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ABSTRACT 

 

Reemmer, Jesica Elyse M.S., Purdue University, August 2014. ABCB11 functions with  
B1 and B19 to regulate rootward auxin transport. Major Professor: Angus Murphy. 
 

 

 Auxin transport is essential for the architecture and development of erect plants. In a 

network of transporters directing auxin flows, ATP-Binding Cassette (ABC) transporters are a 

ubiquitous family of proteins that actively transport important substrates, including auxins, across 

the plasma membrane. ABCB1 and ABCB19 have been shown to account for the majority of 

rootward auxin transport, but residual fluxes to the root tip in Arabidopsis b1b19 double mutants 

implies the involvement of at least one additional auxin transporter in this process. Of specific 

interest, the severe dwarfism seen in abcb1abcb19 is strikingly reminiscent of that seen in 

mutants defective in the FK506-binding protein 42 (FKBP42), known as TWISTED DWARF1 

(TWD1). FKBPs function in the maturation and stabilization of proteins, and biochemical 

evidence indicates that TWD1 functions in ABCB protein maturation and activation in particular. 

However, although b1b19 largely phenocopies twd1, the relative severity of the twd1 phenotype 

further suggests TWD1 activity may regulate the missing rootward auxin transporter. A broad 

screen including 12 ABCBs now reveals that ABCB11 acts in concert with ABCB1 and ABCB19 

in long-distance transport, with an additional role in basipetal auxin transport in leaf tissues. 

Support for this conclusion comes from analyses of ABCB11 expression, ABCB11 protein 

localization and interaction, growth phenotypes of b11 single and abcb1b19b11 triple mutants, 

and auxin transport and accumulation mediated by ABCB11. The comparative analysis of the 

ABCB knock-out lines with twd1-3 now provides the means to deconvolute the relationship 

between auxin, ABCB transporters and FKBP42, as well as the mechanisms leading to the 

phenotypes seen in the abcb and twd1 mutants. My work thus concludes both that B11 mediates 

long-distance rootward auxin efflux and that such function by ABCB transporters is crucial to 

describing the twd phenotype. Future uses of this work include the possibility of customizing 

plant architecture through the manipulation of substrate specificity and transport directionality of 

ABCB transporters. 
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PREFACE 

 

 The work described in this thesis details the characterization of Arabidopsis ABCB11 

along with ABCB21 (hereafter B11 and B21) in the pursuit of detailing an integrated map of 

auxin transporters and their activities. Completing such a systemic auxin transport map will 

provide a clearer understanding of which ABCB proteins function in auxin transport in plants, 

provide new insights into the evolution of auxin transport in plants, and suggest the physiological 

roles of the remaining ABCB transporters. B11 was initially identified as a member of the B 

subgroup of ABC transporters and was suspected as a potential auxin transporter based on 

homology to known proteins family members. Primary SDS-PAGE analysis found B11 to be 

enriched in detergent resistant membrane fractions, implying that it functions at the plasma 

membrane along with other members of the auxin transport family (Borner et al., 2005). It has 

also been shown through B11 promoter fusion that expression is found in phloem and xylem 

parenchyma, cortex, and epidermis, and this implicates B11 in rootward auxin transport in 

inflorescences, though no claim of significant reduction of auxin transport could be yet be made 

(Kaneda et al., 2011). 

 

 In efforts to complete the whole story of auxin transport, a clever screen leveraging the 

clustering sequence similarity of the ABCB family genes was conducted by Dr. Haibing Yang. 

Artificial micro RNA interference (RNAi) technology was employed to generate multiple knock-

downs of paralogous ABCBs.  These lines could then be tested for phenotypic characteristics 

typical of auxin transport disruption. Using this approach, B11 was successfully identified as a 

new player in rootward, long-range auxin transport. This work is described in the first section of 

the experimental results. 

 

It was also found that ABCB21 showed great promise for further exploration. B21 is a 

close homolog of ABCB4, but unlike B4, which is root specific (Santelia et al., 2005; Terasaka et 

al., 2005; Kubeš et al., 2012), B21 was reported to both regulate rootward auxin transport in the 

mature seedling root and also be expressed in the shoot (Kamimoto et al., 2012). B21 has also 

already been shown to function as a concentration-dependent uptake/efflux transporter, similar to 
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B4 in Saccharomyces cerevisiae expression assays (Kamimoto et al., 2012). Based on these 

results, B21 was advanced as a primary candidate for FKBP42-mediated rootward auxin transport 

as well. However, this research was undertaken in tandem by graduate colleague Mark Jenness in 

a project separate from my work. 

 

 The work presented in the main experimental section makes considerable use of 

phenotypic comparison between the twd1-3 mutant and mutant lines constructed to lack multiple 

ABCB transporters.  The inspiration for this approach arose from previously published 

observations of the double mutant abcb1abcb19 (Geisler et al., 2003). Knocking out both auxin 

transporters ABCB1 and 19 led to a dwarfed phenotype that was strikingly reminiscent of that 

seen in twd1-3. Although b1b19 largely phenocopies twd1, the relative severity of the twd1 

phenotype argues that additional transporters might also be regulated by TWD1 activity.  Thus, 

the subsequent crossing of b1b19 with b11 alleles was initiated by Dr. Nicola Carraro.  I inherited 

this seed stock and was responsible for extensive backcrossing and genotyping at the outset of the 

project. Guided by preliminary phenotypic data gathered by Dr. Carraro and Carolina Zamorano 

Montanez, I set out to characterize the progeny triple mutants. To do so, I began by examining the 

seedling root phenotypes and conducted extensive observation of the influence of media and light 

conditions on the severity of observed phenotypes. I also accumulated photographic data of adult 

phenotypes including a close inspection of leaf size and number.  A comparison of the epidermal 

cells at the tip of the leaves, where leaf expansion takes place, revealed that b1b19, twd1-3 and 

both b11 triple mutants have strongly reduced cell sizes. This provides preliminary suggestion 

that the smaller leaves result from a decrease in cell size and not from a reduction in total cell 

count. An investigation of leaf cell size was initiated to further document the curling leaf 

phenotype, but was delegated to be continued as part of a separate project by colleague Changxu 

Pang.  Further study of adult phenotypic characterization, particularly of the inflorescence and 

phyllotactic patterning of the axillary buds was conducted by Dr. Wiebke Tapken after the 

conclusion of my research. 

 

 Alongside establishing a clear phenotypic effect, I further pursued the characterization of 

the B11 protein through molecular work. I began by visualizing the GFP tagged expression 

pattern in planta of the B11 promoter region, cloned by Dr. Nicola Carraro as a continuation of 

previous results of promoter fusions visualized by GUS staining published in Kaneda et al., 2011. 

In addition to mapping the expression of the B11 promoter fusion, I also tested the auxin 

sensitivity of the B11 promoter.  However, auxin treatments of 10-100 nM NAA solutions 
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produced no noticeable increase in signal was observed and suggested that ABCB11 may not be 

regulated by an auxin-sensitive promoter or that such a factor is distally located. 

 

I began my own molecular work by managing to successfully clone the entire B11 CDS 

into a functional plasmid, a task that had previously resulted in a number of failures. Mutagenesis 

was employed for the correction of transcription errors with experienced advice provided by 

Mark Jenness. With this construct, I was able to shuttle the B11 sequence into appropriate 

destination vectors to express the B11 protein in Schizosaccharomyces pombe yeast cells. This 

allowed me to more closely analyze the transport capacity and capabilities of the ABCB11 

protein via a 3H-IAA transport assay. 3H-benzoic acid transport assays were also conducted in the 

same heterologous system by Mark Jenness as a comparison of substrate specificity. 

  

 To demonstrate the subcellular localization of the whole B11 protein, I also designed a 

complete genomic construct with a CFP tag for visualization. The genomic sequence of ABCB11, 

including its native promoter region (-1933 bp), was amplified from Arabidopsis genomic DNA 

for transformation. Due to the length of the full genomic sequence, the insertion was no trivial 

feat, but was successfully introduced into the Gateway system and transformed into 

Agrobacterium tumefaciens. It was seen that the transient expression of ABCB11 in the pavement 

cells of infiltrated Nicotiana benthamiana tobacco leaves overlapped with plasma membrane 

marker FM4-64, suggesting ABCB11 indeed functions as a membrane transporter. I further 

continued to transform this construct into Col-0 to produce a stable transformant. Initial attempts 

to visualize a stable expression of native ABCB11 in Arabidopsis seedlings yielded negative 

results, but future attempts may yield clearer results for further study. 

 

 My final project was to initiate the creation of an AtABCB11 specific antibody for 

immunological studies. Peptide sequence was custom synthesized by ThermoScientific based on 

my design, including a single mismatched substitution of Isoleucine amino acid (from native 

glutamic acid) to reduce sequence similarity with other ABCB family members and increase 

specificity for ABCB11 binding. Peptide was conjugated to Keyhole Limpet Hemocyanin and 

transferred to collaborators Anna Olek and Amber Chase for injection into chickens. From 

shipments of return eggs of five to seven weeks after initial injection, I created a stock of 

stabilized IgY as well as aliquots of concentrated antibody via affinity purification. Optimization 

of concentration and technique will hopefully find these stocks as useful tools for future research. 

  



x 

 

 This thesis was an effort to better understand the function of B11 and how it functions as a 

factor within the auxin transport pathway. The use of genetic, biochemistry and molecular 

biology tools has facilitated the characterization of B11.  The completed map could be 

instrumental in introducing additional transporters to manipulate auxin concentration in cases 

where modification of a target plant genome is impractical, but genetic transformation is possible. 

The implications of this work is tremendously exciting and it is my hope that this research may be 

used in future agronomic techniques to improve yields of both crop and biofuel feedstocks.
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Intercellular Transport of Auxin 
Jesica Reemmer and Angus Murphy 

 

Abstract 

Auxin is an essential hormone that regulates both programmed and plastic plant development. 

The mechanisms that regulate auxin metabolism, transport and signal transduction are well 

characterized, although important unresolved questions remain. A unique feature of auxin-

regulated plant development is that it involves a combination of cellular perception with polarized 

auxin gradients across groups of cells, tissues, and organs. Plants achieve these polarized auxin 

gradients via site-specific synthesis followed by directed and polar patterning of transport 

components in individual cells. These streams are primarily mediated by three functionally 

distinct plasma membrane transporter families. Apical–basal and organogenic patterning is 

largely defined by the polar efflux activities of full-length PIN-FORMED (PIN) facilitators. 

Dynamic auxin uptake into directed streams is mediated by the AUXIN RESISTANT 1 (AUX1) 

and LIKE AUX1 (LAX) symporters. Finally, long-distance transport streams are motivated by 

the ATP-BINDING CASSETTE subfamily B (ABCB) active transporters that continually pump 

across the plasma membrane and prevent reuptake of exported auxin. Multiple accessory proteins 

regulate auxin transporter activity and interactions with subcellular environments. The current 

understanding of cellular transport of auxin will be reviewed in this chapter. 

 

__________________________ 
 
J. Reemmer 
Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, 
IN 47907, USA 
 
A. Murphy (*) 
Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, 
IN 47907, USA 
 
Department of Plant Science and Landscape Architecture, University of Maryland, College 
Park, MD 20742, USA 
e-mail: asmurphy@umd.edu 
 
E. Zažímalová et al. (eds.), Auxin and Its Role in Plant Development, 
DOI 10.1007/978-3-7091-1526-8_5, © Springer-Verlag Wien 2014
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Fig. 5.1 Molecular structures of auxin. IAA and 4-Cl-IAA are endogenous auxins (a), 
whereas 2,4-D (2,4-dichlorophenoxyacetic acid) and naphtalene-1-acetic acid (NAA) are 
synthetically produced (b). The synthetic auxins 2,4-D and NAA exhibit chemical traits, 
such as greater resistance to metabolism or higher rates of diffusion into cells, that make 
them useful tools for auxin transport studies. 
 
 
1 Introduction 
 

Auxins are indolic plant hormones that function in regulation of cell division and elongation, 

polar growth, organogenesis, determination of shoot and root architecture, and tropic responses to 

gravity and light (reviewed in Teale et al. 2006; Benjamins and Scheres 2008). The word auxin is 

derived from the Greek word “auxein,” meaning “to grow/increase” (Kögl and Haagen-Smith 

1931). Naturally occurring auxins contain an indole and carboxylic acid group. The most 

abundant and developmentally important natural auxin is indole-3-acetic acid (IAA), although 4-

chloro-indole acetic acid (4-Cl-IAA) is also found in some species (Fig. 5.1a). Synthetic auxins 

mimic IAA in structure and spacing of the carboxylic acid moiety (Fig. 5.1b). 
 

IAA is produced primarily by multistep conversion of the aminoacyl precursor tryptophan 

synthesized from chorismate in the chloroplast (Radwanski and Last 1995). In Arabidopsis, 

tryptophan is converted to indole-3-pyruvic acid (IPA) by TRYPTOPHAN 

AMINOTRANSFERASE of ARABIDOPSIS 1 (TAA1), also known as TRANSPORT 

INHIBITOR RESPONSE 2 (TIR2) (Yamada et al. 2009; Tao et al. 2008; Stepanova et al. 2008; 

see Chap. 2). The second, and rate limiting, step of this pathway is the conversion of IPA to IAA 

by YUCCA, which catalyzes the oxidative decarboxylation of α-keto acids, including IPA and 

phenyl pyruvate (PPA) in Arabidopsis (Dai et al. 2013). In the model plant Arabidopsis, the 

biosynthetic pathway that generates indole glucosinolate as defense compounds also contributes 

to IAA pools (Sugawara et al. 2009). 
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Auxins are produced in the shoot apex and other sites of cell division and differentiation (Ljung et 

al. 2001, 2005; Bhalerao et al. 2002; Cheng et al. 2006, 2007; Stepanova et al. 2008; Tao et al. 

2008; Petersson et al. 2009). Emergent evidence of localized auxin production stands in contrast 

to traditional models in which auxin was thought to be synthesized almost exclusively in the 

shoot apex and transported to sites of action (Ljung et al. 2001, 2005; Bhalerao et al. 2002; 

Petersson et al. 2009). Simultaneous elucidation of auxin transport mechanisms over the past 15 

years has largely supported models of more distributed synthesis at the expense of shoot apical 

source models (reviewed in Peer et al. 2011). In particular, closely linked localized synthesis and 

polar auxin gradients involved in organogenesis have emerged as largely distinct from long-

distance auxin transport streams. 

 

When free auxin reaches a cell, two temporally distinct sets of responses may be observed (see 

Chap. 6). The earliest cell elongation responses to auxin may involve non-transcriptional events. 

AUXIN-BINDING PROTEIN 1 (ABP1) is a putative auxin receptor localized to the ER and cell 

periphery and may perceive auxin levels outside of the cell (Löbler and Klämbt 1985; Peer et al. 

2013). However, transcriptional activation of genes containing auxin response promoter elements 

requires derepression of trans-acting Auxin Response Factor (ARF) proteins by the TIR1/ AFB-

AUX/IAA co-receptor system (Guilfoyle et al. 1986; Theologis et al. 1985). Auxin binding to the 

TIR1/AFB F-box ubiquitin ligase subunit and an AUX/IAA co-receptor promotes AUX/IAA 

degradation to derepress ARF activation of auxin responsive genes expression (Dharmasiri et al. 

2005; Kepinski and Leyser 2005). The S-Phase Kinase-Associated Protein 2A (SKP2A) is a 

similar F-box protein whose function has been found to be additive to the effects of tir1-1 (del 

Pozo et al. 2002; Jurado et al. 2010). SKP2A has a different target, however, and its rapid 

degradation of key regulators of cell cycle control suggests SKP2A mediates auxin- responsive 

cell cycle control (del Pozo et al. 2006; Jurado et al. 2008). 

 

A unique aspect of auxin-dependent growth regulation is that the polarity and concentration of the 

auxin transport stream imparts vital information that the system can recognize. As early as 1880, 

Darwin described the unknown transmission of “some influence” as the agent of seedling bending 

in response to light (Darwin 1880). Though delayed by nearly 50 years, the theory of lateral auxin 

relocalization as a mechanism for bending was almost immediately proposed by both Cholodny 

and Went once the phytohormone auxin was discovered (Cholodny 1927; Went and Thimann 

1937). The asymmetric distribution of auxin in this relocalization is responsible for differential 
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cell elongation and the reorientation of growth evidenced in both photo- and gravitropic 

responses (see Chap. 16). 

 

Another result of lateral relocalization is uneven accumulation of auxin into local maxima and 

minima. It is through these concentration differences that auxin sets the blueprint for plant 

development. These gradients are found to be essential for both the embryonic development of 

apical–basal polarity (see Chap. 9) and the continued patterning of organogenesis (Reinhardt et 

al. 2003). 

 

2 Cellular Auxin Transport 
 

2.1 Cellular Auxin Import Is Motivated by Chemiosmotic Gradients 

Cellular uptake and efflux of auxin is motivated by a combination of chemiosmotic forces and 

ATP hydrolysis. IAA is a weak acid with a pKa of approximately 4.85. In the acidic (pH 5.5) 

conditions of the apoplast, only a small fraction (a calculated 17 %) of auxin molecules are proton 

associated (Rubery and Sheldrake 1974; Raven 1975). While protonated auxin preferentially 

diffuses into the cell membrane, 83% of the auxin pool remains unavailable to lipophilic diffusion 

in its dissociated form (IAA-). Additionally, cells must be able to selectively take up auxin in 

competition with other organic acids, and adjust for incorporation of the already limited pool of 

auxin into other tissues. Thus, in order to meet developmental demands, there is a distinct need 

for protein importers to actively recruit the traveling auxin signal. In Arabidopsis, this transport is 

carried out by the high- affinity auxin influx transporter AUX1 and its LAX protein family 

members (Goto et al. 1987; Parry et al. 2001). These permease-like proteins function by 

harnessing the potential of the proton gradient to drive passive anionic symport of deprotonated 

IAA at the plasma membrane (Yang et al. 2006). 

 

The importance of symport-driven uptake in enhancing transport streams is observed in aux1 

mutants or transformants wherein AUX/LAX genes are uniformly expressed in all cells of a 

tissue. Increased uptake activity increases the total auxin found in transport streams, and 

decreased activity results in decreased concentration of auxin in provascular and vascular tissues 

compared to wild-type plants (Marchant et al. 2002; Kramer 2004). AUX1 activity in lateral root 

cap cells has been shown to be essential to uptake of auxin from the root apex into directed 
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transport streams in the root epidermis that direct gravitropic responses (Swarup et al. 2001; 

Kleine-Vehn et al. 2006). 

 

In Arabidopsis, the three closely related LAX proteins also function in auxin uptake. Comparison 

of gene structure revealed well-conserved exon/intron boundaries indicative of origination from a 

common ancestor through gene duplication, but regulation of subcellular trafficking and spatial 

expression patterns of the LAXs differ considerably from AUX1 (Parry et al. 2001; Bainbridge et 

al. 2008; Swarup et al. 2008; Jones et al. 2009; Péret et al. 2012). For instance, AUX1 

intracellular targeting is regulated by AXR4, which encodes a putative endoplasmic reticulum 

(ER) chaperone thought to facilitate the correct folding of AUX1 and its export from ER to Golgi 

(Dharmasiri et al. 2006). However, LAX2 and LAX3 fail to target to the plasma membrane in 

AUX1-expressing cells, suggesting they may need their own specific ER chaperones (Péret et al. 

2012). Mutations have member-specific effects on auxin-related phenotypes as well. Both mutant 

aux1 and lax3 plants show comparable reduced lateral root emergence. However, aux1 shows a 

reduced level of lateral root primordia, whereas lax3 actually has a threefold increase in 

primordia compared to the wild type (Swarup et al. 2008). This suggests distinct functional roles 

for the different family members. However, all three LAX proteins have been shown to retain an 

auxin influx carrier function, albeit with varying transport specificities, that strongly suggests 

subfunctionalization (Yang et al. 2006; Swarup et al. 2008; Pe ́ret et al. 2012). 

 

2.2 Polar Auxin Transport Defines Local Concentration Gradients 

Once inside the neutral conditions of the cytosol, auxin is deprotonated to its polar anionic form 

(IAA-). This precludes auxin from diffusing back through the lipophilic cell membrane and, 

unless aided by exporters, auxin remains trapped in the cytosol. In a unique system, auxin can be 

transported cell to cell in a polar fashion. This short-range directional transport is not only a 

method of export, but the key to building the patterned auxin gradients crucial in developing 

tissues (Rubery and Sheldrake 1974; Raven 1975; Zažímalová et al. 2010). 

 

PIN-FORMED (PIN) efflux facilitators derive their name from the striking phenotype of pin1 

mutants in which the inflorescences do not form floral organs and remain bare pin-like stems 

(Goto et al. 1987). In addition to PIN1, seven other PIN genes are present in the genome of the 

model species Arabidopsis. Studies of plasma membrane-localized, “long” PINs (PIN1, 2, 3, 4, 

and 7) have shown distinct roles for individual members of the family. PIN1, 4, and 7 are vital in 

maintaining the polar auxin streams necessary for organogenesis and development along with 
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AUX1/LAX influx carriers (Reinhardt et al. 2003; Bainbridge et al. 2008). PIN2 activity is 

crucial to gravitropism and the reflux of auxin at the root tip (Chen et al. 1998; Müller et al. 1998; 

Friml et al. 2004; Rahman et al. 2010). PIN3 has a restrictive effect on auxin streams important 

for directional growth (Friml et al. 2002). However, mutational studies reveal that despite their 

apparent special- ties, PINs largely have redundant functions; the loss of a single PIN protein can 

be compensated for by the ectopic activities of the other PIN family members (Blilou et al. 2005; 

Vieten et al. 2005). By mutating multiple PIN gene family members, greater phenotypic and 

developmental defects can be induced in systems such as embryonic development, root 

patterning, and lateral root initiation (Benkova et al. 2003; Friml et al. 2003; Blilou et al. 2005). 

Interestingly, application of the auxin efflux inhibitor naphthylphthalamic acid (NPA) can mimic 

these effects. The fact that NPA produces these mutant phenotypes indicates a function in the 

proximity of PINs and has long made NPA a useful tool in studying altered development 

(Katekar and Geissler 1977). 

 

One of the key purposes of directing local auxin concentrations is the creation of the auxin 

maxima necessary for organogenesis (see Chaps. 10–12). The auxin streams created by joint 

AUX/LAX uptake and PIN efflux form the architectural patterns of new organs at the shoot 

apical meristem (Vernoux et al 2010). Interestingly, a plant lacking the function of all four 

members of the AUX/LAX auxin influx/transporters is still viable and moderately fertile, 

although its architecture is significantly altered (Bainbridge et al. 2008). Similarly, while auxin 

efflux transport proteins ABCB1 and ABCB19 can be visualized in developing embryos, 

knocking out their function did not result in observable defect to development (Mravec et al. 

2008). Treating a double mutant of pin1 and aux1 with auxin discovered one clue as to how 

fertility is maintained in the face of such mutations. Auxin treatment resulted in very large, fused 

organs at the apex rather than single flowers being produced (Reinhardt et al. 2003). This 

suggests that AUX1 may be involved in the positioning of organs and restricting their boundaries, 

thus ensuring that sufficient auxin remains in the necessary layers of the SAM (Reinhardt et al. 

2003). Furthermore, these observations imply that the function of concentrating auxin at a 

maximum is shared, with input from ABCB efflux transporters acting redundantly (Noh et al. 

2001). 
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2.3 ABCB Efflux Transporters Maintain Long-Distance Streams of Auxin 

Long-range transport of IAA is needed to generate auxin pools in sink tissues, which are 

important for such developmental processes as stimulating lateral roots and shoot branching. This 

transport can be accomplished via the phloem vasculature, as is the common route for 

metabolites. 

 

The best-known member of the B subfamily of ATP-Binding Cassette (ABC) transporters is 

human ABCB1 (MULTIDRUG RESISTANT 1/PHOSPHO- GLYCOPROTEIN 1), which has 

been extensively studied for its role in increased resistance to chemotherapeutic agents in breast, 

brain, and colon cancer cells (Luckie et al. 2003). However, it was apparent that plant 

homologues of human ABCB1 are not promiscuous drug transporters, and, while applicable in 

mammalian systems, the use of the multidrug resistance (MDR) nomenclature for this subgroup 

of proteins has been discontinued (Sidler et al. 1998). The Arabidopsis thaliana ABC subfamily 

B comprises 21 members; four proteins to date clearly mediate high-specificity auxin transport, 

and a number of highly homologous proteins are thought to mediate auxin transport to some 

degree (Kamimoto 2012). While both the PIN and AUX/LAX families have been extensively 

studied in terms of gene expression and protein localization, ABCB proteins are not as well 

characterized. Phylogenetic and structural analyses indicate that the subclass of ABCB 

transporters function in auxin transport across plant species, and many studies have focused on 

the representative ABCB1 and 19 proteins of Arabidopsis (reviewed in Blakeslee et al. 2005; 

Verrier et al. 2008). 

 

ABCB1 was discovered in the attempt to identify proteins conferring broad- spectrum herbicide 

resistance. Mammalian cells with increased expression of ATP-driven efflux pumps can gain 

resistance to a wide variety of cytotoxic drugs, and it had been proposed that a similar system 

might exist in plants (Dudler and Hertig 1992). Instead, it was found that overexpression of 

AtABCB1 resulted in elongation of seedling hypocotyls when grown under dim light, whereas 

antisense lines exhibited reduced elongation of the hypocotyls (Sidler et al. 1998). These 

phenotypes are similar to those witnessed after treating wild-type plants with low concentrations 

of auxin or an auxin transport inhibitor, for the overexpressor and antisense line, respectively. 

Further studies revealed that AtABCB1 is localized at the plasma membrane in nonpolar 

distributions at the shoot and root apices and is predominantly found with polar localization 

above the root apex. Its expression in both yeast and mammalian systems displays increased 

efflux of IAA and active synthetic 1-NAA, and in planta oxidative breakdown products of IAA 
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are effluxed as well (Geisler et al. 2005). ABCB1 genes also have auxin transport function in 

other plant species. In maize, the P-glycoprotein brachytic2 (br2) mutation shares 67 % identity 

with AtABCB1 and results in dwarfed plants with shortened lower stalk internodes (Leng and 

Vineyard 1951; Stein 1955; Noh et al. 2001). The mutant gene dwarf3 similarly results in 

dwarfed sorghum, a close relation to maize in both genomic organization and plant form (Mullet 

et al. 2002). While specific phenotypes vary between species, it has been confirmed that both 

brachytic2 and dwarf3 mutant phenotypes result from loss-of-function mutations to ABCB1 

genes and display reductions in long-distance transport of auxin (Multani et al. 2003; Bailly et al. 

2012). The collective evidence suggests that ABCB1 functions primarily in regions of high auxin 

concentration to accelerate vectorial transport and maintain long-distance auxin transport streams 

in combination with PIN and other ABCB family members (Bandyopadhyay et al. 2007). 

 

Arabidopsis ABCB19 was quickly linked to its closest homologue Arabidopsis ABCB1 (Noh et 

al. 2001). Both AtABCB1 and AtABCB19 exhibit remarkable structural similarity to the 

mammalian ABCB1 multidrug resistance transporter known for very broad substrate specificity. 

However, both AtABCB1 and AtABCB19 exhibit relatively high specificity for auxin as a 

transport substrate (Titapiwatanakun et al. 2009; Yang and Murphy 2009). Phenotypic analyses of 

abcb19 showed epinastic cotyledons, abnormally wrinkled leaves, reduced apical dominance, 

partial dwarfism, and reduced basipetal polar auxin transport in hypocotyls and inflorescences, all 

of which are phenotypes consistent with altered auxin response and/or transport. These defects 

were synergistically enhanced in the double mutant abcb1abcb19, suggesting some functional 

redundancy between these efflux transporters (Noh et al. 2001; Geisler et al. 2003, 2005). 

Comparison of expression domains revealed that ABCB19 maintains whole-plant auxin flow 

from the shoot to root apices, whereas ABCB1 function is more restricted to the shoot apex 

(Geisler et al. 2005). In addition, ABCB19 appears to function in the regulation of differential 

growth in response to light and gravity stimulation, and it is the substrate target for photoreceptor 

kinase PHOTOTROPIN1 (PHOT1) (Liscum and Briggs 1995; Noh et al. 2001, 2003; Lin and 

Wang 2005; Lewis et al. 2007; Wu et al. 2007; Nagashima et al. 2008). Phosphorylation of 

ABCB19 halts auxin efflux activity, which increases auxin levels at and above the site of 

inhibition. This action is an early step in the eventual unilateral growth that causes the bend seen 

in phototropism (Christie et al. 2011). 
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Fig. 5.2 Micropolar auxin gradients. In addition to the auxin gradient at the tissue level, auxin 

gradients can be thought of to exist within individual cells. This gradient (higher auxin concen- 

tration in darker blue) may interact with vesicular trafficking as a way for individual cells to 

perceive this auxin gradient. Red cylinders denote PIN exporters, green cylinders AUX/LAX 

importers. Solid black arrows denote auxin transport, broken arrow possible vesicular movement. 

 

 

2.4 Canalization and the Amplification of Streams by PIN Proteins 

The notion that auxin and polarity are linked dates back to classic histological studies on 

developing vascular cells (Sachs 1969). The canalization hypothesis was put forward by Sachs, 

and later mathematically formulated by Mitchison, as a proposal that a positive feedback exists 

between the flow of the signal molecule and the capacity for its flow (Sachs 1969; Mitchison 

1980). Further experimentation employing an antibody against export protein PIN1 revealed the 

occurrence of upregulation and relocalization away from the site of exogenous auxin application 

(Sauer et al. 2006). Studies of such experimental responses strongly suggest that auxin, or a 

secondary signal produced in response to auxin, is transported into the cell and directs 

canalization by regulating the polarity of PIN positioning in some cell types. This idea was 

expanded to include the hypothesis that cells could effectively monitor the auxin concentration in 

their surrounding environment and respond by pumping auxin toward neighboring cells against a 
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concentration gradient (Fig. 5.2). To test this hypothesis, computer simulation was employed to 

handle the hundreds of complex interactions that would occur in such a scenario (Jönsson et al. 

2006; Smith et al. 2006). Using theoretical parameters, the canalization hypothesis was shown to 

amplify small auxin fluxes and generate physiologically plausible results in phyllotactic 

patterning and vein formation in some tissues (Scarpella et al. 2006; Sauer et al. 2006). 

 

Interesting observations arise from computational modeling. In the attempt to describe PIN 

allocation and function, two radically different, but conditionally functional, models have been 

defined that yield discrepant functional conclusions in different locations. In meristematic tissues, 

PINs act to sense local auxin concentrations, yet in inner tissues a mechanism of flux sensing is 

called for (Jönsson et al. 2006; Smith et al. 2006; Scarpella et al. 2006; Sauer et al. 2006). 

Therefore, simplistic models of transport are not sufficient to fully describe the complexities that 

arise in the actual in planta scenario. Boundaries such as cell walls can pose issues that have 

significant effects on the expected design of a system (Stoma et al. 2008; Bayer et al. 2009). The 

topologic effect of networks of intracellular compartments can have an appreciable effect on 

cytoplasmic auxin concentration through sequestration; merely averaging over a cell volume 

would result in an inappropriate rate constant for describing auxin flux (Merks et al. 2007; Hosek 

et al. 2012). While computational models provide powerful insights and direction for further 

research, it is necessary to consider that some of their conclusions may diverge from in planta 

auxin patterns. 

 

2.5 PIN Polarity Is Regulated by Phosphorylation 

PIN function is influenced by the phosphorylation of kinases in the AGC family (named for 

homology to mammalian cAMP-dependent protein kinase A, cGMP-dependent protein kinase G, 

and phospholipid-dependent protein kinase C). This family includes members such as PINOID 

(PID) kinase, D6 PROTEIN KINASE (D6PK), WAVY ROOT GROWTH 1 (WAG1), WAG2, 

and PHOTOTROPIN 1 (PHOT1) and PHOT2 (Sakai et al. 2001; Dhonukshe et al. 2010; Huang 

et al. 2010). Although the mechanisms for the PHOT blue light receptors and the WAG root 

growth regulators have not been fully elucidated, their corresponding tropisms may be the result 

of changes in auxin response or transport (Harper et al. 2000; Esmon et al. 2006; Santner and 

Watson 2006). 
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PID was previously proposed to be responsible for the phosphorylation of PIN proteins, as it was 

observed that pid mutants phenocopy the pin1 mutant phenotype. From overexpression studies, it 

was further seen that phosphorylation by PID leads to a basal to apical localization shift of at least 

PIN1, PIN2, and PIN4 in root cortex and lateral root cap cells (Friml et al. 2003). Shifts triggered 

by this PID kinase can be reverted by increasing the expression of PP2A, a gene whose product is 

a subunit of a compound phosphatase. This suggests that PIN polarity is at least in part controlled 

by PID-dependent phosphorylation (Michniewicz et al. 2007). Another group of kinases, D6PK 

and its three D6PK-LIKE homologues, have more recently been shown to phosphorylate and 

directly activate PIN proteins (Zourelidou et al. 2009; Willige et al. 2013). D6PKs colocalize at 

the basal ends of cells with PINs that mediate rootward auxin transport. However, D6PK does not 

colocalize with PIN2 in epidermal root cells and, thus, does not appear to regulate PIN2 activity. 

This is consistent with auxin efflux activity exhibited by PIN2, but not PIN1, 3, or 7 when 

heterologously expressed in Saccharomyces cerevisiae (Yang and Murphy 2009), where a D6PK 

ortholog has not been identified. Expression, abundance, localization, and biochemical activity of 

D6PK are insensitive to auxin and NPA, although the genes are expressed strongly at the sites of 

lateral root initiation (Zourelidou et al. 2009). Consistent with direct regulation of PIN transport 

activity, neither loss of function nor overexpression of D6PK causes alteration in PIN polarity. 

Seedlings of overexpression studies show other differences: D6PK seedlings having defects in 

lateral root formation, while PID seedlings exhibit agravitropic growth and meristem collapse 

(Benjamins et al. 2001; Friml et al. 2004). 

 

2.6 PIN Proteins Interact with ABP1 

Of the long PINs, all are trafficked by dynamic cellular mechanisms (reviewed in Grunewald and 

Friml 2010). The clathrin-mediated endocytosis of PIN proteins is positively regulated by ABP1. 

ABP1 normally functions in the recruitment of clathrin to the plasma membrane. However, when 

ABP1 is bound by auxin, its signaling is blocked. This leads to a reduced internalization of PINs 

by clathrin- mediated endocytosis. The effect of auxin binding is thus the enhancement of auxin 

efflux transport (Robert et al. 2010). ABP1 also activates the Rho GTPase ROP6 and its effector 

RIC1. RIC1 promotes cytoskeletal organization by physically interacting with the microtubules-

severing protein KATANIN1 (KTN1) (Fu et al. 2005, 2009; Lin et al. 2013). In this way, the 

auxin signaling pathway is linked to the regulation of microtubule organization and physically 

promotes cell elongation. 
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2.7 In Silico Modeling of ABCB Proteins Suggests Exclusion 

The aforementioned auxin transport mechanisms mainly address the shuttling of auxin discretely 

to and from the apoplast and cytoplasm of the cell. As efflux transporters, ABCB proteins have 

two well-studied binding sites in the central pocket through which cytoplasmic auxin can be 

exported from the cell. Early models of plant ABCBs were designed by threading their sequences 

on the crystal structure of the Sav1866 bacterial ABC transporter in the closed conformation 

(Dawson and Locher 2006; Yang and Murphy 2009). Further insight came from the publication 

and validation of the crystal structure of murine ABCB1 (MmABCB1) in the open conformation 

(Aller et al. 2009). New structural models identified kingdom-specific candidate substrate-

binding regions and suggested an early evolutionary divergence of plant and mammalian ABCBs. 

While the two experimentally validated IAA substrate-binding sites identified in models based on 

the closed Sav1866 structure are present in open configuration models, an additional binding site 

within the outer leaflet was also uncovered (Bailly et al. 2012) (Fig. 5.3a). 

 

This finding led to an elegant development in the conceptualization of auxin transport. Auxin is 

an amphipathic molecule, and a significant amount of anionic auxin is found partially inserted in 

the lipid bilayer. A mechanism for the removal of this auxin is thus necessary, particularly in cells 

such as those adjoining vascular tissues where the apoplastic concentration of auxin is high, and 

reuptake must be prevented to maintain transport flow (Mravec et al. 2008; Titapiwatanakun et al. 

2009; Matsuda et al. 2011). AtABCB1 and AtABCB19 have been shown to function primarily in 

such exclusion of IAA from cellular membranes (Blakeslee et al. 2007; Wu et al. 2007; Mravec et 

al. 2008; Bailly et al. 2012). With the rise of vascular plants, PINs appear to have emerged to 

provide an additional vectorial factor for the control of organogenesis and tropic responses while 

ABCBs maintained long-distance transport in increasingly longer and complex shoots and roots 

(Blakeslee et al. 2007; Titapiwatanakun et al. 2009). 

 

2.8 ABCB Trafficking and Maturation 

Similar to what is seen with AXR4 and AUX1, folding, trafficking, and activation of ABCB1, 

ABCB4, and ABCB19 is dependent on the co-chaperone immunophilin-like FK506-BINDING 

PROTEIN 42/TWISTED DWARF 1 (FKBP42/TWD1) (Bouchard et al. 2006; Bailly et al. 2008; 

Wu et al. 2010). TWD1 was originally biochemically identified in plasma membrane (PM) 

fractions and has been shown to be distributed to the endoplasmic reticulum (ER) and tonoplast 

as well (Murphy et al. 2002; Kamphausen et al. 2002; Geisler et al. 2003). TWD1 acts at the ER 

surface to fold and activate ABCBs, but appears to function at the PM to maintain ABCB activity 
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Fig. 5.3 ABCB transporter in silico models. (a) Red mesh indicates IAA docking poses for 

AtABCB1 threaded on MmABCB1 in the open conformation. Site 3 reveals a new region of 

auxin binding potential that may account for exporter membrane exclusion ability (Bailly et al. 

2012). (b) Electrostatic potentials between Arabidopsis ABCB proteins in cut view. The 

predominantly positive surface of the transport chamber of AtABCB4 suggests an evolution of 

transport specialization (Yang and Murphy 2009). (c) AtABCB4 has additional unique domains 

as compared to AtABCB exporters. N-terminal coiled-coil domain and linker domain between 

NBD1 and TMD2 are highlighted in red. TMH4 highlighted in green is shifted down off the 

membrane plane. These adjustments could be sufficient to alter the regulation and direction of 

auxin transport (Bailly et al. 2012) 
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as well (Bailly et al. 2008; Wu et al. 2010; Henrichs et al. 2012; Wang et al. 2013). Although 

ABCB1, ABCB4, and ABCB19 are largely trapped at the ER in the absence of TWD1, a 

percentage of all three transporters still reside at the PM (Titapiwatanakun et al. 2009; Wu et al. 

2010; Wang et al. 2013). However, TWD1 also colocalizes widely with the lateral marker 

PEN3/ABCG36 and partially with nonpolar PM proteins and BRI1- GFP (Langowski et al. 2010; 

Ruzicka et al. 2010; Wang et al. 2013) suggesting other potential interactions. 

 

In attempting to determine the mechanism of activation of ABCB activity by TWD1, TWD1 was 

found to interact with the PINOID AGC kinase that alters ABCB1 activity by protein 

phosphorylation (Henrichs et al. 2012). In addition, the plasma membrane localization of TWD1 

provides a mechanism to minimize apoplastic reflux in tissues where high auxin contents exist, 

thus addressing the need to separate shoot- and rootward auxin streams in opposing root tissues 

and leaf epidermal cells (Geisler et al. 2005; Matsuda et al. 2011). This idea is further in 

agreement with the acid growth theory prediction of auxin-stimulated lateral proton extrusion for 

axial cell expansion (Hager 2003). Finally, the severity of the twd1 phenotype in comparison to 

the abcb1abcb19 double mutant argues that additional transporters might also be regulated by 

TWD1 activity. 

 

2.9 Membrane Lipids Define Functional Environments 

Regardless of the site of TWD1 activation, ABCB transporters must be trafficked to the plasma 

membrane to function properly. Sphingolipids are essential to establishing a rigid membrane 

environment to maintain native structure necessary for protein validation and vesicular 

packaging. Fluorescently labeled ABCB19, for instance, is impaired in its ability to reach the 

plasma membrane in tsc10a mutant plants (Yang et al. 2013). The tsc10a mutants are deficient in 

a key enzyme in sphingolipid biosynthesis, and a loss of this function results in epinastic 

cotyledon development, altered flowering patterns, and reduced hypocotyl elongation phenotypes 

reminiscent of abcb19 mutants (Chao et al. 2011). In particular, very long chain fatty acid 

sphingolipids (VLCFA-SL) are essential for proper development (Markham et al. 2011). 

 

Co-localization experiments showed that inhibiting the synthesis of sphingolipids, either because 

of the tsc10a mutation or treatment with fumonisin B1 (FB1), results in ABCB19 retention in the 

ER and the Golgi apparatus and failure to reach the PM. Additionally, fluorescently labeled 

ABCB19 already present on the membrane accumulates intracellularly after treatment with 1-

phenyl-2- hexadecanoylamino-3-morpholino-1-propanol (PPMP) or fumonisin B1 (FB1), both 
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inhibitors of the synthesis of the sphingolipid ceramide (Yang et al. 2013). These observations 

suggest sphingolipids are of particular importance at multiple points of ABCB trafficking and 

maintenance at the plasma membrane. 

 

Once positioned at the plasma membrane, sterols are required to create the correct lipid 

composition of the plasma membrane environment to allow for the conformational changes 

associated with transport action. Cell membranes are necessary not only as the boundaries of 

living units, but also as the critical sites for interactions. The removal of sterols by methyl-beta-

cyclodextrin (MβCD) induces the removal of ABCB19 from the plasma membrane. The removal 

is only partial, although it seems to have a distinct effect on ABCB19, as marker protein 

PLASMA MEMBRANE INTRINSIC PROTEIN 2A (PIP2-GFP) has no loss of signal at the 

plasma membrane under the same treatment conditions (Yang et al. 2013). Addition of 

cholesterol to ABCB19, however, enhances transport activity (Titapiwatanakun et al. 2009). This 

suggests that ABCB19 recruits sterols to its environment to increase its stability and functioning. 

It has already been shown that ABC family members are capable of transferring these sterols as 

well (Tarling and Edwards 2011). With the knowledge that Type 4 P-type ATPases catalyze the 

translocation of phospholipids between the cytosolic and apoplastic sides of the plasma 

membrane, it is conceivable that ABCB19 may catalyze a similar flipping action (Tanaka et al. 

2011). In keeping with the idea that the third modeled auxin-binding site of ABCB transporters is 

less specific, this site has been suggested to flip substrates wrapped by lipids to the outer leaflet 

during the change to the outward-facing conformation (Aller et al. 2009; Bailly et al. 2012). 

 

In Arabidopsis, sphingolipids and sterols have been shown to contribute to trafficking of PIN1 

and AUX1 in their respective membrane domains as well (Carland et al. 2002; Willemsen et al. 

2003; Men et al. 2008; Pan et al. 2009; Roudier et al. 2010; Markham et al. 2011). It is well 

documented that ABCB19 has a profound effect on the stabilization of PIN1 at the PM; PIN and 

ABCB proteins function together, and ABCB19 is actually required for PIN1 retention in those 

membranes (Blakeslee et al. 2007; Mravec et al. 2008; Titapiwatanakun et al. 2009; Yang et al. 

2013). Observations of this web of interactions point to the existence of an interactive and 

dynamic environment that allows multiple facets of regulation to exert control over particular 

stimuli. 
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3 Homeostasis 
 

As further components of fine-tuning auxin transport, homeostatic transport and subcellular 

compartmentalization have developed. Among the ABCB and PIN efflux transporters, there are 

proteins that diverged in function from their family members to play more conditional refining 

roles. Reversible transporters can be employed to keep auxin levels constant or augment its 

uptake in cell types where importers are not present (Swarup et al. 2001; Jones et al. 2009; Yang 

and Murphy 2009). Intracellular partitioning can both influence the effective cytoplasmic con- 

centration and expose auxin molecules to various enzymatic environments for conjugation or 

degradation. 

 

3.1 Conditional ABCB Transport Responds to Auxin Concentration 

ABCB4 was originally identified as the most similar Arabidopsis homologue to the Coptis 

japonica ATP-dependent berberine influx transporter CjMDR1 (71 % amino acid identity) 

(Shitan et al. 2003). Despite the fact that Arabidopsis does not produce any isoquinoline 

alkaloids, this homology is greater than the 60 % amino acid sequence identity ABCB4 shares 

with ABCB1 (Terasaka et al. 2005). The sequence of ABCB4 was also predicted to diverge 

substantially from other ABCB efflux proteins in the loop region adjoining the first conserved 

nucleotide-binding domain as well as in a unique coiled-coil interactive domain at its N-terminus 

(Terasaka et al. 2005). Compilation of characterization data revealed that ABCB4 is a root-

specific transporter that functions in shootward epidermal transport of auxin from the root apex, 

primary and lateral root elongation, and regulation of auxin movement into root hair cells. 

However, early studies often led to incongruent results that were tissue specific and highly 

dependent on growth and treatment conditions (Santelia et al. 2005; Terasaka et al. 2005; Cho et 

al. 2007; Lewis et al. 2007). Despite the fact that ABCB4 belongs to a family of active 

transporters primarily known for their efflux action, ABCB4 auxin efflux is conditional, 

mediating import at very low IAA concentrations but reversing rapidly to stronger export activity 

with increased internal IAA levels (Yang and Murphy 2009; Kim et al. 2010; Kubes et al. 2012). 

This homeostatic role is consistent with the need to balance auxin streams in root epidermal cells 

and would be expected as a plasma membrane complement to short PIN function at the ER 

(Mravec et al. 2009; Ding et al. 2012; see below and Chap. 4). 
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3.2 In Silico Modeling Supports ABCB Homeostatic Function 

ABC transporters, regardless of the direction in which they transport substrates, have a basic 

conserved structure of two transmembrane domains (TMDs) and two nucleotide-binding domains 

(NBDs) (Dawson and Locher 2006). Using these NBDs, ATP is expended in a “power stroke” 

that drives the rearrangement of the TMDs between open and closed conformations (Hopfner et 

al. 2000). But confined to this general structure, from where does the capacity for import arise? 

Indeed, AtABCB4 has a closer alignment with efflux transporters MmABCB1 and Sav1866 than 

with other ABC importers (Bailly et al. 2012). The explanation lies in the differences between the 

charge potentials of the binding pocket. When AtABCB1 faces the cytosol, it presents an 

environment that is predominantly negative at the opening of the cavity and weakens in charge 

nearer the interior binding regions. AtABCB19 also displays a similar distribution of negative to 

neutral electrostatic potentials. Strikingly, AtABCB4 presents the opposite charge, having a 

neutral to positive electrostatic surface spanning the entire binding pocket (Bailly et al. 2012) 

(Fig. 5.3b). This strongly suggests that these proteins have significantly diverged and adopted 

specialized functions. A model could be proposed in which ABCB4, due to its altered binding 

potential, does not engage auxin when cytoplasmic concentrations are low but rather switches 

conformation to export either other cargo or remains independent of substrate entirely (Procko et 

al. 2009). This would result in empty auxin-binding sites being exposed to the apoplast, and a net 

uptake activity could result upon restoration to the open, cytosolic-facing conformation (Aller et 

al. 2009). This scenario would account for auxin efflux activity when challenged with greater 

concentration of cytosolic auxin, as well as the observed lack of saturable influx kinetics 

(Dawson and Locher 2006; Yang and Murphy 2009). In addition to electrostatic potential 

differences, ABCB4 displays three other notable structural traits that are not present in ABCB1 or 

ABCB19. A shift in the hydrophobic region of transmembrane helix 4 would change its 

positioning in respect to the plasma membrane and thus significantly alter the distances and 

interactions between the second intercellular loop and its NBD, resulting in altered binding and 

transport properties (Yang and Murphy 2009). Docking simulations also identified two additional 

coiled coil domains for ABCB4, one of which is shared with ABCB14 guard cell malate importer 

and CjMDR1 putative berberine importer (Shitan et al. 2003; Lee et al. 2008; Yang and Murphy 

2009) (Figs. 5.3c). These N-terminal domains may be interaction sites in which other proteins 

could further shift the positioning of the transmembrane helices. 
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In addition to the activities of ABCB4, it was expected that another protein would share this 

conditional function. Most plant ABCB members exist with a paralog, and ABCB21 indeed 

shares 68% nucleotide identity and 79% amino acid identity with ABCB4. These proteins are 

grouped in clade II of the phylogenic tree of P-glycoproteins, which is distinct from clade I where 

ABCB1 and ABCB19 are classified (Knöller et al. 2010). Characterization of ABCB21 revealed 

an NPA-sensitive, plasma membrane-localized auxin transporter with strong expression in the 

abaxial side of cotyledons, junctions of aerial lateral organs, and root pericycle cells adjacent to 

the protoxylem poles. However, likeness of ABCB21 auxin transport to that of ABCB4 was not 

as strong as anticipated, as time course experiments with low concentration (300 nM) of IAA 

showed a different pattern of seedling response to exogenously added IAA. This suggests a 

different physiological role for ABCB21 from that of ABCB4. When cytoplasmic IAA 

concentration was increased by preloading IAA into yeast cells however, IAA uptake activity by 

ABCB21 was abolished. This same effect is seen in the activity of ABCB4 and suggests that 

ABCB21 also functions as a facultative auxin transporter in plant cells (Kamimoto et al. 2012). 

 

3.3 “Short” PIN and PIN-Like Proteins Act in ER Compartmentalization of Auxin 

In contrast to “long” PIN plasma membrane efflux facilitators, PIN5, 6, and 8 encode “short” 

proteins with a reduced or absent central hydrophilic loop (see Chap. 4). Unlike their longer, 

plasma membrane-localized family members, short PINs reside in endomembrane structures 

where they are hypothesized to function in the homeostatic compartmentalization of auxin 

(Mravec et al. 2009). This sequestration within the ER would both reduce the pool of auxin 

available for cell-to-cell transport and alter intracellular perception and nuclear signaling. 

Although the motive force for auxin efflux via short PINs is not known, recent studies have 

unveiled the important implications of their activity. Overexpression of PIN5, for example, leads 

to a dramatic shift in the profile of auxin metabolites. Upon induction of overexpressed PIN5, 

levels of free IAA and IAA-glucosyl ester nearly vanish, while there is increased accumulation of 

amino acid–auxin conjugates (Mravec et al. 2009). This implicates an unexpected role for PIN5 

in controlling the metabolic fate of intracellular auxin. 
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Fig. 5.4. Inactivation of auxin. To attenuate the signal, auxin can undergo reversible or 

irreversible modification. Conjugates of auxin are found mainly in one of three forms: ester-

linked to sugars, amide-linked to amino acids, or amide-linked to peptides or proteins. Many 

conjugation products can be hydrolyzed to reactivate auxin. Other modifications, such as 

oxidation, are terminal. 

 

 

On the other hand, PIN6 and PIN8 have been shown to act antagonistically to PIN5 in directional 

auxin efflux (Ding et al. 2012; Sawchuk et al. 2013). In contrast to PIN5 overexpression studies, 

when PIN8 is overexpressed, elevated levels of free IAA and ester-conjugated IAA are observed 

(Dal Bosco et al. 2012). It is yet unknown how these complementary activities are regulated, 

although varying hypotheses have been proposed. One suggestion is that PIN6 and PIN8 may 

serve to move auxin from the lumen of the ER to the nucleus for signaling and thus regulate 

auxin- dependent transcriptional activity (Dal Bosco et al. 2012). Alternatively, these PINs could 

have different affinities for alternate auxins or auxin conjugates and form a more complex 

regulatory network for control of intracellular auxin levels (Sawchuk et al. 2013). 

Characterization of these PINs points to the possibility of highly specialized and conditional 

functions. PIN8 has been shown to specifically accumulate in pollen and functions in the 

development of the pollen tube and auxin homeostasis of the male gametophyte (Ganguly et al. 
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2010; Ding et al. 2012; Dal Bosco et al. 2012). PIN6 has been shown to act in floral development 

in Arabidopsis and maintains the auxin homeostasis required for proper nectary function (Bender 

et al. 2013). Studies of vein patterning and defects have led to the conclusions that PIN6 can act 

redundantly with PIN8 (Sawchuk et al. 2013). 

 

A complicating factor is that in silico analyses indicate that some members of the PIN-LIKES 

(PILS) family exhibit a topology that would include a central hydrophilic loop similar to that of 

the PIN family (see Chap. 4). Characterization of these seven family members revealed that PILS 

localize to the ER and stimulate intra- cellular auxin accumulation, potentially contributing to the 

regulation of auxin metabolism via compartmentalization. The decreased levels of free IAA in 

PILS2 and PILS5 overexpressors and increase of auxin conjugates in double mutant pils2pils5 are 

reminiscent of similarly altered PIN5 activity (Barbez et al. 2012). 

 

4 Rectification: The Oxidation of Auxin Irreversibly Terminates Auxin Transport 

and Signaling 

 
Ultimately, auxin that has been transported from cell to cell must be redirected or catabolized to 

terminate response processes in destination cells. Auxin can be reversibly conjugated for 

temporary inactivation or can be eliminated from the system via irreversible catabolism (Fig. 5.4). 

The metabolites oxIAA and oxIAA-hexose (oxIAA-Hex) are the major degradation products of 

IAA and are not transported in polar streams (Östin et al. 1998; Kai et al. 2007; Novák et al. 

2012; Kubeš et al. 2012). These oxidation products are terminally inactivated and no longer 

induce the expression of auxin-responsive genes, as tested with auxin-inducible reporters 

DR5rev:GFP and 2XD0:GUS (Peer et al. 2013). However, addition of oxIAA does activate IAA 

transport mediated by ABCB1 and 4 (Geisler et al. 2005; Kubeš et al. 2012; Peer et al. 2013). 

 

5 Conclusions 

 
In conclusion, the phytohormone auxin is found to function in a tremendously complex system 

that requires a profusion of interacting proteins and specifically defined lipid environments to be 

synthesized, perceived, and (particularly) transported. The level of refinement required to 

transport auxin distinctly for diverse plans such as polar gradients, organogenic concentrations, 

long-distance sinks, and intracellular sequestration is staggering. While we have a conceptual 
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blueprint of auxin cellular transport to guide our research, the complexity of the cellular transport 

systems makes direct measurements difficult. Compartmentalization of auxin has an unaccounted 

influence on effective concentrations that will greatly impact the results of intercellular transport 

models. 

 

Compared to the well-defined ATP-driven export activity of ABCB proteins and the H+ symport 

activity of AUX1/LAX proteins, PIN function remains ill defined at the molecular level. 

Currently, there exist no crystal structures for PIN proteins or their close homologues, and the 

best conceptual models available are inspired by distantly related microbial transporters (Galvan-

Ampudia and Offringa 2007; Peer and Murphy 2007). Determining the true structure of PIN 

proteins may shed some light on putative substrates capable of maintaining a sufficient gradient 

for this purpose. 
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Summary: Inclusion of the ABCB11 and 21 auxin transporters in combinatorial phenotypic and 

biochemical analyses shows that ABCB-mediated restriction of flows increases at sub-optimal 

auxin concentrations. 

 

Abstract 

Long-distance auxin transport is mediated by ATP-binding cassette transporters of the subclass B 

(ABCB). ABCBs cluster into four groups according to their sequence homology and four (B1, 4, 

19, 21) have been identified as primary auxin transporters. B1 and B19 activity depends on their 

interaction with FKBP42 (twd1), an immunophilin-like protein, at the ER and plasma membrane. 

In Arabidopsis thaliana, simultaneous knock-out of B1 and B19 leads to dwarfism and abaxially 

curled leaves. b1b19 resembles the twd1 mutant, but dwarfism, hypocotyl and root twisting are 

more pronounced in twd1-3. It was hypothesized that the disruption of long-distance rootward 

auxin transport could be partially responsible for the twd1 phenotype. Dexamethasone-induced 

knock-down of each individual ABCB cluster revealed B11 as a primary long distance auxin 

transporter. GFP expression under the control of the B11 promoter localized it to the root tip, 

vasculature and epidermal cells. Like B1 and B19, B11 interacts with FKBP42 in a yeast-2-

hybrid assay. Together with B21 and B19, B11 also mediates auxin transport in the proliferating 

leaf. Triple mutants of b1b19/b11-1/b11-2/b21-1 more closely resemble twd1 than b1b19 alone in 

development, overall plant stature and leaf phenotype. In low light (≤ 70 µmol m-2 s-1) most 

phenotypes could be further enhanced in b1b19 and the abcb triple mutants, emphasizing the role 

of light in auxin transport and metabolism. 
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Introduction  

 Polarized streams of the phytohormone auxin (indole-3-acetic acid; IAA) regulate major 

physiological processes such as meristem maintenance, cell elongation and organogenesis in 

vascular plants (Ljung, 2013; Sassi and Vernoux, 2013). Localized auxin gradients which 

function in the establishment of the embryonic apical - basal axis and post-embryonic 

organogenesis are canalized by polarized PIN-FORMED (PIN) carrier proteins (Zažímalová et 

al., 2010; Robert et al., 2013; De Rybel et al., 2013). Some PIN and PIN-LIKE (PILS) 

transporters also regulate auxin homeostasis by transporting auxin at the ER membrane to 

maintain intracellular auxin homeostasis (Mravec et al., 2008; Barbez et al., 2012). Shootward 

polar auxin fluxes at the root apex and auxin uptake into cortical cells during lateral root 

emergence are driven primarily by AUXIN1/LIKE-AUX1 (AUX1/LAX) importers (Swarup et 

al., 2008; Swarup and Péret, 2012; Band et al., 2014). A subclass of ATP-binding cassette 

transporters, subfamily B (ABCB) transporters is required for the maintenance of long distance 

polar auxin streams and mobilization of auxin out of the shoot apex. ABCB efflux transporters 

maintain these streams in the vasculature by continuous exclusion of auxin from cell membranes 

against the concentration gradient and prevent re-uptake into the cytosol (Noh et al., 2001; 

Petrášek et al., 2006; Blakeslee et al., 2007). Two ABCB transporters (ABCB4 and 21) contribute 

to cellular auxin homeostasis by mediating uptake when intracellular auxin concentrations are 

low, but function as efflux transporters at higher auxin concentrations (Kamimoto et al.; Kubeš et 

al., 2012). PIN, AUX1/LAX, and ABCB auxin transporters function combinatorially to mobilize 

long distance auxin streams including those mediating tropic responses to light and gravity 

(Tsuda et al., 2011; Christie and Murphy, 2013). Function of PIN and ABCB auxin transporters is 

conserved between monocots and dicots (Hochholdinger et al., 2000; Multani et al., 2003a; 

Knöller et al., 2010a; Forestan et al., 2012; Gallavotti, 2013). 

 

 The long distance rootward polar auxin transport system was the earliest to be studied, as 

it plays a fundamental role in seedling growth processes and is more easily studied than micro 

scale polar streams involved in organogenesis (Went and Thimann, 1937). Although the polarity 

of the vascular long distance auxin stream is initially canalized by PIN1 and PIN7, it requires the 

activity of ABCB1 and ABCB19 (hereafter B1 and B19) to be maintained during subsequent 

growth (Noh et al., 2001; Friml et al., 2003; Zažímalová et al., 2010). PIN1 and ABCB 

transporters function co-ordinately in long distance transport, and B19 has been shown to 

stabilize PIN1 at the plasma membrane in cells where PIN1 and B19 are coincident 

(Titapiwatanakun et al., 2009). PIN1-B19 interactions occur in plasma membrane subdomains 
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and lead to decreased retrograde cycling of PIN1 (Mravec et al., 2008; Titapiwatanakun et al., 

2009; Yang et al., 2013). Inflorescence height is a primary indicator of long distance auxin flows 

and is partially reduced in pin1 mutants (Gälweiler et al., 1998), but is much more reduced in the 

b1b19 double and pin1b1b19 triple mutants (Noh et al., 2001a; Multani et al., 2003b; Blakeslee et 

al., 2007). Consistent with these phenotypes, measured rootward auxin fluxes are reduced 25-

30% in pin1, and 60-75% in b1b19 (Blakeslee et al., 2007). Long distance auxin transport in the 

vasculature also involves PIN3, which is expressed in starch sheath and epidermal cells, as pin3 

mutants exhibit reduced rootward transport (Christie et al., 2011; Ding et al., 2011). 

  

 At the subcellular level, multiple PINs are regulated by dynamic subcellular cycling 

processes and membrane lipid composition (Willemsen et al., 2003; Men et al., 2008; Ischebeck 

et al., 2013; Yang et al., 2013). PIN transport activity is also activated by the D6 PROTEIN 

KINASE (D6PK; Zourelidou et al., 2009; Willige et al., 2013). B1 and B19 trafficking is 

regulated by membrane sterols and sphingolipids, and B19 activity is inhibited by the 

phototropin1 kinase during phototropic responses (Christie et al., 2011; Yang et al., 2013). 

However, unlike PIN1 and AUX1, trafficking and activity of B1, B4, and B19 is dependent on 

FK506-BINDING PROTEIN 42 (FKBP42), also known as TWISTED DWARF1 (TWD1), after 

the dwarf phenotype of the loss of function mutant in Arabidopsis (Steinmann, 1999; Geisler et 

al., 2003; Bouchard et al., 2006; Kleine-Vehn et al., 2006; Blakeslee et al., 2007; Wu et al., 

2010a; Wang et al., 2013). FKBP42/TWD1 belongs to a multi-domain subclass of immunophilins 

that forms a complex with calmodulin and high molecular weight heat shock proteins to fold and 

chaperone large proteins and protein complexes (Eckhoff et al., 2005; Geisler and Bailly, 2007; 

Gollan et al., 2012). Arabidopsis FKBP42/TWD1 contains an FK506 binding domain that is 

usually associated with cis-trans-peptidylprolyl isomerase (PPIase) activity, a tetracopeptide 

repeat interaction domain, a calmodulin binding domain, and a C-terminal domain that includes a 

membrane anchor (Kamphausen et al., 2002). FKBP42 structural organization is similar to that of  

human FKBP38 that functions in the folding and maturation of the cystic fibrosis transmembrane 

conductance regulator (CFTR/ABCC7) at the ER (Banasavadi-Siddegowda et al., 2011). 

However, unlike human FKBP38, FKBP42 exhibits suboptimal PPIase activity (Faure et al., 

1998; Kamphausen et al., 2002).  

 

 FKBP42 is required for folding and ER exit of B1, B4, and B19 in Arabidopsis and has 

been shown to directly interact with B1 and B19 in planta, in vitro, and in heterologous systems 

(Geisler et al., 2003; Bailly et al., 2008; Wu et al., 2010a; Wang et al., 2013). In twd1 mutants, 
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loss of FKBP42 function results in mislocalization of the transporters and to their subsequent 

degradation, leaving only residual transporter abundance at the plasma membrane (Geisler et al., 

2003; Wu et al., 2010a; Wang et al., 2013; Yang et al., 2013). Notably, when twd1 mutants are 

complemented with FKBP42 sans membrane anchor, cell elongation is increased and plants grow 

distinctly taller (Bailly et al., 2014). This phenotype was directly attributed to an increase in auxin 

concentration in transformant hypocotyls. FKBP42 interactions appear to be quite selective, as 

this domain does not interact with the B1/19 homologs B2 and B10 or with PIN1 (Geisler et al., 

2003; Bouchard et al., 2006). 

 

 The growth phenotypes of Arabidopsis b1b19 are reminiscent of twd1. Like b1b19, twd1 

develops epinastic leaves and exhibits short stature, but shows additional pleiotropic non-handed 

organ twisting (Geisler et al., 2003). Phenotypes of b1b19 include dwarfism, curly leaves, wavy 

roots and moderate inflorescence twisting with non-preferential helical orientation (Noh et al., 

2001; Bandyopadhyay et al., 2007). Multiple lines of evidence suggests that disruption of ABCB-

mediated auxin transport underlies the twd1 phenotype. Among these are the reduction of 

rootward auxin transport in twd1 shoots by ~85%, binding of FKBP42 and B1/19 by the synthetic 

auxin transport inhibitor 1-naphtylphthalamic acid (NPA) and relatively high specificity and 

partial reversibility of root twisting after treatment with NPA (Noh et al., 2001; Murphy et al., 

2002; Geisler et al., 2003; Bouchard et al., 2006; Wu et al., 2010a). However, the increased 

severity of twd1 phenotypes and reductions in rootward auxin transport suggest that FKBP42 

activates ABCB auxin transporters in addition to B1/B19 (Wu et al., 2010a).  

 

 The Arabidopsis genome encodes 21 full-sized ABCB transporters, which are numbered 

in order of gene publication, not sequence similarity. Although B1/19 and B4/21 are regarded as 

relatively specific auxin transporters and cluster in distinct and ancient clades, other ABCBs, 

particularly B2/10, B11/12, B13/14, and B15/16/17/18, occur in clusters that appear to be 

relatively recent gene duplications (Kamimoto et al.; Noh et al., 2001; Murphy et al., 2002; 

Multani et al., 2003; Terasaka et al., 2005; Geisler and Murphy, 2006; Verrier et al., 2008; Yang 

and Murphy, 2009; Knöller et al., 2010). Expression of B22 has not been detected and B8 appears 

to be a pseudogene (Verrier et al., 2008). More recently, transporters in the B13/14 and 

B15/16/17/18 clusters have been implicated in rootward auxin transport in Arabidopsis 

inflorescences (Kaneda et al., 2011). One or more of these ABCBs could represent the additional 

auxin transport activity missing in twd1, even if that transport activity is less specific for auxin 
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than B1/19. In particular, B14 has been shown to mobilize malate and fumarate in guard cells, but 

also exhibits some activity against other similar organic acids (Lee et al., 2008).  

 

 Some twd1 growth phenotypes may be unrelated to auxin transport, as FKBP42 has been 

shown to interact with the Arabidopsis tonoplast transporter ABCC1/MRP1 (Geisler et al., 2004), 

and co-localizes with ABCG36, a promiscuous pleiotropic drug resistance transporter in the root 

epidermis (McFarlane et al., 2010; Růžička et al., 2010) . Further, detailed analyses of twd1 

phenotypes suggest that the twisting of the inflorescence and roots can be solely explained by the 

decrease in rootward auxin streams, but that helical organ twisting reflects functional interactions 

with the cytoskeleton similar to those observed with human FKBP52, which interacts with dynein 

through its PPIase domain (Silverstein et al., 1999; Weizbauer et al., 2011; Yang et al., 2013; 

Bailly et al., 2014). However, mutants in microtubule formation show a preference in handedness 

of cell file orientation (Cnops et al., 2000; Thitamadee et al., 2002; Ishida et al., 2007).   

 

 Here we identify additional ABCB transporters involved in rootward auxin transport 

using RNAi knockdowns followed by analyses of single and double mutants. This approach 

identified B11 as a missing component of rootward long-range auxin transport. Subsequent 

mutant crosses demonstrated that twd1 growth phenotypes can be recapitulated by loss of 

multiple ABCB transporter function. These efforts also clarify the function of ABCB auxin 

transporters in Arabidopsis leaf development. Notably, plants homozygous for a new b21 allele 

could not be recovered in a b1b19 background, suggesting that in combination the mutations 

prevent fertilization or are lethal. We conclude that virtually all of the phenotypes reported for 

twd1 can be attributed to impaired long-distance auxin transport. Hypocotyl and silique super-

twisting appear to be the exceptions, although a causal connection to loss of ABCB function 

cannot be ruled out.  

 

Results 

 Phenotypic variation observed between twd1/ucu2 alleles in Wassilewskija (Ws) and 

Columbia-0 (Col-0) has been primarily attributed to ecotypic differences in rootward auxin 

transport and total auxin content (Wu et al., 2010a). A rationale for this is the dependence of 

auxin levels on light intensity and red/far-red light ratios perceived by phytochromes, which are 

differentially expressed in the two ecotypes (Aukerman et al., 1997; Wu et al., 2010b; Hersch et 

al., 2014). In both Col-0 and Ws, free IAA levels increase in seedlings and decrease in upper 

inflorescences with decreased light fluence, but free IAA levels are higher in Ws inflorescences at 
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130 µmol m-2 s-1 than in Col-0 (Fig. 1A). These light-dependent differences are apparently 

phytochrome dependent, as they are not observed in a phyA phyB mutant in the Col-0 background 

(Fig. 1A).  

 

 Phytochrome signaling has been shown to interact genetically with the ABP1 component 

of the ABP1-TMK auxin receptor, so free IAA levels were examined in ABP1 overexpression 

lines and in the weak abp1-5 allele to determine if light-dependent auxin levels were altered (Xu 

et al., 2010; Effendi et al., 2013; Xu et al., 2014). However, under low light conditions, free IAA 

levels of the ABP1 overexpressor were comparable to Col-0 and were much higher in all abp1-5 

tissues examined under all light regimes (Fig. 1B). As such, Col-0 was used as the reference wild 

type and background for all mutants and transformants utilized in the study and all light regimes 

were rigorously calibrated for all phenotypic analyses. All mutant lines, including twd1-3, pgp1-2 

(b1) and mdr1-101 (b19) were backcrossed into Col-0 at least three times. 

 

 An invariant set of “core” phenotypes consistent with previously published reports were 

observed in twd1-3 and b1b19 under all growth conditions (Fig. 2A and C). However, some traits 

of b1b19 and twd1-3 are enhanced by variation of light, temperature, and firmness of the growth 

medium (Fig. 2B). All twd1 phenotypes are a superset of those observed in b1b19, and the effects 

of light and temperature on phenotypes of b1b19 are more pronounced. This is consistent with 

effects of light intensity, red/ far-red ratios and day-length on the severity of auxin-related 

phenotypes in Arabidopsis (Jensen, 1998; Geisler et al., 2005; Halliday et al., 2009). The overall 

plant morphology of Col-0, b1b19 and twd1-3 is depicted in Fig. 2D. 

 

The C-terminus of B11/12 interacts with the PPIase-domain of FKBP42 

 We originally reported interactions of FKBP42 with ABCB auxin transporters seen in 

pull-down, affinity purification, and yeast two-hybrid assays between FKBP42 with a deletion of 

its C-terminal membrane anchor region and C-terminal soluble domains of Arabidopsis ABCB 

transporters (Murphy et al., 2002; Geisler et al., 2003). B4 interaction with FKBP42 was 

subsequently suggested when B4 was observed to be mislocalized in the twd1 background (Wu et 

al., 2010a). However, in previously published pull-down experiments, some identities of the 

tryptic fragments were shared by multiple ABCBs, and not all Arabidopsis ABCB C-termini were 

analyzed (Geisler et al., 2003).  
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 Repetition of the yeast two-hybrid experiments utilizing ABCB C-terminal domains (last 

predicted cytosolic entry to the C-terminus; BXXCTΔpAS2) were analyzed for interaction with 

FKBP42 (PPIase domain, binding-domain; FKBPCTΔpACT2). Previously assayed transporter 

fragments (interactors: B1, B19; non-interactors: B2, B10, B14; and the putative interactor: B4) 

were revisited with results similar to the published report, although the B2 interaction was 

slightly stronger than previously observed (Fig. 2E; Geisler et al., 2003). New B3, B4 and B21 

pAS2 constructs were generated. As the very high degree of sequence similarity between B11 and 

B12 does not allow for generation of distinct yeast two hybrid fragments, the construct was 

designated B11/12. The C-terminus of B11/12 bound more strongly to the PPIase domain of 

FKBP42 than B4, but to a lesser extent than B1 and B19 (Fig. 2E). B3 and B21 exhibited weak 

interaction with FKBP42. Comparable results were obtained in HIS-auxotrophy assays for all 

tested interaction partners. Minor auto-activation was observed only with B4. These results 

suggested that B11/12 were appropriate candidates for further analysis as putative auxin 

transporters.  

 

Using RNAi to identify ABCBs associated with twd1 phenotypes 

 With the duplications observed in the Arabidopsis ABCB gene family, it is not surprising 

that an initial screen of single abcb mutations available from the Salk and GABI-Kat T-DNA 

insertion collections revealed some conditional phenotypic variability, but no clear phenotypes 

reminiscent of twd1 or b1b19. Four sets of inducible RNAi lines targeting cluster-specific regions 

within open reading frames encoding ABCB transmembrane domains were implemented to 

knock-down a total of 12 ABCB transporters (hereafter designated B2/10RNAi, B3/5/11/12RNAi, 

B13/14RNAi and B15/16/17/18RNAi; Supplemental Fig. S1). Three independent homozygous 

lines for each cluster were generated and subsequently examined for auxin-related phenotypes 

after induction with dexamethasone. Successful knock-down of individual transporters was 

confirmed through qRT-PCR (Supplemental Fig. S2).  

 

Selection of B21 and B11/12 as candidate rootward auxin transporters 

Selection of B21  

 An RNAi line designed to knock down B21 had been shown to exhibit the increased 

lateral/adventitious root formation phenotype previously reported for b4 mutants (Santelia et al., 

2005; Kamimoto et al., 2012). That report also showed that B21 is expressed in leaves, shoot 

apices, and the vascular cylinder and regulates rootward auxin transport from the root-shoot 

transition zone (Kamimoto et al., 2012). B21 was also shown to function as a concentration-
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dependent uptake/efflux transporter similar to B4 in Saccharomyces cerevisiae expression assays. 

Although our own analysis (qRT-PCR) indicated a ~ 60% decrease in B4 expression in the 

reported knock-down line, the evidence for B21 function in rootward auxin transport was 

compelling and B21 was advanced as a primary candidate for further analysis. 

 

Selection of B11/12 

 A highly reproducible phenotype of b19 and twd1 is cotyledon epinasty in 4-6 d seedlings 

(Noh et al., 2001; Geisler et al., 2003). Roots of B2/10RNAi and B3/5/11/12RNAi lines exhibited 

strong waviness and left-handed skewing and cotyledons were epinastic in both lines at 5 d, but 

resembled the wild-type after 7 d (Fig. 3 A, B). Non-handed twisting similar to what was 

previously reported for b1b19 double mutants was increased (Fig. 3C; Wu et al., 2010a). 

Rootward 3H-IAA transport in the hypocotyl was reduced in both B2/10RNAi and 

B3/5/11/12RNAi (Fig. 3D, E). In crosses of both lines, reduced DR5revPro:GFP signals were 

observed in the root tip (Fig. 3D, E insets). These results suggest that at least one member of each 

cluster is a functional long-distance auxin transporter.  

 

 A b2/10 double mutant exhibited growth phenotypes and rootward 3H-IAA transport that 

were more variable, but not different from Col-0 (not shown). Expression of B2 in 

Schizosaccharomyces pombe did not result in altered net auxin uptake or efflux (Yang and 

Murphy, 2009), and b2-1 and b10-1 single mutants did not show any auxin related phenotypes 

(Supplemental Fig. S3). As such, further analyses of B2 and B10 was deferred. Single mutants in 

the B3/5/11/12 cluster resembled Col-0, but b11 alleles showed a greater extent of phenotypic 

plasticity in leaf size and root growth when light conditions were varied. Further, a previously 

published report implicated B11 in rootward auxin transport in inflorescences, although b11 

mutants utilized in that study appear to contain insertion in b12 instead (Kaneda et al., 2011). 

Taken together, these results prioritized B11/12 and not B2/10 for further analysis. 

 

Lower priority for B7/9, B6/20, B13/14, B15/16/17/18 

 The B7/9 and B6/20 clusters exhibit the least amount of sequence similarity with B19. As 

a reliable knockdown strategy could not be implemented for the B7/9 and B6/20 pairs, b7b9 and 

b6b20 double knockout mutants were constructed. No auxin-related phenotypes were observed, 

and rootward 3H-IAA transport in the hypocotyl was not different from Col-0 (not shown). As 

such, these transporters were assigned low priority. However, B13 and B14 exhibit some 

sequence similarity to B1 and B19 (Knöller et al., 2010; Carraro et al., 2013). B14 is localized to 
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guard cells and the vascular cylinder, has been shown to transport non-aromatic organic acids, 

and knockout mutants show reduced rootward auxin conductance in inflorescence stems (Kaneda 

et al., 2011). However, rootward 3H-IAA  transport in hypocotyls was not different from Col-0 in 

B13/14RNAi and only slightly reduced in b14 (Fig. 4A; Supplemental Fig. S4B). Further, co-

application of 3H-IAA with malate (5:1 molar ratio) in hypocotyl transport assays reduced 

rootward transport in Col-0, b1, b19, but not b14, suggesting that B14 preferentially transports 

malate over auxin in vivo (Fig. 4A). Lateral root number, a good indicator of reduced rootward 

transport, was also unaffected in B13/14RNAi and b14  compared to wild type (not shown). These 

observations decreased the priority of further analyses of the B13/14 cluster.  

 

 B15/16/17/18RNAi exhibited epinastic cotyledons and wavy, but not skewed roots, with 

no apparent gravitropic defects (Supplemental Fig. S5A,B). B19 expression levels were also 

slightly affected in B15/16/17/18RNAi compared to WT plants (Supplemental Fig. S2). Root 

waving was more frequent than in B2/10RNAi and B3/5/11/12RNAi. Consistent with expression 

of this cluster in both hypocotyls and roots, rootward 3H-IAA transport in the hypocotyl was 

reduced by about 40% compared to Col-0 (Genevestigator; Supplemental Fig. S5C). Expression 

of this cluster in the seed coat suggests additional function (Genvestigator). As this cluster 

exhibits a very high degree of sequence identity, loss of function analysis would require 

generation of quadruple-sextuple mutant lines. For this reason, the B15/16/17/18 cluster was 

given a lower priority.  

 

Phenotypic and molecular characterization of b21 and b11 

Characterization of B21 

 A previously described b21-1 allele forms a partial transcript, which encodes two full 

transmembrane domains, the first nucleotide binding domain (NBD), and a partial second NBD to 

form a partially functional transporter (Kamimoto et al., 2012). A second allele (b21-2) was 

identified from the GABI-Kat collection with a large T-DNA insertion that would interrupt 

transcription of the second NBD (Fig. 4C, top). Like b21-1, b21-2 still formed partial transcripts, 

albeit at lower abundance compared to Col-0 (Fig. 4C, bottom). When grown on soil, b21-2 was 

phenotypically indistinguishable from Col-0. Primary root-length of 5 d b21-2 seedlings were 

comparable to wild-type, but lateral root length was quantitatively more variable. Rootward 3H-

IAA transport from the root-shoot transition zone (RSTZ) to the root apex was significantly 

reduced in b21-1, and even more reduced in b21-2 (Fig. 4D; Supplemental Fig. S6A). B21 was 

subsequently expressed in S. pombe and exhibited a concentration-dependent directional auxin 
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transport activity (Supplemental Fig. S6B) analogous to B4 and consistent with a previous report 

(Yang and Murphy, 2009; Kamimoto et al., 2012).   

 

Characterization of B11 

 Two homozygous b11 T-DNA insertion lines (exon 1, b11-1, and 5’-end of exon 6, b11-

2) were obtained from the SALK collection (Fig. 4B, top). B11 transcript is absent in both b11 

mutants (Fig. 4B, bottom). As is the case with b1 and b19 mutants, b11-1 and b11-2 exhibited a 

growth phenotype that was dependent on light intensity. In low light (≤ 70 µmol m-2 s-1), plants 

were shorter and developed larger leaves compared to Col-0 (Fig. 5A, B). 

 

 In 5 d seedlings, B11 expression was low and about equal in shoots and roots (Fig. 4B, 

bottom). Visualization of B11 with B11Pro:GFP revealed an expression domain overlapped with 

B1 at the root apex and B19 in the central vasculature of the mature root (Fig. 5C; Geisler et al., 

2005; Wu et al., 2007). However, B11 expression decreased near the root-shoot transition zone 

and was exclusive to epidermal cell layers at the root-hair zone.   

 

 Rootward transport of 3H-IAA was reduced in b11-1 hypocotyls to the same extent as in 

b14 mutants, but was not reduced by malate competition, suggesting greater affinity of B11 for 

auxin (Fig. 4A). Expression of B11 in S. pombe resulted in increased net efflux (18% and 27% 

greater than empty vector controls at four and six minutes, respectively) equivalent to expression 

of B19 positive controls (Fig. 5D). However, B11 exhibited less specificity for 3H-IAA than B19 

in these assays, as more net efflux of a 3H-benzoic acid substrate specificity control (Yang and 

Murphy, 2009) was observed in cells expressing B11 than in cells expressing B19 (Fig. 5E).  

 

Comparison of B11 and B21 activity in the leaf  

 Despite low levels of B11 expression in mature leaves, both b11 mutants showed clear 

auxin-related leaf phenotypes (Fig. 5A, B). In contrast, B21 is strongly expressed in the tip of the 

cotyledons and mature leaves (Kamimoto et al., 2012). In order to understand the role of B11 and 

B21 in leaf auxin transport, we measured basipetal (leaf tip to petiole) and centrolateral (center of 

leaf mid-vein to the margins) auxin movement in b1, b11, b19 and b21 mutants. Auxin transport 

was significantly reduced from the leaf tip to the petiole in b11-1 and b19, but not b1 and b21-2 

(Fig. 6A). In centrolateral assays, only b21-2 had a significant decrease in auxin transport (Fig. 

6B). Consistent with these results, free IAA levels in both b11 and b21 were significantly 

decreased at the center of young leaves (Fig. 6C). Together, these data indicate that B11 functions 
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coordinately with B19 and PIN1 to maintain basipetal (rootward) auxin streams in leaves, 

hypocotyls and inflorescences. In addition to a role in rootward auxin movement in hypocotyls 

and roots, B21 functions in auxin distribution within the leaf. 

 

b1b19b11 and b1b19b21 triple mutants mimic most twd1-3 phenotypes 

Phenotypes during pre-flowering vegetative growth 

 Both alleles of b11 and b21 were crossed with b1b19 (henceforth referred to as Tb11-1, 
Tb11-2, Tb21-1 and Tb21-2). We generated Tb11-1, Tb11-2 and Tb21-1 homozygous triple mutants, 

while Tb21-2 lines homozygous for b21-2 could not be recovered. Homozygous quadruple 

mutants were also not obtained when either b21 allele was crossed with b1b11b19. As selfing of 

the Tb21-2 line heterozygous for b21-2 requires hand pollination and all seeds recovered from 

incompletely filled siliques failed to germinate, it appears that loss of B1, B19, and B21 function 

prevents fertilization or is embryo lethal. 

 

 One of the core seedling phenotypes in twd1-3 is the twisting of root cell files and 

resultant root skewing without root waving (Fig. 2C; Pérez-Pérez et al., 2004; Bailly et al., 2006; 

Wu et al., 2010a). When grown at ≤70 µmol m-2 s-1, cell files of twd1-3 twisted more tightly than 

b1b19, Tb11-1, Tb11-2 or Tb21-1 (Fig. 7A). Root twisting was invariant and continuous along the 

root axis in twd1-3 above the elongation-differentiation zone boundary and involved both cortical 

and epidermal cells. In contrast, twisting in b1b19, Tb11-1, Tb11-2 and Tb21-1 strongly coincided 

with root wave maxima and was most pronounced in the cortex (Fig. 7A). Root waving was most 

pronounced in Tb21-1 (Fig. 7B) and was similar among Tb11-1, Tb11-2, and b1b19. Skewing was 

not observed in any of the abcb mutants if directional light was eliminated. Under low light, 

twd1-3, b1b19, and all triple abcb mutants exhibited short, wavy hypocotyls. 

 

 Subsequently, b1b19 and all abcb triple mutants were indistinguishable from twd1-3 in 

later vegetative developmental stages. b1b19 and all abcb triple mutants developed strong 

abaxially curled leaves and small compact rosettes (Fig. 7C; Noh et al., 2001; Geisler et al., 2003; 

Pérez-Pérez et al., 2004). Rosettes of Tb11-1 and Tb11-2 were initially smaller than b1b19 and 

twd1-3. However, by 45 d, Tb11-1 and Tb11-2 rosettes phenocopied twd1-3.  

 

 In twd1-3, older leaves bulged and frequently curled towards the adaxial side at the leaf 

tip and exhibit a spoon-like shape with a reduced mid-vein (Pérez-Pérez et al., 2004). The spoon-

like shape and reduced mid-vein were observed in b1b19 and all triple abcb mutants, but bulging 
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occurred with reduced frequency (Fig. 8C). Unrolling of the mature leaves of the triple mutants 

often resulted in their tearing due to movement restrictions by the mid-vein (Fig. 8C, Tb11-2), 

whereas older leaves of twd1-3 were often not folded. 

 

Floral and post-flowering phenotypes 

 Under all conditions, twd1, b1b19, and triple abcb mutant flowers exhibited the short 

anther filaments and occasional floral asymmetry that are characteristic of b1b19 (Noh et al., 

2001b). Under low light twd1-3, b1b19, Tb11-1, Tb11-2 and Tb21-1 exhibited reductions in 

inflorescence height compared to Col-0, as well as waving inflorescences and epinastic, 

incompletely filled siliques (Fig. 2D, Fig. 8A, D). In b1b19, Tb11-1, and Tb11-2, pedicel number 

often increased (Fig. 8D, top). The waving of the inflorescence was greatly increased in abcb 

triple mutants grown at 30 µmol m-2 s-1 in a 16/8 h photoperiod (Fig. 8A). Waving of the 

inflorescence increased in all abcb mutants when light was obstructed by green tissues (Fig. 8B).  

 

 The axillary buds of twd1-3, b1b19, and abcb triple mutants deviated from the “golden 

angle” of 137.5º resulting in more distichous phyllotactic patterning (Fig. 8D, top). This 

patterning was more distinct in Tb11-1, Tb11-2 and Tb21-1 compared to b1b19. The junction of the 

inflorescence and the base of the axillary buds were swollen at the basal side of the pedicel, 

contributing to the aberrations in the angle of the silique-inflorescence junction in b1b19 and the 

triple mutants (Fig. 8D, bottom). This phenotype was also observed in twd1-3.  

 

Discussion 

 Auxin homeostasis in vascular plants can only be sustained through the careful interplay 

between local synthesis coupled with short- and long-distance transport. Although auxin can be 

synthesized in multiple cell types, long-distance rootward auxin streams are essential for 

maintenance of the inflorescence and the root meristem. The coordinated activities of PIN1, B1, 

and B19 mediate the majority of rootward auxin transport in all monocot and dicot species 

(Figure 9; Noh et al., 2001b; Multani et al., 2003c; Knöller et al., 2010). The results show that 

B11, perhaps in concert with B12, and B21 are responsible for the bulk of residual fluxes in the 

basipetal streams, and participate in leaf shape and size. Virtual loss of B1, B19 and B4 activity in 

twd1, and the associated loss of long-distance auxin transport, was hypothesized to contribute to 

the organ twisting phenotype. This report shows that FKBP42/TWD1 interacts with at least five 

auxin-transporting ABCBs and confirms FKBP42 as an integral part of auxin homeostasis. 
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The function of ABCB transporters in the leaf 

 Plants maximize light acquisition by developing a planar leaf surface. Recent reports 

have demonstrated antagonism mediated by phototropins (leaf flattening) and phytochrome B 

(leaf curling) in light responsive growth (de Carbonnel et al., 2010; Kozuka et al., 2013). Auxin 

pools change with the developmental stage of the plant as well as incident light intensity and 

quality. Low red/far-red light ratios trigger leaf expansion through phyB, phyE and phyD-

mediated shade avoidance response that increases auxin levels via the TAA1 auxin biosynthetic 

pathway (Devlin, 1999; Tao et al., 2008; Hersch et al., 2014). In contrast, high light can reduce 

active auxin pools through photo-oxidation (Ray and Curry, 1958; Stasinopoulos and Hangarter, 

1990; Liu et al., 2011). In addition to auxin homeostasis, small RNAs mediate expression of 

transcription factors involved in auxin-responsive gene regulation (Li et al., 2007; Rodriguez et 

al., 2014). Therefore, the challenge during leaf development is to maintain malleability, while 

preserving the planar leaf structure.  

 

 It has been difficult to discern the relative contributions of auxin homeostasis and auxin 

transport to leaf growth (Scarpella et al., 2010). Amongst the auxin biosynthetic mutants with 

these leaf curling phenotypes are iamt1-D; arf3, 4 and 7, and the triple and quadruple mutants of 

YUCCA: yuc1yuc2yuc4, yuc1yuc4yuc6 and yuc1yuc2yuc4yuc6 (Watahiki, 1997; Qin et al., 2005; 

Cheng et al., 2006; Yifhar et al., 2012). When constitutively expressed in Arabidopsis, wheat 

TaWRKY71-1, of the yield-associated family of WRKY transcription factors, increased the 

abundance of IAMT1, which resulted in hypernastic leaf formation (Qin et al., 2013). In addition 

to auxin metabolism, the auxin efflux proteins PIN1, 3, 4 and 7 create localized auxin fluxes that 

promote cotyledon formation in embryos and leaf initiation during vegetative growth (Okada et 

al., 1991; Gälweiler, 1998b; Benková et al., 2003). In seedlings, PIN3 mediates the shade-

avoidance response in the hypocotyl (Keuskamp et al., 2010). However, pin mutants do not 

develop curled leaves, whereas b1b19 and Tb11-1, Tb11-2 and Tb21-1 do.  

 

 Disruption of auxin transport appears to mainly affect cells on the abaxial side, as these 

are smaller in b1b19, Tb11-1, Tb11-2 and Tb21-1 and twd1-3 compared to the wild-type 

(Supplemental Fig. S8). This mechanically forces the leaves to curl downward toward the petiole 

during expansion and low light enhances this effect (Fig. 1A; Fig. 7C; Fig. 8B). We show that 

B11, B19 and B21 are active in the leaf and coordinate transport from the leaf tip to the petiole 

(B11 and B19) and from the center to the margins (B21) respectively (Fig. 6A, B). Hyponastic 

leaf curling is not observed in b11 and b21 single mutants. In contrast to b19, leaves of b11 are 
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larger in low light compared to the wild-type, suggesting the existence of a compensatory 

mechanism. The results dismiss a role of B19 in this process, as transcriptional levels were only 

increased in b1 and not b11 (Supplemental Fig. S7).  

 

Conclusion 

 Consistent with data suggesting the presence of additional ABCB auxin transporters (Wu 

et al., 2010a; Wang et al., 2013; Kaneda et al., 2011), the experimental evidence presented herein 

demonstrates that B11 functions as a long-distance rootward auxin transporter in Arabidopsis. 

Further, with the additional results presented here, B1, B4, B11, B19 and B21 can all be 

described as transporters that are regulated to a greater or lesser extent by FKBP42/TWD1 and 

exhibit an apparent preference for auxin over other substrates. The triple mutants Tb11-1, Tb11-2 

and Tb21-1 resemble twd1-3 more than the b1b19 double, especially in lower light, suggesting 

that impaired auxin transport resulting from loss of ABCB function is the underlying reason for 

the majority of phenotypes observed in twd1-3. However, as the extreme twisting of siliques and 

mature roots observed in twd1-3 are not observed in microtubule orientation or triple abcb 

mutants, it is quite possible that FKBP42 has inherent activities that are independent of auxin and 

microtubule function (Wang et al., 2013).  

  

 However, it is important to note that homozygous quadruple b1b11b19b21 mutants could 

not be recovered and that some residual B1, B4, and B19 is found at the plasma membrane in 

twd1 (Wang et al., 2013). As such, twd1 phenotypes could still reflect less than complete loss of 

function of multiple ABCBs. It is also important to resolve the function of the expanded cluster of 

B15/16/17/18, but clear positive evidence of additional FKBP42 function would be the best 

means of resolving this question.  

 

 Perhaps the most important outcome of the experiments presented herein is the evidence 

that ABCB prevention of auxin reuptake in apical and starch sheath cells makes the greatest 

contribution to rootward long distance auxin transport at sub-par auxin levels. PIN3 may function 

cooperatively with B1 and B19 in a manner similar to what is observed with PIN1 (Blakeslee et 

al., 2007; Titapiwatanakun et al., 2009) to maintain the integrity of the rootward stream. Overall, 

these results indicate that preventing diversion and trapping of auxin in cells adjoining vascular 

transport streams appears to be worth considerable energetic expenditure and genetic redundancy 

on the part of the plant.  
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Materials and Methods 

Plant Material and growth conditions 

 All Arabidopsis plants were in the Columbia-0 (Col-0) background, including b1 (Noh et 

al., 2001; AT2G36910), b2-1 (SALK_025155; AT4G25960), b10-1 (SALK_021744; 

AT1G10680), b19 (mdr1-101; Lin and Wang, 2005; AT3G28860), b1b19 and twd1-3 (Geisler et 

al., 2003; AT3G21640), b11-1, b11-2, b14-1 (Lee et al., 2008; AT1G02520, AT1G28010, 

respectively), b21-1 (Kamimoto et al., 2012; AT3G62150) and b21-2. Both b11 (b11-1, 

SALK_057628; b11-2, SALK_037942) T-DNA insertion lines were obtained from the 

Arabidopsis Biological Resource Center (ABRC, www.arabidopsis.org). b21-1 (WiscDsLox1C2) 

was obtained from the Nottingham Arabidopsis Stock Centre (NASC, www.arabidopsis.info) and 

b21-2 (Gabi_954H06) from GABI-Kat (www.gabi-kat.de). Seedlings were grown on 0.8% (w/v) 

agar, containing quarter-strength Murashige and Skoog (MS) basal salts with 0.5 % (w/v) sucrose 

at pH 5.5, if not otherwise specified. Seeds were stratified for 2 days at 4 ºC before transfer to a 

growth chamber: 21 °C with a 12/12 hr photoperiod at 70 µmol m-2 s-1. ABCB-RNAi plants on soil 

were grown in the greenhouse under natural light conditions. In the winter, the day length was 

extended to 14/10 hr photoperiod with high-intensity discharge (HID) lights at 150 µmol m-2 s-1. 

When b1b19, Tb11-1, Tb11-2, Tb21-1 and twd1-3 were grown on soil, they were placed in a 

temperature and humidity-controlled growth chamber under conditions specified for each 

experiment.  

 

Construction of ABCB-RNAi lines 

 In order to knock down multiple ABCB genes with one RNAi construct, a fragment of at 

least 25 bp in length was designed to target a unique region within the transmembrane domain of 

all target genes within a given cluster (Zamore et al., 2000; Supplemental Fig. S1). RNAi 

fragments were obtained through reverse transcription PCR and then cloned into pENTR D-

TOPO (Invitrogen). RNAi fragments were then transferred into the inducible pOpOff Gateway-

compatible system (Wielopolska et al., 2005) by LR reaction (Invitrogen). All four ABCB-RNAi 

constructs were transformed into Col-0 wild-type plants via floral dip and transformants 

backcrossed three times into Col-0. More than 5 independent homozygous lines for each RNAi 

line were recovered. At least three transformed lines for each cluster were analyzed and 

representative data reported. For phenotypic analysis, plants were grown for 7 d on quarter-

strength MS basal salts containing 10 µM dexamethasone. All kits and enzymes were used 

according to manufacturer’s instructions. Primers are listed in Supplemental Table S1. 

 



52 

 

RNA isolation and Quantitative real-time PCR (qRT-PCR)  

 For the ABCB-RNAi lines, total RNA was isolated from 7 d seedlings grown on quarter-

strength MS basal salts containing 10 µM dexamethasone using the RNeasy Mini Kit (Qiagen). 

Three µg total RNA was reverse transcribed using the BioScript RNase H Minus reverse 

transcription kit (Bioline). qRT-PCR was performed on an iCycler (Bio-Rad Laboratories) using 

the EvaGreen qPCR master mix (Biotium) with two biological and three technical replicates. 

Relative expression levels were calculated as ΔΔCT. For qRT-PCR of B11 mutants, plants were 

grown on quarter-strength MS basal salts for 5 d under continuous light at 100 µmol m-2 s-1. Roots 

and shoots were separated and total RNA extracted using ZR Plant RNA Mini Prep kit (Zymo 

Research) followed by treatment with DNasel (New England Biolabs). Integrity of the RNA was 

analyzed on a 1% (w/v) agarose gel. RNA (1.5 µg) was reversed transcribed using SuperScript lll 

reverse transcriptase (Invitrogen). qRT-PCR was performed on a CFX Connect (Bio-Rad 

Laboratories) using the EvaGreen qPCR master mix (Biotium). Transcript levels were normalized 

against the two control genes PP2A and 18S. Samples without template served as negative 

controls. B11 transcript abundance in roots and shoots was analyzed in biological triplicates and 

technical duplicates. Comparable results were obtained using either reference gene. qRT-PCR 

results were analyzed with the Bio-Rad CFX Manager software. Primers are listed in 

Supplemental Table S1. 

 

Cytological studies  

 Cytological studies were conducted on an LSM 710 laser spectral scanning confocal 

microscope with a laser intensity of 5 %, and images analyzed using the Zeiss ZEN software 

(Carl Zeiss). Plasma membranes were visualized by staining with 5 µM FM4-64 (Invitrogen, 

Molecular Probes) for 5-10 min, followed by a rinse with water. The following settings were used 

for fluorescence acquisition: GFP, 488 nm excitation and 493–598 nm emission; FM4-64, 594 

nm excitation and 599–647 nm emission. For expression analysis of B11 the native promoter (-

1650 bp) was cloned into the Gateway-ready vector pGWB4 (GFP fusion) (Nakagawa et al., 

2007). Primers are listed in Supplemental Table S1. 

 

Auxin transport assays and quantification 

 Transport assays in seedlings were conducted as previously described (Blakeslee et al., 

2007). 3H-IAA and 3H-benzoic acid efflux in S. pombe were performed as described (Yang and 

Murphy, 2009). The ABCB constructs for the yeast assay of B1 and B19 are described in Yang 

and Murphy, 2009. The B11 construct was created by ligating an Ncol-B11-Xmal fragment into 
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an Ncol-pREP42-Xmal digested vector. Primers are listed in Supplemental Table S1. 3H-IAA 

movement within leaves of 4 week-old plants was conducted on leaves of equal size. An agarose 

bead containing 1 µM 3H-IAA was placed on the leaf tip or leaf center and allowed to incubate 

for 3 hours and 2 hours, respectively, under dim yellow light. Then petioles or 1 mm tissue 

punches from both leaf margins were collected and 3H-IAA was measured by scintillation 

counting. Free IAA quantification was conducted as described in Novák et al., 2012. 

 

Yeast 2-Hybrid assay 

 Yeast 2-Hybrid assays were performed according to Geisler et al., 2003.  

 

Statistical analysis 

 Statistical analyses were performed using the software Sigmastat (Jandel Scientific 

Software).  
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Figure 1. Quantification of free auxin levels. A, Auxin levels in Col-0, Ws-0 and phyA-
201phyB-5 double mutant in relation to light intensity. Plants were grown at 130 µmol m-2 s-1. 
Significant differences between free auxin levels in 6 d seedlings was determined using ANOVA 
followed by Tukey’s post-hoc analysis, 10 plants per replicate, n = 3, *P ≤ 0.05. Values are 
means ± SD. Significance of free auxin levels in the inflorescence is indicated by lower case 
letters and was determined by ANOVA using the Newman-Keuls post-hoc analysis, n = 3. 
Measurements were taken at the inflorescence apex (1 cm) one day after bolting. B, Free IAA 
levels in seedlings of 35S::ABP1-GFP and abp1-5 (Xu et al., 2010; Robert et al., 2010). Values 
are means ± SD, n = 2. Significance was determined by ANOVA, *P = 0.012.  
 
 
  
 
   



55 

 

 
Figure 2. Relationship between ABCB transporters and FKBP42. A and B, Venn diagrams 
illustrating the core phenotypes of twd1-3 and b1b19 and the plasticity of phenotypes in response 
to light, temperature and media firmness. A, b1b19 and twd1-3 share numerous invariant core 
phenotypes. b1b19 shares all its core phenotypes with twd1-3, whereas some are exclusive to 
twd1-3. B, Certain core phenotypes can be altered by temperature and particularly light intensity. 
C, twd1-3 exclusive core phenotypes, root twist (left), cone-shaped silhouette (center), shoot twist 
(right). D, Comparison of the overall plant stature of Col-0 (left), b1b19 (center) and twd1-3 
(right). White bar = 1 cm. E, Yeast 2-hybrid assay of the C-terminus of multiple ABCB 
transporters with the PPIase domain of FKBP42. + and - symbolize activation of the HIS growth 
reporter on medium without HIS.  
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Figure 3. RNAi-mediated knock down of ABCB clusters reveal transporters involved in long 
distance transport. A, All three individual transgenic lines of B2/10RNAi and B3/5/11/12RNAi 
exhibited left-handed root skewing, B, delayed opening of cotyledons and C, root twisting. D and 
E, Relative auxin transport was measured by applying 3H-IAA to the shoot apex of 4-5 d 
seedlings and radioactivity measured at the root tip (D) and RSTZ (E), respectively. Values are 
mean of 10 seedlings, n = 3, error bars = SD. Significance determined by Student’s t-test, *P ≤ 
0.05. Insets, Expression of DR5revPro::GFP in the root tip of 5 d seedlings in the background of 
B2/10RNAi and B3/5/11/12RNAi. White bar = 50 µm. 
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Figure 4. Qualification of ABCBs for further analysis. A, 3H-IAA transport in abcb single 
mutants in absence and presence of excess malate. Values represent averages of 10 seedlings with 
n = 3. Significant differences were determined by ANOVA, followed by Dunnett’s post-hoc 
analysis with *P ≤ 0.05. Error bars = ±SD. B, (Top) Schematic representation of the genomic 
sequence encoding B11. Exons are black boxes, introns black lines and the coding region for the 
NBD (nucleotide-binding domain) is a white box. T-DNA insertion sites are marked by triangles. 
(Bottom) Expression level of B11 in wild-type (Col-0), b11-1 and b11-2 shoots (white) and roots 
(black), quantified by qRT-PCR, with n = 3. C, (Top) schematic representation of the genomic 
sequence encoding for B21. Both alleles disrupt the region encoding for the second NBD. 
(Bottom) mRNA levels of B21 in leaves of 5 week-old soil-grown wild-type (Col-0) and b21-2. 
Error bars = ±SD. D, 3H-IAA transport from RSTZ to root tip in 5 d seedlings of wild-type, b21-1 
and b21-2. Values are average of 10 seedlings with n = 3 ± SD. Significant differences (*P ≤ 
0.05) were determined by ANOVA followed by Dunnett’s post-hoc analysis.  
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Figure 5. Phenotypic characterization of b11 alleles. A and B, Morphology and leaf-size 
phenotype of b11-1 and b11-2 grown in short day conditions (12/12h light/dark cycle, 80 µmol m-

2 s-1). C, B11 expression in roots of 5 d B11Pro::GFP seedlings at different locations at the root. 
Images were digitally enhanced to the same extent after the pictures were taken using the level’s 
tool of the Adobe Photoshop software. Black bar = 100 µm. D, 3H-IAA transport assay in S. 
pombe transformed with either the empty vector, B11 or B19. A reduction in 3H-IAA 
accumulation indicates export activity. Values are given as mean, n = 3, error bars = SD. 
Statistical analysis was performed by Student’s t-test, *P ≤ 0.05. E, 3H-benzoic acid accumulation 
in S. pombe expressing B11 after 8 min of incubation. Values are mean ± SD, n = 3. Statistical 
analysis was performed by Student’s t-test, *P ≤ 0.05. 
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Figure 6. Auxin levels and auxin transport in abcb mutants. A, 3H-IAA movement from the 
leaf tip to the petiole in 4 week old plants. B, Centrolateral movement of 3H-IAA in 4 week old 
plants. C, Quantification of free IAA in different parts of the rosette of 6 week old abcb mutants. 
All values are mean ±SD of 10 plants, n = 3. Significances were determined by ANOVA followed 
by Dunnett’s post-hoc analysis, *P ≤ 0.05. 
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Figure 7. Phenotypes of b1b19, twd1-3 and abcb triple mutants during pre-flowering stages. 
A, Root twisting phenotype of 5 d roots stained with 5 µM FM4-64. B, Root waving phenotype 
of 5 d seedlings. C, Rosette phenotype of adult pre-flowering plants on day 33 and 45 after 
sowing. Red bar = 0.5 cm.  
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Figure 8. Inflorescence phenotypes of b1b19, twd1-3 and abcb triple mutants. A, Exaggerated 
inflorescence waviness of Tb11-1 and Tb21-1 in low light conditions (16/8 hr photoperiod, 30 
µmol m-2 s-1). B, Close-ups of the rosette-proximal segment of the inflorescence. C, Mid-vein 
phenotype. Shown is the abaxial side of mature leaves. D, (Top) Close-up of the inflorescence of 
mature plants grown at a 12/12 hr photoperiod at 70 µmol m-2 s-1 (Col-0, b1b19, Tb11-1, Tb11-2 
and Tb21-1) and 16/8 hr photoperiod at 60 µmol m-2 s-1 (twd1-3). (Bottom), Close-up of the 
inflorescence-pedicel junction. 
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Figure 9. ABCBs facilitate shoot-to-root auxin movement in two distinct ways. Center, Auxin 
fluxes from the meristematic cells towards the root in light-grown seedlings. Auxin biosynthesis 
is high in the shoot apical meristem (grey background). Left, Auxin export is facilitated by polar-
localized PINs and non-polar ABCBs in the meristem. Around 20% of apoplastic auxin is 
protonated and as such can re-enter the cell via diffusion. In the cytosol it quickly dissociates, 
trapping it inside. PIN1, PIN2 and especially the ATP-driven activity of B19 shifts the net auxin 
movement toward efflux. Due to the small size of the meristematic cells, auxin should be equally 
accessible to PINs and ABCBs, resulting in non-directional fluxes of auxin. Center, The increase 
in apoplastic auxin within the meristem then initiates the basipetal flux, analogous to the principle 
of gel chromatography. Right, In the larger vascular cells, auxin concentrates mainly at the apical 
and basal regions of the cell where PIN1 (rootward) and PIN3 (lateral) facilitate directional 
efflux. Along the way, auxin has to be continuously re-introduced into the main auxin stream. 
B19, B11 and B21 are highly expressed in the adjoining cell layers, such as the starch sheaths. 
The contribution of B21 appears to be more significant in the root than in the shoot, possibly due 
to compensatory action of PIN3 in the shoot. Loss of multiple ABCBs disrupts the basipetal 
stream, leading to the inflorescence and root waving phenotypes in b1b19, the abcb triple mutants 
and twd1-3. 
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Supplemental Figure S1. RNAi constructs targeting paralogous ABCB genes. Depicted are 
the cDNA fragments used to target the paralogous genes. For example, a 469 bp fragment of 
B2 cDNA (nt 251-720) was RT-PCR amplified and cloned into the pDONR Gateway entry 
vector. The fragment was then transferred to a pOpOff Gateway-compatible RNAi vector, 
which was designed to contain two Gateway cloning sites in opposite direction (Wielopolska 
et al., 2005). The construct allowed for a dexamethasone-inducible expression of the RNAi 
fragments.
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Supplemental Figure S2. Quantification of targeted genes in the RNAi transgenic lines. 
Expression levels of targeted and non-targeted (B19) genes was verified by qRT-PCR after 
induction with 10 µM dexamethasone.  
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Supplemental Figure S3. Phenotypic and functional characterization of b2-1 and b10-1 
single mutants. A, IAA transport from the shoot apex to RSTZ is not significantly affected 
in b2-1 and b10-1. B, IAA transport from RSTZ to the root tip is only slightly affected in b2-
1 and resembles wild-type levels in b10-1. C, Root phenotype of b2-1 and b10-1. White bar = 
1 cm. D, Phenotype of 25 d plants grown on soil. White bar = 1 cm.  
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Supplemental Figure S4. Characterization of B13/14RNAi. A, B13/14RNAi does not show 
any root phenotype after induction with 10 µM dexamethasone. B, Auxin transport from 
the shoot apex to the root tip is not affected in B13/14RNAi. Values are an average of 10 
seedlings with n = 3. Error bars = sd. 
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Supplemental Figure S5. Characterization of B15/16/17/18RNAi. A, B15/16/17/18RNAi 
shows wavy, but not skewed, roots after induction with 10 µM dexamethasone. B, In the 
presence of 10 µM dexamethasone B15/16/17/18RNAi develops epinastic cotyledons. C, 
Auxin transport from the shoot apex to the RSTZ is significantly reduced in one transgenic 
line and slightly reduced in another. Significant differences were determined (*P ≤ 0.05) 
using Student’s t-test with n = 3, and 10 seedlings per replicate. Error bars = sd. 
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Supplemental Figure S6. B21 is a concentration-dependent rootward auxin transporter. A, 
b21-1 and b21-2 were crossed into DR5revPro:GFP. Auxin abundance at the root tip of 5 d 
seedlings is reduced in both b21-1 and b21-2 compared to the wild-type, with b21-2 the most 
strongly affected. White bar = 50 µm. B, B21 functions as a facultative auxin transporter in 
S. pombe. At lower auxin concentrations (< 6 min) cells expressing B21 contain more auxin 
compared to the empty vector control. With increasing auxin concentrations (> 6 min) B21 
exports auxin out of the cells. Significant differences were determined (*P ≤ 0.05) using 
Student’s t-test with n = 3. Error bars = sd. 
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Supplemental Figure S7. Epidermal cells are smaller in abcb double/triple mutants and 
twd1-3. Leaf imprints of the abaxial epidermal cells at three different locations of adult 
leaves: Basal = margin close to the petiole, center = margin in the center of the leaf, apical = 
margin at the leaf tip. Imprints were taken according to Schmid and Billich, 1996. Black 
line = 200 µm. 
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Supplemental Figure S8. Expression profile of B19 in the roots of abcb mutants. The 
expression of B19 in the Col-0 background was set to 1. B19 expression in b1 is about 4.5-
fold higher than in the wild-type, b11-1 and b21-1. qRT-PCR was performed on 5 d 
seedlings with biological replicates n = 2, technical replicates n = 2. Expression levels were 
normalized to the housekeeping gene 18S. 
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Supplemental Table S1. List of primers used in this manuscript. 

qRT-PCR Primers 
AGI  Gene Sequence (5’ to 3’) Sense 
    At4g25960 ABCB2 TTCGTCGCCATCGGACTTATTGCT Forward 
  TTGTACGGTCCTCACATTCCCGAT Reverse 
At4g01820 ABCB3 GCCTATCGAGCGAGTGTTAAGCAA Forward 
  AGACATCGAACTTGCGACCACAGT Reverse 
At4g01830 ABCB5 GCTTTGGGTACATGGTTTGGTGGT Forward 
  ACAAGGTGATGCTTGCCCTAAAGC Reverse 
At1g10680 ABCB10 ATCGCAGAAGAGGTGATCGGGAAT Forward 
  AATGCAACGAACCAAGCCCTAGTC Reverse 
At1g02520 ABCB11 CGCAGCTCATTCGATTACAAG Forward 
  ACGAAGTTCCCTCCATTGAC Reverse 
At1g27940 ABCB13 TCTCATTGCGGCTTCACTTACCGA Forward 
  GACAAAGGCATTCTTGGTGGGCTT Reverse 
At1g28010 ABCB14 CTGCTAAAGCAGCCAACGCAGATT Forward 
  TGCCCTCCTGAAAGTTGAGTTCCT Reverse 
At3g28345 ABCB15 TCGTTAGTGGGTGATCGAATGGCA Forward 
  ACCCGACGAGTGTAGAAGCAAACA Reverse 
At3g28360 ABCB16 TTGGACAGCCAATCAGAGCGTGTA Forward 
  TCGTGCTAAGCCTATGTGCGATCA Reverse 
At3g28380 ABCB17 AAGCGGATCGGGTAAATCGACAGT Forward 
  TGCGACCTCAACCAATTCACTTGC Reverse 
At3g28390 ABCB18 AAGCTTGGGTTGAGACAAGGGCTA Forward 
  ACCGAAGGTGACGCAAACAATGAC Reverse 
At3g28860 ABCB19 AGGATTGACCCGGATGATGCTGAT Forward 
  TCGGGTCTTGAAGGGTAAGCGAAA Reverse 
At3g62150 ABCB21 TCGCTCATACGTCTACAAGAAGATAC

TAAACAG 
Forward 

  CGAAAGAGACTTTCTTTTCTTTGATC
GG 

Reverse 

At3g18780 ACT2 ACACTGTGCCAATCTACGAGGGTT Forward 
  ACAATTTCCCGCTCTGCTGTTGTG Reverse 
At1g10430 PP2A TCGTGGTGCAGGCTACACTTTC Forward 
  TCAGAGAGAGTCCATTGGTGTGG Reverse 
 18S AAGCAAGCCTACGCTCTGGA Forward 
  AGGCCAACACAATAGGATCGA Reverse 
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Continuation of Supplemental Table S1. 

RNAi constructs 
Construct Sequence (5’ to 3’) Sense 
 
B2/10RNAi 

 
CACCCAGAGTCGCCAAGTACTCGT 

 
Forward 

 GTACGGTCCTCACATTCCCGA Reverse 
B3/5/11/12RNAi CACCCGCGAGGATAAGAAGTACATAT

C 
Forward 

 GATGTTATGAACTTCTTGTAGCTGTT
AATG 

Reverse 

B13/14RNAi CACCCTCGCGTTTCACAGAATGCT Forward 
 CATGACTATAGCATACCCTCCTC Reverse 
B15/16/17/18RNAi CACCCACTTCCTCTTCCAATAATAAA Forward 
 CTCCACATCAAGATGAAACTC Reverse 

Cloning 

Construct Transformed Sequence (5’ to 3’) Sense 
    
B11Pro::GFP A. thaliana CACCTGGACCCTCATGTTTTTCCTT Forward 
  ATTTCGGCGCTGACAAAAATCAG Reverse 
B1 S. pombe See Yang and Murphy, 2009 Forward 
   Reverse 
B11 S. pombe atcatatgATGAACGGTGACGGCGCCAGA

GAAG 
Forward 

  atcccgggTCAATTAGAAGCAGTCATGTG
AAGCTG 

Reverse 

B19 S. pombe See Yang and Murphy, 2009 Forward 
   Reverse 

Mutant verification 

T-DNA line Gene Sequence (5’ to 3’) Sense 
    
SALK_057628 b11-1 TGGCATCTTGAATAAGAACCG Forward 
  ATTTTACGGGCAAGCAAAAAG Reverse 
SALK_037942 b11-2 AACATCTCCATGTGTAACCGC Forward 
  TCGGGTGAGTGATACTTTTGG Reverse 
WiscDsLox1C2 b21-1 AATCGACAGTGATTGCGTTG LP 
  TTAACCATAACCCGGTCCAA RP 
Gabi_954H06 b21-2 TTCTCCACGATGACTCCATTC LP 
 TCATTGTCTCCTGATTCCAGC RP 
T-DNA (SALK)         LBb1.3 ATTTTGCCGATTTCGGAAC N/A 
T-DNA (Wisc)          p745 AACGTCCGCAATGTGTTATTAAGTTG

TC 
N/A 

T-DNA (GABI)         o8409 ATATTGACCATCATACTCATTGC N/A 
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AUX/LAX Genes Encode a Family of Auxin Influx
Transporters That Perform Distinct Functions during
Arabidopsis Development C W
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Auxin transport, which is mediated by specialized influx and efflux carriers, plays a major role in many aspects of plant growth
and development. AUXIN1 (AUX1) has been demonstrated to encode a high-affinity auxin influx carrier. In Arabidopsis
thaliana, AUX1 belongs to a small multigene family comprising four highly conserved genes (i.e., AUX1 and LIKE AUX1 [LAX]
genes LAX1, LAX2, and LAX3). We report that all four members of this AUX/LAX family display auxin uptake functions. Despite
the conservation of their biochemical function, AUX1, LAX1, and LAX3 have been described to regulate distinct auxin-
dependent developmental processes. Here, we report that LAX2 regulates vascular patterning in cotyledons. We also
describe how regulatory and coding sequences of AUX/LAX genes have undergone subfunctionalization based on their
distinct patterns of spatial expression and the inability of LAX sequences to rescue aux1 mutant phenotypes, respectively.
Despite their high sequence similarity at the protein level, transgenic studies reveal that LAX proteins are not correctly
targeted in the AUX1 expression domain. Domain swapping studies suggest that the N-terminal half of AUX1 is essential for
correct LAX localization. We conclude that Arabidopsis AUX/LAX genes encode a family of auxin influx transporters that
perform distinct developmental functions and have evolved distinct regulatory mechanisms.

INTRODUCTION

The phytohormone auxin indole-3-acetic acid (IAA) is a versatile
trigger for plant development (Vanneste and Friml, 2009). Auxin
regulates embryogenesis, organogenesis, vascular tissue formation,

and tropic responses in plants (Vieten et al., 2007; Petrásek and
Friml, 2009). The polar transport of auxin from cell to cell is achieved
through the coordinated process of efflux and influx transporters,
encoded by PIN-FORMED (PIN) and P-GLYCOPROTEIN (PGP),
respectively (Geisler et al., 2005; Petrásek et al., 2006; Cho
et al., 2007) and AUXIN1/LIKE AUX1 (AUX/LAX) genes (Bennett
et al., 1996; Swarup et al., 2008). The PIN efflux transporters have
a polar plasma membrane (PM) localization that regulates the di-
rection of auxin flow (Wisniewska et al., 2006). Their mode of
action during plant development shows strong redundancy and
auxin-dependent cross-regulation of their expression (Vieten et al.,
2005). Localization of AUX1 has been described to be cell type–
dependent and, together with PIN efflux transporters, it provides
directionality of intercellular auxin flow (Swarup et al., 2001;
Kleine-Vehn et al., 2006).
In Arabidopsis thaliana, the AUX/LAX family is represented by

four highly conserved genes called AUX1, LAX1, LAX2, and
LAX3 (see Supplemental Figure 1A and Supplemental Data Set 1
online), which encode multimembrane-spanning transmembrane
proteins and share similarities with amino acid transporters. This
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protein family forms a plant-specific subclass within the amino
acid/auxin permease super family (Young et al., 1999). Mutations
in AUX1 or LAX3 result in auxin-related developmental defects.
For example, aux1mutants are agravitropic and have a decreased
number of lateral roots. By comparison, a loss-of-function muta-
tion in LAX3 results in delayed lateral root emergence, and to-
gether, LAX3 and AUX1 act concomitantly to regulate lateral root
development by regulating the emergence (Swarup et al., 2008)
and initiation (Marchant et al., 2002) steps, respectively. Auxin
uptake experiments in heterologous expression systems have
confirmed that AUX1 and LAX3 are high-affinity auxin transporters
(Yang et al., 2006; Carrier et al., 2008; Swarup et al., 2008).

In contrast with AUX1 and LAX3, the functional roles of the
other two members of the AUX/LAX family are not well un-
derstood. Experimental observations suggest that both may
also function as auxin influx carriers (Bainbridge et al., 2008),
because mutating multiple members of the AUX/LAX family af-
fects phyllotactic patterning—a process that is known to be
regulated by auxin. This is supported by the fact that AUX1
shares 82, 78, and 76% identity with LAX1, LAX2, and LAX3,
respectively (see Supplemental Figure 1B online). Examination
of their gene structure revealed well-conserved exon/intron
boundaries for most of the sequence (see Supplemental Figure
1C online), indicating that all four members of the family have
originated from a common ancestor through gene duplication. In
this study, using a combination of genetic, molecular, and bio-
chemical approaches, we provide experimental evidence that all
members of the AUX/LAX family have auxin influx activity. De-
spite the conservation of biochemical function, we demonstrate
that their regulatory and coding sequences have undergone
subfunctionalization. We also show that the N-terminal domain
of AUX1 provides information for correct localization of LAX
proteins in the AUX1 expression domain.

RESULTS

AUX/LAX Genes Exhibit Nonredundant and Complementary
Expression Patterns in Roots

To provide insight into the roles of AUX/LAX family members in
plant growth and development, their expression was analyzed
in detail using in situ immunolocalization and/or promoter:b-
glucuronidase (GUS) fusions and genomic yellow fluorescent
protein (YFP)/VENUS translational fusions. These studies re-
vealed that the expression patterns of AUX/LAX genes are
mostly nonredundant and complementary in the primary root
apex. Previous studies have shown that AUX1 is expressed in
the columella, lateral root cap (LRC), epidermis, and stele tissues
(Figure 1A; see Supplemental Figure 2A online) (Swarup et al.,
2001; Swarup et al., 2005), whereas LAX3 is expressed in the
columella and stele (Figure 1D; see Supplemental Figure 2D on-
line) (Swarup et al., 2008).

As part of this investigation, using two different approaches
(promoter:GUS and genomic YFP/VENUS translational fusions),
we report that LAX1 is expressed in the mature regions of pri-
mary root vascular tissues (Figures 1E to 1I; see Supplemental
Figures 2E to 2I online). Weak LAX1 expression was also de-
tected in the vascular tissues in the primary root apex in

ProLAX1:LAX1-VENUS lines (see Supplemental Figure 2B
online) but was not detectable in the ProLAX1:GUS lines (Figure
1B) even after prolonged GUS staining. This discrepancy is
likely to be caused by the much larger genomic region used in
ProLAX1-LAX1-VENUS lines.
LAX2 expression is detected in young vascular tissues, the

quiescent center, and columella cells (Figures 1C, 6A, and 6B;
see Supplemental Figure 2C online). LAX2 signal in the colu-
mella cells is most pronounced in the ProLAX2:GUS lines (Figure
1C), but is almost absent or very weak in the ProLAX2:LAX2-
VENUS lines (see Supplemental Figure 2C online). Localization
of LAX2 by in situ immunolocalization using anti-LAX2 antibody
also showed a relatively weak expression of LAX2 in the colu-
mella cells (Figures 6A and 6B), suggesting that the stronger
signal of LAX2 in ProLAX2:GUS lines is likely to be caused by
the more stable nature of the GUS reporter.
The divergence in spatial expression patterns of AUX/LAX

members is also clearly illustrated during lateral root development.
As previously described, LAX3 is expressed outside the emerging
lateral root primordia (Swarup et al., 2008), whereas AUX1 is
localized within the lateral root primordia during all stages of
development (Marchant et al., 2002). In comparison, LAX1 ex-
pression is first detected in stage I primordia and then mainly
persists at the primordium base throughout lateral root formation
(Figures 1E to 1I; see Supplemental Figures 2E to 2I online). By
contrast, LAX2 expression is only detected in the central region of
lateral root primordia (Figures 1J to 1N; see Supplemental Figures
2J to 2N online).
As previously reported, LAX3 expression is auxin inducible

(Swarup et al., 2008) (Figures 2G and 2H; see Supplemental
Figure 4G and 4H online). We then tested whether the expression
of other AUX/LAX genes can be regulated by auxin. A bio-
informatic search for auxin-related transcription factor binding
sites and the presence of canonical auxin response elements in
a 2-kb upstream sequence from ATG of the AUX/LAX promoters
revealed that LAX3 and LAX1 have the highest number of
transcription factor binding sites (see Supplemental Figure 3
online). To test this directly, 7-d-old seedlings were treated for
16 h with 100 nM 2,4 dichlorophenoxyacetic acid (2,4-D).
Under these conditions, both LAX3-GUS (Figures 2G and 2H)
and LAX3-YFP (see Supplemental Figures 4G and 4H online)
expression was strongly induced by auxin. Our results also re-
vealed that LAX1 transcript abundance was upregulated by auxin
(Figures 2C and 2D; see Supplemental Figures 4C and 4D online).
LAX1 expression seems stronger in the presence of auxin and is
detected much closer to the root apex compared with untreated
controls (arrow in Figure 2D). However, unlike LAX3, LAX1 is not
induced in outer root tissues (compare Figure 2D with Figure 2H
and Supplemental Figure 4D with Supplemental Figure 4H online).
In contrast with LAX3 and LAX1, neither AUX1 (Figures 2A and 2B;
see Supplemental Figures 4A and 4B online) nor LAX2 (Figures 2E
and 2F; see Supplemental Figures 4E and 4F online) expression
seem to be altered in the presence of auxin.
These results indicate that the regulation of AUX/LAX gene

expression has diverged during the course of evolution, suggesting
that they have acquired distinct roles in different developmental/
physiological processes, an evolutionary mechanism described as
subfunctionalization.
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Members of the AUX/LAX Family Facilitate Distinct
Auxin-Regulated Developmental Programs

To probe whether the AUX/LAX family of proteins exhibit sub-
functionalization, a genetic approach was used to test the roles
of these genes during Arabidopsis growth and development.
AUX1 has previously been reported to play an important role
during the root gravitropic response (Swarup et al., 2001;
Swarup et al., 2004; Swarup et al., 2005) as well as lateral root
initiation (Marchant et al., 2002), whereas LAX3 has recently
been shown to be involved in lateral root emergence (Swarup
et al., 2008). As part of this study, lax1 and lax2 mutants were
analyzed for auxin-regulated developmental phenotypes. No
root growth–related defects were obvious in either lax1 or lax2
mutants (see Supplemental Figures 5 to 7 online). Unlike aux1,
mutations in lax1 or lax2 did not affect their root gravitropic
responses (see Supplemental Figures 5A and 5B online) or
sensitivity to synthetic auxin 2,4-D (see Supplemental Figure 6
online). Similarly, unlike aux1 and lax3, no lateral root–related

defects were observed for either lax1 or lax2 mutant alleles (see
Supplemental Figure 7 online).
To test the possibility of genetic redundancy between AUX1,

LAX1, and LAX2, growth responses to synthetic auxin 2,4-D and
lateral root development were investigated in double and triple
mutants. The growth responses of double and triple mutant
combinations to synthetic auxin 2,4-D were similar to aux1,
suggesting that loss of lax1 and/or lax2 did not enhance the
aux1 phenotype (see Supplemental Figure 8A online). Similarly,
the lateral root phenotypes of aux1 lax1 and aux1 lax2 double
mutants or aux1 lax1 lax2 triple mutants were not significantly
different from single aux1 mutants (see Supplemental Figures 8B
and 8C online). Under the same conditions, the aux1 lax3 double
mutant showed a severe reduction in emerged lateral roots, in
agreement with Swarup et al. (2008).
These results suggest that during the course of evolution, at

least two members of the AUX/LAX family, AUX1 and LAX3, have
subfunctionalized, whereas LAX1 and LAX2 gene products do not

Figure 1. Promoter:GUS Studies Show That AUX/LAX Genes Exhibit Complementary Expression Patterns.

(A) to (D) Expression profile of AUX1 (A), LAX1 (B), LAX2 (C), and LAX3 (D) in the primary root apex.
(E) to (H) Expression profile of LAX1 ([E] to [I]) and LAX2 ([J] to [N]) during lateral root primordium development.
Bars in (A) to (D) = 35 mm; bars in (E) to (N) = 40 mm.
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seem to influence root system architecture. However, it cannot be
ruled out that LAX1 and LAX2 perform more subtle patterning
functions, and specific conditions are required to uncover a root-
related mutant defect. Alternatively, these genes may have ac-
quired novel functions (neofunctionalization—no longer auxin
influx carriers) or new roles (subfunctionalization—still auxin
influx carriers) in other plant organs. The latter view is supported
by the discovery that mutating all four members of the AUX/LAX
family affects phyllotactic patterning (Bainbridge et al., 2008), and
both AUX1 and LAX3 have also been implicated in apical hook
development (Vandenbussche et al., 2010), processes that are
known to be regulated by auxin.

Auxin is also known to regulate vascular development, and
many auxin transport and response mutants have defects in
vascular development (Reinhardt, 2003; Petrásek and Friml,
2009). LAX2 promoter:GUS studies show that ProLAX2:GUS
expression is associated with procambial and vascular tissues
during embryogenesis (Figures 3A to 3C). In developing leaves,
ProLAX2:GUS expression is detected very early at the sites of
initiating veins, and starting from day 5, LAX2 is expressed along
the secondary loops, starting with the first loop followed by the
second, third, and fourth (Figures 3D to 3I). By days 7 to 8, LAX2
expression is also detected near the position of tertiary veins.
Interestingly, LAX2 is not expressed along the midvein (Figures
3D to 3I).

To assess the role of LAX2 during vascular development, two
different alleles of LAX2 were analyzed (Figure 3J). The lax2-1
allele represents an En element inserted into intron 2 (position
452 from ATG), whereas lax2-2 has a T-DNA insertion in exon
6 (position 1239 from ATG). Both these alleles seem to be null
alleles, because no LAX2 cDNA is detected by RT-PCR (Figures

3K and 3L). Examination of vascular development in lax2-1 and
lax2-2 cotyledons revealed that both alleles exhibit a signifi-
cantly higher propensity of discontinuity in vascular strands,
with almost 64% of lax2-1 and 77% of lax2-2 seedlings showing
vascular breaks in their cotyledons (Figures 3M to 3Q) compared
with only 20% of control seedlings. In contrast with cotyledons, no
defect in vascular patterning was apparent in lax2 leaves. This
auxin-related developmental phenotype for lax2 provides indirect
evidence for a role for LAX2 in facilitating auxin transport.

AUX1, LAX1, and LAX3 Encode Functional Auxin
Influx Carriers

To directly test whether every AUX/LAX protein has auxin
transport activity, experiments were performed in heterologous
expression systems. Using an oocyte expression system, both
AUX1 (Yang et al., 2006) and LAX3 (Swarup et al., 2008) were
previously shown to be high-affinity auxin transporters. Similar
experiments were performed for LAX1 and LAX2. These ex-
periments revealed that LAX1 exhibited auxin uptake activity in
oocytes (Figure 4A). Competition experiments with cold 2,4-D
or IAA significantly reduced the uptake of radiolabeled IAA by
oocytes injected with LAX1 complementary RNA (cRNA), sug-
gesting a carrier-mediated uptake (Figure 4B). By contrast, there
was only a small reduction in tritium-labeled IAA ([3H]IAA) uptake in
the presence of the lipophilic auxin analog 1-naphthalene acetic
acid or indole butyric acid (Figure 4B). Surprisingly, no auxin up-
take activity was seen in LAX2-expressing oocytes (Figure 4A).
Immunoblot experiments using specific anti-LAX2 antibodies re-
vealed that the protein was correctly expressed in these oocytes
(Figure 4C, lane 1), thus ruling out defects in its translation. To test

Figure 2. LAX1 and LAX3 Genes Are Induced by Auxin.

Expression profile of AUX1 ([A] and [B]), LAX1 ([C] and [D]), LAX2 ([E] and [F]), and LAX3 ([G] and [H]) in absence and presence of 100 nM 2,4-D. Note
LAX1 expression in the presence of auxin is detected much closer to the root apex (arrow in [D]).
Bars = 50 mm.
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whether LAX2 is correctly targeted to the PM in oocytes, a YFP-
tagged version of LAX2 (LAX2-YFP) was expressed. Im-
munodetection again showed that LAX2-YFP was correctly
expressed in these oocytes and was detected in the mem-
brane and not the cytosolic fractions (Figure 4C, lanes 2 and 3).
However, confocal analysis revealed no detectable LAX2-YFP on
the PM (Figure 4D, panel III). In comparison, YFP fluorescence
was clearly seen on the PM of oocytes expressing AUX1-YFP
(Figure 4D, panel II). These results show that LAX2-YFP, unlike
AUX1-YFP, is not properly targeted to the PM in Xenopus laevis
oocytes and may suggest a requirement for some plant-specific
accessory proteins/factors for its correct targeting that are lacking
in X. laevis. As an alternative approach, LAX2 transport activity
was also assayed using a yeast-based heterologous expression
system (Yang and Murphy, 2009) to determine the role of LAX2 in
IAA uptake. In this system, LAX2-expressing yeast cells displayed
a weak but consistent IAA uptake activity compared with control
cells (Figures 4E and 4F).
To further probe whether LAX2 encodes an auxin influx

transporter, we also used a genetic assay. We reasoned that
if LAX2 encodes a functional auxin transporter, an AUX1 pro-
moter-driven LAX2 sequence would be expected to comple-
ment aux1 mutants. The aux1 mutant shows reduced sensitivity
to auxins 2,4-D and IAA and has a strong agravitropic root
phenotype (Bennett et al., 1996; Swarup et al., 2001, 2005) and
a defect in lateral root initiation (Marchant et al., 2002). To test
the ability of LAX2 to complement the aux1 mutant, a ProAUX1:
LAX2 construct was created to express LAX2 under the control
of the 1.7-kb AUX1 promoter and was then introduced into an
aux1 mutant allele, aux1-22 (Figure 5A). Homozygous T3 seed-
lings were then tested for the restoration of the aux1 mutant
phenotype (root gravitropic response and sensitivity to 2,4-D).
As expected, ProAUX1:AUX1 lines (AUX1 promoter driving
AUX1 that was used as a positive control) fully rescued the 2,4-
D–resistant root growth and agravitropic phenotypes of aux1
seedlings (Figures 5B and 5C). By contrast, ProAUX1:LAX2
lines failed to rescue the root agravitropic phenotypes of aux1

Figure 3. The lax2 Mutant Exhibits Vascular Patterning Defects in the
Cotyledons.

(A) to (C) Promoter:GUS analysis of LAX2 expression in heart stage (A),
torpedo (B), and mature (C) embryos.

(D) to (I) Promoter:GUS analysis of expression of LAX2 in developing leaf
primordia.
(J) Structure of the LAX2 with the positions of the lax2 mutant alleles
indicated. Boxes represent promoter, 59, and 39 untranslated regions and
exons; lines represent introns.
(K) and (L) RT-PCR analysis of lax2-1 (K) and lax2-2 (L) alleles showing
that LAX2 cDNA is detectable in the wild type (Col-0) but not in lax2-1 (K)
and lax2-2 (L). Positive controls SHR (K) and AUX1 (L) are detected both
in wild-type (Col-0) and lax2 alleles (n = 2).
(M) Graph showing the frequency of vascular breaks in cotyledons of
lax2 mutant alleles compared with the wild type (Col-0). Error bars rep-
resent SE. * indicates statistically significant difference compared with the
wild type (Col-0); n = 30; Student’s t test, P < 0.01.
(N) to (P) Differential interference contrast images of wild-type (N), lax2-1
(O), and lax2-2 (P) cotyledons showing the vascular defect in lax2.
(Q) High-magnification differential interference contrast image pinpoint-
ing vascular break in a lax2 cotyledon.
Bars in (A) to (C) = 40 mm; bars in (D) to (I) = 100 mm; bars in (N) to (P) =
200 mm.
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seedlings (Figure 5B) as well as 2,4-D–resistant root growth
(Figure 5C).

LAX2 Is Mistargeted in AUX1-Expressing Cells

To determine why LAX2 did not rescue the aux1 phenotypes,
a quantitative RT-PCR experiment was initially used to measure
transgene expression levels of ProAUX1:AUX1, ProAUX1:LAX2,
and ProAUX1:N-terminal HA epitope–tagged AUX1 (NHA-AUX1)
(Swarup et al., 2001) lines compared with wild-type AUX1 levels
(see Methods). Quantitative RT-PCR revealed that LAX2 trans-
gene was consistently expressed at equivalent levels to those
of ProAUX1:AUX1 and ProAUX1:NHA-AUX1 (see Supplemental
Figure 9 online). Hence, transgene expression was not the basis
for the lack of rescue of the aux1 phenotypes. Next, we tested
whether LAX2 was either incorrectly translated or trafficked in
AUX1-expressing cells in these lines by in situ immunolocali-
zation using anti-LAX2 antibodies. Because of the high similarity
between all AUX/LAX family members, the specificity of the
antipeptide antibody was tested. In wild-type seedling roots,
a strong signal was seen in vascular tissues, the S1 columella
layer, and the quiescent center (Figures 6A and 6B), but no
signal was detected in equivalent tissues of lax2 seedlings
(Figure 6C), confirming the high specificity of this antibody
for LAX2. Furthermore, immunolocalization of LAX2 exhibited
a broadly similar spatial expression pattern to that obtained
using ProLAX2:GUS (Figure 1C) and ProLAX2:LAX2-VENUS
lines (see Supplemental Figure 2C online), suggesting the
absence of posttranscriptional control of LAX2 in LAX2-expressing
cells (Figures 1C, 6A, and 6B; see Supplemental Figure 2C online).
Slight differences in expression of ProLAX2:GUS, particularly in the
columella cells, may be caused by differences in stability of GUS
and LAX2 proteins.
We then tested the localization of LAX2 in ProAUX1:LAX2

lines. As reported previously (Swarup et al., 2001; Swarup et al.,
2005), AUX1 is expressed in columella, LRC, epidermis, and pro-
tophloem cells (Figure 6D). In ProAUX1:LAX2 lines, as expected,
a strong LAX2 signal was seen in LAX2-expressing cells (endog-
enous LAX2; Figures 6E and 6F); however, in cells that normally
also express AUX1, the transgene-derived LAX2 signal was either
weak (LRC and columella; Figures 6F and 6G) or absent (epider-
mis; Figure 6H). Surprisingly, the LAX2 signal in columella and LRC
cells accumulated inside the cell and was only occasionally found

Figure 4. AUX/LAX Proteins Are Functional Auxin Influx Transporters.

(A) Uptake of [3H]IAA into X. laevis oocytes injected with water or AUX1,
LAX1, LAX2, and LAX3 cRNAs at pH 6.4. Oocytes injected with AUX1,
LAX1, and LAX3 cRNAs showed increased [3H]IAA uptake when com-
pared with the water-injected control (n = 8).
(B) Uptake of [3H]IAA into oocytes injected with LAX1 cRNA was ex-
amined in the presence of excess unlabeled IAA, the auxin analogs 2,4-D
and 1-naphthalene acetic acid (NAA), and the naturally occurring auxin
form indole butyric acid (IBA) (n = 5).
(C) Immunoblot analysis of oocytes injected with LAX2 (lane 1) or LAX2-
YFP (lanes 2 and 3) cRNAs. Total oocyte extract expressing LAX2 (lane 1)
or LAX2-YFP (cytosolic fraction, lane 2; microsomal fraction, lane 3) were
separated by SDS-PAGE and immunodetected using anti-LAX2 antibodies

(dilution 1/1000). Note the size difference between native LAX2 (42 kD) and
LAX2-YFP (68 kD).
(D) Laser scanning confocal images of oocytes injected with water (I),
AUX1-YFP cRNA (II), or LAX2-YFP cRNA (III).
(E) Immunoblot analysis of empty vector control or LAX2 expressing
S. pombe cells. Proteins were separated by SDS-PAGE and im-
munodetected using anti-LAX2 antibodies (dilution 1/1000).
(F) Uptake of [3H]IAA into empty vector control (dashed line) versus
LAX2-expressing (solid line) S. pombe cells compared with zero time
point.
Error bars represent SD. * indicates statistically significant difference.
Student’s t test P < 0.05.
Bar in (D) = 100 mm.
[See online article for color version of this figure.]
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at the PM (Figures 6G and 6H, compare with inset in Figure 6D).
Altogether, our data demonstrate that misexpressing LAX2 in
AUX1-expressing cells results in targeting defects for the protein in
these tissues. This was further supported by an analysis of Pro35S:
LAX2-YFP lines. In these lines, YFP signal was clearly seen in

AUX1-expressing cells, including the epidermis, but most of
the signal is localized inside the cell. By contrast, LAX2-YFP
seems to be correctly localized to the PM in the LAX2-ex-
pressing cells (Figures 6I and 6J). These results suggest that
the subcellular distribution of LAX2 is distinct in different plant
cells and tissues. To investigate whether other members of the
family are also subject to such regulation, we expressed LAX3
under the control of the AUX1 promoter. The AUX1 promoter-
driven LAX3 lines also failed to rescue aux1 mutant pheno-
types. In situ immunolocalization revealed reduced LAX3 protein
abundance and targeting defects that were similar in nature to
those observed for ProAUX1:LAX2 lines (Figures 6K and 6L). We
conclude that although AUX1/LAX family members may share
auxin transport characteristics, these transport activities seem to
be dependent on their unique cell- or tissue-type expression
patterns.

The AUX1 N Terminus Is Required for Correct Localization in
the AUX1 Expression Domain

To further investigate the inability of LAX2 to correctly localize in
the AUX1 expression domain, domain swap experiments were
designed where either the N-terminal half of LAX2 was fused
to the C-terminal half of AUX1 (DS1) or the N-terminal half of
AUX1 was fused to the C-terminal half of LAX2 (DS2) to create
chimeric genes driven by the AUX1 promoter (Figure 7A). These
constructs were then introduced into an aux1 mutant allele,
aux1-22. Homozygous T3 seedlings were then tested for the
rescue of the aux1 mutant phenotype (root gravitropic response
and sensitivity to 2,4-D). The results revealed that, like ProAUX1:
LAX2 (Figures 7B, panels III and IV, and 7C), DS1 lines also failed
to rescue root agravitropic phenotypes of aux1 seedlings (Figure
7B, panels V and VI) as well as 2,4-D–resistant root growth (Figure
7C). By contrast, DS2 lines rescued both the 2,4-D–resistant root
growth (Figure 7C) and agravitropic phenotypes of aux1 seedlings
(Figure 7B, panels VII and VIII).
To probe the molecular basis of rescue, in situ immunoloc-

alization experiments were done using either anti-HA antibody
(for DS1) or anti-LAX2 antibody (for DS2). As shown in Figures
7F and 7G, DS2 lines show strong signal in AUX1 expression
domains in the LRC and epidermal cells besides endogenous
LAX2 signal in the vascular tissues. By contrast, DS1 lines show
almost no signal in the LRC and the epidermal cell (Figures 7D
and 7E), but a surprisingly strong signal is seen in the vascular
tissues (Figure 7D). On the basis of these results, we conclude
that the N-terminal half of AUX1 is required for correct locali-
zation in the AUX1 expression domain.

DISCUSSION

During evolution, gene family members acquire mutations that
alter one or more subfunctions of the single gene progenitor.
The fate of duplicated genes can encompass pseudogenization
(loss of function), subfunctionalization, and neofunctionalization
(Moore and Purugganan, 2005). This study shows that AUX/LAX
family members in Arabidopsis have not undergone pseudo-
genization or neofunctionalization but have experienced sub-
functionalization.

Figure 5. AUX/LAX Genes Are Not Fully Functionally Interchangeable.

(A) Gene constructs used for genetic complementation assays. AUX1
(control) or LAX2 genomic sequences were cloned between the AUX1
promoter and terminator to create ProAUX1:AUX1 and ProAUX1:LAX2
(boxes represent promoter, 59, and 39 untranslated regions and exons;
lines represent introns).
(B) Root gravitropic phenotypes of the wild type (Col-0), aux1-22, and
aux1-22 complemented by either ProAUX1:AUX1 (control) or ProAUX1:
LAX2 transgenes (n = 40).
(C) Growth responses of the wild type (Col-0), aux1-22, and aux1-22
complemented by either ProAUX1:AUX1 (control) or ProAUX1:LAX2
transgenes grown at various concentrations of 2,4-D and root growth
expressed as percentage of zero control (n = 40). Error bars represent SE.
Bar in (B) = 5 cm.
[See online article for color version of this figure.]
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Genetic evidence presented in this and other articles dem-
onstrates that each AUX/LAX family member regulates an auxin-
dependent development process. For example, several studies
support a role for AUX1 in auxin-mediated developmental pro-
grams, including root gravitropism (Swarup et al., 2001; Swarup
et al., 2005; Dharmasiri et al., 2006), root hair development
(Grebe et al., 2002; Jones et al., 2009), and leaf phyllotaxy
(Reinhardt et al., 2003; Bainbridge et al., 2008), whereas both
AUX1 and LAX3 are required for lateral root development (Swarup
et al., 2008) and apical hook formation (Vandenbussche et al.,
2010). Although a role for LAX1 and LAX2 in auxin-regulated root
development is limited, evidence is growing that they are both
required for Arabidopsis aerial development. In our study, we have

provided evidence that LAX2 regulates vascular development,
whereas LAX1 and LAX2 are required for leaf phyllotactic pat-
terning (Bainbridge et al., 2008).
There is also no evidence to support neofunctionalization of

AUX/LAX genes. Instead, all four AUX/LAX proteins retain an
auxin influx carrier function. Using either heterologous oocyte or
yeast expression systems or complementation of aux1 mutant
root phenotypes, we demonstrated that AUX1 (Yang et al., 2006),
LAX3 (Swarup et al., 2008), and LAX1 and LAX2 (this study) en-
code a family of auxin uptake transporters.
Our study provides clear evidence for subfunctionalization of

AUX/LAX sequences. As a result of divergence to their regula-
tory sequences, we observed that AUX/LAX spatial expressions

Figure 6. LAX2 and LAX3 Cannot Be Correctly Targeted in AUX1-Expressing Cells.

(A) to (C) In situ immunodetection of LAX2 (green) in the wild type ([A] to [B]) or lax2 (C) primary roots counter stained with propidium iodide (red).
(D) In situ immunodetection of NHA-AUX1 in root apex. Inset: Close-up of epidermal (Top) and LRC (Bottom) cells.
(E) to (H) In situ immunodetection of LAX2 in aux1-22 ProAUX1:LAX2 roots showing targeting defect of LAX2 in AUX1-expressing cells, including LRC
(G) and epidermal cells (H).
(I) and (J) Confocal imaging of seedlings expressing LAX2-YFP under the control of CaMV35S promoter showing correct targeting of LAX2 in LAX2-
expressing cells (red arrowhead) but not in AUX1-expressing cells (white arrowhead).
(K) and (L) In situ immunodetection of LAX3-FLAG in aux1-22 ProAUX1>>LAX3 (Methods) roots, showing targeting defects of LAX3 in AUX1 expression
domains including LRC and epidermal cells (L).
Bars in (A), (C) to (E), and (I) = 25 mm; bars in (B), (F) to (H), (J), and (K) = 10 mm; bars in (L) and insets = 5 mm.
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differ considerably within and between plant tissues (Figure 1;
see Supplemental Figure 2 online) (Bainbridge et al., 2008; Swarup
et al., 2008; Jones et al., 2009). We also report subfunctionalization
of AUX/LAX coding sequences that regulate intracellular traf-
ficking. When ectopically expressed, in situ immunolocalization
revealed that LAX2 and LAX3 proteins were unable to be correctly
targeted to the PMs of AUX1-expressing root cells. In wild-type
roots, AUX1 is localized in cells that are involved in gravity
perception (columella), signal transmission (LRC), and gravity
response (epidermis) (Swarup et al., 2001; Swarup et al.,
2005). The PM targeting defect of LAX2 and LAX3 is particu-
larly severe in epidermal cells, where almost no LAX2 or LAX3
could be detected (Figures 6E to 6L). The simplest explanation
for the observed tissue-specific intracellular targeting defect is
the requirement of LAX2 and LAX3 for additional trafficking
factors that are coexpressed in stele cells but absent in outer
root tissues.
Domain swap experiments designed to test this support this

notion and suggest that intramolecular trafficking signals are
located in the N-terminal half of AUX1. Besides, the ability of
DS2 to rescue the aux1 mutant phenotype clearly suggests that
the C-terminal half of LAX2 in the chimeric DS2 protein must
play a key role in its overall function as auxin influx carrier, be-
cause several missense loss-of-function aux1 alleles are located
in the C-terminal half of AUX1 (Swarup et al., 2004).
All DS2 (ProAUX1:NAUX1-CLAX2 chimeric protein fusion) lines

can rescue the root agravitropic defect and 2,4-D–resistant root
growth of aux1 seedlings plus show correct localization of chi-
meric DS2 protein in LRC and epidermal cells when probed
using anti-LAX2 antibodies (Figure 7). By contrast, none of the
DS1 (ProAUX1:NLAX2-CHA-AUX1 chimeric protein fusion) lines
rescued aux1mutant phenotypes or showed much signal in LRC
and epidermal cells (Figure 7). It has been previously shown that
these expression domains of AUX1 are crucial for its function
(Swarup et al., 2005), and the inability of DS1 but not DS2 to
correctly localize in these expression domains provides strong

Figure 7. N-Terminal Half of AUX1 Is Required for Correct Localization in
the AUX1 Expression Domain.

(A) Gene constructs used for domain swap experiments (boxes repre-
sent promoter, 59, and 39 untranslated regions and exons; lines represent
introns).
(B) Root gravitropic responses of the wild type (Col-0), aux1-22, and
aux1-22 complemented by ProAUX1:LAX2, DS1, or DS2 transgenes (n =
40).
(C) Growth responses of the wild type (Col-0), aux1-22, CHA-AUX1
(CHA), and aux1-22 complemented by ProAUX1:LAX2, DS1, or DS2
transgenes grown at various concentrations of 2,4-D (n = 40). Error bars
represent SE.
(D) In situ immunodetection of chimeric DS1 protein (green) by anti-HA
antibody in primary roots counter stained with propidium iodide (red).
(E) Close-up of LRC and epidermal cells in DS1 roots.
(F) In situ immunodetection of chimeric DS2 protein (green) by anti-LAX2
antibody in primary roots counter stained with propidium iodide (red).
(G) Close up of LRC and epidermal cells in DS2 roots showing locali-
zation of DS2 protein (green) in epidermal (arrow) and LRC cells.
(E) to (H) Expression profile of ProLAX1:LAX1-VENUS [(E) to (I)] and
ProLAX2:LAX2-VENUS [(J) to (N)] during lateral root primordium de-
velopment.
Bar in (B) = 5 cm; bars in (D) and (F) = 20 mm; bar in (G) = 5 mm.
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evidence that the N-terminal half of AUX1 is required for correct
localization in these expression domains. Surprisingly, when
probed using anti-HA antibodies, although almost no signal was
detected in the LRC and epidermal cells, strong DS1 signal was
detected in the vascular cells. As mentioned above, the DS1
protein is a translational fusion between the N-terminal half of
LAX2 and C-terminal half of AUX1 (Figure 7A), and vascular
tissues are the natural/endogenous expression domain of
LAX2. Although we do not currently understand the molecular
basis for this differential localization of DS1 protein, it is tempting
to speculate that, because the N-terminal half of AUX1 is required
for correct localization in the AUX1 expression domain, the
N-terminal half of LAX2 contains molecular signals that are rec-
ognized by trafficking factors in those tissues. However, compared
with endogenous LAX2, DS1 chimeric protein does not seem to be
correctly targeted to the PM, suggesting that, in contrast with
AUX1, in the case of LAX2, the N-terminal part is still not sufficient
for proper membrane targeting. AUX1 intracellular targeting is
known to be regulated by AXR4, which encodes a putative en-
doplasmic reticulum (ER) chaperone that has been proposed to
facilitate the correct folding of AUX1 and its export from ER to
golgi (Dharmasiri et al., 2006). Hence, the failure of LAX2 and LAX3
to be properly targeted in AUX1-expressing cells may simply re-
flect a need for their own specific ER chaperones. Future identifi-
cation of such trafficking factors and of intramolecular trafficking
signals within AUX/LAX coding sequences will help reveal how and
why they have undergone subfunctionalization during evolution.

METHODS

Plant Materials and Growth Conditions

The aux1-22 allele was used throughout this study (Swarup et al., 2004).
lax1, lax2, and lax3 insertion lines have been described previously (Bainbridge
et al., 2008; Swarup et al., 2008). Plantswere grown on verticalMurashige and
Skoog plates at 23°C under continuous light at 150mmolm22 s21. Gravitropic
assays were performed as previously described (Swarup et al., 2005). Lateral
root numbers were determined on 6-d-old plants using a stereomicroscope.
Primary root length was measured using the NeuronJ plugin of ImageJ
software.

Isolation of the LAX dSpm Insertion Lines and RT-PCR Analysis

Insertion lines for the Arabidopsis thaliana LAX1, LAX2, and LAX3 were
identified in the Sainsbury Laboratory Arabidopsis thaliana population as
described previously (Swarup et al. 2008). LAX2 RT-PCR analysis on RNA
isolated from the wild type (ecotype Columbia [Col-0]) and dSpm lax2-1
allele was performed using primers Lax2F2 (59-GAGAACGGTGAGA-
AAGCAGC-39) and Lax2R4 (59-CGCAGAAGGCAGCGTTAGCG-39).

Isolation of LAX2 GABI-Kat Allele (lax2-2) and RT-PCR Analysis

The lax2-2 allele (line ID GK_345D11; Nottingham Arabidopsis Stock Centre
ID N433071) of LAX2 was identified from the GABI-Kat T-DNA insertional
population (Kleinboelting et al., 2012). T-DNA insertion was confirmed by
PCR using primer pairs 0849 (left border primer 59-ATATTGACCATCA-
TACTCATTGC-39) and Lx2-25 (gene-specific primer 59-CACAAAGTA-
GAGTGGCGTG-39). The homozygous line was confirmed by the absence of
a LAX2-specific band using primers Lx2-19 (59-GGCACAAGTGCTGTTGAC-
39) and Lx2-28 (59-CAGACGCAGAAGGCAGCG-39). LAX2 RT-PCR analysis
of RNA isolated from the wild type (Col-0) and GABI-kat lax2-2 allele was

performed using primers Lx2-19 (59-GGCACAAGTGCTGTTGAC-39) and
Lx2-28.

Generation of Transgenic Lines

The promoter GUS lines ProAUX1:GUS (Marchant et al., 2002), ProLAX1:
GUS, ProLAX2:GUS (Bainbridge et al., 2008), and ProLAX3:GUS (Swarup
et al., 2008) have been described before. Similarly, N- or C-terminal HA-
AUX1 (NHA-AUX1 or CHA-AUX1) have been described before (Swarup
et al., 2001). For genetic complementation of aux1, AUX1 and LAX2
genomic sequences were PCR amplified and fused with the Arabidopsis
AUX1 promoter (1.7 kb) and terminator (0.3 kb) in a pMOG402 binary
vector (MOGEN International) as previously described (Péret et al., 2007).
For creation of domain swap constructs (DS1 and DS2), CHA-AUX1
(Swarup et al., 2001) and LAX2 genomic sequences were cloned into
Gateway entry vector pENTR11 (Invitrogen). Both these vectors were then
cut with SphI (internal unique site at identical position in both CHA-AUX1
and LAX2) and XhoI (in the vector), and the resulting inserts were swapped
to create DS1 and DS2. The resulting chimeric constructs DS1 and DS2
were cut out with BamHI and XhoI and fused with the Arabidopsis AUX1
promoter (1.7 kb) and terminator (0.3 kb) in a pMOG402 binary vector
(MOGEN International) as previously described (Péret et al., 2007). The
LAX3-FLAG line was created by fusing the 23 FLAG epitope tag
(MDYKDHDIDYKDDDDK) to the C-terminal of LAX3. The upstream acti-
vating sequence was then fused upstream of LAX3-FLAG. ThisUAS:LAX3-
FLAG line was then crossed to theProAUX1:GAL4 line (Swarup et al., 2005)
to transactivate LAX3-FLAG in AUX1-expressing cells. The VENUS fluo-
rescent protein (Tursun et al., 2009) fusions of LAX1 and LAX2 were gen-
erated by a recombineering approach (Zhou et al., 2011). VENUSwas fused
in frame after the codon 122 for ProLAX1:LAX1-VENUS and codon 110 for
ProLAX2:LAX2-VENUS. Transformation of Agrobacterium (C58) and Arabi-
dopsis was done as described before (Péret et al., 2007). Transgene-specific
cDNA sequences of these lines were PCR-amplified and sequenced
to ensure against rearrangements of the transgenes. All complementation
experiments were performed on two independent homozygous T3
lines.

Histochemical GUS Staining

GUS staining was done as described previously (Péret et al., 2007). Plants
were cleared for 24 h in 1M chloral hydrate and 33%glycerol. Seedlings were
mounted in 50% glycerol and observed with a Leica DMRB microscope.

Quantitative RT-PCR

Total RNA was extracted from roots using the Qiagen RNeasy Plant Mini
Kit with on-columnDNase treatment (RNase free DNase set, Qiagen). Poly
(dT) cDNA was prepared from 3 mg total RNA using the Transcriptor First
Strand cDNA Synthesis Kit (Roche). Quantitative PCR was performed
using SYBR Green Sensimix (Quantace) on a Stratagene Mx3005P ap-
paratus. PCR was performed in 96-well optical reaction plates heated for
5 min to 95°C, followed by 40 cycles of denaturation for 10 s at 95°C and
annealing-extension for 30 s at 60°C. Target quantifications were performed
with the following specific primer pairs: AtAUX1F59-tgctctgatcaaagtcttctcct-
39 and AtAUX1R 59-gaagagaagaacccagaaatgtg-39. Expression levels were
normalized to UBA using the following primers: UBAforward 59-agtgga-
gaggctgcagaaga-39 and UBAreverse 59-ctcgggtagcacgagcttta-39. All
quantitative RT-PCR experiments were performed in triplicate, and the
values presented represent means 6 SE.

Production of LAX2 Antibody

For generation of LAX2 antibody, a peptide containing the C-terminal 15
amino acids of LAX2 (PPPISHPHFNHTHGL) plus an added Cys (for
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attachment to carrier protein KLH) was conjugated to KLH and was
injected to rabbits in complete Freunds adjuvant. Boosters were given on
days 14, 28, 42, 56, and 70. Immune serum was collected on days 49, 63,
and 77. Affinity purification of the antiserum was done against the LAX2
peptide that was coupled to Pierce SulfoLink resin as per manufacturer’s
instruction. The column was washed twice with 10 mM Tris-Cl buffer (pH
7.5) containing 0.5MNaCl, once with 100mMGly (pH 2.5), and finally with
two more washes with 10 mM Tris-Cl buffer (pH 7.5). Crude LAX2 anti-
serum (10 mL) buffered in 100 mL 1 M Tris-Cl (pH 7.5) was then applied on
the column and rotated at 4°C overnight. Flow-through was passed twice
on the column at room temperature followed by a wash each with 10 mM
Tris-Cl buffer (pH 7.5) and 10 mM Tris-Cl buffer (pH 7.5) containing 0.5 M
NaCl. Purified antibodies were eluted in 250-mL fractions with 100mMGly
(pH 2.5) and neutralized with 50 mL of Tris-Cl buffer (pH 8.0).

Immunolocalization

Four-d-old seedlings were fixed, and immunolocalization experiments
were performed as described previously (Swarup et al., 2005) using various
primary and secondary antibodies. Localization was visualized using
confocal microscopy. Primary antibodies anti-HA (Roche) and anti-FLAG
(Sigma-Aldrich) were used at a dilution of 1:200, whereas anti-LAX2 was
used at a dilution of 1:100. OregonGreen or Alexa Fluor–coupled secondary
anti-rat, anti-mouse, or anti-rabbit antibodies (Invitrogen) were used at
a dilution of 1:200. Background staining was performed with propidium
iodide (Sigma-Aldrich).

Auxin Transport Assays

Auxin transport assays in oocytes were performed as previously described
(Swarup et al., 2008). For uptake experiments in Schizosaccharomyces
pombe, the LAX2 cDNA was amplified from pOO2-LAX2 using prim-
ers ccacLAX5 (CACCATGGAGAACGGTGAGAA) and LAX2nonstop3
(AAGGCCGTGAGTGTGATTGA), cloned into Gateway cloning vector
pENTR/TOPO (Invitrogen), and confirmed by sequencing. LAX2 cDNA
was subsequently cloned into the S. pombe expression vector
pREP41GWHA (Yang and Murphy, 2009). LAX2 expression in S. pombe
vat3 cells (Yang and Murphy, 2009) was confirmed by immunoblot using
anti-HA primary antibody (1:500 dilution; Santa Cruz Biotechnology).

Accession Numbers

Atg nomenclature gene accession numbers of The Arabidopsis Infor-
mation Resource database (http://www.Arabidopsis.org) are: At2g38120
(AUX1), At5g01240 (LAX1), At2g21050 (LAX2), At1g77690 (LAX3), and
UBA (At1g04850).
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Auxin is a key coordinative signal required for many aspects of plant development and its  
levels are controlled by auxin metabolism and intercellular auxin transport. Here we find that a 
member of PIN auxin transporter family, PIN8 is expressed in male gametophyte of Arabidopsis 
thaliana and has a crucial role in pollen development and functionality. Ectopic expression in 
sporophytic tissues establishes a role of PIN8 in regulating auxin homoeostasis and metabolism. 
PIN8 co-localizes with PIN5 to the endoplasmic reticulum (ER) where it acts as an auxin 
transporter. Genetic analyses reveal an antagonistic action of PIN5 and PIN8 in the regulation 
of intracellular auxin homoeostasis and gametophyte as well as sporophyte development. 
Our results reveal a role of the auxin transport in male gametophyte development in which 
the distinct actions of ER-localized PIN transporters regulate cellular auxin homoeostasis and 
maintain the auxin levels optimal for pollen development and pollen tube growth. 
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The plant hormone auxin has a crucial role in plant develop-
ment1–6. On account of its differential distribution within 
plant tissues, it acts as a versatile coordinative signal medi-

ating a multitude of processes, including female gametophyte pat-
terning, embryogenesis, organogenesis, meristem activity, growth 
responses to environmental stimuli and others7–10. High auxin 
concentration in germinating pollen and active auxin responses in 
developing pollen11–13 implicated auxin also in male gametophyte 
development and function, but its role there remained elusive.

A crucial aspect of auxin action is its graded distribution (auxin 
gradients) that depends on local auxin biosynthesis14–16 and direc-
tional, intercellular auxin transport7,17,18. The polar auxin trans-
port has an essential role in most auxin-regulated processes and is 
mediated by auxin influx proteins from the AUX1/LAX family19, 
by PIN auxin efflux proteins20 and by homologues of the ABCB 
multiple drug resistance transporters21,22. These auxin transporters 
typically localize to the plasma membrane (PM) and facilitate auxin 
flow across the membrane in and out of the cell23. Recently, the  
Arabidopsis thaliana PIN5 auxin transporter has been shown to 
localize to the endoplasmic reticulum (ER) and its activity is impor-
tant for the regulation of auxin metabolism24. These findings suggest 
the existence of auxin transport across the ER membrane, although 
a demonstration of such transport has not been provided yet and its 
role in auxin biology and plant development is still largely unclear.

Here we identify and functionally characterize PIN8, an auxin 
transporter preferentially expressed in male gametophyte. PIN8 
transports auxin across the ER membrane and antagonistically to 
PIN5 regulates intracellular auxin homoeostasis and metabolism 
for male gametophyte function.

Results
PIN8 is expressed and functions in the male gametophyte.  
To assess a potential role for the auxin transport in male gametophyte 
development, we examined the expression patterns of PIN auxin 
transporters by using available transcriptome data25. Among the  
eight members of the PIN protein family in the Arabidopsis 
genome, a so-far uncharacterized member PIN8 was the only 
one predominantly expressed in pollen (Supplementary Fig. S1a).  
Reverse transcription PCR confirmed the highly enriched expression 
of PIN8 in reproductive tissues (Supplementary Fig. S1b) and lines 
comprising the PIN8 coding region fused with green fluorescent 
protein (GFP) under the control of its native promoter (PIN8 PIN8-
GFP) showed strong signal in developing and germinating pollen 
(Supplementary Fig. S1a).

To analyse the potential role of PIN8 in pollen development, we 
isolated two insertion mutant alleles, pin8-1 and pin8-2, disrupting 
the first and fifth exon of the PIN8 gene, respectively (Supplemen-
tary Fig. S1c,d). No obvious phenotypic defects were observed in 
seedlings and adult plants in both alleles (data not shown), which 
was consistent with very low PIN8 expression in most sporophytic 
tissues. However, pin8 mutants showed a decreased transmission 
ability through male gametophyte (38%) for pin8-1 versus the 
expected 50% for the wild-type (Col-0) pollen (Fig. 1a). The com-
plementation of this phenotype confirmed that the described pollen 
transmission defects are due to the loss of PIN8 function (Supple-
mentary Fig. S2). 4 ,6-Diamidino-2-phenylindole (DAPI) staining 
of pollen revealed a high frequency of aborted and misshaped pol-
len grains in pin8 (Fig. 1b,c, Supplementary Table S1) and transmis-
sion electron microscopy analyses showed that pin8 mutant pollen 
has a reduced density of rough ER (10–15%, n > 150 pollen grains) 
in comparison to the wild-type pollen (Fig. 1d,e). Next, we exam-
ined transgenic lines overexpressing PIN8 under strong pollen- 
specific promoter LAT52 (ref. 24). LAT52 PIN8 also showed 
strongly reduced transmission through the male gametophyte 
(below 10% for LAT52 PIN8 versus expected 50% for the wild-type 
control; Fig. 1a and Supplementary Fig. S1e). In addition, in vitro 

pollen germination assays revealed a decreased pollen germination 
in pin8 (40% decrease, Fig. 1f) and increased pollen tube elongation 
in LAT52 PIN8 lines (30% increase, Fig. 1g) with a normal pollen  
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Figure 1 | PIN8 is involved predominantly in the male gametophyte 
development. (a) The pin8 mutant and the LAT52 PIN8 line showed 
reduced pollen transmission ability. Error bars represent the standard 
error of more than ten independent crosses (Student’s t-test, *P < 0.05). 
(b,c) DAPI staining analysis showing defects in the morphology of pin8 
and pin5 mutant pollen. Both mutants showed distorted and/or misplaced 
male germ unit and less frequently also exhibit pollen mitosis defects. 
Sometimes, collapsed pollen grains were observed. Scale bar, 10 m. Error 
bars represent the standard error of more than 23 independent plants 
(Student’s t-test, **P < 0.01). (d,e) Typical ER clusters in wild-type (WT) 
pollen (d) were not observed in 10–15% pin8 pollen (observed 150 pollen 
grains) (e) by transmission electron microscope analysis. Scale bar, 10 m.  
Red arrows mark ER clusters. (f) pin8 (2256 pollen were analysed) shows 
reduced in vitro pollen germination abilities (2,814 Col pollens were 
analysed as the control) and increased sensitivity to auxin treatment 
(100 nM NAA) with a 35% reduction of pollen germination in pin8  
(5,017 pollens were analysed) compared with the 19% reduction in Col 
(1,131 pollens were analysed). Error bars represent the standard error of 
more than ten independent plants (Student’s t-test, *P < 0.05; **P < 0.01). 
White and grey columns represent without and with NAA treatment, 
respectively. (g) Overexpression of PIN8 in pollen in the LAT52 PIN8 
line strongly increased the resistance (with a 24% inhibition of pollen 
tube length compared with the 46% inhibition in Col) of in vitro pollen 
germination to NPA (100 M NPA) treatment. Error bars represent the 
standard error of more than six independent plants (Student’s t-test, 
*P < 0.05; **P < 0.01). White and grey column represent without and  
with NPA treatment, respectively, in Col, pin8 or LAT52 PIN8.
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tube morphology (Supplementary Fig. S1f). Thus, the loss-of- 
function and ectopic expression analyses revealed a specific role  
of PIN8 in male gametophyte development and function.

As PIN8 is a member of the auxin transporter family, it is pre-
sumably involved in auxin transport. However, a role of auxin trans-
port in male gametophyte development and function is far from 
being clear. To address this issue, we pharmacologically manipu-
lated auxin levels and auxin transport during pollen germination 
and pollen tube growth. Auxin treatments (100 nM -naphtha-
leneacetic acid (NAA)) reduced the pollen germination rate in 
wild type (19% reduction) and pin8-1 pollen showed increased 
sensitivity to such auxin treatment (35% reduction) (Fig. 1f). Fur-
thermore, the auxin transport inhibitor 1-N-naphthylphthalamic 
acid (NPA) strongly inhibited pollen tube growth and, notably, 
LAT52 PIN8 pollen showed increased resistance to this NPA 
effect (Fig. 1g). The inhibition of the in vitro pollen tube growth 
by NPA was apparent only at high concentrations (100 M) indi-
cating that it might occur through APM1-regulated functions of 
PIN and ABCB auxin transport proteins, as APM1 is the target at 
high concentrations of NPA treatment26,27. The change in sensitiv-
ity in pollen tubes overexpressing auxin transport-related protein 
PIN8 suggests that it is auxin transport-related effect of NPA that 
affects pollen tube growth. Collectively, these findings hint at an 
important role of auxin and auxin transport for male gametophyte 
function and identified the pollen-specific putative auxin transporter  
PIN8 as an important factor regulating these processes.

PIN8 overexpression affects many aspects of plant growth and 
development. To further characterize the function of PIN8, we 
generated lines overexpressing PIN8 in sporophytic tissues under 
the control of the strong cauliflower mosaic virus 35S promoter 
(PIN8OX). PIN8OX lines flowered much earlier than wild-type 
plants (Fig. 2a,b), showed enhanced leaf margin serration, especially 
under short-day growth conditions (Fig. 2c) and had much longer 
hypocotyls than the control (Fig. 2d,e), which can be attributed  
to the increased cell elongation (Fig. 2f and Supplementary Table S2).  
All these plant growth and development phenotypes in PIN8OX 
suggest a capacity of PIN8 to influence different aspects of plant 
development, preferentially those where auxin is involved.

PIN8 and PIN5 localize to the ER. In Arabidopsis, the PIN auxin 
transporter family can be divided in two subclades: one represented 
by PIN1, PIN2, PIN3, PIN4 and PIN7, which all localize to the 
PM23, and the other subclade represented by PIN5, PIN8 and possi-
bly PIN6, which are characterized by a reduced middle hydrophilic 
loop23 and for which PIN5 has been shown to localize to the ER 
in Arabidopsis24. To investigate the subcellular localization of PIN8, 
we examined Arabidopsis transgenic lines expressing a functional 
PIN8 PIN8-GFP construct. In PIN8 PIN8-GFP (Supplementary 
Fig. S2), a specific intracellular signal was observed only in pollen 
and growing pollen tubes (Fig. 3a–c and Supplementary Fig. S1a) 
consistent with the PIN8 expression data (Supplementary Fig. S1a). 
The PIN8-GFP-expressing cells showed intracellular signals, but no 
localization to the PM (Fig. 3a–c). A pronounced co-localization 
with the ER-tracer dye24 suggested the association of PIN8-GFP 
with the ER (Fig. 3a–c).

To examine the PIN8 localization in more detail and in differ-
ent sporophytic cell types, we ectopically expressed PIN8 fused 
with GFP under the control of 35S promoter. Similar to what  
was observed in pollen, we detected a consistent, intracellular  
PIN8-GFP signal co-localized with ER markers, such as BIP2  
(ref. 28) in root cells (Fig. 3d–f, p). On the other hand, we did not 
observe any co-localization of PIN8 with endosomes or Golgi appa-
ratus (Fig. 3g–i, p and Supplementary Fig. S3) and also we did not 
observe any co-localization with labelled PM (Fig. 3j–l, p). Further-
more, PIN8 co-localized with PIN5 at the ER (Fig. 3m–p) and this 

localization was, similar to that of PIN5 (ref. 24), insensitive to the 
treatment with the vesicle trafficking inhibitor brefeldin A (Supple-
mentary Fig. S4). These results strongly suggest that PIN8, similar to 
PIN5, localizes to the ER and that these proteins might have related 
functions.

PIN8 transports auxin and regulates cellular auxin homoeosta-
sis. The ER-localized PIN5 was found, in contrast to PM-localized  
PIN proteins, not to act in intercellular auxin transport, but 
to be involved in regulating cellular auxin homoeostasis, pre-
sumably by compartmentalizing auxin between the ER and the 
cytosol24. Therefore, we tested the role of PIN8 in regulating auxin  
homoeostasis. The visualization of auxin responses with the auxin-
responsive reporter DR5 GUS29 revealed no changes in pin8 
mutants (data not shown), consistent with a very low expression 
of PIN8 in sporophytic tissues. In contrast, PIN8OX lines showed a 
markedly increased DR5 activity, both in the root and in the aerial 
parts of the seedling (Fig. 4a) suggesting elevated auxin levels.

To directly test the role of PIN8 in regulating auxin levels, we 
measured free auxin (indole-3-acetic acid (IAA)) levels in the pin8 
mutant and PIN8OX lines. Unfortunately, free IAA measurements 
directly in pollen were technically impossible, therefore, we used 
extraction and gas chromatography/mass spectroscopy detection 
of IAA in root tips, hypocotyls and rosette leaves. These measure-
ments revealed that loss-of-function pin8 mutants had similar levels 
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of free auxin as the control (Fig. 4b), whereas PIN8OX lines showed 
strongly increased free IAA levels in root tips, hypocotyls and 
rosette leaves (Fig. 4b). Thus, both DR5-monitored auxin response 
and direct auxin measurements revealed overall elevated auxin  
levels in plants overexpressing PIN8.

Next, we quantified the auxin efflux from mesophyll protoplasts 
isolated from rosette leaves of PIN8 loss-of-function and overex-
pression lines. Consistent with the changes in auxin levels and PIN8 
expression data, protoplasts prepared from pin8 mutants exhibited 
a comparable IAA and NAA efflux as wild-type controls, whereas 
in protoplasts isolated from PIN8OX, the efflux of IAA and NAA 
was increased (Fig. 4c and Supplementary Fig. S5), suggesting the 

auxin transport competence of PIN8. The ER localization of PIN8 in 
protoplasts (Supplementary Fig. S6) is also consistent with a notion 
that PIN8 increases efflux of auxin from the ER into the cytoplasm 
and then presumably out of the protoplast.

To directly assess the ability of PIN8 at the ER membranes,  
we grew PIN8OX-etiolated plants in liquid culture and ER-enriched 
membrane fractions were prepared using sucrose gradient centrifu-
gation as described30. This fraction was well separated from non-ER 
fractions including Golgi membranes and other organelles. PIN8-
GFP was detected in the ER-enriched fraction with an anti-GFP 
antibody, but no PIN1 was detected with anti-PIN1 (not shown) 
confirming no or very low PM contamination. Transport assays with 
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radiolabelled IAA showed increased auxin accumulation capacity of 
the ER fractions from the PIN8OX lines as compared with the control 
(Fig. 4d). In addition, competitive uptake assays with ER-enriched 
fraction from PIN8OX revealed that synthetic auxins NAA,2,4-D 
and auxin analogue indole-3-butyric acid can compete with radio-
labelled IAA uptake, whereas the biologically inactive analogue 
benzoic acid (1 mM) did not compete with PIN8-mediated uptake 
of radiolabelled IAA (Supplementary Fig. S7a). Our auxin transport 
assays in mesophyll protoplasts from transiently transfected nico-
tiana benthamiana also indicated that IAA, not benzoic acid, was 
the preferred substrate of PIN8 action (Supplementary Fig. S7b). 

These results show that IAA and other biologically active auxins  
are preferred substrates of PIN8 action. In an independent set of 
experiments, lighter ER membranes from PIN8OX seedlings, exhib-
ited acidification after addition of ATP and accumulation of 3H-IAA 
in short-term (60 s) uptake assays, whereas denser ER vesicles, tono-
plast vesicles and PM vesicles did not show auxin transport activity 
(Supplementary Fig. S8). The overall increase in auxin responses 
and free auxin levels in PIN8OX as well as changed auxin trans-
port capacity of PIN8OX protoplasts and ER-derived membranes 
altogether suggested that PIN8 is an ER-localized auxin transporter 
involving in the regulation of auxin homoeostasis.
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To assess the role of PIN8 in IAA metabolism, we analysed the 
IAA metabolic profile of PIN8OX transgenic seedlings through 
high-performance liquid chromatography (HPLC). PIN8 over-
expression remodelled the IAA metabolism as demonstrated by the 
pronounced changes in the HPLC profile (Fig. 4e). Direct analysis by 
ultra-high-performance liquid chromatography coupled to tandem  
mass detection of the selected IAA conjugates confirmed the changes 
in the IAA metabolic profile and showed that the PIN8OX line had 
a decreased capacity to produce amino-acid conjugates, such as IA-
Asp (indole-3-acetyl-aspartate), IA-Glu (indole-3-acetyl-glutamate)  
or OxIAA (oxindole-3-acetic acid; Fig. 4f,g). These results demon-
strated that the ER-localized PIN8 auxin transporter, similar to 
PIN5, is also involved in the regulation of auxin homoeostasis.

PIN8 and PIN5 act antagonistically. To gain additional insights 
into the roles of PIN5 and PIN8, we systematically compared the 
loss-of-function and overexpression lines and also generated the 
pin5 pin8 double mutants and the PIN8OX PIN5OX double trans-
genic plants. Similar to pin8, pin5 was also defective in pollen mor-
phology (Figs 1b, 5a), but, in contrast to the single pin5 mutant, the 
pin5 pin8 double mutant largely rescued the pollen morphology 
defects and the pin8 defect in transmission through the male game-
tophyte (Fig. 5a,b). Thus, the pin5 and pin8 loss-of-function mutants 
compensated to a large extent each other in male gametophyte  
development and function.

Regarding the overexpression lines, PIN5OX seedlings had 
shorter hypocotyls24, whereas PIN8OX seedlings had strikingly 

longer hypocotyls than the wild-type control (Fig. 5c,d). These 
overexpression effects were also rescued in the PIN8OX PIN5OX 
double overexpressing line (Fig. 5c,d). In addition, we also observed 
that pin5 significantly enhanced the long hypocotyl phenotype of 
PIN8OX further supporting the antagonistic roles of PIN5 and 
PIN8 (Supplementary Fig. S9a). The same could be observed for 
the flowering time. Under long-day conditions, PIN8OX plants 
flowered earlier than the control, whereas PIN5OX plants flow-
ered significantly later (Supplementary Fig. S9b,c) and the PIN8OX 
PIN5OX plants flowered at a time that was comparable to the control 
plants (Supplementary Fig. S9b,c). These different observations are 
also consistent with previous observations on the opposite action  
of PIN5 and PIN8 in root hair development31. Thus, both the loss-
of-function mutants and overexpression lines of PIN5 and PIN8 can 
largely compensate each other in regulating different developmental 
processes, suggesting antagonistic roles of these two ER-localized 
PIN proteins.

Next, we tested genetic interaction between PIN5 and PIN8 
in regulating auxin homoeostasis. In the PIN8OX line, both free 
IAA measurements and enhanced DR5 GUS activity consistently 
suggested increased free IAA levels (Fig. 4), whereas PIN5OX had 
been shown to have decreased auxin levels24. To test the possible 
antagonistic roles of PIN5 and PIN8 in the regulation of auxin meta-
bolism, we measured free IAA levels in PIN8OX PIN5OX double 
transformants. This analysis revealed that, similar to morphological 
phenotypes, the increased free IAA levels in PIN8OX were largely 
rescued in the PIN8OX PIN5OX line that exhibited free IAA levels 
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 comparable to those of the control lines (Supplementary Fig. S10a). 
The increased IAA export in protoplasts prepared from PIN8 OX 
also phenocopies pin5 mutant (Supplementary Fig. S10b). More-
over, notable changes in the IAA metabolic profile of PIN8OX 
seedlings as demonstrated by the HPLC spectrum were also largely 
rescued in PIN8OX PIN5OX lines (Fig. 5e). Accordingly, liquid 
 chromatography–tandem mass spectroscopeanalysis confirmed 
that the decreased capacity of PIN8OX seedlings to conjugate IAA 
to amino acids was rescued in the PIN8OX PIN5OX lines (Fig. 5f).

Overall, the opposite and mutual compensatory effects of  
pin5 and pin8 loss-of-function and overexpression alleles on male 
gametophyte and sporophyte phenotypes as well as on auxin 
homoeostasis and metabolism revealed that PIN5 and PIN8  
act antagonistically. This strongly suggests that PIN5 and PIN8 
localized both at the same subcellular compartment (ER) can have 
distinct roles.

Discussion
In conclusion, this study identified auxin transporter PIN8 with a 
strong expression in a male gametophyte and revealed a role for 
auxin transport in regulating pollen development and function. Our 
results, including localization, auxin transport as well as genetic and 
physiological analyses, showed that, although both PIN8 and PIN5 
auxin transporters are localized at the ER, they can have antagonis-
tic roles in regulating gametophyte and sporophyte development, 
cellular auxin homoeostasis and metabolism. PIN5 has been pro-
posed to transport auxin intracellularly from the cytoplasm into the 
ER, where enzymes involved in IAA metabolism are compartmen-
talized6, thus reducing the auxin availability for the PM-based auxin 
efflux24. It is unclear how PIN8 localized to the same intracellular 
compartment, namely ER, can act antagonistically but it suggests 
more complex functional interaction between PIN proteins than 
anticipated so far. A possible scenario would envision transient or 
more stable interaction of PIN5 and PIN8 negatively regulating each 
other transport capabilities. Notably, PIN8 activity in Arabidopsis 
is required only in male gametophyte. It is known that developing 
and germinating pollen has high levels of auxin32, but the auxin role 
there is unclear. Thus, it is possible that specifically during pollen 
development, the ER-localized PIN transporters regulate the release 
of auxin from the internal stores in the ER to drive auxin-mediated 
pollen tube elongation.

The finding that some PIN proteins localize to the ER and other to 
the PM brings about an interesting question, namely, which of these 
functions and cellular localizations is ancestral and which physi-
ological and developmental role did this ancestral PIN protein play. 
In the moss Physcomitrella, the most typical member of PIN clade 
localizes to ER, when expressed in BY-2 tobacco cells24. As in most 
ancestral land plants, the gametophyte generation is predominant, 
the male gametophytic PIN8 might represent a more ancestral form 
of auxin transporters that were at the ER involved in regulating sub-
cellular auxin homoeostasis, before they acquired PM localization 
and new function in mediating auxin transport between cells for 
mediating development of higher plants. Nonetheless, also in higher 
plants, different ER-localized PIN proteins, including Arabidopsis 
PIN5, PIN8 and possibly also PIN6, have spatially and/or temporally 
distinct expression patterns24 that can fine-tune the cellular free IAA 
levels optimal for plant growth and reproduction.

Methods
Plant material and DNA constructs. For all experiments, we used Arabidopsis 
thaliana ecotype Columbia (Col). Insertion mutant lines were pin5-5 (ref. 24),  
pin8-1 (Salk_107965) and pin8-2 (Salk_044651). Transgenic lines were 
DR5 GUS29, DR5rev GFP33, RPS5A GAL4 (ref. 34) and RPS5A >  > PIN5-myc  
(PIN5 OX)24. pin5 pin8 double mutants and the PIN8OX PIN5OX double 
transgenic plants were generated through crossing pin5-5 with pin8-1 or cross-
ing PIN8OX with PIN5OX. All SALK lines were obtained from the Nottingham 
Arabidopsis Stock Center. The 35S PIN8-GFP (PIN8 OX) line was generated by 

transformation of the ecotype Columbia (Col) with the 35S PIN8-GFP (PIN8OX) 
construct24. The LAT52%PIN8 line was generated via replacing the 35S promoter 
with the LAT52 promoter and transformed to the Colecotype. The primers used  
for cloning the LAT52 promoter are described in Supplementary Table S3.

Growth conditions. Seeds were sterilized with chlorine gas and stratified at 4 °C 
for 3 days in the dark. Seedlings were grown vertically on half Murashige and 
Skoog (MS) medium supplemented with 1% sucrose and respective drugs. Drugs 
were purchased from Sigma-Aldrich. Plants were grown under the stable long-day 
(16 h light/8 h dark) or short-day (8 h light/16 h dark) conditions at 19 °C in growth 
chambers.

Phenotype analyses and GUS ( -glucuronidase) staining. Plates were scanned 
on a flat-bed scanner and hypocotyl lengths were measured with the  
ImageJ (http://rsb.info.nih.gov/ij/) software. GUS staining was done as described35.

Microscopy analysis. The immunological analyses were done as previously 
described36. Details on antibodies and dilutions can be found in the later section. 
GFP samples were scanned without fixation. For confocal microscopy images, 
Zeiss LSM 510 or Olympus FV10 ASW confocal scanning microscopes were used.

Pollen transmission assays. We used the PIN3 PIN3-GFP line for the transmis-
sion wild-type controls. Pollen from the hetero PIN3 PIN3-GFP, hetero pin8-1 
or hetero LAT52 PIN8 was used as a pollen donor, and crossed with Col female. 
Wild-type control–here is the hetero PIN3 PIN3-GFP line–showing around 50% 
transmission that was confirmed via antibiotic selection of the resulted seedlings. 
pin8-1and LAT52 PIN8 transmission was assessed by PCR analysis or antibiotic 
selection of the resulted seedlings.

Auxin measurements and transport assays. Free IAA measurements and IAA 
metabolic profiling were done as described24. For protoplast transport assays, 
protoplasts prepared from loss-of-function mutant and overexpression lines 
were loaded under controlled conditions (loading is performed on ice in order to 
minimize transport processes with identical amounts of cells and radioactivity) 
leading to highly comparable loading of cells22. Loaded cells were then temperature 
shifted to 25 °C enabling catalysed auxin transport (of course both over the ER and 
PM membrane), and after defined time-points supernatants (containing effluxed 
radioactivity) were separated from cells by silicon oil centrifugation and quantified. 
For IAA conjugate quantification, ~10 mg of plant material was taken for analysis. 
The samples were processed as described37 and quantified by ultra-high- 
performance liquid chromatography coupled to tandem mass detection.

Auxin transport assays in ER-enriched microsomal fractions. Arabidopsis 
plants grown in liquid culture were homogenized using razor blade in 5 ml of 0.5 M 
sucrose, 0.1 M KH2PO4 (pH 6.65), 5 mM MgCl2 and 1 mM dithiothreitol (freshly 
added). Membranes were separated following the procedure described by Muñoz 
et al.38,39. Briefly, the homogenate was filtered through miracloth (Calbiochem) 
and centrifuged at 3,000 g for 3 min. The supernatant was then layered on 5 ml of 
a 1.3 M sucrose cushion and centrifuged at 108,000 g for 90 min. The upper phase 
was removed without disturbing the interface fraction and sucrose layers of 1.1,  
0.7 and 0.25 M were overlaid on the membrane pad. The discontinuous sucrose 
gradient was then centrifuged at 108,000 g for 90 min. The 1.1/1.3 M interface 
enriched in ER membranes was collected, diluted and centrifuged separately at 
108,000 g for 50 min, the pellet was resuspended in 200 l of 0.5 M sucrose, 0.1 M 
KH2PO4 (pH 6.65) and 5 mM MgCl2 and stored at  − 80 °C until use.

ER-enriched membranes, obtained as described above, were used to perform 
[3H]-IAA uptake assays, based in a filtration method previously described39.  
A total of 50 g of protein from the ER-enriched membrane fraction were resus-
pended in a buffer containing 250 mM sucrose, 20 mM KCl, 25 mM Tris–HCl  
(pH 7). The reaction was initiated by adding 100 l of 50 nM [3H]-IAA (20 nCi),  
to reach 1 ml, final volume. Aliquots were taken at different times and filtered 
through 0.45- m cellulose–ester filters (Millipore), previously treated with 250 mM 
sucrose, 20 mM KCl, 25 mM Tris–HCl (pH 7) and 1 mM IAA. The reaction was 
stopped by filtering and immediate wash using 5 ml of ice-cold 250 mM sucrose, 
20 mM KCl, 25 mM Tris–HCl (pH 7) and 1 mM IAA. The filters were air-dried  
and the remaining radioactivity was measured in a liquid scintillation counter.  
The uptake of 3H-IAA is reported in ‘nmol of [3H]-IAA/mg of protein’.

Whole-mount immunolocalization and lifetime confocal microscopy. Whole-
mount immunological staining on 4-day-old seedlings was done in an Intavis 
robot. Antibodies were used at the following dilutions: rabbit anti-BIP2 (Hsc70), 
1:200 (Stressgen Bioreagents); mouse anti-GFP, 1:600 (Roche); rabbit anti-myc, 
1:600 (Sigma-Aldrich). Anti-rabbit and anti-mouse antibodies conjugated with Cy3 
or fluorescein isothiocyanate (Dianova, Germany) were used at 1:600 dilutions.  
For ER-tracker dye labelling, PIN8 PIN8–GFP seedlings were mounted in water 
with a 1:1,000 dilution of ER-tracker dye (Invitrogen). Brefeldin A treatment for  
2 h was performed by incubation of 4-day-old etiolated seedlings on solid MS 
medium supplemented with brefeldin A (50 M), counterstaining of cell walls  
was achieved by mounting seedling roots in 10 M propidium iodide.
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Quantitative PCR analysis. RNA was extracted with the Plant RNeasy kit 
(Qiagen). Poly(dT) complementary DNA was prepared from flower total RNA. 
Superscript III reverse transcription (Invitrogen) and quantification were done on 
a LightCycler 480 apparatus (Roche Diagnostics) with the SYBR Green I Master kit 
(Roche Diagnostics), according to the manufacturer’s instructions. All individual 
reactions were done in triplicate. Data were analysed as described before40.  
The primers used to quantify gene expression levels are provided in Supplementary 
Table S3.

Light and fluorescent microscopy. For pollen phenotype observations, flowers 
from pin or Col-0 plants were collected to GUS buffer (0.1 M phosphate buffer, 
pH 7.0; 10 mM EDTA, pH 8.0; 0.1% triton X-100) supplemented with 100 ng ml − 1 
DAPI as described41. After 30-min incubation at room temperature in the dark, 
samples were analysed by bright-field and fluorescence microscopy with Nikon 
TE2000-E microscope (objective Nikon CFI Plan Fluor ELWD 10×/0.60, eyepiece 
Nikon CFI 10×/22, intermediate magnification ×1–×1.5; Nikon).

Pollen germination in vitro. Pollens were collected from flowers opened day (day 
0) of Col and pin8-1 plants. Subsequently they were germinated on a germination 
medium on a microscope slide according to Boavida and McCormick42. Pollen 
germination medium was always prepared fresh from 0.5 M stock solutions of  
the main components (5 mM KCl, 0.01% H3BO3, 5 mM CaCl2, 1 mM MgSO4)  
using autoclaved water. Sucrose (10%) was added and pH was adjusted to 7.5  
with NaOH. Low-melting agarose (Amresco, Solon, OH) was added to final 1.5% 
concentration and melted in a microwave oven. Pollen grains from three flowers 
were spread on the surface of 250 l agarose germination pads on microscope 
slides covered by polypropylene foil by inverting the flower with the help of  
tweezers and gently bringing it onto agarose surface. The whole flower was used  
as a ‘brush’ to spread pollen uniformly. The slides were incubated upside down  
in a moisture incubation chamber for 16 h in the dark at 22 °C and 100% humidity. 
The samples were examined by bright-field microscopy using Nikon TE2000-E 
microscope (objective Nikon CFI Plan UW 2×/0.06, eyepiece Nikon CFI 10×/22, 
intermediate magnification ×1–×1.5). The germinating pollen was defined as a  
pollen with a clearly visible pollen tube with length at least 1 diameter of pollen 
grain. The germination was carried out overnight (16 h). The percentage of  
germinated pollen was scored manually from captured image. From each  
microscope slide, five to six individual areas were taken. For NAA pollen  
germination test, 1 M NAA was dissolved in the germination medium to  
100 nM final concentration. 
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