysis was done to observe its effects on enzyme 

expression (Figure 3.15). Observably, we note a reduction in ATGL and CGI-58 levels. 

Yet when analyzing the quantification of the band intensity, we see that the detected 

effect is not as large compared to a 3 hour treatment (Figure 3.16). TMR demonstrates 

reduction of ATGL protein expression by 40% and reduces CGI-58 protein level by 25%. 

Conversely, we see an upregulation of pHSL as compared to the control. Importantly, the 

data suggests that the most effective treatment of time of TMR is acute, at 3 hours, and 

time does play a role on the level of lipolytic inhibition.   

In an attempt to further our understanding of the effect of TMR on lipolytic 

protein expression, we examined TMR in a basal, chronic condition. 3T3-L1 mature 

adipocytes were treated with different concentrations of TMR (0, 5, 10, 25 and 50 µM) 

for 24 hours and protein expression was analyzed with immunoblotting (Figure 3.17). 

Our protein expression levels of cells treated with TMR as compared to the control are 

reduced, however not to the same degree observed in an acute treatment of 3 hours. Here 

we observe an approximately 20% reduction in ATGL protein expression by TMR only 

at its highest concentration of 50 µM (Figure 3.18). PIC still maintains chronic efficacy 

in its degradative action of ATGL. CGI-58 protein expression had a similar trend as 

ATGL; TMR induced a slight reduction while PIC sustained its degradation (data not 

shown). pHSL after a 24 hour treatment was highly increased with TMR (25 and 50 µM) 

and PIC treatment with a 3-fold increase. This data suggests that there may be a 

compensatory effect that occurs in a chronic treatment of TMR. And although, glycerol 

release is still partially inhibited with a 24 hour treatment by TMR, within the cell only 

slight reductions in ATGL and CGI-58 are seen with pHSL being upregulated to possibly 
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compensate for the extended time and need for an energy substrate. Taken together, our 

results demonstrate TMR acts in a similar manner as PIC and the molecular mechanism 

at which TMR partially inhibits lipolysis is primarily with reduction of ATGL, with slight 

inhibition action on both CGI-58 and pHSL. This effect of TMR is seen at a greater 

potency in an acute treatment.   

It has been reported in vivo high fat diet (HFD)-induced obesity disrupts the 

controlling pathways and causes changes in lipolytic protein expression and signaling 

(Gaidhu et al. 2010). In an obesogenic condition, it was noted that several key lipolytic 

elements are altered; this includes upregulation of ATGL and CGI-58 and down 

regulation of HSL and perilipin. This culminates in an increased level of basal lipolysis 

with alterations in the molecular regulation of FA metabolism and lipolysis, leading to 

increased metabolic dysfunctions (Gaidhu et al. 2010). Defects in the metabolic 

regulatory system ultimately results in severe consequences, as reviewed earlier, 

including increased levels of circulating NEFA and insulin resistance leading to ectopic 

fat distribution (Despres and Lemieux 2006). Here we describe an in vitro system with 

dietary compounds effects can help to attenuate some of the dysfunctional action in 

lipolysis. Our results demonstrate an altered cellular environment that would increase the 

health of a HFD-obesogenic condition. We observe reduction in glycerol release and 

definitive down regulation of ATGL and CGI-58, and slight reductions in the pHSL by 

TMR. This action is occurs acutely and is specific to the surface of LD, where TMR 

locates. The data suggests that TMR helps to modulate the first, rate-limiting step of 

lipolysis through action in reducing key lipase protein expression.  
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Figure 3.11 Dose-dependent acute effect of trans-�� ��� �-trimethoxyresveratrol 
(TMR) on lipolytic enzymes in 3T3-L1 mature adipocytes. 3T3-L1 mature adipocytes 
were incubated in the presence or absence of TMR at various concentrations (0, 5, 10, 25, 
50 µM) or piceatannol (PIC) at 50 µM for 1.5 hours in the basal and stimulated 
conditions. Cells in stimulated condition were incubated with isoproterenol (ISP). The 
cells were collected and protein samples were prepared. Protein levels of ATGL, CGI-58, 
and phosphorylated HSL (Ser660) in these cells were detected by immunoblot assay 
using their specific antibodies and �-actin as a loading control. The experiment was 
repeated at least twice with similar results.  
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Figure 3.12 Quantification of immunoblot [shown in Figure 3.11] Film was scanned 
and protein band intensity was quantified with NIH ImageJ software (ver 1.45S), 
normalized to ban� ��������� �	 
-actin. Cells were subjected to basal (A) and stimulated 
(B) conditions.  
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Figure 3.13 Three hour effect of trans-�� ��� �-trimethoxyresveratrol (TMR) on 
lipolytic enzymes in 3T3-L1 mature adipocytes. 3T3-L1 mature adipocytes were 
incubated in the presence or absence of TMR at various concentrations (0, 25, 50 µM) for 
3 hours in a basal condition. The cells were collected and protein samples were prepared. 
Protein levels of ATGL, CGI-58, and phosphorylated HSL (Ser660) in these cells were 
detected by immunoblot assay using their specific antibodies and �-actin as a loading 
control. The experiment was repeated at least twice with similar results.  
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Figure 3.14 Quantification of immunoblot [shown in Figure 3.13] Film was scanned 
and protein band intensity was quantified with NIH ImageJ software (ver 1.45S), 
��������	
 �� ���
 ���	���� �� �-actin. Cells were subjected to basal conditions.  
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Figure 3.15 Six hour effect of trans-�� ��� �-trimethoxyresveratrol (TMR) on lipolytic 
enzymes in 3T3-L1 mature adipocytes. 3T3-L1 mature adipocytes were incubated in 
the presence or absence of TMR at various concentrations (0, 50 µM) for 6 hours in a 
basal condition. The cells were collected and protein samples were prepared. Protein 
levels of ATGL, CGI-58, and phosphorylated HSL (Ser660) in these cells were detected 
by immunoblot assay using their specific antibodies and �-actin as a loading control.  
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Figure 3.16 Quantification of immunoblot [shown in Figure 3.15] Film was scanned 
and protein band intensity was quantified with NIH ImageJ software (ver 1.45S), 
��������	
 �� ���
 ���	���� �� �-actin. Cells were subjected to basal conditions.  
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Figure 3.17 Dose-dependent chronic effect of trans-�� ��� �-trimethoxyresveratrol 
(TMR) on lipolytic enzymes in 3T3-L1 mature adipocytes. 3T3-L1 mature adipocytes 
were incubated in the presence or absence of TMR at various concentrations (0, 5, 10, 25, 
50 µM) or piceatannol (PIC) at 50 µM for 24 hours in a basal condition. The cells were 
collected and protein samples were prepared. Protein levels of ATGL and phosphorylated 
HSL (Ser660) in these cells were detected by immunoblot assay using their specific 
antibodies and �-actin as a loading control. The experiment was repeated at least twice 
with similar results.  
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Figure 3.18 Quantification of immunoblot [shown in Figure 3.17] Film was scanned 
and protein band intensity was quantified with NIH ImageJ software (ver 1.45S), 
��������	
 �� ���
 ���	���� �� �-actin. Cells were subjected to basal conditions.  
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3.2.7 TMR partially inhibits lipolysis in mature adipocytes via protein reduction 

In order to observe and confirm the overall effect that TMR exhibits on mature 

adipocytes. We treated 3T3-L1 cells in the presence or absence of TMR (0, 25, 50 µM) 

for 3 hours in both a basal and stimulated condition (Figure 3.19). Here we validate 

results consistent with our previous data. TMR is able to modulate lipolysis in both 

conditions via reductions in protein expression of ATGL and CGI-58. To note, TMR is 

highly potent in the basal condition with significant reductions of ATGL at 70% and 60 % 

of CGI-58 (Figure 3.20 A). TMR also showed a slight inhibition of pHSL, consistent 

with previous 3 hour treatments. In the stimulated condition, we observe that TMR is able 

to reduce ATGL and CGI-58, yet the levels of reduction are not as pronounced as in the 

basal state (Figure 3.20 B). We detect 25% and 35% reduction in protein expression 

levels of ATGL and CGI-58, respectively. Also, pHSL was slightly increased compared 

to the control. This may suggest some increased signaling or alternative route the cell is 

trying to control with HSL, because although HSL mainly acts on DAG, it does maintain 

affinity for hydrolyzing TAG (Duncan et al. 2007). Nonetheless, these results provide 

confirmatory evidence on TMR partial inhibitory action of lipolysis through reduction of 

lipolytic enzymes and its modulating specificity in lipid metabolism.  

Our study proposes significant, partial inhibition of mature adipocyte lipolysis by 

TMR requires a concentration up to 50 µM in vitro. Our data suggests that the 

physiological condition of mature adipocytes may be more sensitive to acute exposure to 

circulating levels of TMR, which exerts a beneficial function in a metabolic 

dysfunctional environment. The rate of NEFA release of adipose tissue is strongly 

associated with insulin resistance and type 2 diabetes (Lass et al. 2006). Therefore 

identifying a potential dietary compound, such as TMR, as an antilipolytic agent, which 

aids in modulating this process may be a beneficial therapeutic strategy. Given the 

importance of the lipolysis process in overall energy homeostasis, it imperative to 

mention that with treatment of TMR, we do not observe full inhibition of glycerol release 

and protein expression. It has been reported that patients with complete deficiencies in 

either ATGL or CGI-58 lead to defective lipolytic catabolism, resulting in accumulation 

of neutral lipid storage and an obese phenotype (Lass et al. 2006). Moreover, the partial 
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inhibition we see with TMR is more applicable as strategy to alleviate some, but not all, 

adipose lipolysis. 
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Figure 3.19 Acute effect of trans-�� ��� �-trimethoxyresveratrol (TMR) on lipolytic 
enzymes in 3T3-L1 mature adipocytes. 3T3-L1 mature adipocytes were incubated in 
the presence or absence of TMR at various concentrations (0, 25, 50 µM) for 3 hours in 
the basal and stimulated conditions. Cells in stimulated condition were incubated with 
forskolin (FSK). The cells were collected and protein samples were prepared. Protein 
levels of ATGL, CGI-58, and phosphorylated HSL (Ser660) in these cells were detected 
by immunoblot assay using their specific antibodies and �-actin as a loading control. The 
experiment was repeated at least twice with similar results.  
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Figure 3.20 Quantification of immunoblot [shown in Figure 3.19] Film was scanned 
and protein band intensity was quantified with NIH ImageJ software (ver 1.45S), 
��������	
 �� ���
 ���	���� �� �-actin. Cells were subjected to basal (A) and stimulated 
(B) conditions. Data are presented as means ± SEM, n=2-4. *, P <0.05. 
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3.2.8 Impact of TMR on lipolytic gene expression 

There is large importance in understanding how specific lipolytic enzyme 

manifestation is effected by dietary compounds, such as TMR. However, other regulatory 

mechanisms take place in modulating the transcription and translation of specific lipases. 

Therefore, in order to understand if TMR acts at these levels, relative mRNA expression 

of lipolytic lipases was also analyzed (Figure 3.21). Here we observed as significant 

reduction in the relative expression of ATGL, as well as with the lipid associated protein, 

perilipin. We note that a treatment with TMR shows a trend of reduction in both CGI-58 

and HSL expression levels. The down regulation of these genes is not surprising as it has 

been previously reported that RES, shown to target ATGL, displayed upregulation in 

both protein and relative mRNA expression. It was also noted, however, that RES does 

not have any noticeable effect on HSL (Lasa et al. 2012b). Also reported, the resveratrol 

metabolite, resveratrol-3-O-sulfate (3S), displayed a reducing trend in HSL mRNA 

expression levels (Lasa et al. 2012a). Collectively, our protein analysis in combination 

with our mRNA analysis of lipolytic enzymes demonstrates a profound effect of TMR 

and its modulation of lipolysis. Our study observed that TMR reduced glycerol release to 

similar potency as PIC. And although we show that TMR also plays a role in the 

reduction of protein expression of ATGL and CGI-58, it was not seen to the same degree 

as PIC. Our relative mRNA expression of lipolytic enzyme illustrates another piece of the 

puzzle, suggesting TMR has some transcriptional activity regarding these enzymes.  

In summary, our study including molecular imaging and biochemical analysis 

provides evidence that TMR is significant in partially inhibiting mature adipocyte 

lipolysis through the reduction of lipolytic enzymes, possibly via mediation of protein 

degradation, and potentially having activity which acutely affects enzymatic transcription. 

Our results also indicate that the structure of TMR allows its co-localization with the 

hydrophobic LD and may attribute to its high activity in lipid metabolism. Collectively, 

this study elicits new findings that TMR modulates lipolytic activity in murine adipocytes 

in vitro and can support further investigations of therapeutic approaches for metabolic 

disorders induced by obesity and metabolic syndrome.  
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Figure 3.21 Effect of trans-�� ��� �-trimethoxyresveratrol (TMR) on lipolytic 
transcription factor expression. 3T3-L1 mature adipocytes were incubated in the 
presence or absence of TMR (50 µM) for 3 hours in a basal condition. The cells were 
collected on day 10 and samples were prepared and subjected to quantitative gene 
expression analysis of ATGL, CGI-58, HSL, and perilipin by real-time (RT)-PCR. The 
signals were normalized by �-actin as an internal control. The values are displayed as 
fold change compared to the control; value arbitrarily set to 1. Data are presented as 
relative fold induction means ± SEM, n=3. *, P <0.05. 
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3.3 Adipose function: Lipogenesis 

As described in the review of the literature, during the terminal phase of 

adipogenesis, genes are encoded which result in the generation of FA and TAG (Kim et 

al. 2013). The process of carbon movement and series of enzymatic reactions yielding the 

production of FA is known as de novo lipogenesis (Ameer et al. 2014). The formation of 

TAG is also conducted by enzymes which involves a series of esterification of FA 

moieties to a glycerol backbone (Farese and Walther 2009). The molecular level of gene 

expression of these specific enzymes as well as adipokines secreted are tightly regulated 

and increased during TAG formation (Kim et al. 2013).  

 Dietary and molecular control of lipogenesis may be a potential target to prevent 

adipose mass increase and the development of obesity and its associated diseases. Yet, 

complete inhibition of lipid accumulation in adipocytes could lead to severe negative 

consequences including hypertrophy and or increased storage of TAGs in non-adipose 

tissues (Kim et al. 2013). Approaches involving increasing overall energy expenditure 

through increased activity of thermogenesis and fatty acid oxidation (FAO) may be an 

alternative route to positively affect obesity. The molecular mechanisms involved in the 

regulation of adipocyte differentiation and lipid accumulation can be widely altered by 

addition of bioactive dietary compounds. Furthermore, utilizing phytochemicals as a 

means to modulate obesity-preventing cellular metabolic pathways may be used as a 

therapeutic strategy (Jeong et al. 2012).  

 

3.3.1 Impact of TMR on adipocyte differentiation and lipid accumulation 

TMR has been shown in other cellular system to have efficacy, acting as an anti-

cancer agent and can induce apoptosis (Dias et al. 2013; Pan et al. 2008). However, as 

reviewed in the literature, the action of phytochemicals is dependent on the function 

being analyzed. Currently, resveratrol metabolites have not been extensively studied in 

lipid metabolism; however, there is one report which details their role in adipogenesis 

and lipid accumulation. Lasa reports that treatment of 4G and 3S on maturing 3T3-L1 

cells from day 0 to day 8, results in a significant reduction of relative TAG content (Lasa 

et al. 2012a). PIC has also been shown to inhibit adipogenesis through modulation of 
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MCE as well as through insulin receptor-dependent insulin signaling during the early 

stage of differentiation (Kwon et al. 2012). Based on our results, TMR has specific action 

in adipose function, specifically lipolysis, but its role in obesity development has not yet 

been elucidated. Also, because other resveratrol metabolites have demonstrated an effect 

on lipid accumulation, we hypothesize that TMR may also play a role in lipogenesis. In 

order to understand the function of TMR on lipid accumulation, we first examined the 

effect of TMR on the differentiation process in 3T3-L1 preadipocytes. Two day post-

confluent preadipocytes were treated in the presence or absence of TMR (0 and 50 µM) 

and an adipogenic cocktail (DMI). Differentiating cells were treated with TMR every two 

days and were collected on day 6 after differentiation and lipid accumulation was 

quantified with ORO staining (Figure 3.22 A). Observably, there does not seem a 

dramatic reduction in lipid accumulation by TMR. Upon further inspection, we note that 

the sizes of the LDs in cells treated with TMR are slightly reduced. However, 

quantification of ORO stained intracellular LD was of no significance (Figure 3.22 B). 

Upon further confirmation of the effect TMR has on lipid accumulation, this experiment 

was repeated, yielding a large sample size (n=24). The repetition of this experiment was 

slightly contrasting with previous results we observed, in which we did see a reduction in 

LD formation (data not shown). Collectively, the lipid accumulation between the control 

and TMR are similar, ������� �� �	

� 	������� ����� ������� 	���� ��

	
��

development we investigated intracellular gene expression.  
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3.3.2 Impact of TMR on maturing adipocyte gene expression 

As mentioned in the literature review, adipogenesis is a highly regulated program 

in which the cascade of transcription factors are stimulated and activated leading to 

terminal differentiation and ultimately developed LD (Cornelius et al. 1994). There is 

high coordination of gene expression events that occur and enhance the activity of de 

novo lipogenic enzymes and increase lipid accumulation (Rosen and MacDougald 2006). 

It is important to note, that although PIC and 3S have been reported to have significant 

action in reducing adipogenic gene expression markers of C/���� and �����, other 

resveratrol metabolites, 4G and 3G demonstrated no significant difference from the 

control, and actually trended toward increasing these markers (Kwon et al. 2012; Lasa et 

al. 2012a).  

In order to investigate the trend of slightly reduced lipid accumulation in maturing 

3T3-L1 adipocytes by TMR, we analyzed gene expression to understand if modulation 

occurred by TMR treatment. We wanted to determine if TMR was altering different gene 

expression markers during differentiation using quantitative real time RT-PCR. 3T3-L1 

preadipocytes were stimulated to differentiate in the presence or absence of TMR at 

varying concentrations (0, 10, 25, and 50 µM) and treated every two days until collected 

on day six after differentiation. The gene expression profiles of several different 

functional adipose markers are discussed below.  

 

3.3.2.1 De novo lipogenesis 

As previously discussed in the literature review, the cascade of de novo 

lipogenesis involves series of reactions performed by enzymes which construct FA and 

generate TAG (Farese and Walther 2009)� 		
�� �� ���� ������ �� ������ �����������

of adipocyte differentiation for its binding to fat specific enhancers. TMR at 50 µM 

showed no significant difference in mRNA expression compared to the control (Figure 

3.23 A). This data is consistent with reported data of RES, 3G, and 4G in which there 

was no significant change in ����� levels of maturing adipocytes (Lasa et al. 2012a). 

FAS, the major enzyme accounting for FA biogenesis, is dose dependently, and 

significantly upregulated by TMR (Figure 3.23 B). ACC is also upregulated significantly 
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by the highest concentration of TMR (50 µM) indicating increased production of 

malonyl-CoA to be used as substrate for FAS (Figure 2.23 C). We observed upregulation 

of MGAT1 and DGAT2, but there is no significant change in SCD-1 or SREBP1c (Figure 

2.23 D-G). It is interesting to observe upregulation in genes that are involved in the 

production of FA and TAG synthesis, due to our previous collected data that 

demonstrates no significant induction in LD accumulation. This expression of lipogenic 

genes poses a thought-provoking question: how does TMR upregulate de novo 

lipogenesis genes and yet the level of lipid accumulation is unchanged and trends toward 

a slight reduction? To begin to answer this question, we looked at the previous report 

with resveratrol metabolites and their effect on ACC and FAS. Interestingly, 3T3-L1 

mature adipocytes were subjected gene expression analysis of ACC and FAS after a 24 

hour treatment of 10 µM of RES, 4G, 3G and 3S (Lasa et al. 2012a). ACC levels trended 

increasingly, although not significant, by RES, 3G, and 4G. The level of FAS expression 

was significantly reduced by 3G, however RES demonstrated an almost 1.5 fold increase 

as compared to the control (not significant). Nonetheless, the action seen by RES is 

comparable to that observed by TMR. In mature adipocytes, RES significantly reduced 

TAG content yet had a trending increase in gene expression levels of FAS (Lasa et al. 

2012a). Although the authors do not comment on this occurrence, they did show 

increased levels of ATGL expression, which could indicate that RES has a higher capacity 

for energy expenditure through catabolic processes. In order to see if this is the case in 

our study and to fully understand this phenomenon in regards to TMR and its effect on 

maturing adipocytes, we further analyzed other gene expression markers.  
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F      G 

  

Figure 3.23 Dose-dependent effect of trans-�� ��� �-trimethoxyresveratrol (TMR) on 
de novo lipogenic marker gene expression. 3T3-L1 preadipocytes were subjected to 
adipocyte differentiation and an adipogenic cocktail (DMI). Cells were incubated in the 
presence of dimethyl sulfoxide (DMSO) or various concentrations of TMR (0, 10, 25, 
and 50 µM) in DMSO for 6 days. The cellular total RNA was extracted and subjected to 
RT-���	 
�� ��� ������ �� ��� ����� ����� �� µM), (B) FAS, (C) ACC, (D) SCD1, 
(E) MGAT1, (F) DGAT2, and (G) SREBP1c were quantified and normalized with the 
����� ���� �! !���" #-actin. The values are displayed as fold change compared to the 
control; value arbitrarily set to 1. Data are presented as relative fold induction means ± 
SEM, n=3. *, P <0.05. 
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3.3.2.2 Adipokines 

With TMR demonstrating a role in the marked increases in the lipogenic 

transcription program, we wanted to further investigate its effect on maturing adipocyte 

adipokine expression. Because adipose tissue is an endocrine organ, it has the capacity to 

secrete adipokines affecting metabolic pathways and energy homeostasis (Kershaw and 

Flier 2004). Therefore, we looked at four different adipokine gene expression profiles in 

cells treated with TMR to elucidate its potential involvement. Resistin, adiponectin, and 

adipsin were significantly upregulated, while the leptin was significantly reduced (Figure 

3.24 A-D). First of all, resistin expression is induced during adipocyte differentiation and 

its levels are increased in diet-induced obesity and suppressed by insulin in 3T3-L1 

adipocytes (Haugen et al. 2001) (Steppan et al. 2001). TMR demonstrated an increase in 

resistin. Its physiological function is to help regulate glucose tolerance and act as an 

adaptive response (Shojima et al. 2002). Comparatively, although in a different system, 

Mercader observed a 20 hour treatment of RES in mature adipocytes reduced resistin 

expression (Mercader et al. 2011). Leptin plays an important role in regulating food 

intake, energy expenditure, and physiologically when leptin plasma levels are increased, 

insulin secretion is inhibited (Cases et al. 2001). A reduced leptin concentration signals 

initiation for a starvation response (Ahima et al. 1996). Our results indicate a slight, 

significant reduction in the gene expression of leptin by TMR. This is similar to other 

published data with RES, which in maturing preadipocytes significantly reduces leptin 

expression (Eseberri et al. 2013) as well as rat adipocytes had reduced leptin secretion 

with RES treatment (Szkudelska et al. 2009). It was also noted that reduced leptin levels 

may be in part due to increased cAMP in fat cells, which could result in a parallel rise in 

lipolysis (Szkudelska et al. 2009). Our data suggests that the reduction in leptin levels by 

TMR may induce increased energy expenditure in the cells. Adiponectin is largely 

present in healthy human plasma and significantly lowered in obese subjects (Arita et al. 

1999). It is an important modulator in lipid metabolism and is known to increase insulin 

sensitivity as well as increase FAO (Fasshauer et al. 2002b). TMR dose-dependently 

increases adiponectin expression significantly. This induction is consistent with the effect 

of other resveratrol metabolites in maturing adipocytes including 3G, 4G, and 3S 
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(Eseberri et al. 2013). Finally, adipsin is found in high levels in adipose tissue and its 

expression has been shown to be greatly reduced in obese mice, while increased levels 

are associated with a catabolic state in normal rodents (Flier et al. 1987; White et al. 

1992). TMR effectively increases the expression of adipsin in 3T3-L1 maturing 

adipocytes which is consistent with an increased energy expenditure state. Collectively, 

the effect of TMR on adipokine gene expression is representative of cells which have 

altered lipid metabolism in that they have a higher propensity to expend energy. Taken 

together, this upregulation of adipokine gene expression, specifically adiponectin and 

adipsin, and down regulation of leptin possibly indicate an enhanced catabolic state 

which may result in reduced lipid accumulation.   
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Figure 3.24 Dose-dependent effect of trans-�� ��� �-trimethoxyresveratrol (TMR) on 
adipokine gene expression. 3T3-L1 preadipocytes were subjected to adipocyte 
differentiation and an adipogenic cocktail. Cells were incubated in the presence of 
dimethyl sulfoxide (DMSO) or various concentrations of TMR (0, 10, 25, and 50 µM) in 
DMSO for 6 days. The cellular total RNA was extracted and subjected to RT-PCR. The 
mRNA levels of (A) Resistin, (B) Leptin, (C) Adiponectin, and (D) Adipsin were 
���	
���� �	� 	�������� ��
� 
� ���� ���	� �	� �-actin. Data are presented as 
relative fold induction means ± SEM, n=3. *, P<0.05.  
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3.3.2.3 Lipolysis 

To further investigate the overall effect of TMR on maturing adipocytes, lipolytic 

gene expression was analyzed to determine if catabolic processes were induced. ATGL, a 

major, rate-limiting step in the lipolysis was dose-dependently and significantly increased 

(Figure 3.25 A). Perilipin, a LD associated protein was also significantly increased when 

treated with 50 µM TMR (Figure 3.25 B). This transcriptional regulation by TMR 

demonstrates its ability to increased catabolic processes. This data represents that the 

action observed is highly dependent on the function being analyzed. TMR acts to increase 

energy expenditure in maturing adipocytes. Comparably, there is no report of other 

resveratrol metabolites concerning lipolytic gene expression in development stage of 

lipogenesis. Taken together, this data suggests that TMR modulates lipolytic transcription 

in maturing adipocytes which may be contributing factor of a trend toward a lessened 

lipid accumulation and size during development. Th�� ���� ����� �	
�� ������ � �����

many major adipose functions in the progression of the cell growth.  
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Figure 3.25 Dose-dependent effect of trans-�� ��� �-trimethoxyresveratrol (TMR) on 
lipogenic gene expression. 3T3-L1 preadipocytes were subjected to adipocyte 
differentiation and an adipogenic cocktail. Cells were incubated in the presence of 
dimethyl sulfoxide (DMSO) or various concentrations of TMR (0, 10, 25 and 50 µM) in 
DMSO for 6 days. The cellular total RNA was extracted and subjected to RT-PCR. The 
mRNA levels of (A) ATGL and (B) Perilipin (0 and 50 µM) were quantified and 
���	
���� ���� ��� ����� ������� ����� �-actin. Data are presented as relative fold 
induction means ± SEM, n=3. *, P<0.05. 
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3.3.2.4 Mitochondrial biogenesis 

TMR showed an ability to increase catabolic process transcriptional activity; 

therefore we wanted to explore its effect in mitochondrial biogenesis. We identified three 

genes which are highly involved in the biogenesis of the mitochondria including 

mitochondrial transcription factor A (Tfam) and nuclear respiratory factors 1 (NRF1) 

and 2 (NRF2) (Figure 3.26 A-C). As energy demands of the cell can change through the 

process of differentiation, mitochondrial content is variable and can increase based on 

different physiological conditions, including adaptive thermogenesis (Goffart and 

Wiesner 2003). Although 95% of the genes required for mitochondrial biogenesis are 

encoded inside the nucleus, regulation of these genes are controlled by transcriptional 

mechanisms (Goffart and Wiesner 2003). Tfam activation is dependent on NRF1 and 

NRF2, and is an important transcriptional activator stimulating specific mitochondrial 

transcription initiation as well as mitochondrial DNA maintenance (Escriva et al. 1999). 

Tfam protein controls mitochondrial DNA copy number and has been shown to be vital 

for embryonic development and biogenesis (Escriva et al. 1999). TMR showed a slight, 

significant increase in Tfam, supporting mitochondrial biogenesis, as well as 

demonstrated significant increases in both NRF1 and NRF2. The NRFs have been 

reported to activate transcription of many genes involved in respiratory chain functions as 

well as regulating Tfam, translocating and activating the mitochondria and its replication 

and transcription (Wu et al. 1999a). NRF1 is important for mitochondrial haem synthesis 

and protein import into the mitochondria. It plays an important role in the coordination of 

nuclear and mitochondrial gene expression acting as a transcriptional activator for Tfam 

and in MRP endonuclease, which in required for mitochondrial DNA transcription 

(Goffart and Wiesner 2003). NRF1 also is critically involved in mitochondrial integrity 

and functioning (Goffart and Wiesner 2003). NRF2 binds to specific target sequences in 

the promoter region of a large number of nuclear encoded mitochondrial genes (Goffart 

and Wiesner 2003), and is responsible for the activity and expression of mitochondrial 

subunits (Virbasius and Scarpulla 1994). Our data suggest that TMR may be involved in 

altering and enhancing the coordinated expression of the genes that regulate 
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mitochondrial biogenesis pathway and may effective in increasing oxidative metabolism 

in maturing adipocytes in vitro.  
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Figure 3.26 Dose-dependent effect of trans-�� ��� �-trimethoxyresveratrol (TMR) on 
mitochondrial biogenesis marker gene expression. 3T3-L1 preadipocytes were 
subjected to adipocyte differentiation and an adipogenic cocktail. Cells were incubated in 
the presence of dimethyl sulfoxide (DMSO) or various concentrations of TMR (0, 10, 25, 
and 50 µM) in DMSO for 6 days. The cellular total RNA was extracted and subjected to 
RT-PCR. The mRNA levels of (A) Tfam, (B) NRF1, and (C) NRF2 were quantified and 
���	
���� ���� ��� ����� ������� ����� �-actin. Data are presented as relative fold 
induction means ± SEM, n=3. *, P<0.05. 
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3.3.2.5 Fatty acid oxidation 

Genetic alteration in adipocyte metabolism has global implications in overall 

energy homeostasis; and increases in FAO in WAT has been suggested as a way to 

reduce adiposity (Rosen and Spiegelman 2006). Since TMR showed inductions in 

mitochondrial biogenesis gene expression, we proposed that it may also demonstrate 

upregulation of genes involved in FAO. Our findings show that TMR significantly 

increased MCAD expression, yet at its highest concentration, showed no change 

compared to the control in CPT1 (Figure 3.27 A and B). Increases in CPT1 and MCAD 

expression exert important effects in �-oxidation due to the nature that these two proteins 

act as the controlling, limiting steps in the process (Tiraby et al. 2003). Importantly, 

uncoupling protein 1 (UCP1) upregulation and its activity in uncoupling cells to undergo 

FAO without kinetic limitation by respiratory control (Tiraby et al. 2003). TMR was able 

to increase the expression of MCAD, a rate limiting enzyme involved in mitochondrial 

FAO (Mottillo et al. 2012), which is consistent with our observation of trending toward 

reductions in TAG content and TMRs proposed effect to allow the cell to maintain a 

higher capacity to burn energy. Yet, we did not see a similar induction with CPT1, 

another rate limiting enzyme highly involved in FAO by mitochondria. It is worth noting 

that an analogous phenomenon was also observed when RES was treated in mature 

adipocytes (Mercader et al. 2011). Overall a reduction in TAG content was observed with 

RES, yet of the two FAO genes examined, RIP 140 and CPT1-L, there was a significant 

increase in only one gene expression profile, while the other showed no difference from 

control. Nonetheless, our data suggests TMR directly promotes transcriptional 

remodeling in maturing adipocytes and trends toward increasing oxidative metabolism. 

Regulation of gene expression of �����-cocactivator-�� ��	
-��� and UCP1 have 

potential to increase the capacity of FAO (Tiraby et al. 2003). TMR may have activity in 

increasing the expression and activation of PGC-�� in adipocytes, which then could 

contribute to UCP1 expression induction and increase FAO, resulting in reduced fat mass.  
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Figure 3.27 Dose-dependent effect of trans-�� ��� �-trimethoxyresveratrol (TMR) on 
fatty acid oxidation (FAO) marker gene expression. 3T3-L1 preadipocytes were 
subjected to adipocyte differentiation and an adipogenic cocktail. Cells were incubated in 
the presence of dimethyl sulfoxide (DMSO) or various concentrations of TMR (0, 10, 25, 
and 50 µM) in DMSO for 6 days. The cellular total RNA was extracted and subjected to 
RT-PCR. The mRNA levels of (A) MCAD and (B) CPT1 were quantified and 
normalized with the house ke���	
 
�	�� �-actin. Data are presented as relative fold 
induction means ± SEM, n=3. *, P<0.05. 
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3.3.2.6 Thermogenesis 

The impact of TMR gives evidence that is complicatedly involved in altering the 

normal functions of the cell. To gain more insight as to what is happening 

transcriptionally, we analyzed thermogenic marker gene expression in these cells. TMR 

significantly increases both UCP-1 and PGC-�� (Figure 3.28 A and B). UCP1 is highly 

abundant in the mitochondria of BAT and when activated has the ability to short circuit 

the electrochemical gradient driving ATP synthesis, and consequently stimulates 

respiratory chain action (Harms and Seale 2013). UCP1 biosynthesis is highly regulated 

at the transcription level, and increases cAMP, a primary trigger of UCP1 (Ricquier 

2011). It has been known that WAT can contain cells which express increased levels of 

UCP and have the ability to take on multi-locular characteristics and pathways which 

promote increased cAMP levels (Wu et al. 2012). Our data shows that treatment of TMR 

increases UCP1 expression, suggesting that it may play a role in increasing the 

thermogenic capacity of the cell. In coordination with this increase in UCP1, we also 

observed an increase in PGC-��. PGC-�� is seen at high levels in BAT and can also be 

induced upon cold exposure or stimulated �-adrenergic pathways (Rosen and Spiegelman 

2006). In WAT, PGC-�� ���	
�� � 	
��� ���� �� ���� ��� ������	 �� ���� ��� ����	�

including mitochondrial biogenesis and UCP1 action (Rosen and Spiegelman 2006). 

PGC-�� 
	 ��������� ������
��� �	 � ���	��� ���������� �� ���� ��
���
�� �������
	� ���

mitochondrial biogenesis in many cells types. It is a central transcription effector 

inducing adrenergic action and thermogenesis in adipocytes (Harms and Seale 2013). 

Presently, there has been indirect evidence that WAT adipocytes can acquire brown 

adipocyte characteristics during conditions of cold exposure or catecholamine excess 

(Rosen and MacDougald 2006). Taken together, with increases in both UCP1 and PGC-

�� transcription by TMR, this suggests that it may play an important role in increasing 

the cells capacity for energy expenditure. Our data showing the upregulation of 

mitochondrial biogenesis genes is consistent with our observation in the upregulation of 

PGC-�� by TMR. It has been reported that PGC-�� stimulates a  large induction in NRF1 

and NRF2 expression (Wu et al. 1999a). TMR may affect the thermogenic program 

causing induction of thermogenic genes, possible through the activation of �-adrenergic 
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signaling pathway which leads to upregulation of PGC-�� and other thermogenic 

expression in the maturing adipocytes. This higher capacity to utilize energy may be the 

cause our observation in lipid accumulation. It is of interest to note that in mature 3T3-L1 

cells, RES has been shown to increase PGC-�� gene expression (Lasa et al. 2012a). 

Resveratrol metabolites, 3G and 4G also increased PGC-�� expression, however not in 

significant levels. Collectively, action of thermogenic gene expression may be a potential 

target to this class of phytochemicals. 
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A      B 

  

 

Figure 3.28 Dose-dependent effect of trans-�� ��� �-trimethoxyresveratrol (TMR) on 
thermogenic marker gene expression. 3T3-L1 preadipocytes were subjected to 
adipocyte differentiation and an adipogenic cocktail. Cells were incubated in the presence 
of dimethyl sulfoxide (DMSO) or various concentrations of TMR (0, 10, 25, and 50 µM) 
in DMSO for 6 days. The cellular total RNA was extracted and subjected to RT-PCR. 
The mRNA levels of (A) UCP1 and (B) PGC-1� were quantified and normalized with the 
��	
� ������ ����� �-actin. Data are presented as relative fold induction means ± SEM, 
n=3. *, P<0.05. 
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3.3.2.7 Beige fat markers 

The development of beige fat, is described as WAT having multi-locular LD 

morphology, high mitochondrial content, and increased expression of specific brown fat 

genes, including UCP1 and PGC-�� (Harms and Seale 2013). Beige fat cells also have 

increased ability for thermogenesis. Gene expression of beige-selective gens can help to 

differentiate beige fat cells, from those of BAT and WAT (Wu et al. 2012). Among these 

beige fat markers include transcription factors T-box 1 (Tbx1), transmembrane protein 26 

(Tmem26), and PRD1-BF-RIZ1 homologues domain-containing protein-16 (Prdm16) 

(Rosen and Spiegelman 2014). In order to observe any effect by TMR on the induction of 

these specific beige fat markers, we examined their gene expression. Overall we not that 

TMR has a variable effect (Figure 3.29 A-C). There is a significant induction of Tbx1 

expression by TMR, yet the opposite effect on Tmem26, showing a significant reduction. 

TMR shows no significant difference in the expression Prdm16, however it trends toward 

increasing. T-box genes are essential for the developmental process and has been 

identified as an enriched beige fat marker (Chapman et al. 1996; Harms and Seale 2013). 

With increases in Tbx1, this suggests that TMR may have the ability to induce alterations 

in the cell to increase genes with a phenotype more closely related to beige cells. Tmem26 

is another enriched beige fat marker which is commonly expressed higher in inguinal fat 

compared to brown fat (Wu et al. 2012). Tbx1 and Tmem26 are both beige markers which 

have also been suggested to be present in classical brown tissues. Interestingly, TMR 

showed a reduction in Tmem26, contrasting from a large increase in Tbx1. Currently, the 

determinant of white and brown adipocyte gene programs are not completely understood, 

although analysis of beige fat cells have shown a distinction between the two (Villanueva 

et al. 2013; Wu et al. 2012). Therefore, we tested a third gene that is a key transcription 

factor for both brown and beige fat. Prdm16 ectopic expression is known to convert 

white fat precursors into thermogenic adipocytes which contain UCP1(Harms and Seale 

2013). It has been identified as a co-regulator in differentiation of brown and beige cells, 

with increased expression leading to beige adipocyte development and suppression of 

metabolic disease (Harms et al. 2014). To note, based on the metabolic rate of BAT in 

mice, is was calculated that 40-50 grams of BAT could account for 20% of daily energy 
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expenditure (Rosen and Spiegelman 2014). Although our data shows no significant 

alteration in Prdm16 gene expression, it trends toward increasing with TMR; coupled 

with increased expression of UCP1 may suggest an altered adipocyte metabolism with 

distinctive changes in physiological functions. Taken together, treatment of TMR may 

induce transcriptional cell remodeling in the metabolic efficiency of energy expenditure 

through a higher capacity to burn fat (Figure 3.30). Although more analysis is needed, 

there may be therapeutic potential with TMR due to its involvement of induction of 

thermogenic genes.  
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A      B 

  

C 

 

 

Figure 3.29 Dose-dependent effect of trans-�� ��� �-trimethoxyresveratrol (TMR) on 
beige fat marker gene expression. 3T3-L1 preadipocytes were subjected to adipocyte 
differentiation and an adipogenic cocktail. Cells were incubated in the presence of 
dimethyl sulfoxide (DMSO) or various concentrations of TMR (0, 10, 25, and 50 µM) in 
DMSO for 6 days. The cellular total RNA was extracted and subjected to RT-PCR. The 
mRNA levels of (A) Tbx1, (B) Tmem26 and (C) Prdm16 were quantified and normalized 
���	 �	
 	��
 �

���� �
�
� �-actin. Data are presented as relative fold induction means 
± SEM, n=3. *, P<0.05. 
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3.4 Summary and conclusions 

The major objectives of this study were to identify the effect of different resveratrol 

metabolites in adipose function in vitro. Due to the fact that RES is quickly metabolized 

in the body, biological activities of its metabolites may be more physiologically relevant 

to study (Lasa et al. 2012a). We singled out TMR as a resveratrol metabolite and 

analogue having specific action in lipid metabolism, specifically for its action in 

adipocyte lipolysis and lipogenesis. Our results demonstrate the first identification of 

TMR acting as an antilipolytic agent in mature adipocytes as well as having action in the 

development of maturing adipocytes. In our study, we were able to establish TMRs 

efficacy with significant, partial inhibition of glycerol release in mature adipocytes, with 

action greater than other resveratrol metabolites examined. TMR was shown to have non-

cytotoxic effects over a range of concentrations extending to safe usage at 50 µM 

displayed by cell viability assays in both pre- and mature adipocytes. Also taken into 

consideration was the stability of TMR in the medium of treated cells. Additionally, we 

determined TMRs rapid uptake into the cell and co-localization with the LD, attributing 

this to TMRs structure and methoxylation, providing a degree of protection and 

enhancing transportation to the cell (Dias et al. 2013). Further studies are needed to fully 

understand the scope of the location of TMR in the cell, but our imaging data provides 

preliminary evidence.  

TMR was able to significantly reduce glycerol release in mature adipocytes in both 

an acute and chronic exposure. Previous research in lab demonstrated a resveratrol 

metabolite, PIC, was able to significantly degrade a primary lipolytic enzyme, ATGL, 

and its co-activator CGI-58 mechanistically through autophagy (intracellular degradation 

of components via lysosome) (Kwon, unpublished). Due to the structural similarity of 

TMR and PIC, we hypothesized that TMR action in lipolysis is also similar. TMR 

demonstrated reduction in protein expression of both ATGL and CGI-58 with acute 

treatment, and to a less extent with a chronic treatment. TMR also demonstrated action in 

slightly blocking the activation of HSL through a slight reduction in phosphorylation. We 

discovered TMRs action in the lipolysis process was greatest seen with an acute 

treatment time with greatest potency with a three hour treatment in basal and stimulated 
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conditions. TMR alters lipolytic gene expression of mature adipocytes which may also be 

a contributor to the reduction in glycerol release and lipolysis. Overall, our data suggests 

that treatment of TMR has the ability to acutely, partially inhibit lipolysis in mature 

adipocytes via possible transcriptional regulation, potential mediation of protein 

degradation or a combination of both. Importantly, treatment of TMR may be a 

therapeutic approach to reduce the level of circulating NEFA in an obesogenic condition 

and help to attenuate the induction of obesity induced insulin resistance and type 2 

diabetes. Additionally, the identification of a dietary antilipolytic compound may also 

help to attenuate the effects of cancer cachexia.  

In an effort to further examine the role of TMR in adipose function, we also studied 

its effect in the development of maturing adipocytes and lipogenesis. Our study suggests 

a role of TMR in lipogenesis and cellular events in early adipocyte development. We 

observed a slight trend toward reduction in LD formation. This data suggests that TMR 

influences the lipogenic pathway and may primarily working through transcriptional 

regulation during differentiation and development of maturing adipocytes. Interestingly, 

TMR increased lipogenic gene expression, although no differences were seen compared 

to the control in lipid accumulation. Further analysis of cellular gene expression showed 

transcriptional increases in catabolic processes and mitochondrial biogenesis. TMR 

significantly upregulates the expression of thermogenic genes, UCP1 and PCG-��, 

suggesting an increased capacity for energy expenditure and thermogenesis. Taken 

together, the TMR may play a significant role in transcriptional regulation during 

adipocyte development and may be responsible for redirecting cellular processes toward 

activating energy expenditure in maturing adipocytes. The trend towards reduced lipid 

accumulation and increased lipogenic gene expression can possibly be connected through 

TMRs ability to maintain balance within cellular pathways between energy storage and 

utilization.  

This work in identifying the effect of TMR in maturing preadipocytes may be 

therapeutically important because this type of cell plays a role in obesity development. 

Accordingly, during child development and adolescence, obesity mainly stems from 

induction of hyperplasia, which is suggestive to the differentiation of preadipocytes into 
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mature adipocytes (Eseberri et al. 2013). Furthermore, understanding mechanisms to 

prevent or reduce obesity development may be a strategy to combat this complicated 

disease. Conversely, in adulthood, obesity is primarily of as result of hypertrophy of 

mature adipocytes.  Therefore deeper investigations into the effects on mature adipocyte 

by phytochemicals are needed for the prevention of obesity and associated metabolic 

diseases. A schematic diagram of our proposed mechanism is shown in Figure 3.31 and 

3.32.  

Our study is of significance because it illuminates the role and potential that 

stilbenes can have in overall energy homeostasis. This study suggests the possible role of 

TMR remodeling in adipose tissue to more metabolically active cells. It also provides 

evidence utilizing dietary compounds in modulating adipose lipolysis. Our data 

represents novel suggestions and potential for phytochemicals and their possible 

applications in adipocyte biology. In turn, finding ways to promote the health and welling 

being, especially in an obesogenic diseased state, may lessen the burden of this 

preventable epidemic.  
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A  

  

B        C 

  

Figure 3.30 Summary of trans-�� ��� �-trimethoxyresveratrol (TMR) on functional 
adipocyte gene expression. 3T3-L1 preadipocytes were subjected to adipocyte 
differentiation and an adipogenic cocktail. Cells were incubated in the presence of 
dimethyl sulfoxide (DMSO) or TMR (0 and 50 µM) in DMSO for 6 days. The cellular 
total RNA was extracted and subjected to RT-PCR. The mRNA levels of (A) de novo 
lipogenesis and adipokine marker genes, (B) lipogenic, mitochondrial biogenesis, fatty 
acid oxidation, and thermogenic genes, and (C) beige fat marker genes were quantified 
and ���	
���� ���� ��� ����� ������� ����� �-actin. Data are presented as relative fold 
induction means ± SEM, n=3. *, P<0.05.  
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Mature adipocyte 

 

 

Figure 3.31 TMR action in mature adipocyte in vitro.  Acute treatment of TMR in 
mature adipocyte results in reduction of protein expression and overall reduction in 
glycerol release. TMR action in the cell suggests modulation of lipolytic enzymes and the 
lipolysis process. 
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Maturing adipocyte  

 

 

 
Figure 3.32 TMR action in development of maturing adipocyte in vitro. Changes 
induced by treatment of TMR in maturing adipocyte during lipogenesis. mRNA 
expression profiles are altered by TMR during development, suggestive of  
transcriptional remodeling and potential balance between energy utilization and storage 
by cell. 
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CHAPTER 4. FUTURE WORK 

4.1 Limitations of study 

Chapter 3 outlines our results and demonstrates the significant, partial inhibition of 

lipolysis by an acute treatment of TMR. It also shows the effect of TMR in the 

development of maturing adipocytes and the transcriptional remodeling of the adipocyte 

toward increased energy expenditure. However, there are some limitations to the study 

that are important to consider:  

Firstly, the data collected from our experiments were entirely based on in vitro 

results. The 3T3-L1 preadipocyte cell line is widely established, however, due to the fact 

that the results in this study are trying to mimic actual physiological conditions of human 

obesity, the role of prevention, development, and associated metabolic disorders; 

understanding the effect of dietary compounds in vivo is critical. Additionally, our 

experiments were conducted in a tightly controlled atmosphere with one type of cell. To 

be able to have more substantial evidence, a more complex and intricate model such as an 

animal in vivo system, is needed to translate the effects to humans.  

Our study also had technical limitations. Our data in regards to the inhibition of 

lipolysis was done primarily through the level of glycerol release. To further confirm our 

findings, a free fatty acid assay and measurement of TAG, DAG, and MAGs levels 

should also be completed which would account for specific steps in lipolysis that were 

effected. Our study utilized protein expression and analysis to determine the relative level 

of activity in the cell, whereas biochemical enzyme assays to measure the actual activity 

of the enzymes would allow greater specificity in determining the modulation in the cell. 

Furthermore, these types of assays done in primary murine and human adipocytes would 

also strengthen our data, as well as demonstrate reproducibility and reliability.  
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The lipogenesis piece of our study is restricted to only mRNA gene expression 

analysis and technically limited. Additional confirmatory data with replication and 

reproducibility of the effects we observed will help to strengthen our gene expression 

analysis results. Furthermore, biochemical measurement of the correlating protein levels 

and enzymatic activity of the genes we observed changes in is critical to the proposed 

effect induced transcriptionally by TMR. Other technical assays including mitochondrial 

biogenesis and ATP production techniques would also help connect the data observed in 

the gene profiling and aid to substantiate TMRs effect.  

 Mechanistic pathways are a large part in identifying the beneficial effect of 

phytochemicals. In regards to TMRs effect in lipogenesis, this is a limitation of our study. 

Our data lacks knowledge on specific pathways and how those pathways may be directly 

altered by TMR. One technique in identifying changes in lipogenesis is the utilization of 

radioisotope labeling to track changes in the biosynthesis of TAGs. In addition, SRS 

imaging with labeled glucose is another method that allows the visualization of the 

source and construction of the LD.  

 Finally, the largest drawback of the study is the fact that the data is presented on 

findings based in vitro and should be tested in an in vivo system. TMR showed efficacy at 

50 µM, however this is higher than a physiological condition. Current literature is limited, 

however one studied noted using 4 mg/kg with an intraperitoneal (IP) injection and 10 

mg/kg via oral gavage, however this concentration was fully dissolved in a HP-�-CyD 

(Lin and Ho 2009; Lin et al. 2010). Previous research in our lab for PIC utilized 10 

mg/kg/day in an animal model. For animal treatment with TMR, a concentration range up 

to approximately 10-15 mg/kg would be sufficient maximum dose. The bioavailability of 

TMR needs to be considered when choosing a method of treatment. According to the 

study by Lin, they analyzed the pharmacokinetic profile of TMR when given via oral 

gavage and found that it has a short absorption time and prolonged elimination time, with 

a calculated bioavailability F value of 54.9% (Lin and Ho 2009). Taking this into 

consideration, giving the animals an IP injection would allow us to see the direct effect of 

TMR and it would prevent any modifications to the compound. Oral gavage of TMR 

dissolved in a vehicle would give a better understanding of the physiological relevance 
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once ingested. To note, it has been suggested that food may enhance the bioavailability of 

TMR, by stimulated bile secretions (Lin and Ho 2009). In an experimental model that is 

identifying the health benefit of a compound in regards to prevention of obesity, it would 

be most applicable to administer TMR in the diet. Because the nature of this study would 

be a high fat diet-induced obesity model, the increased fat content may help to increase 

the bioavailability of the compound via normal bile secretions. However, stability of 

TMR in the food matrix would need to be examined to ensure its functionality is still 

intact. Depending on the adipose function being analyzed, different animal models should 

be employed. Specific parameters are further discussed in detail below.  

The following outlines experiments and future work that should be done to better 

understand the role of TMR in affecting overall energy homeostasis. 

 

4.2 Future Work: TMR in lipolysis 

Additional research is needed to fully understand mechanistically how TMR acts in 

the cell specific to the lipolytic pathway. Future work needs to be completed both in vitro 

and in vivo studies to characterize TMR in overall modulation of lipolysis.  

Further characterizations of the lipolytic enzymes involved in the lipolysis process 

are needed to gain insight into the overall action of TMR. We mainly examined ATGL, 

the first step in lipolysis, however HSL and MGL are still players in the overall 

progression of lipolysis and their roles maintain specificity. HSL can hydrolyze both 

TAG and DAG, yet it has a higher affinity for DAG (Duncan et al. 2007). We measured 

the phosphorylation of HSL at serine-660; responsible for the LD interfacial activation 

and hydrolysis of DAG (Walther and Farese 2012). However measuring the total level of 

��� ����� 	�
� �� �������	� � �	��� �
���� ��� ����
 ���	��� �� �����	��� 	�

potential degradation or induction. Similarly, identifying the total protein expression level 

of MGL and perilipin would complete the picture of TMRs modulating role in the entire, 

sequential process of lipolysis. Additionally, other technical measurements need to be 

explored include biochemical enzyme assays order to confirm the action of TMR. 

Biochemical analysis of enzymatic activity of enzymes involved in lipolysis would give a 

clear evidence to the level TMR modulates this process.  
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Our results lack the knowledge and specificity of how possible enzymatic 

degradation occurs: through autophagy or proteasome proteolysis. Our lab has previously 

demonstrated that degradation of ATGL by PIC is not proteasome-dependent, but 

dependent on autophagy and occurs through an autophagy pathway, via the use of 

different inhibitors. Macroautophagy is a lysosomal degradative pathway present in cells 

and is responsible for degrading cytosolic organelles and protein aggregates which are 

too large for proteasome degradation. Autophagy is a highly regulated process in which 

whole organelles and regions of cytoplasm are sequestered inside an enveloping double-

membrane structure termed, autophagosome, which translocates to lysosomes for fusion 

and content degradation (Lee et al. 2010; Singh et al. 2009). Proteolysis involves 

proteases which hydrolyze peptide bonds and then free amino acids are released 

(Glickman and Ciechanover 2002). This occurs under different physiological 

circumstances and allows the cell to accommodate to changes and adapt to its 

environment (Ciechanover 1994; Glickman and Ciechanover 2002). TMRs apparent 

reduction of ATGL and CGI-58 is done through an unknown mechanism, and identifying 

how TMR works would further our knowledge of its modulation, but also increase 

understanding in the markers and regulation of the machinery involved. We also 

observed transcriptional changes by TMR with an acute treatment. This suggests rapid 

turnover in the cell, however this would need to be confirmed through additional 

biochemical analysis experiments.   

The most critical future experiment is to utilize our results and correlate them into 

an in vivo system. It would be advantageous to conduct primary cell culture before 

entering into an in vivo study. This would be a critical step to get a more accurate picture 

of how cells would respond. Testing the efficacy of TMR in both murine and human 

primary cells would be supportive data before taking on an animal model. An animal 

model testing TMRs effect in lipolysis would consist of approximately 16 week old male 

C57B/6J mice that are obese and continued to be fed a high fat diet (60% of calories from 

fat) (HFD) for 1 week prior to treatment. Due to the fact we saw that TMR is most 

effective with an acute treatment, with an in vivo model, this correlates to about 2-4 

weeks of treatment. Two groups (n=8) should be fed as followed: HFD and HFD + 10 
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mg/kg/day TMR. In this treatment mice should have access to water and food ad libitum. 

Body weight and food intake should be recorded about every 3rd day, as well as blood 

samples to measure basal glycerol release, FFA, TAG, and glucose levels. Physiological 

and biochemical parameters after sacrifice should be done upon collection of all tissues, 

including but not limited to, histology, gene profiling, and immunoblot analysis. 

 

4.3 Future Work: TMR in lipogenesis 

We were able to observe that TMR increased catabolic and thermogenic gene 

expression, however, our study was limited to only gene profiling in vitro. Further 

biochemical and proteomic analysis is needed and additional focus on signaling pathways 

involved in observed upregulation.  

It would be beneficial to collect confirmatory data as well as test other genes 

involved in lipogenesis, catabolic processes, and include gene expression that is specific 

to beige fat markers. As previously described, beige cells in murine WAT are defined by 

their morphology, high mitochondrial content, and expression a core set of brown fat 

genes (Harms and Seale 2013). Our data lacks biochemical analysis of the effects 

obtained with gene expression. Therefore, analyzing in depth a wider range of genes and 

correlating proteomic analysis and utilizing enzymatic activity assays would elucidate 

TMRs overall effect during the development of the cell, and would also indicate any 

metabolic switch. Additionally, techniques involving mitochondrial biogenesis, 

respiration, and ATP production need to be investigated to confirm our gene expression 

analysis. 

Further investigation in the location and effect of TMR during the development 

stage of maturing adipocytes is needed. Deuterium-labeled glucose added into the 

medium during the early stages of differentiation and photographed with SRS imaging 

would allow us to visualize the progression of lipid droplet formation and the source of 

energy utilized. This assay would give us a better understanding of how TMR is 

influencing cell during growth and de novo lipogenesis. Additionally, radioisotope 

labeling of FA is another technique that would allow detection of direct pathway changes. 

Increased characterization of TMR is needed by these types of methods to better 
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���������� �	� 
��	���� ��� �������� ��� 
������ ���ulating, which is critical to 

knowledge of its therapeutic potential.  

Analyzing the effect of TMR in vivo is imperative. Investigating the remodeling 

role of TMR in vivo would be more applicable for interpretation of physiological 

conditions and human comparison. Examining the role of TMR treatment during the 

development of young mice in a HFD-obesity-induced model, would allow us to 

critically analyze its effect. 3 week old male C57B/6J mice with three groups (n=8) fed as 

HFD, HFD + low dose (3 mg/kg/day TMR), and HFD + high dose (15 mg/kg/day TMR). 

During the experimental period, mice should have access to water and food ad libitum. 

Body weight and food intake will be measured every 3 days with all groups followed for 

approximately 4-6 weeks, around when potential weight diverges are seen for at least 1 

week. If significant change in body weight does not occur, dosages may need to be 

adjusted. Fecal samples will be collected for 1 week and respiratory exchange ratio will 

be analyzed. To determine a potential energy expenditure changes and increased health of 

adipose tissue of TMR, specific biochemical parameters associated with obesity 

development should be measured including serum indicators, gene profiles, and protein 

expression levels in different tissues to show the critical impact on adipogenesis and 

lipogenesis. Other tests should be completed not exclusive to glucose tolerance test, 

serum levels of triglyceride, glucose, insulin, glycerol, and FFA. Additionally, adipose 

tissue, liver, kidney, intestines and other major tissues should be collected, weighed with 

histology, PCR, and immunoblot analysis measured along with other biochemical 

analysis, and measurements specific to mitochondrial biogenesis and thermogenesis. 

Mitochondrial uncoupling has been associated as means of weight-loss therapy and 

increasing the activity of either brown fat, beige fat, or both has large potential for the 

treatment of obesity and metabolic disease by dietary compounds (Harms and Seale 

2013). This model would be representative of a therapeutic treatment during adolescent 

development and growth, in which we could identify any alteration in overall energy 

balance and changes in homeostasis.  
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4.4 Conclusion 

Collectively, our study elucidates the beneficial activities of dietary compounds, 

such as TMR, in the context of adipose function. Our data represents foundational work 

that can be expanded through future studies, including further investigations not 

mentioned and those mentioned above. In the future, additional in vivo models will help 

to gain new insights into the potential, therapeutic application of TMR and other 

resveratrol metabolites in adipose biology. The over-arching big picture is that this type 

of research can help people who suffer from a variety of metabolic disorders. Identifying 

ways to improve overall health and well-being can improve quality of life and increase 

longevity. The use of phytochemicals as a means to treat conditions has been around for 

centuries, as stated by Hipp�������� 	
�� ���� � ��� �������� ��� �������� � ��� ������

This idea of food components as a means to improve health is fundamental and needs 

further investigation in discovering the specific pathways and their impact on energy 

balance. A focus on lipid metabolism is extremely relevant to the current health status 

America and application of functional food components may be key. Overall, there is 

vast potential for investigation of dietary components to help reduce the incidence of 

obesity and attenuate its associated metabolic disorders.  

 



125 

 

 LIST OF REFERENCES  
  



126 

 

LIST OF REFERENCES 

Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S. and Takada, 
Y. 2004. Role of resveratrol in prevention and therapy of cancer: Preclinical and 
clinical studies. Anticancer Research 24:2783-2840. 

Ahima, R. S. and Flier, J. S. 2000. Adipose Tissue as an Endocrine Organ. Trends in 
Endocrinology & Metabolism 11:327-332. 

Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D. Q., Lowell, B., MaratosFlier, E. and 
Flier, J. S. 1996. Role of leptin in the neuroendocrine response to fasting. Nature 
382:250-252. 

Ahmadian, M., Duncan, R. E. and Sul, H. S. 2009. The skinny on fat: lipolysis and fatty 
acid utilization in adipocytes. Trends in Endocrinology & Metabolism 20:424-428. 

Ahmadian, M., Wang, Y. and Sul, H. S. 2010. Lipolysis in adipocytes. The International 
Journal of Biochemistry & Cell Biology 42:555-559. 

Aires, V., Limagne, E., Cotte, A. K., Latruffe, N., Ghiringhelli, F. and Delmas, D. 2013. 
Resveratrol metabolites inhibit human metastatic colon cancer cells progression 
and synergize with chemotherapeutic drugs to induce cell death. Molecular 
Nutrition & Food Research 57:1170-1181. 

Alex, D., Leong, E. C., Zhang, Z.-J., Yan, G. T. H., Cheng, S.-H., Leong, C.-W., Li, Z.-
H., Lam, K.-H., Chan, S.-W. and Lee, S. M.-Y. 2010. Resveratrol Derivative, 
trans-3,5,4 '-Trimethoxystilbene, Exerts Antiangiogenic and Vascular-Disrupting 
Effects in Zebrafish Through the Downregulation of VEGFR2 and Cell-Cycle 
Modulation. Journal of Cellular Biochemistry 109:339-346. 

Ali, A. T., Hochfeld, W. E., Myburgh, R. and Pepper, M. S. 2013. Adipocyte and 
adipogenesis. European Journal of Cell Biology 92:229-236. 

Ameer, F., Scandiuzzi, L., Hasnain, S., Kalbacher, H. and Zaidi, N. 2014. De novo 
lipogenesis in health and disease. Metabolism 63:895-902. 

Andres-Lacueva, C., Macarulla, M. T., Rotches-Ribalta, M., Boto-Ordonez, M., Urpi-
Sarda, M., Rodriguez, V. M. and Portillo, M. P. 2012. Distribution of Resveratrol 
Metabolites in Liver, Adipose Tissue, and Skeletal Muscle in Rats Fed Different 
Doses of This Polyphenol. Journal of Agricultural and Food Chemistry 60:4833-
4840. 



127 

 

Arita, Y., Kihara, S., Ouchi, N., Takahashi, M., Maeda, K., Miyagawa, J., Hotta, K., 
Shimomura, I., Nakamura, T., Miyaoka, K., Kuriyama, H., Nishida, M., 
Yamashita, S., Okubo, K., Matsubara, K., Muraguchi, M., Ohmoto, Y., Funahashi, 
T. and Matsuzawa, Y. 1999.  

Aggarwal, B. B., Bhardwaj, A., Aggarwal, R. S., Seeram, N. P., Shishodia, S. and Takada, 
Y. 2004. Role of resveratrol in prevention and therapy of cancer: Preclinical and 
clinical studies. Anticancer Research 24:2783-2840. 

Ahima, R. S. and Flier, J. S. 2000. Adipose Tissue as an Endocrine Organ. Trends in 
Endocrinology & Metabolism 11:327-332. 

Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D. Q., Lowell, B., MaratosFlier, E. and 
Flier, J. S. 1996. Role of leptin in the neuroendocrine response to fasting. Nature 
382:250-252. 

Ahmadian, M., Duncan, R. E. and Sul, H. S. 2009. The skinny on fat: lipolysis and fatty 
acid utilization in adipocytes. Trends in Endocrinology & Metabolism 20:424-428. 

Ahmadian, M., Wang, Y. and Sul, H. S. 2010. Lipolysis in adipocytes. The International 
Journal of Biochemistry & Cell Biology 42:555-559. 

Aires, V., Limagne, E., Cotte, A. K., Latruffe, N., Ghiringhelli, F. and Delmas, D. 2013. 
Resveratrol metabolites inhibit human metastatic colon cancer cells progression 
and synergize with chemotherapeutic drugs to induce cell death. Molecular 
Nutrition & Food Research 57:1170-1181. 

Alex, D., Leong, E. C., Zhang, Z.-J., Yan, G. T. H., Cheng, S.-H., Leong, C.-W., Li, Z.-
H., Lam, K.-H., Chan, S.-W. and Lee, S. M.-Y. 2010. Resveratrol Derivative, 
trans-3,5,4 '-Trimethoxystilbene, Exerts Antiangiogenic and Vascular-Disrupting 
Effects in Zebrafish Through the Downregulation of VEGFR2 and Cell-Cycle 
Modulation. Journal of Cellular Biochemistry 109:339-346. 

Ali, A. T., Hochfeld, W. E., Myburgh, R. and Pepper, M. S. 2013. Adipocyte and 
adipogenesis. European Journal of Cell Biology 92:229-236. 

Ameer, F., Scandiuzzi, L., Hasnain, S., Kalbacher, H. and Zaidi, N. 2014. De novo 
lipogenesis in health and disease. Metabolism 63:895-902. 

Andres-Lacueva, C., Macarulla, M. T., Rotches-Ribalta, M., Boto-Ordonez, M., Urpi-
Sarda, M., Rodriguez, V. M. and Portillo, M. P. 2012. Distribution of Resveratrol 
Metabolites in Liver, Adipose Tissue, and Skeletal Muscle in Rats Fed Different 
Doses of This Polyphenol. Journal of Agricultural and Food Chemistry 60:4833-
4840. 

 



128 

 

Arita, Y., Kihara, S., Ouchi, N., Takahashi, M., Maeda, K., Miyagawa, J., Hotta, K., 
Shimomura, I., Nakamura, T., Miyaoka, K., Kuriyama, H., Nishida, M., 
Yamashita, S., Okubo, K., Matsubara, K., Muraguchi, M., Ohmoto, Y., Funahashi, 
T. and Matsuzawa, Y. 1999. Paradoxical decrease of an adipose-specific protein, 
adiponectin, in obesity. Biochemical and Biophysical Research Communications 
257:79-83. 

Arner, P. and Spalding, K. L. 2010. Fat cell turnover in humans. Biochemical and 
Biophysical Research Communications 396:101-104. 

Astrup, A., Kristensen, M., Gregersen, N. T., Belza, A., Lorenzen, J. K., Due, A. and 
Larsen, T. M. 2010. Can bioactive foods affect obesity? Foods for Health in the 
21st Century: a Road Map for the Future 1190:25-41. 

Athar, M., Back, J. H., Tang, X., Kim, K. H., Kopelovich, L., Bickers, D. R. and Kim, A. 
L. 2007. Resveratrol: A review of preclinical studies for human cancer prevention. 
Toxicology and Applied Pharmacology 224:274-283. 

Attie, A. D. and Scherer, P. E. 2009. Adipocyte metabolism and obesity. Journal of Lipid 
Research 50:S395-S399. 

Barbe, P., Millet, L., Galitzky, J., Lafontan, M. and Berlan, M. 1996. In situ assessment 
of the role of the beta(1)-, beta(2)- and beta(3)-adrenoceptors in the control of 
lipolysis and nutritive blood flow in human subcutaneous adipose tissue. British 
Journal of Pharmacology 117:907-913. 

Baur, J. A. and Sinclair, D. A. 2006. Therapeutic potential of resveratrol: the in vivo 
evidence. Nature Reviews Drug Discovery 5:493-506. 

Belleri, M., Ribatti, D., Nicoli, S., Cotelli, F., Forti, L., Vannini, V., Stivala, L. A. and 
Presta, M. 2005. Antiangiogenic and vascular-targeting activity of the 
microtubule-destabilizing trans-resveratrol derivative 3,5,4 '-trimethoxystilbene. 
Molecular Pharmacology 67:1451-1459. 

Ben-Menachem, E. 2007. Clinical guidelines on the identification, evaluation, and 
treatment of overweight and obesity in adults: The evidence report. Epilepsia 
48:42-45. 

Beutler, B. and Cerami, A. 1988. TUMOR NECROSIS, CACHEXIA, SHOCK, AND 
INFLAMMATION - A COMMON MEDIATOR. Annual Review of 
Biochemistry 57:505-518. 

Bezaire, V., Mairal, A., Ribet, C., Lefort, C., Girousse, A., Jocken, J., Laurencikiene, J., 
Anesia, R., Rodriguez, A.-M., Ryden, M., Stenson, B. M., Dani, C., Ailhaud, G., 
Arner, P. and Langin, D. 2009. Contribution of Adipose Triglyceride Lipase and 
Hormone-sensitive Lipase to Lipolysis in hMADS Adipocytes. Journal of 
Biological Chemistry 284:18282-18291. 



129 

 

Blair, G. E., Cassady, J. M., Robbers, J. E., Tyler, V. E. and Raffauf, R. F. 1969. Isolation 
�� ������-trimethoxy-trans-stilbene, otobaene and hydroxyotobain from Virola 
cuspidata. Phytochemistry 8:497-500. 

Bleich, S. N., Ku, R. and Wang, Y. C. 2011. Relative contribution of energy intake and 
energy expenditure to childhood obesity: a review of the literature and directions 
for future research. International Journal of Obesity 35:1-15. 

Brasaemle, D. L. 2007. The perilipin family of structural lipid droplet proteins: 
stabilization of lipid droplets and control of lipolysis. Journal of Lipid Research 
48:2547-2559. 

Brasaemle, D. L., Rubin, B., Harten, I. A., Gruia-Gray, J., Kimmel, A. R. and Londos, C. 
2000. Perilipin A increases triacylglycerol storage by decreasing the rate of 
triacylglycerol hydrolysis. Journal of Biological Chemistry 275:38486-38493. 

Breymaier, S. 2013. AMA Adopts New Policies on Second Day of Voting at Annual 
Meeting in: AMA News Room. American Medical Association: Chicago, IL. 

Brown, A. 2013. Americans' Desire to Shed Pounds Outweighs Effort in: Gallup Well-
Being. Gallup Well-Being: Washington, D.C. 

Burkon, A. and Somoza, V. 2008. Quantification of free and protein-bound trans-
resveratrol metabolites and identification of trans-resveratrol-C/O-conjugated 
diglucuronides - Two novel resveratrol metabolites in human plasma. Molecular 
Nutrition & Food Research 52:549-557. 

Burnette, W. N. 1981. WESTERN BLOTTING - ELECTROPHORETIC TRANSFER 
OF PROTEINS FROM SODIUM DODECYL SULFATE-POLYACRYLAMIDE 
GELS TO UNMODIFIED NITROCELLULOSE AND RADIOGRAPHIC 
DETECTION WITH ANTIBODY AND RADIOIODINATED PROTEIN-A. 
Analytical Biochemistry 112:195-203. 

Caballero, B. 2007. The global epidemic of obesity: An overview. Epidemiologic 
Reviews 29:1-5. 

Calamini, B., Ratia, K., Malkowski, M. G., Cuendet, M., Pezzuto, J. M., Santarsiero, B. 
D. and Mesecar, A. D. 2010. Pleiotropic mechanisms facilitated by resveratrol 
and its metabolites. Biochemical Journal 429:273-282. 

Cao, Z. D., Umek, R. M. and McKnight, S. L. 1991. REGULATED EXPRESSION OF 3 
C/EBP ISOFORMS DURING ADIPOSE CONVERSION OF 3T3-L1 CELLS. 
Genes & Development 5:1538-1552. 

Carmen, G.-Y. and Víctor, S.-M. 2006. Signalling mechanisms regulating lipolysis. 
Cellular Signalling 18:401-408. 



130 

 

Cases, J. A., Gabriely, I., Ma, X. H., Yang, X. M., Michaeli, T., Fleischer, N., Rossetti, L. 
and Barzilai, N. 2001. Physiological increase in plasma leptin markedly inhibits 
insulin secretion in vivo. Diabetes 50:348-352. 

CDC. 2011. About BMI for Adults. C. f. D. C. a. Prevention, ed. 

CDC. 2012. Defining Overweight and Obesity. C. f. D. C. a. Prevention, ed. 

Chanda, P. K., Gao, Y., Mark, L., Btesh, J., Strassle, B. W., Lu, P., Piesla, M. J., Zhang, 
M.-Y., Bingham, B., Uveges, A., Kowal, D., Garbe, D., Kouranova, E. V., Ring, 
R. H., Bates, B., Pangalos, M. N., Kennedy, J. D., Whiteside, G. T. and Samad, T. 
A. 2010. Monoacylglycerol Lipase Activity Is a Critical Modulator of the Tone 
and Integrity of the Endocannabinoid System. Molecular Pharmacology 78:996-
1003. 

Chapman, D. L., Garvey, N., Hancock, S., Alexiou, M., Agulnik, S. I., GibsonBrown, J. 
J., CebraThomas, J., Bollag, R. J., Silver, L. M. and Papaioannou, V. E. 1996. 
Expression of the T-box family genes, Tbx1-Tbx5, during early mouse 
development. Developmental Dynamics 206:379-390. 

Ciechanover, A. 1994. The ubiquitin-proteasome proteolytic pathway. Cell 79:13-21. 

Clifford, G. M., McCormick, D. K. T., Londos, C., Vernon, R. G. and Yeaman, S. J. 1998. 
Dephosphorylation of perilipin by protein phosphatases present in rat adipocytes. 
FEBS Letters 435:125-129. 

CMS. 2010. National Health Expenditure Projections 2010-2020. C. f. M. a. M. Services, 
ed. Office of the Actuary. 

CMS. 2014. Historical National Healthcare Expenditure, 2012 in: Centers for Medicare 
& Medicaid Services. Centers for Medicare & Medicaid Services: Baltimore, MD. 

Cornelius, P., Macdougald, O. A. and Lane, M. D. 1994. REGULATION OF 
ADIPOCYTE DEVELOPMENT. Annual Review of Nutrition 14:99-129. 

Cottart, C.-H., Nivet-Antoine, V., Laguillier-Morizot, C. and Beaudeux, J.-L. 2010. 
Resveratrol bioavailability and toxicity in humans. Molecular Nutrition & Food 
Research 54:7-16. 

Dani, C. 1999. Embryonic stem cell-derived adipogenesis. Cells Tissues Organs 165:173-
180. 

Darlington, G. J., Wang, N. and Hanson, R. W. 1995. C/EBP-ALPHA - A CRITICAL 
REGULATOR OF GENES GOVERNING INTEGRATIVE METABOLIC 
PROCESSES. Current Opinion in Genetics & Development 5:565-570. 

Delmas, D., Aires, V., Limagne, E., Dutartre, P., Mazue, F., Ghiringhelli, F. and Latruffe, 
N. 2011. Transport, stability, and biological activity of resveratrol. Resveratrol 
and Health 1215:48-59. 



131 

 

Despres, J.-P. and Lemieux, I. 2006. Abdominal obesity and metabolic syndrome. Nature 
444:881-887. 

Dias, S. J., Li, K., Rimando, A. M., Dhar, S., Mizuno, C. S., Penman, A. D. and 
Levenson, A. S. 2013. Trimethoxy-Resveratrol and Piceatannol Administered 
Orally Suppress and Inhibit Tumor Formation and Growth in Prostate Cancer 
Xenografts. Prostate 73:1135-1146. 

Digel, M., Ehehalt, R. and Füllekrug, J. 2010. Lipid droplets lighting up: Insights from 
live microscopy. FEBS Letters 584:2168-2175. 

Duncan, R. E., Ahmadian, M., Jaworski, K., Sarkadi-Nagy, E. and Sul, H. S. 2007. 
Regulation of lipolysis in adipocytes. Annual Review of Nutrition 27:79-101. 

Emilia Juan, M., Maijo, M. and Planas, J. M. 2010. Quantification of trans-resveratrol 
and its metabolites in rat plasma and tissues by HPLC. Journal of Pharmaceutical 
and Biomedical Analysis 51:391-398. 

Entenmann, G. and Hauner, H. 1996. Relationship between replication and differentiation 
in cultured human adipocyte precursor cells. American Journal of Physiology-Cell 
Physiology 270:C1011-C1016. 

Escriva, H., Rodriguez-Pena, A. and Vallejo, C. G. 1999. Expression of mitochondrial 
genes and of the transcription factors involved in the biogenesis of mitochondria 
Tfam, NRF-1 and NRF-2, in rat liver, testis and brain. Biochimie 81:965-971. 

Eseberri, I., Lasa, A., Churruca, I. and Portillo, M. P. 2013. Resveratrol Metabolites 
Modify Adipokine Expression and Secretion in 3T3-L1 Pre-Adipocytes and 
Mature Adipocytes. Plos One 8. 

Evans, W. J., Morley, J. E., Argiles, J., Bales, C., Baracos, V., Guttridge, D., Jatoi, A., 
Kalantar-Zadeh, K., Lochs, H., Mantovani, G., Marks, D., Mitch, W. E., 
Muscaritoli, M., Najand, A., Ponikowski, P., Rossi Fanelli, F., Schambelan, M., 
Schols, A., Schuster, M., Thomas, D., Wolfe, R., Anker, S. D., Boyce, A. and 
Nuckolls, G. 2008. Cachexia: A new definition. Clinical Nutrition 27:793-799. 

Fajas, L., Schoonjans, K., Gelman, L., Kim, J. B., Najib, J., Martin, G., Fruchart, J. C., 
Briggs, M., Spiegelman, B. M. and Auwerx, J. 1999. Regulation of peroxisome 
proliferator-activated receptor gamma expression by adipocyte differentiation and 
determination factor 1/sterol regulatory element binding protein 1. Implications 
for adipocyte differentiation and metabolism. Molecular and Cellular Biology 
19:5495-5503. 

Farese, R. V., Jr. and Walther, T. C. 2009. Lipid Droplets Finally Get a Little R-E-S-P-E-
C-T. Cell 139:855-860. 



132 

 

Fasshauer, M., Klein, J., Lossner, U. and Paschke, R. 2002a. Isoproterenol is a positive 
regulator of the suppressor of cytokine signaling-3 gene expression in 3T3-L1 
adipocytes. Journal of Endocrinology 175:727-733. 

Fasshauer, M., Klein, J., Neumann, S., Eszlinger, M. and Paschke, R. 2002b. Hormonal 
regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochemical and 
Biophysical Research Communications 290:1084-1089. 

Finkelstein, E. A., Trogdon, J. G., Cohen, J. W. and Dietz, W. 2009. Annual Medical 
Spending Attributable To Obesity: Payer- And Service-Specific Estimates. Health 
Affairs 28:W822-W831. 

Flier, J. S. 1996. Role of leptin in the neuroendocrine response to fasting. Nature 
382:250-252. 

 

Flier, J. S., Cook, K. S., Usher, P. and Spiegelman, B. M. 1987. SEVERELY IMPAIRED 
ADIPSIN EXPRESSION IN GENETIC AND ACQUIRED OBESITY. Science 
237:405-408. 

Fremont, L. 2000. Minireview - Biological effects of resveratrol. Life Sciences 66:663-
673. 

Freytag, S. O., Paielli, D. L. and Gilbert, J. D. 1994. ECTOPIC EXPRESSION OF THE 
CCAAT ENHANCER-BINDING PROTEIN-ALPHA PROMOTES THE 
ADIPOGENIC PROGRAM IN A VARIETY OF MOUSE FIBROBLASTIC 
CELLS. Genes & Development 8:1654-1663. 

Gaidhu, M. P., Anthony, N. M., Patel, P., Hawke, T. J. and Ceddia, R. B. 2010. 
Dysregulation of lipolysis and lipid metabolism in visceral and subcutaneous 
adipocytes by high-fat diet: role of ATGL, HSL, and AMPK. American Journal of 
Physiology-Cell Physiology 298:C961-C971. 

Galic, S., Oakhill, J. S. and Steinberg, G. R. 2010. Adipose tissue as an endocrine organ. 
Molecular and Cellular Endocrinology 316:129-139. 

Gathercole, L. L., Morgan, S. A. and Tomlinson, J. W. 2013. Chapter One - Hormonal 
Regulation of Lipogenesis. Pages 1-27 in: Vitamins & Hormones. L. Gerald, ed. 
Academic Press. 

Gerlier, D. and Thomasset, N. 1986. USE OF MTT COLORIMETRIC ASSAY TO 
MEASURE CELL ACTIVATION. Journal of Immunological Methods 94:57-63. 

Gertow, K., Rosell, M., Sjogren, P., Eriksson, P., Vessby, B., de Faire, U., Hamsten, A., 
Hellenius, M. L. and Fisher, R. M. 2006. Fatty acid handling protein expression in 
adipose tissue, fatty acid composition of adipose tissue and serum, and markers of 
insulin resistance. European Journal of Clinical Nutrition 60:1406-1413. 



133 

 

Glickman, M. H. and Ciechanover, A. 2002. The ubiquitin-proteasome proteolytic 
pathway: Destruction for the sake of construction. Physiological Reviews 82:373-
428. 

Goffart, S. and Wiesner, R. J. 2003. Regulation and co-ordination of nuclear gene 
expression during mitochondrial biogenesis. Experimental Physiology 88:33-40. 

Green, H. and Kehinde, O. 1975. An established preadipose cell line and its 
differentiation in culture II. Factors affecting the adipose conversion. Cell 5:19-27. 

Green, H. and Meuth, M. 1974. An established pre-adipose cell line and its differentiation 
in culture. Cell 3:127-133. 

Greenberg, A. S., Shen, W. J., Muliro, K., Patel, S., Souza, S. C., Roth, R. A. and 
Kraemer, F. B. 2001. Stimulation of lipolysis and hormone-sensitive lipase via the 
extracellular signal-regulated kinase pathway. Journal of Biological Chemistry 
276:45456-45461. 

Gregoire, F. M. 2001. Adipocyte differentiation: From fibroblast to endocrine cell. 
Experimental Biology and Medicine 226:997-1002. 

Gregoire, F. M., Smas, C. M. and Sul, H. S. 1998. Understanding adipocyte 
differentiation. Physiological Reviews 78:783-809. 

Grundy, S. M. 2006. Drug therapy of the metabolic syndrome: minimizing the emerging 
crisis in polypharmacy. Nature reviews. Drug discovery 5:295-309. 

Haemmerle, G., Lass, A., Zimmermann, R., Gorkiewicz, G., Meyer, C., Rozman, J., 
Heldmaier, G., Maier, R., Theussl, C., Eder, S., Kratky, D., Wagner, E. F., 
Klingenspor, M., Hoefler, G. and Zechner, R. 2006. Defective lipolysis and 
altered energy metabolism in mice lacking adipose triglyceride lipase. Science 
312:734-737. 

Haemmerle, G., Zimmermann, R., Hayn, M., Theussl, C., Waeg, G., Wagner, E., Sattler, 
W., Magin, T. M., Wagner, E. F. and Zechner, R. 2002. Hormone-sensitive lipase 
deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and 
testis. Journal of Biological Chemistry 277:4806-4815. 

Hajduch, E., Hainault, I., Meunier, C., Jardel, C., Hainque, B., Guerremillo, M. and 
Lavau, M. 1995. REGULATION OF GLUCOSE TRANSPORTERS IN 
CULTURED RAT ADIPOCYTES - SYNERGISTIC EFFECT OF INSULIN 
AND DEXAMETHASONE ON GLUT4 GENE-EXPRESSION THROUGH 
PROMOTER ACTIVATION. Endocrinology 136:4782-4789. 

Halliwell, B. 2007. Dietary polyphenols: Good, bad, or indifferent for your health? 
Cardiovascular Research 73:341-347. 



134 

 

Halliwell, B. 2008. Are polyphenols antioxidants or pro-oxidants? What do we learn 
from cell culture and in vivo studies? Archives of Biochemistry and Biophysics 
476:107-112. 

Han, L. K., Takaku, T., Li, J., Kimura, Y. and Okuda, H. 1999. Anti-obesity action of 
oolong tea. International Journal of Obesity 23:98-105. 

Harms, M. and Seale, P. 2013. Brown and beige fat: development, function and 
therapeutic potential. Nature Medicine 19:1252-1263. 

Harms, M. J., Ishibashi, J., Wang, W., Lim, H.-W., Goyama, S., Sato, T., Kurokawa, M., 
Won, K.-J. and Seale, P. 2014. Prdm16 Is Required for the Maintenance of Brown 
Adipocyte Identity and Function in Adult Mice. Cell Metabolism 19:593-604. 

Haugen, F., Jorgensen, A., Drevon, C. A. and Trayhurn, P. 2001. Inhibition by insulin of 
resistin gene expression in 3T3-L1 adipocytes. Febs Letters 507:105-108. 

Hausman, G. J., Campion, D. R. and Martin, R. J. 1980. SEARCH FOR THE 
ADIPOCYTE PRECURSOR CELL AND FACTORS THAT PROMOTE ITS 
DIFFERENTIATION. Journal of Lipid Research 21:657-670. 

Ho, P.-C., Chuang, Y.-S., Hung, C.-H. and Wei, L.-N. 2011. Cytoplasmic receptor-
interacting protein 140 (RIP140) interacts with perilipin to regulate lipolysis. 
Cellular Signalling 23:1396-1403. 

Hoshino, J., Park, E.-J., Kondratyuk, T. P., Marler, L., Pezzuto, J. M., van Breemen, R. 
B., Mo, S., Li, Y. and Cushman, M. 2010. Selective Synthesis and Biological 
Evaluation of Sulfate-Conjugated Resveratrol Metabolites. Journal of Medicinal 
Chemistry 53:5033-5043. 

Hsieh, T.-c., Huang, Y.-c. and Wu, J. M. 2011a. Control of prostate cell growth, DNA 
damage and repair and gene expression by resveratrol analogues, in vitro. 
Carcinogenesis 32:93-101. 

Hsieh, T.-C., Wong, C., Bennett, D. J. and Wu, J. M. 2011b. Regulation of p53 and cell 
proliferation by resveratrol and its derivatives in breast cancer cells: an in silico 
and biochemical approach targeting integrin alpha v beta 3. International Journal 
of Cancer 129:2732-2743. 

Hsu, H.-K., Yang, Y.-C., Hwang, J.-H. and Hong, S.-J. 2003. Effects of Toona Sinensis 
Leaf Extract on Lipolysis in Differentiated 3T3-L1 Adipocytes. The Kaohsiung 
Journal of Medical Sciences 19:385-389. 

Hu, E. D., Tontonoz, P. and Spiegelman, B. M. 1995. TRANSDIFFERENTIATION OF 
MYOBLASTS BY THE ADIPOGENIC TRANSCRIPTION FACTORS PPAR-
GAMMA AND C/EBP-ALPHA. Proceedings of the National Academy of 
Sciences of the United States of America 92:9856-9860. 



135 

 

Hulver, M. W., Berggren, J. R., Carper, M. J., Miyazaki, M., Ntambi, J. M., Hoffman, E. 
P., Thyfault, J. P., Stevens, R., Dohm, G. L., Houmard, J. A. and Muoio, D. M. 
2005. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle 
contributes to abnormal fatty acid partitioning in obese humans. Cell Metabolism 
2:251-261. 

Jenkins, C. M., Mancuso, D. J., Yan, W., Sims, H. F., Gibson, B. and Gross, R. W. 2004. 
Identification, cloning, expression, and purification of three novel human 
calcium-independent phospholipase A(2) family members possessing 
triacylglycerol lipase and acylglycerol transacylase activities. Journal of 
Biological Chemistry 279:48968-48975. 

Jeong, Y. S., Hong, J. H., Cho, K. H. and Jung, H. K. 2012. Grape skin extract reduces 
adipogenesis- and lipogenesis-related gene expression in 3T3-L1 adipocytes 
through the peroxisome proliferator-activated receptor-gamma signaling pathway. 
Nutrition Research 32:514-521. 

Jocken, J. W. E. and Blaak, E. E. 2008. Catecholamine-induced lipolysis in adipose tissue 
and skeletal muscle in obesity. Physiology & Behavior 94:219-230. 

Kahn, S. E., Hull, R. L. and Utzschneider, K. M. 2006. Mechanisms linking obesity to 
insulin resistance and type 2 diabetes. Nature 444:840-846. 

Kang, L., Chen, X., Sebastian, B. M., Pratt, B. T., Bederman, I. R., Alexander, J. C., 
Previs, S. F. and Nagy, L. E. 2007. Chronic ethanol and triglyceride turnover in 
white adipose tissue in rats - Inhibition of the anti-lipolytic action of insulin after 
chronic ethanol contributes to increased triglyceride degradation. Journal of 
Biological Chemistry 282:28465-28473. 

Karlsson, M., Contreras, J. A., Hellman, U., Tornqvist, H. and Holm, C. 1997. cDNA 
cloning, tissue distribution, and identification of the catalytic triad of 
monoglyceride lipase - Evolutionary relationship to esterases, lysophospholipases, 
and haloperoxidases. Journal of Biological Chemistry 272:27218-27223. 

Karpe, F., Dickmann, J. R. and Frayn, K. N. 2011. Fatty Acids, Obesity, and Insulin 
Resistance: Time for a Reevaluation. Diabetes 60:2441-2449. 

Kenealey, J. D., Subramanian, L., Van Ginkel, P. R., Darjatmoko, S., Lindstrom, M. J., 
Somoza, V., Ghosh, S. K., Song, Z., Hsung, R. P., Kwon, G. S., Eliceiri, K. W., 
Albert, D. M. and Polans, A. S. 2011. Resveratrol Metabolites Do Not Elicit Early 
Pro-apoptotic Mechanisms in Neuroblastoma Cells. Journal of Agricultural and 
Food Chemistry 59:4979-4986. 

Kershaw, E. E. and Flier, J. S. 2004. Adipose tissue as an endocrine organ. Journal of 
Clinical Endocrinology & Metabolism 89:2548-2556. 



136 

 

Kershaw, E. E., Hamm, J. K., Verhagen, L. A. W., Peroni, O., Katic, M. and Flier, J. S. 
2006. Adipose triglyceride lipase - Function, regulation by insulin, and 
comparison with adiponutrin. Diabetes 55:148-157. 

Kersten, S., Desvergne, B. and Wahli, W. 2000. Roles of PPARs in health and disease. 
Nature 405:421-424. 

Kiess, W. and Gallaher, B. 1998. Hormonal control of programmed cell death apoptosis. 
European Journal of Endocrinology 138:482-491. 

Kim, C., Xuong, N. H. and Taylor, S. S. 2005. Crystal structure of a complex between the 
catalytic and regulatory (RI alpha) subunits of PKA. Science 307:690-696. 

Kim, D.-W., Kim, Y.-M., Kang, S.-D., Han, Y.-M. and Pae, H.-O. 2012. Effects of 
Resveratrol and trans-3,5,4 '-Trimethoxystilbene on Glutamate-Induced 
Cytotoxicity, Heme Oxygenase-1, and Sirtuin 1 in HT22 Neuronal Cells. 
Biomolecules & Therapeutics 20:306-312. 

Kim, K.-H., Kim, G.-N. and Lee, K. W. 2013. Phytochemicals in the prevention and 
treatment of obesity and its related cancers. Nutrition in the prevention and 
treatment of disease:391-406. 

Koopman, R., Schaart, G. and Hesselink, M. K. C. 2001. Optimisation of oil red O 
staining permits combination with immunofluorescence and automated 
quantification of lipids. Histochemistry and Cell Biology 116:63-68. 

Kopelman, P. G. 2000. Obesity as a medical problem. Nature 404:635-643. 

Kovacs, E. M. R. and Mela, D. J. 2006. Metabolically active functional food ingredients 
for weight control. Obesity Reviews 7:59-78. 

Kuerschner, L., Moessinger, C. and Thiele, C. 2008. Imaging of lipid biosynthesis: how a 
neutral lipid enters lipid droplets. Traffic 9:338-352. 

Kwon, J. Y., Seo, S. G., Heo, Y.-S., Yue, S., Cheng, J.-X., Lee, K. W. and Kim, K.-H. 
2012. Piceatannol, Natural Polyphenolic Stilbene, Inhibits Adipogenesis via 
Modulation of Mitotic Clonal Expansion and Insulin Receptor-dependent Insulin 
Signaling in Early Phase of Differentiation. Journal of Biological Chemistry 
287:11566-11578. 

Lafontan, M. and Langin, D. 2009. Lipolysis and lipid mobilization in human adipose 
tissue. Progress in Lipid Research 48:275-297. 

Lago, F., Dieguez, C., Gomez-Reino, J. and Gualillo, O. 2007. Adipokines as emerging 
mediators of immune response and inflammation. Nature Clinical Practice 
Rheumatology 3:716-724. 



137 

 

Langin, D. 2006a. Adipose tissue lipolysis as a metabolic pathway to define 
pharmacological strategies against obesity and the metabolic syndrome. 
Pharmacological Research 53:482-491. 

Langin, D. 2006b. Control of fatty acid and glycerol release in adipose tissue lipolysis. 
Comptes Rendus Biologies 329:598-607. 

Lasa, A., Churruca, I., Eseberri, I., Andres-Lacueva, C. and Portillo, M. P. 2012a. 
Delipidating effect of resveratrol metabolites in 3T3-L1 adipocytes. Molecular 
Nutrition & Food Research 56:1559-1568. 

Lasa, A., Schweiger, M., Kotzbeck, P., Churruca, I., Simon, E., Zechner, R. and del Puy 
Portillo, M. 2012b. Resveratrol regulates lipolysis via adipose triglyceride lipase. 
Journal of Nutritional Biochemistry 23:379-384. 

Lass, A., Zimmermann, R., Haemmerle, G., Riederer, M., Schoiswohl, G., Schweiger, M., 
Kienesberger, P., Strauss, J. G., Gorkiewicz, G. and Zechner, R. 2006. Adipose 
triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 
and defective in Chanarin-Dorfman Syndrome. Cell Metabolism 3:309-319. 

Lass, A., Zimmermann, R., Oberer, M. and Zechner, R. 2011. Lipolysis � A highly 
regulated multi-enzyme complex mediates the catabolism of cellular fat stores. 
Progress in Lipid Research 50:14-27. 

Lee, J.-H., Yu, W. H., Kumar, A., Lee, S., Mohan, P. S., Peterhoff, C. M., Wolfe, D. M., 
Martinez-Vicente, M., Massey, A. C., Sovak, G., Uchiyama, Y., Westaway, D., 
Cuervo, A. M. and Nixon, R. A. 2010. Lysosomal Proteolysis and Autophagy 
Require Presenilin 1 and Are Disrupted by Alzheimer-Related PS1 Mutations. 
Cell 141:1146-1158. 

Lefterova, M. I. and Lazar, M. A. 2009. New developments in adipogenesis. Trends in 
Endocrinology and Metabolism 20:107-114. 

Lin, F. T. and Lane, M. D. 1994. CCAAT/ENHANCER BINDING-PROTEIN-ALPHA 
IS SUFFICIENT TO INITIATE THE 3T3-L1 ADIPOCYTE 
DIFFERENTIATION PROGRAM. Proceedings of the National Academy of 
Sciences of the United States of America 91:8757-8761. 

Lin, H.-S. and Ho, P. C. 2009. A rapid HPLC method for the quantification of 3,5,4 '-
trimethoxy-trans-stilbene (TMS) in rat plasma and its application in 
pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis 
49:387-392. 

Lin, H.-S., Yue, B.-D. and Ho, P. C. 2009. Determination of pterostilbene in rat plasma 
by a simple HPLC-UV method and its application in pre-clinical pharmacokinetic 
study. Biomedical Chromatography 23:1308-1315. 



138 

 

Lin, H.-S., Zhang, W., Go, M. L., Choo, Q.-Y. and Ho, P. C. 2010. Determination of Z-
3,5,4 '-trimethoxystilbene in rat plasma by a simple HPLC method: Application in 
a pre-clinical pharmacokinetic study. Journal of Pharmaceutical and Biomedical 
Analysis 53:693-697. 

Listenberger, L. L., Han, X. L., Lewis, S. E., Cases, S., Farese, R. V., Ory, D. S. and 
Schaffer, J. E. 2003. Triglyceride accumulation protects against fatty acid-induced 
lipotoxicity. Proceedings of the National Academy of Sciences of the United 
States of America 100:3077-3082. 

Long, L. H., Hoi, A. and Halliwell, B. 2010. Instability of, and generation of hydrogen 
peroxide by, phenolic compounds in cell culture media. Archives of Biochemistry 
and Biophysics 501:162-169. 

Macdougald, O. A. and Lane, M. D. 1995. TRANSCRIPTIONAL REGULATION OF 
GENE-EXPRESSION DURING ADIPOCYTE DIFFERENTIATION. Annual 
Review of Biochemistry 64:345-373. 

Martinez-Botas, J., Anderson, J. B., Tessier, D., Lapillonne, A., Chang, B. H. J., Quast, 
M. J., Gorenstein, D., Chen, K. H. and Chan, L. 2000. Absence of perilipin results 
in leanness and reverses obesity in Lepr db db mice. Nature Genetics 26:474-479. 

Matsuda, H., Tewtrakul, S., Morikawa, T. and Yoshikawa, M. 2004. Anti-allergic activity 
of stilbenes from Korean rhubarb (Rheum undulatum L.): structure requirements 
for inhibition of antigen-induced degranulation and their effects on the release of 
TNF-alpha and IL-4 in RBL-2H3 cells. Bioorganic & Medicinal Chemistry 
12:4871-4876. 

Mei, B. S., Zhao, L., Chen, L. and Sul, H. S. 2002. Only the large soluble form of 
preadipocyte factor-1 (Pref-1), but not the small soluble and membrane forms, 
inhibits adipocyte differentiation: role of alternative splicing. Biochemical Journal 
364:137-144. 

Mercader, J., Palou, A. and Luisa Bonet, M. 2011. Resveratrol enhances fatty acid 
oxidation capacity and reduces resistin and Retinol-Binding Protein 4 expression 
in white adipocytes. Journal of Nutritional Biochemistry 22:828-834. 

Minakawa, M., Miura, Y. and Yagasaki, K. 2012. Piceatannol, a resveratrol derivative, 
promotes glucose uptake through glucose transporter 4 translocation to plasma 
membrane in L6 myocytes and suppresses blood glucose levels in type 2 diabetic 
model db/db mice. Biochemical and Biophysical Research Communications 
422:469-475. 

Minokoshi, Y., Kim, Y. B., Peroni, O. D., Fryer, L. G. D., Muller, C., Carling, D. and 
Kahn, B. B. 2002. Leptin stimulates fatty-acid oxidation by activating AMP-
activated protein kinase. Nature 415:339-343. 



139 

 

Miyoshi, H., Souza, S. C., Zhang, H. H., Strissel, K. J., Christoffolete, M. A., Kovsan, J., 
Rudich, A., Kraemer, F. B., Bianco, A. C., Obin, M. S. and Greenberg, A. S. 2006. 
Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via 
phosphorylation-dependent and -independent mechanisms. Journal of Biological 
Chemistry 281:15837-15844. 

Mohamed-Ali, V., Pinkney, J. H. and Coppack, S. W. 1998. Adipose tissue as an 
endocrine and paracrine organ. International Journal of Obesity 22:1145-1158. 

Morimoto, C., Satoh, Y., Hara, M., Inoue, S., Tsujita, T. and Okuda, H. 2005. Anti-obese 
action of raspberry ketone. Life Sciences 77:194-204. 

Mottillo, E. P., Bloch, A. E., Leff, T. and Granneman, J. G. 2012. Lipolytic Products 
Activate Peroxisome Proliferator-activated Receptor (PPAR) alpha and delta in 
Brown Adipocytes to Match Fatty Acid Oxidation with Supply. Journal of 
Biological Chemistry 287:25038-25048. 

Nam, M., Lee, W. H., Bae, E. J. and Kim, S. G. 2008. Compound C inhibits clonal 
expansion of preadipocytes by increasing p21 level irrespectively of AMPK 
inhibition. Archives of Biochemistry and Biophysics 479:74-81. 

NIH. 2005. Aim for a Healthy Weight. Pages 1-36. D. o. H. a. H. Services, ed. National 
Institutes of Health, National Heat, Lung, and Blood Institute. 

Ntambi, J. M. and Kim, Y. C. 2000. Adipocyte differentiation and gene expression. 
Journal of Nutrition 130:3122S-3126S. 

Ogden, C. L., Carroll, M. D., Kit, B. K. and Flegal, K. M. 2014. Prevalence of Childhood 
and Adult Obesity in the United States, 2011-2012. Jama-Journal of the American 
Medical Association 311:806-814. 

Olshansky, S. J., Passaro, D. J., Hershow, R. C., Layden, J., Carnes, B. A., Brody, J., 
Hayflick, L., Butler, R. N., Allison, D. B. and Ludwig, D. S. 2005. A potential 
decline in life expectancy in the United States in the 21st century. New England 
Journal of Medicine 352:1138-1145. 

Otto, T. C. and Lane, M. D. 2005. Adipose development: From stem cell to adipocyte. 
Critical Reviews in Biochemistry and Molecular Biology 40:229-242. 

Pan, M.-H., Gao, J.-H., Lai, C.-S., Wang, Y.-J., Chen, W.-M., Lo, C.-Y., Wang, M., 
Dushenkov, S. and Ho, C.-T. 2008. Antitumor Activity of 3,5,4 '-
trimethoxystilbene in COLO 205 cells and xenografts in SCID mice. Molecular 
Carcinogenesis 47:184-196. 

Pantoja, C., Huff, J. T. and Yamamoto, K. R. 2008. Glucocorticoid Signaling Defines a 
Novel Commitment State during Adipogenesis In Vitro. Molecular Biology of the 
Cell 19:4032-4041. 



140 

 

Park, H. J., Yang, J.-Y., Ambati, S., Della-Fera, M. A., Hausman, D. B., Rayalam, S. and 
Baile, C. A. 2008. Combined Effects of Genistein, Quercetin, and Resveratrol in 
Human and 3T3-L1 Adipocytes. Journal of Medicinal Food 11:773-783. 

Patel, K. R., Brown, V. A., Jones, D. J. L., Britton, R. G., Hemingway, D., Miller, A. S., 
West, K. P., Booth, T. D., Perloff, M., Crowell, J. A., Brenner, D. E., Steward, W. 
P., Gescher, A. J. and Brown, K. 2010. Clinical Pharmacology of Resveratrol and 
Its Metabolites in Colorectal Cancer Patients. Cancer Research 70:7392-7399. 

Piotrowska, H., Kucinska, M. and Murias, M. 2012. Biological activity of piceatannol: 
Leaving the shadow of resveratrol. Mutation Research-Reviews in Mutation 
Research 750:60-82. 

Qiu, Z. L., Wei, Y., Chen, N., Jiang, M. R., Wu, J. R. and Liao, K. 2001. DNA synthesis 
and mitotic clonal expansion is not a required step for 3T3-L1 preadipocyte 
differentiation into adipocytes. Journal of Biological Chemistry 276:11988-11995. 

Raclot, T. 1997. Selective mobilization of fatty acids from white fat cells: Evidence for a 
relationship to the polarity of triacylglycerols. Biochemical Journal 322:483-489. 

Ramirezzacarias, J. L., Castromunozledo, F. and Kuriharcuch, W. 1992. 
QUANTITATION OF ADIPOSE CONVERSION AND TRIGLYCERIDES BY 
STAINING INTRACYTOPLASMIC LIPIDS WITH OIL RED-O. 
Histochemistry 97:493-497. 

Rayalam, S., Della-Fera, M. A. and Baile, C. A. 2008a. Phytochemicals and regulation of 
the adipocyte life cycle. Journal of Nutritional Biochemistry 19:717-726. 

Rayalam, S., Yang, J.-Y., Ambati, S., Della-Fera, M. A. and Baile, C. A. 2008b. 
Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. 
Phytotherapy Research 22:1367-1371. 

Razani, B., Rubin, C. S. and Lisanti, M. P. 1999. Regulation of cAMP-mediated signal 
transduction via interaction of caveolins with the catalytic subunit of protein 
kinase A. Journal of Biological Chemistry 274:26353-26360. 

Reichert, M. and Eick, D. 1999. Analysis of cell cycle arrest in adipocyte differentiation. 
Oncogene 18:459-466. 

Reynisdottir, S., Langin, D., Carlstrom, K., Holm, C., Rossner, S. and Arner, P. 1995. 
EFFECTS OF WEIGHT-REDUCTION ON THE REGULATION OF 
LIPOLYSIS IN ADIPOCYTES OF WOMEN WITH UPPER-BODY OBESITY. 
Clinical Science 89:421-429. 

Ricquier, D. 2011. Uncoupling protein 1 of brown adipocytes, the only uncoupler: a 
historical perspective. Frontiers in endocrinology 2:85-85. 



141 

 

Ron, D. and Habener, J. F. 1992. CHOP, A NOVEL DEVELOPMENTALLY 
REGULATED NUCLEAR-PROTEIN THAT DIMERIZES WITH 
TRANSCRIPTION FACTORS C/EBP AND LAP AND FUNCTIONS AS A 
DOMINANT-NEGATIVE INHIBITOR OF GENE-TRANSCRIPTION. Genes & 
Development 6:439-453. 

Rosen, E. D. and MacDougald, O. A. 2006. Adipocyte differentiation from the inside out. 
Nat Rev Mol Cell Biol 7:885-96. 

Rosen, E. D. and Spiegelman, B. M. 2000. Molecular regulation of adipogenesis. Annual 
Review of Cell and Developmental Biology 16:145-171. 

Rosen, E. D. and Spiegelman, B. M. 2006. Adipocytes as regulators of energy balance 
and glucose homeostasis. Nature 444:847-853. 

Rosen, E. D. and Spiegelman, B. M. 2014. What We Talk About When We Talk About 
Fat. Cell 156:20-44. 

Rosen, E. D., Walkey, C. J., Puigserver, P. and Spiegelman, B. M. 2000. Transcriptional 
regulation of adipogenesis. Genes & Development 14:1293-1307. 

Sadowski, H. B., Wheeler, T. T. and Young, D. A. 1992. GENE-EXPRESSION 
DURING 3T3-L1 ADIPOCYTE DIFFERENTIATION - 
CHARACTERIZATION OF INITIAL RESPONSES TO THE INDUCING 
AGENTS AND CHANGES DURING COMMITMENT TO 
DIFFERENTIATION. Journal of Biological Chemistry 267:4722-4731. 

Saito, T., Abe, D. and Sekiya, K. 2007. Nobiletin enhances differentiation and lipolysis 
of 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications 
357:371-376. 

Sarafidis, P. A. and Bakris, G. L. 2007. Non-esterified fatty acids and blood pressure 
elevation: a mechanism for hypertension in subjects with obesity/insulin 
resistance? Journal of Human Hypertension 21:12-19. 

Schweiger, M., Schreiber, R., Haemmerle, G., Lass, A., Fledelius, C., Jacobsen, P., 
Tornqvist, H., Zechner, R. and Zimmermann, R. 2006. Adipose triglyceride lipase 
and hormone-sensitive lipase are the major enzymes in adipose tissue 
triacylglycerol catabolism. Journal of Biological Chemistry 281:40236-40241. 

Seamon, K. B., Padgett, W. and Daly, J. W. 1981. FORSKOLIN - UNIQUE 
DITERPENE ACTIVATOR OF ADENYLATE-CYCLASE IN MEMBRANES 
AND IN INTACT-CELLS. Proceedings of the National Academy of Sciences of 
the United States of America-Biological Sciences 78:3363-3367. 

Setoguchi, Y., Oritani, Y., Ito, R., Inagaki, H., Maruki-Uchida, H., Ichiyanagi, T. and Ito, 
T. 2014. Absorption and Metabolism of Piceatannol in Rats. Journal of 
Agricultural and Food Chemistry 62:2541-2548. 



142 

 

Shen, W.-J., Patel, S., Miyoshi, H., Greenberg, A. S. and Kraemer, F. B. 2009. Functional 
interaction of hormone-sensitive lipase and perilipin in lipolysis. Journal of Lipid 
Research 50:2306-2313. 

Shi, Y.-W., Wang, C.-P., Liu, L., Liu, Y.-L., Wang, X., Hong, Y., Li, Z. and Kong, L.-D. 
2012. Antihyperuricemic and nephroprotective effects of resveratrol and its 
analogues in hyperuricemic mice. Molecular Nutrition & Food Research 56:1433-
1444. 

Shojima, N., Sakoda, H., Ogihara, T., Fujishiro, M., Katagiri, H., Anai, M., Onishi, Y., 
Ono, H., Inukai, K., Abe, M., Fukushima, Y., Kikuchi, M., Oka, Y. and Asano, T. 
2002. Humoral regulation of resistin expression in 3T3-L1 and mouse adipose 
cells. Diabetes 51:1737-1744. 

Simoni, D., Roberti, M., Invidiata, F. P., Aiello, E., Aiello, S., Marchetti, P., Baruchello, 
R., Eleopra, M., Di Cristina, A., Grimaudo, S., Gebbia, N., Crosta, L., Dieli, F. 
and Tolorneo, M. 2006. Stilbene-based anticancer agents: Resveratrol analogues 
active toward HL60 leukemic cells with a non-specific phase mechanism. 
Bioorganic & Medicinal Chemistry Letters 16:3245-3248. 

Singh, R., Xiang, Y., Wang, Y., Baikati, K., Cuervo, A. M., Luu, Y. K., Tang, Y., Pessin, 
J. E., Schwartz, G. J. and Czaja, M. J. 2009. Autophagy regulates adipose mass 
and differentiation in mice. Journal of Clinical Investigation 119:3329-3339. 

Smas, C. M., Chen, L., Zhao, L., Latasa, M. J. and Sul, H. S. 1999. Transcriptional 
repression of pref-1 by glucocorticoids promotes 3T3-L1 adipocyte differentiation. 
Journal of Biological Chemistry 274:12632-12641. 

Spalding, K. L., Arner, E., Westermark, P. O., Bernard, S., Buchholz, B. A., Bergmann, 
O., Blomqvist, L., Hoffstedt, J., Naslund, E., Britton, T., Concha, H., Hassan, M., 
Ryden, M., Frisen, J. and Arner, P. 2008. Dynamics of fat cell turnover in humans. 
Nature 453:783-787. 

Spiegelman, B. M. 1998. PPAR-gamma: Adipogenic regulator and thiazolidinedione 
receptor. Diabetes 47:507-514. 

Spiegelman, B. M. and Flier, J. S. 1996. Adipogenesis and Obesity: Rounding Out the 
Big Picture. Cell 87:377-389. 

Spiegelman, B. M. and Flier, J. S. 2001. Obesity and the Regulation of Energy Balance. 
Cell 104:531-543. 

Steppan, C. M., Bailey, S. T., Bhat, S., Brown, E. J., Banerjee, R. R., Wright, C. M., Patel, 
H. R., Ahima, R. S. and Lazar, M. A. 2001. The hormone resistin links obesity to 
diabetes. Nature 409:307-312. 



143 

 

Swinburn, B. A., Sacks, G., Hall, K. D., McPherson, K., Finegood, D. T., Moodie, M. L. 
and Gortmaker, S. L. The global obesity pandemic: shaped by global drivers and 
local environments. The Lancet 378:804-814. 

Szkudelska, K., Nogowski, L. and Szkudelski, T. 2009. The inhibitory effect of 
resveratrol on leptin secretion from rat adipocytes. European Journal of Clinical 
Investigation 39:899-905. 

Tanaka, T., Yoshida, N., Kishimoto, T. and Akira, S. 1997. Defective adipocyte 
differentiation in mice lacking the C/EBP beta and/or C/EBP delta gene. Embo 
Journal 16:7432-7443. 

Tang, Q. Q. and Lane, M. D. 1999. Activation and centromeric localization of 
CCAAT/enhancer-binding proteins during the mitotic clonal expansion of 
adipocyte differentiation. Genes & Development 13:2231-2241. 

Tang, Q. Q. and Lane, M. D. 2000. Role of C/EBP homologous protein (CHOP-10) in the 
programmed activation of CCAAT/enhancer-binding protein-beta during 
adipogenesis. Proceedings of the National Academy of Sciences of the United 
States of America 97:12446-12450. 

Tang, Q. Q., Otto, T. C. and Lane, M. D. 2003. Mitotic clonal expansion: A synchronous 
process required for adipogenesis. Proceedings of the National Academy of 
Sciences of the United States of America 100:44-49. 

Tang, Q. Q., Zhang, J. W. and Lane, M. D. 2004. Sequential gene promoter interactions 
of C/EBP beta, C/EBP alpha, and PPAR gamma during adipogenesis. 
Biochemical and Biophysical Research Communications 319:235-239. 

Thiele, C. and Spandl, J. 2008. Cell biology of lipid droplets. Current Opinion in Cell 
Biology 20:378-385. 

Tiraby, C., Tavernier, G., Lefort, C., Larrouy, D., Bouillaud, F., Ricquier, D. and Langin, 
D. 2003. Acquirement of brown fat cell features by human white adipocytes. 
Journal of Biological Chemistry 278:33370-33376. 

Tong, Q., Dalgin, G., Xu, H. Y., Ting, C. N., Leiden, J. M. and Hotamisligil, G. S. 2000. 
Function of GATA transcription factors in preadipocyte-adipocyte transition. 
Science 290:134-138. 

Tong, Q., Tsai, J., Tan, G., Dalgin, G. and Hotamisligil, G. S. 2005. Interaction between 
GATA and the C/EBP family of transcription factors is critical in GATA-
mediated suppression of adipocyte differentiation. Molecular and Cellular 
Biology 25:706-715. 

Tontonoz, P., Hu, E. and Spiegelman, B. M. 1994. Stimulation of adipogenesis in 
���������	� �
 ������ � �����-activated transcription factor. Cell 79:1147-1156. 



144 

 

Tornqvist, H. and Belfrage, P. 1976. PURIFICATION AND SOME PROPERTIES OF A 
MONOACYLGLYCEROL-HYDROLYZING ENZYME OF RAT ADIPOSE-
TISSUE. Journal of Biological Chemistry 251:813-819. 

Tracey, K. J., Wei, H., Manogue, K. R., Fong, Y. M., Hesse, D. G., Nguyen, H. T., Kuo, 
G. C., Beutler, B., Cotran, R. S., Cerami, A. and Lowry, S. F. 1988. 
CACHECTIN TUMOR NECROSIS FACTOR INDUCES CACHEXIA, 
ANEMIA, AND INFLAMMATION. Journal of Experimental Medicine 
167:1211-1227. 

Unger, R. H. 1995. LIPOTOXICITY IN THE PATHOGENESIS OF OBESITY-
DEPENDENT NIDDM - GENETIC AND CLINICAL IMPLICATIONS. 
Diabetes 44:863-870. 

Urpi-Sarda, M., Jauregui, O., Lamuela-Raventos, R. M., Jaeger, W., Miksits, M., Covas, 
M. I. and Andres-Lacueva, C. 2005. Uptake of diet resveratrol into the human 
low-density lipoprotein. identification and quantification of resveratrol 
metabolites by liquid chromatography coupled with tandem mass spectrometry. 
Analytical Chemistry 77:3149-3155. 

Van Gaal, L. F., Mertens, I. L. and De Block, C. E. 2006. Mechanisms linking obesity 
with cardiovascular disease. Nature 444:875-880. 

Villanueva, C. J., Vergnes, L., Wang, J., Drew, B. G., Hong, C., Tu, Y., Hu, Y., Peng, X., 
Xu, F., Saez, E., Wroblewski, K., Hevener, A. L., Reue, K., Fong, L. G., Young, 
S. G. and Tontonoz, P. 2013. Adipose Subtype-Selective Recruitment of TLE3 or 
Prdm16 by PPAR gamma Specifies Lipid Storage versus Thermogenic Gene 
Programs. Cell Metabolism 17:423-435. 

Villena, J. A., Roy, S., Sarkadi-Nagy, E., Kim, K. H. and Sul, H. S. 2004. Desnutrin, an 
adipocyte gene encoding a novel patatin domain-containing protein, is induced by 
fasting and glucocorticoids. Journal of Biological Chemistry 279:47066-47075. 

Virbasius, J. V. and Scarpulla, R. C. 1994. ACTIVATION OF THE HUMAN 
MITOCHONDRIAL TRANSCRIPTION FACTOR A GENE BY NUCLEAR 
RESPIRATORY FACTORS - A POTENTIAL REGULATORY LINK 
BETWEEN NUCLEAR AND MITOCHONDRIAL GENE-EXPRESSION IN 
ORGANELLE BIOGENESIS. Proceedings of the National Academy of Sciences 
of the United States of America 91:1309-1313. 

Walle, T., Hsieh, F., DeLegge, M. H., Oatis, J. E. and Walle, U. K. 2004. High 
absorption but very low bioavailability of oral resveratrol in humans. Drug 
Metabolism and Disposition 32:1377-1382. 

Walther, T. C. and Farese, R. V., Jr. 2012. Lipid Droplets and Cellular Lipid Metabolism. 
Annual Review of Biochemistry, Vol 81 81:687-714. 



145 

 

Wang, H., Hu, L., Dalen, K., Dorward, H., Marcinkiewicz, A., Russell, D., Gong, D., 
Londos, C., Yamaguchi, T., Holm, C., Rizzo, M. A., Brasaemle, D. and Sztalryd, 
C. 2009. Activation of Hormone-sensitive Lipase Requires Two Steps, Protein 
Phosphorylation and Binding to the PAT-1 Domain of Lipid Droplet Coat 
Proteins. Journal of Biological Chemistry 284:32116-32125. 

Wang, L. X., Heredia, A., Song, H. J., Zhang, Z. J., Yu, B., Davis, C. and Redfield, R. 
2004. Resveratrol glucuronides as the metabolites of resveratrol in humans: 
Characterization, synthesis, and anti-HIV activity. Journal of Pharmaceutical 
Sciences 93:2448-2457. 

Wang, N. D., Finegold, M. J., Bradley, A., Ou, C. N., Abdelsayed, S. V., Wilde, M. D., 
Taylor, L. R., Wilson, D. R. and Darlington, G. J. 1995. IMPAIRED ENERGY 
HOMEOSTASIS IN C/EBP-ALPHA KNOCKOUT MICE. Science 269:1108-
1112. 

Wang, P., Li, J., Wang, P., Hu, C.-R., Zhang, D., Sturek, M. and Cheng, J.-X. 2013. 
Label-Free Quantitative Imaging of Cholesterol in Intact Tissues by 
Hyperspectral Stimulated Raman Scattering Microscopy. Angewandte Chemie-
International Edition 52:13042-13046. 

Wang, S., Soni, K. G., Semache, M., Casavant, S., Fortier, M., Pan, L. and Mitchell, G. A. 
2008. Lipolysis and the integrated physiology of lipid energy metabolism. 
Molecular Genetics and Metabolism 95:117-126. 

Weinberg, J. M. 2006. Lipotoxicity. Kidney International 70:1560-1566. 

Wenzel, E. and Somoza, V. 2005. Metabolism and bioavailability of trans-resveratrol. 
Molecular Nutrition & Food Research 49:472-481. 

White, R. T., Damm, D., Hancock, N., Rosen, B. S., Lowell, B. B., Usher, P., Flier, J. S. 
and Spiegelman, B. M. 1992. HUMAN ADIPSIN IS IDENTICAL TO 
COMPLEMENT FACTOR-D AND IS EXPRESSED AT HIGH-LEVELS IN 
ADIPOSE-TISSUE. Journal of Biological Chemistry 267:9210-9213. 

Whitehead, R. H. 1909. A note on the absorption of fat. American Journal of Physiology 
24:294-296. 

WHO. 2013. Obesity and overweight. World Health Organization. 

Wu, J., Bostrom, P., Sparks, L. M., Ye, L., Choi, J. H., Giang, A.-H., Khandekar, M., 
Virtanen, K. A., Nuutila, P., Schaart, G., Huang, K., Tu, H., Lichtenbelt, W. D. v. 
M., Hoeks, J., Enerbaeck, S., Schrauwen, P. and Spiegelman, B. M. 2012. Beige 
Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human. 
Cell 150:366-376. 

 



146 

 

Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., 
Cinti, S., Lowell, B., Scarpulla, R. C. and Spiegelman, B. M. 1999a. Mechanisms 
Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic 
Coactivator PGC-1. Cell 98:115-124. 

Wu, Z. D., Bucher, N. L. R. and Farmer, S. R. 1996. Induction of peroxisome 
proliferator-activated receptor gamma during the conversion of 3T3 fibroblasts 
into adipocytes is mediated by C/EBP beta, C/EBP delta, and glucocorticoids. 
Molecular and Cellular Biology 16:4128-4136. 

Wu, Z. D., Puigserver, P. and Spiegelman, B. M. 1999b. Transcriptional activation of 
adipogenesis. Current Opinion in Cell Biology 11:689-694. 

Yeaman, S. J. 1990. HORMONE-SENSITIVE LIPASE - A MULTIPURPOSE 
ENZYME IN LIPID-METABOLISM. Biochimica Et Biophysica Acta 1052:128-
132. 

Yeh, W. C., Cao, Z. D., Classon, M. and McKnight, S. L. 1995. CASCADE 
REGULATION OF TERMINAL ADIPOCYTE DIFFERENTIATION BY 3 
MEMBERS OF THE C/EBP FAMILY OF LEUCINE-ZIPPER PROTEINS. 
Genes & Development 9:168-181. 

Yen, C.-L. E., Stone, S. J., Koliwad, S., Harris, C. and Farese, R. V., Jr. 2008. DGAT 
enzymes and triacylglycerol biosynthesis. Journal of Lipid Research 49:2283-
2301. 

Yoshikawa, M., Shimoda, H., Nishida, N., Takada, M. and Matsuda, H. 2002. Salacia 
reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic 
activities have mild antiobesity effects in rats. Journal of Nutrition 132:1819-1824. 

Yun, J. W. 2010. Possible anti-obesity therapeutics from nature � A review. 
Phytochemistry 71:1625-1641. 

Zaidi, N., Lupien, L., Kuemmerle, N. B., Kinlaw, W. B., Swinnen, J. V. and Smans, K. 
2013. Lipogenesis and lipolysis: The pathways exploited by the cancer cells to 
acquire fatty acids. Progress in Lipid Research 52:585-589. 

Zechner, R., Zimmermann, R., Eichmann, T. O., Kohlwein, S. D., Haemmerle, G., Lass, 
A. and Madeo, F. 2012. FAT SIGNALS - Lipases and Lipolysis in Lipid 
Metabolism and Signaling. Cell Metabolism 15:279-291. 

Zhang, D., Sipchenko, M. N. and Cheng, J.-X. 2011. Highly Sensitive Vibrational 
Imaging by Femtosecond Pulse Stimulated Raman Loss. Journal of Physical 
Chemistry Letters 2:1248-1253. 

 



147 

 

Zhang, J. W., Tang, Q. Q., Vinson, C. and Lane, M. D. 2004. Dominant-negative C/EBP 
disrupts mitotic clonal expansion and differentiation of 3T3-L1 preadipocytes. 
Proceedings of the National Academy of Sciences of the United States of America 
101:43-47. 

Zhou, S. L., Stump, D., Sorrentino, D., Potter, B. J. and Berk, P. D. 1992. ADIPOCYTE 
DIFFERENTIATION OF 3T3-L1 CELLS INVOLVES AUGMENTED 
EXPRESSION OF A 43-KDA PLASMA-MEMBRANE FATTY ACID-
BINDING PROTEIN. Journal of Biological Chemistry 267:14456-14461. 

Zimmermann, R., Lass, A., Haemmerle, G. and Zechner, R. 2009. Fate of fat: The role of 
adipose triglyceride lipase in lipolysis. Biochimica et Biophysica Acta (BBA) - 
Molecular and Cell Biology of Lipids 1791:494-500. 

Zimmermann, R., Strauss, J. G., Haemmerle, G., Schoiswohl, G., Birner-Gruenberger, R., 
Riederer, M., Lass, A., Neuberger, G., Eisenhaber, F., Hermetter, A. and Zechner, 
R. 2004. Fat mobilization in adipose tissue is promoted by adipose triglyceride 
lipase. Science 306:1383-1386. 

 


	Purdue University
	Purdue e-Pubs
	Summer 2014

	Role of resveratrol metabolites in adipose function
	Mikaela Lynn Allan
	Recommended Citation


	untitled

