
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

Spring 2015

Recursive tree traversal dependence analysis
Yusheng Weijiang
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Weijiang, Yusheng, "Recursive tree traversal dependence analysis" (2015). Open Access Theses. 628.
https://docs.lib.purdue.edu/open_access_theses/628

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77955284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/628?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F628&utm_medium=PDF&utm_campaign=PDFCoverPages

RECURSIVE TREE TRAVERSAL

DEPENDENCE ANALYSIS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Yusheng Weijiang

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

May 2015

Purdue University

West Lafayette, Indiana

ii

Dedicated to my parents.

iii

ACKNOWLEDGMENTS

Many thanks to Dr. Milind Kulkarni for advising me throughout my research. He

has made my graduate school experience here extremely valuable and helped me get

through the process of research by taking things one step at a time. Also, thanks

to my committee members, Dr. Mithuna Thottethodi and Dr. Vijay Raghunathan,

who o↵ered guidance and support.

I would also like to thank Youngjoon Jo, the person whose work my research is

primarily built upon. He has helped me immensely in understanding and expanding

on his past project to get me to where I am now.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

GLOSSARY . viii

ABSTRACT . ix

1 INTRODUCTION . 1

1.1 Problem Context . 1

1.1.1 Point Blocking . 1

1.2 Thesis Statement . 2

1.2.1 Objectives . 2

1.2.2 Procedures . 4

2 LITERATURE REVIEW . 5

2.1 Analysis for Regular Programs . 5

2.2 Analysis for Irregular Programs . 6

3 BACKGROUND AND MOTIVATION 8

3.1 Loop transformations for array programs 8

3.2 Loop transformations for trees . 10

3.2.1 “Multi callset” traversals . 13

4 POINT BLOCKING LEGALITY . 14

4.1 A conservative approach . 14

4.2 A dependence test for point blocking 15

4.2.1 DAG traversals . 18

4.3 Simplified dependence tests . 18

4.3.1 Aside: Multi callset point blocking 19

5 A SIMPLE LANGUAGE FOR TREE TRAVERSALS 21

v

Page

5.1 Syntax and assumptions . 21

5.2 Concrete semantics . 24

6 PATH-INSENSITIVE DEPENDENCE ANALYSIS 27

6.1 Collecting rooted access paths . 27

6.2 Identifying conflicting access expressions 31

6.3 Applying the dependence test . 32

6.4 Examples . 33

7 CONDITIONAL DEPENDENCE ANALYSIS 35

7.1 Attaching conditions to access paths 36

7.2 Using conditions to disprove dependences 39

7.3 Example . 41

8 IMPLEMENTATION AND EVALUATION 43

8.1 Analysis implementation . 43

8.2 Benchmarks . 44

8.2.1 Benchmarks discussion . 49

9 FUTURE WORK AND CONCLUSIONS 51

9.1 Future work . 51

9.2 Conclusions . 51

REFERENCES . 53

A CONCRETE SEMANTICS FOR SPECIFICATION LANGUAGE 58

vi

LIST OF TABLES

Table Page

8.1 Analysis results, runtimes in seconds (with 95% confidence intervals). . 43

8.2 Speedups of transformed benchmarks (with 95% confidence intervals). . 48

vii

LIST OF FIGURES

Figure Page

1.1 BST insertion, unblocked and blocked 3

3.1 Point blocking . 11

5.1 Recursive method signature . 22

5.2 Frame program . 22

5.3 Node and point structures . 22

5.4 Language for defining recursive tree traversals 23

5.5 Recursive method body for quadtree traversal 26

5.6 Recursive method body for BST insertion 26

6.1 Abstract semantics to collect access expressions 29

7.1 Logical fragment for path conditions 36

7.2 Abstract semantics to collect conditional access expressions 37

7.3 Conditional access paths in BST insertion 39

8.1 2D Barnes-Hut Tree Building . 45

1 Concrete semantics for traversal . 57

viii

GLOSSARY

Point a data structure that represents a single traversal of a tree struc-

ture, often containing local variables used within the traversal

Block a set of points in point blocking, containing local information for

each traversal

ix

ABSTRACT

Weijiang, Yusheng M.S.E.C.E., Purdue University, May 2015. Recursive Tree Traver-
sal Dependence Analysis. Major Professor: Milind Kulkarni.

While there has been much work done on analyzing and transforming regular

programs that operate over linear arrays and dense matrices, comparatively little has

been done to try to carry these optimizations over to programs that operate over heap-

based data structures using pointers. Previous work has shown that point blocking, a

technique similar to loop tiling in regular programs, can help increase the temporal

locality of repeated tree traversals. Point blocking, however, has only been shown

to work on tree traversals where each traversal is fully independent and would allow

parallelization, greatly limiting the types of applications that this transformation

could be applied to.

The purpose of this study is to develop a new framework for analyzing recursive

methods that perform traversals over trees, called tree dependence analysis. This

analysis translates dependence analysis techniques for regular programs to the irreg-

ular space, identifying the structure of dependences within a recursive method that

traverses trees. In this study, a dependence test that exploits the dependence struc-

ture of such programs is developed, and is shown to be able to prove the legality of

several locality- and parallelism-enhancing transformations, including point blocking.

In addition, the analysis is extended with a novel path-dependent, conditional analy-

sis to refine the dependence test and prove the legality of transformations for a wider

range of algorithms. These analyses are then used to show that several common

algorithms that manipulate trees recursively are amenable to several locality- and

parallelism-enhancing transformations. This work shows that classical dependence

analysis techniques, which have largely been confined to nested loops over array data

x

structures, can be extended and translated to work for complex, recursive programs

that operate over pointer-based data structures.

1

1. INTRODUCTION

1.1 Problem Context

Over the past three decades, a tremendous number of loop transformations, such

as loop interchange, fusion, and tiling, have been designed to improve locality in

programs that use loop nests to manipulate arrays [1]. A number of powerful depen-

dence analysis techniques and frameworks have been developed to determine when

applying these various transformations to regular programs—array programs with

a�ne loop bounds and index expressions—is legal [2–9]. While there have been many

attempts to extend these transformations to handle more sophisticated programs, in-

cluding those that have non-a�ne loop bounds and index expressions [10–12], these

tools have largely been confined to the class of array programs using nested loops.

However, these conditions are quite restrictive on the types of programs that can

be optimized using these transformations, and many programs, notably ones that

allocate data structures on the heap, can not be analyzed using these frameworks.

One such class of programs that prior analyses cannot handle are programs that

perform traversals on pointer-based tree structures. Pointer-based tree structures are

commonly used for many applications, such as the Barnes-Hut n-body simulation and

binary search trees. These structures are often accessed through a series of recursive

traversals, which is a pattern that admits a high degree of possible parallelism.

1.1.1 Point Blocking

In recent work, Jo and Kulkarni [13] developed an optimization called point block-

ing that performs loop tiling–like transformations not on nested loops, but instead on

repeated recursive traversals of pointer-based tree structures. Point blocking works

2

by grouping together multiple traversals of a tree into a block and performing a single

traversal of the tree. Within each block, each of the original traversals (called points),

performs all required computation while visiting a particular node, then the whole

block moves forward to the next node. In essence, the computations performed by

multiple traversals are reordered to promote locality in the tree.

Unfortunately, while this transformation resembles loop tiling (see Section 3.2),

existing dependence analyses cannot be applied, as point blocking targets pointer-

based, recursive programs. Instead, Jo and Kulkarni establish the legality of their

transformations through a simple, su�cient condition: their transformations can be

applied when the traversals over the tree structure are independent of each other.

This condition can be established using existing shape analysis techniques [14–16].

However, this su�cient condition misses many optimization opportunities. Con-

sider inserting a set of points into a binary search tree, as shown in Figure 1.1(a).

Point blocking can be correctly applied to the code, as shown in Figure 1.1(b), even

though there is clearly a dependence from one traversal to the next, as each insertion

changes the tree. The reason for this is that if multiple points in a block travel down

the same path of the tree, and the first point in the block inserts a node into the tree,

subsequent points in the block see the new node that was inserted, as they would have

in the original code. This means that so long as the points reach the empty node in

the same order, point blocking preserves the dependence. This pattern of behavior

is quite common, arising in many top-down tree building algorithms. Handling such

cases requires a more sophisticated notion of what kinds of dependences preclude

point blocking.

1.2 Thesis Statement

1.2.1 Objectives

During this research, the main objective was to develop a tree dependence anal-

ysis with which to represent and analyze the dependences within a pointer-based

3

(a) BST insertion code (b) Blocked BST code

Fig. 1.1.: BST insertion, unblocked and blocked

tree program. Analogously to array dependence analyses, which allow complex loop

transformations to be performed even if there are loop-carried dependences, a tree

dependence analysis must provide enough information to allow restructuring trans-

formations like point blocking to be performed even in the presence of dependences

between traversals. This work serves to extend many array dependence and optimiza-

tion techniques to the realm of pointer-based data structures.

4

1.2.2 Procedures

In creating the analysis framework, a step-by-step development approach was

followed. The following tasks were accomplished as part of the research:

• Creating a novel dependence test that can prove the legality of point block-

ing even in the face of complex dependences (Section 4), and a proof of the

soundness of point blocking under this test.

• Creating an analysis that applies this dependence test to tree-traversal programs

(Section 6), particularly one that reveals the structure of the dependences with

respect to the control flow of the program.

• Refining the dependence analysis using path conditions to prove that certain de-

pendences that appear to exist can never arise during an execution (Section 7).

• Performing experimental evaluation showing that this analysis enables signif-

icant performance improvements from three di↵erent transformations: point

blocking, traversal splicing [17], and a transformation that automatically derives

parallel tree construction implementations from their sequential specification.

These tests are then used to prove the legality of point blocking for numerous

examples, including a complex oct-tree building algorithm extracted from Barnes-

Hut (Section 8).

5

2. LITERATURE REVIEW

There exists a lot of work on both program logics for heap data structures as well as

similar analyses and transformations for regular programs. Some works that focus on

analyses and transformations for both regular programs and irregular programs will

be discussed.

2.1 Analysis for Regular Programs

The past two decades have seen a lot of work done on analyzing and transform-

ing regular programs. These programs operate over dense matrices and arrays using

a�ne subscripts. By analyzing the patterns of dependences in loops that operate

over matrices and arrays, it is possible to find e↵ective transformations for these pro-

grams that give locality benefits and allow parallelization [1]. However, due to these

analyses relying on a�ne subscripts to determine dependence information, they can-

not be directly applied to irregular programs. One improvement on these restrictive

properties is to use constraints containing uninterpreted function symbols to represent

non-linear expressions [11]. While this helps improve the overly conservative model

of analyzing only a�ne subscripts, it is still aimed at regular loop algorithms, and

not recursive heap traversals.

Loop chaining is an abstraction of regular loops in order to group together loops

that share data as a chain [18]. This leads to being able to find subsets of loops

that can be executed in parallel to increase data reuse and locality while limiting

the amount of communication that needs to happen. [19] extends this idea to work

on loops where dependences are caused by indirect references, using a full sparse

tiling algorithm with loop chaining. Applying tiling to sparse matrix approaches

is another way of trying to apply regular loop transformations to programs beyond

6

dense matrices [20], but this requires either run-time information about the program,

or in the loop chaining case, programmers need to include a data access specification.

This specification is used to express data dependences in the program, removing the

need for separate dependence analysis, but this forces programmers to express the

required dependence information themselves.

The detection and transformation of regular loop computations to improve data

reuse has recently been used to optimize stencil computations [21]. Stencil compu-

tations are a class of computation pattern where weighted sums of values at a set

of neighboring points are computed over a grid. For higher-order stencil computa-

tions, there is a lot of arithmetic computation done over a small data set. With no

computation reordering, stencils exhibit many of the same issues with data reuse as

tree traversals do. However, high dimension stencils tend to slow down due to poor

register usage, while tree traversals may operate ine�ciently due to poor cache usage.

Polyhedral frameworks have been previously used as an abstraction to transform

regular programs by analyzing their iteration space, allowing the transformations to

be free from the original loop structure [22]. However, these types of analyses are

very conservative when dealing with non-a�ne loop bounds or subscripts. There has

been work done on taking these types of polyhedral frameworks and applying them

to programs that use non-a�ne loop bounds or subscripts [12]. This allows iteration

spaces to be defined for non-a�ne loop bounds, enabling non-a�ne transformations

to be done on them. The analysis, however, requires run-time inspection and cannot

be done during compile time.

2.2 Analysis for Irregular Programs

In order to verify that the proposed transformations work for irregular programs,

analysis must be done on the shape of the programs. Shape analysis has been used

to verify particular program properties in the past [16]. There has also been prior

work on parallelizing programs based on shape analysis information to determine

7

what kind of irregular data structure is used (a tree, DAG, or arbitrary graph) [23].

Unfortunately, these analyses do not give information on where data accesses intersect

within a traversal, which is needed to perform transformations on code.

To apply transformations like point blocking, any possibly conflicting access paths

in a recursive method must be verified to never occur based on path invalidation.

Recent work has laid out a method for recursively proving properties of inductive

trees [24]. This uses an extension of first-order logic with recursive definitions called

DRYAD. DRYAD allows finding simple recursive proofs of properties using formula

abstraction and SMT solvers. In addition, ways to find conflicts in accesses of data

structures have been laid out in [10,15]. However, these two are aimed at being able

to tell that there is a dependence in the data structure accesses, and don’t go into

more detail with regards to conflicts coming from di↵erent nodes in a tree.

Previous work has used attribute grammars [25] in order to create and tune par-

allel tree traversals [26]. This allows a program to be declaratively specified as an

attribute grammar, then synthesized into a set of traversals. Various ways to evaluate

parallel attributes are discussed in [27]. Attribute grammars make the dependences

that we want to focus on explicit. Using this information, it is possible to perform

transformations that fuse multiple traversals. Because the dependences in accesses

are explicit, they are easier to work with. Attribute grammars are however a restric-

tive programming model, which means more work must be done in order to gain the

benefits of these kinds of transformations.

8

3. BACKGROUND AND MOTIVATION

This chapter covers the necessary background material necessary for the thesis. It

first discusses the theory of loop transformations for array programs, specifically loop

interchange, which enables loop tiling. Then it summarizes recent work by Jo and

Kulkarni that develops analogous tiling transformations for trees. This discussion

lays the foundation for Section 4, which defines a dependence test for tree programs.

3.1 Loop transformations for array programs

For the past three decades, there has been substantial interest in determining the

structure of dependences in programs that manipulate arrays by looping over them,

so that locality-enhancing restructuring transformations can be applied. Such pro-

grams are common in scientific computing, where many linear algebra and stencil

routines are most naturally formulated as array programs. Moreover, because the

arrays that these programs manipulate often enjoy substantial reuse (consider ma-

trix multiplication, which performs O(n3) computation over O(n2) data), there are

fruitful opportunities for transformations of these programs to improve locality by

bringing uses of the same piece of data closer together in time [7]. Perhaps the most

popular locality-enhancing transformation for loops over arrays is loop tiling, which

transforms a double-nested loop into a triple- (or quadruple-) nested loop [5] , as in

the following abstract example:

for (i := 0; i < N; i++)

for (j := 0; j < N; j++)

A[f_1(i)][f_2(j)] = ...; ... = A[g_1(i)][g_2(j)]

}

9

Becomes:

for (ii := 0; ii < N; ii += B)

for (j := 0; j < N; j++)

for (i := ii; i < ii + B; i++)

A[f_1(i)][f_2(j)] = ...; ... = A[g_1(i)][g_2(j)]

}

Research in loop transformations has largely concerned itself with whether loop tiling

is legal and profitable [3,7,9]. For this transformation to work at all, it must be legal.

The legality of tiling boils down to whether loop interchange is legal [8]; if the inner

and outer loop of the above example can be swapped, then loop tiling is legal.

Determining whether loop interchange is legal requires understanding how inter-

change a↵ects the behavior of the loop. Conceptually, loop interchange is a reschedul-

ing of the loop iterations. The original loop consists of an iteration space—dynamic

instances of the loop body, each with a di↵erent value of i and j—that is totally or-

dered: (i1, j1) � (i2, j2) , (i1 < i2) _ ((i1 = i2) ^ (j1 < j2)). Loop interchange moves

the j loop to the outside, producing a di↵erent total ordering of the same iteration

space: (i1, j1) � (i2, j2) , (j1 < j2) _ ((j1 = j2) ^ (i1 < i2)).

When is this rescheduling legal? Answering this question requires understanding

the dependence structure of the loop [2]. If, in the original schedule, one iteration of

the loop, (i1, j1), writes to a location that a later iteration, (i2, j2) reads from, the

new schedule must not exchange the order of these two iterations, which would result

in the second iteration reading the wrong value. Clearly, if there are no dependences

between di↵erent loop iterations, interchange is legal. However, even if dependences

exist, they might not be a↵ected by the transformation. For example, suppose there

were a dependence in the original schedule between the pairs of iterations (i, j) and

(i + 1, j + 1). Even in the interchanged loop, the (i, j) iteration will precede the

10

(i + 1, j + 1) iteration, preserving the dependence. The following dependence test

captures the conditions under which loop interchange is legal.1

6 9 i1, i2, j1, j2 . f1(i1) = g1(i2) ^ f2(j1) = g2(j2) ^

(i1 < i2 ^ j1 > j2)
(3.1)

The first line of this test captures whether a pair of iterations access the same location,

while the second line of the test captures whether those iterations will execute in a

di↵erent order after interchange.

Sophisticated dependence analyses such as the Omega test [6] and compilers such

as PLuTo [4] use integer linear programming–based techniques to prove that inter-

change is legal. These analyses rely on the fact that in most array programs, the

indexing expressions f1, f2, g1, and g2 are a�ne, and hence amenable to ILP. As

a result, a long standing open problem has been whether similar tiling techniques

exist for non-a�ne, non-loop-based programs, and how to prove the legality of these

techniques.

3.2 Loop transformations for trees

In recent work, Jo and Kulkarni [13] developed a locality-enhancing transforma-

tion called point blocking for programs that repeatedly traverse tree data structures.

Figure 3.1(c) shows abstracted pseudocode capturing the general structure of these

algorithms. As each point traverses the same tree, there is data reuse in the algo-

rithm, and an opportunity to exploit locality if multiple points’ operations on the

same data can be brought closer together.

Point blocking exploits locality by grouping multiple points into blocks and moving

the blocks through the trees in lockstep [13]. Figure 3.1(e) shows this transformed

code. Instead of the recursive method operating on a single point, it operates on

blocks of points. After each point in the block interacts with a particular node, those

1In a full dependence test, there are additional constraints to ensure that both iterations fall within
the bounds of the loop nest; these constraints are ignored for simplicity.

11

A

B

C

E

D F G

(a) Example tree for

traversal

Points

Tr
ee

 N
od

es

A

B

C

D

E

F

G

1 2 3 4

(b) Iteration space before

point blocking

(c) Pseudocode for traversal

Points

Tr
ee

 N
od

es

A

B

C

D

E

F

G

1 2 3 4

(d) Iteration space after

point blocking

(e) Blocked traversal

Fig. 3.1.: Point blocking

12

points that want to continue traversal are added to a “next” block, which continues

down the tree; when the points finish visiting the subtree, all points resume their

traversal. If a block is ever empty, that means no points want to visit a particular

node (or subtree), so the traversal is truncated. In other words, a group of points

are placed into a block, and the block traverses the tree, visiting all nodes in the tree

that any point in the block would have visited; at each tree node, any points in the

block that would have interacted with the tree node in the original code do so in the

original order.

The key insight behind point blocking is that the tree-traversal algorithm can be

abstracted as a loop nest, with the point loop as the outer loop and the recursive

traversal as the inner “loop.” Each “iteration” in this abstraction consists of the

recursive method body being executed by a particular point at a particular node of

the tree; the recursion and pointer-chasing merely serve to determine the order in

which the nodes are visited.

Figure 3.1(b) shows an example iteration space and total order for a series of

recursive traversals of the tree shown in Figure 3.1(a). The x-axis represents the

points that traverse the tree, while the y-axis represents the nodes visited by the

point. Note that some of the iterations are greyed out, and the traversal skips past

them. A traversal may not visit the entire tree—it may be truncated and skip visiting

a subtree. This is the source of “irregularity” in tree programs; array programs have

more “regular,” predictable iteration spaces.

Given this iteration space abstraction, Jo and Kulkarni describe a “loop inter-

change” transformation, with the total order shown in Figure 3.1(d). This has an

analogous reordering e↵ect as loop interchange in the regular iteration spaces pro-

duced by array programs; in the interchanged code, every point visits a particular

node in the tree before moving on to the next node in the tree. Point blocking is

a combination of strip mining the point loop (breaking the point loop into a series

of smaller loops that operate over subsets of points) and then interchanging the in-

13

ner point loop with the traversal loop. This is directly analogous to strip mining +

interchange, a common technique for tiling array programs [8].

3.2.1 “Multi callset” traversals

In the examples of Figure 3.1, every point traverses the tree in the same order—

the only di↵erences between traversals arise because points may skip entire subtrees

during their traversal. In other words, there is a single linearization of the nodes of

the tree, and each point’s traversal is some subsequence of that linearization. Hence,

when points are placed into a block, the order that the block traverses the tree is

the same as the traversal orders of any of the individual points. These are known as

“single callset” traversals. However, some algorithms, such as nearest neighbor, have

point-dependent traversal orders, where di↵erent points traverse the tree in di↵erent

orders; these are known as “multi callset” traversals.

In this work, only single call set traversal algorithms are addressed, as they are

the only ones that admit a sophisticated dependence test. Multi callset algorithms

can still be analyzed using a test for independence, but a thorough dependence test

for these algorithms cannot be done. Section 4.3.1 elucidates the reasons why there

can be no good dependence test for multicallset traversals.

14

4. POINT BLOCKING LEGALITY

This chapter lays out a dependence test for point blocking, analogous to the depen-

dence test for array programs in Equation 3.1. For brevity, “iteration” is used to refer

to the operation(s) performed by a single point at a single tree node. As previously

discussed, all traversals are assumed to be single callset.

4.1 A conservative approach

As described in the introduction, Jo and Kulkarni set forth conservative criteria for

point blocking legality [13]. In a repeated tree traversal, if there are no dependences

between iterations at all, then any reordering of iterations (including the one imposed

by point blocking) would be legal. However, in all of the applications Jo and Kulkarni

examined, tree traversals are performed to compute reductions over the tree: as a

point traverses the tree, it accumulates some value (a force, a correlation count, its

nearest neighbor, etc.), often in non-commutative ways. Hence, there are clearly

dependences between iterations that point “up” in the iteration space.

Jo and Kulkarni [13] noted that despite the rescheduling imposed by point block-

ing, each point still traversed the tree in the same order as before. Hence, any

dependences carried over the “traversal loop” but not over the “point loop” would

be preserved. Thus, they applied point blocking whenever the enclosing point loop

was parallelizable, ensuring that any dependences were only carried across the traver-

sal loop. However, this criterion is too conservative. Not all point loop–carried

dependences are violated by point blocking, as in the BST-insertion example from

Figure 1.1. Note that although it appears that di↵erent “points” traverse the BST

di↵erently, because each point only traverses from the root of the tree to a leaf, each

traversal is still a subsequence of a single linearized traversal, meaning this is a single

15

callset algorithm. Point blocking can be correctly applied to the code, as shown in

Figure 1.1(b), even though there is clearly a point loop–carried dependence. The rea-

son for this is that if multiple points in a block travel down the same path of the tree,

and the first point in the block inserts a node into the tree, subsequent points in the

block see then new node that was inserted, as they would have in the original code.

The loop-carried dependence is preserved! This pattern of behavior is quite common,

arising in top-down tree building algorithms for building kd-trees and Barnes-Hut

octtrees. Handling such cases requires a more sophisticated notion of what kinds of

dependences preclude point blocking.

4.2 A dependence test for point blocking

To develop a more accurate dependence test for tree codes, consider the two clauses

of the dependence test for array programs in Equation 3.1. The first clause picks out

the existence of iterations that have a dependence. If only that clause were in the

dependence test, then any loop-carried dependence would preclude loop interchange.

It is the second clause of the test (on the second line) that provides the precision: a

loop carried dependence is only a problem if the second iteration (such as the (i2, j2)

iteration) encounters the dependence earlier in the j loop than the first iteration.

This situation means that when the j loop is on the outside, what used to be the

second iteration will actually execute earlier.

The iteration space diagrams of Figures 3.1(b) and 3.1(d) give us some insight

into what an analogous dependence test for point blocking might look like. Each

“iteration” in a traversal code is identified by a point/node pair: (p, n). Suppose

there is a dependence between the traversal executed by point p1 and a later point p2:

p1 accesses a location in the tree when it is visiting node n1, and p2 accesses the same

location in the tree when it is visiting node n2, with at least one of these accesses

being a write. This dependence is preserved by point blocking if n2 is the same as n1

16

(both points are at the same node when the dependence occurs) or n2 is later in the

traversal order than n1.

To formalize this dependence test, we label each statement that reads or writes a

location in the recursive method body as s1, s2, Because the particular location

read or written by a statement depends on where in the tree the recursive method

is (consider that the code in Figure 1.1(a) reads from nodes in the tree, but the

particular nodes being read depend on the argument n), the location being accessed

by statement i during iteration (p, n) is specified as s
i

(p, n).

Making a recursive call requires accessing the arguments to the recursive call.

Because point blocking defers making recursive calls until after all points in the block

execute their method body, it makes sense to treat the read(s) performed as part of

the method invocation as part of the next iteration performed by the point. This

is easily handled by assuming there are dummy statements at the beginning of the

method body that read the arguments to the method.

Two dynamic statements, s
i

(p
i

, n
i

) and s
j

(p
j

, n
j

) interfere (written s
i

(p
i

, n
i

) on

s
j

(p
j

, n
j

)) when they access the same location and one of the statements is a write.

Interference between two dynamic statements, is defined as follows:

s
i

(p
i

, n
i

) on s
j

(p
j

, n
j

) ⌘

s
i

(p
i

, n
i

) = s
j

(p
j

, n
j

) ^ one of the statements is a write

Note that just because a statement exists in a recursive method body does not mean

that every point will execute that statement at every node of its traversal. Thus, an

execution-based interference operator is defined, on
e

, which adds the condition that

statement s
i

executes when point p
i

is visiting node n
i

.

From here, a dependence test determining whether or not point blocking is legal

can be created; note the similarity to Equation 3.1:

6 9 p
i

, p
j

, n
i

, n
j

, s
i

, s
j

. s
i

(p
i

, n
i

) on
e

s
j

(p
j

, n
j

) ^

(p
i

� p
j

^ n
i

� n
j

)
(4.1)

17

Theorem 4.2.1 If Equation 4.1 is satisfied for a recursive traversal program, then

applying point blocking to the program will not break any dependences.

Proof To prove this, proceed by contrapositive: assume that applying point block-

ing to the program breaks dependences, and then show that the dependence test must

be violated.

For a dependence to be broken, a dependence must first exist. Hence, let (p
i

, n
i

)

and (p
j

, n
j

) be the two dependent iterations, with (p
i

, n
i

) � (p
j

, n
j

). Therefore,

s
i

(p
i

, n
i

) on

e

s
j

(p
j

, n
j

). In the original program, a point’s traversal is completed

before moving on to the next point. Hence, p
i

� p
j

. Note that if, after applying point

blocking, p
i

and p
j

are placed in di↵erent blocks, this dependence will not be broken:

the earlier block will complete its traversal before the later block starts, preserving the

ordering of the iterations. This means p
i

and p
j

must be in the same block. Further,

for the dependence to be violated, (p
j

, n
j

) � (p
i

, n
i

) must be true after applying point

blocking.

There are three possible cases for the ordering of n
i

and n
j

:

n
i

� n
j

: In this case, n
i

appears before n
j

in the original program’s traversal order.

Recall that the block traverses the tree in the same order as the original points

would have. Hence, the block will visit n
i

before it visits n
j

in the transformed

code, preserving the dependence.

n
i

= n
j

: In this case, the points access the same location when they are at the same

node in the tree. In the point blocked code, each point in a block executes

its entire method body before moving on to the next point, so p
i

performs its

access before p
j

, preserving the dependence.

n
i

� n
j

: In this case, n
j

precedes n
i

in the traversal order, so the block will visit

n
j

before it visits n
i

, and (p
j

, n
j

) will occur before (p
i

, n
i

), violating the depen-

dence.

18

Since the dependence is assumed to be violated, the third case must obtain. Hence,

there are two iterations, (p
i

, n
i

) and (p
j

, n
j

), and two statements s
i

and s
j

such that:

s
i

(p
i

, n
i

) on
e

s
j

(p
j

, n
j

), p
i

� p
j

and n
i

� n
j

, violating the dependence test.

4.2.1 DAG traversals

Point blocking can be applicable not only to traversals of trees, but to traversals of

any recursive data structure, including DAGs and general graphs [13]. Note that the

dependence test in Equation 4.1 is still valid for traversals of non-tree data structures.

However, for DAGs and general graphs, the same node may be visited by a traversal

more than once, so the � relation between nodes in a traversal no longer obeys any

sort of order. Because of the di�culty of determining the relation between two nodes

in a DAG or graph traversal, if these analyses encounter a traversal of a data structure

that cannot be proven to be a tree, then only Jo and Kulkarni’s independence test

for legality may be applied.

4.3 Simplified dependence tests

The dependence test of Equation 4.1 is di�cult to apply. First, it may be hard

to tell exactly when a statement might execute, due to complex, data-dependent

control flow in the method body—not to mention that whether a particular iteration

executes in the first place often depends on the structure of the tree, which is also

input-dependent. Second, telling whether one node of the tree precedes another in

the traversal order can also be tricky. Note, however, that it is possible to simplify the

dependence test in various ways while preserving soundness, as long as the resulting

dependence test is at least as strong. In particular, the following dependence test is

stronger than that of Equation 4.1:

8 p
i

, p
j

, n
i

, n
j

. (p
i

� p
j

) !

(9s
i

, s
j

. s
i

(p
i

, n
i

) on⇤ sj(pj, nj

)) !

(n
i

�
a

n
j

)

(4.2)

19

where on⇤ represents any interference test weaker than on

e

, and n
i

�
a

n
j

is the ancestry

relationship, and is true i↵ n
i

= n
j

or n
j

is a descendant of n
i

in the tree. Restated,

the dependence test says that the transformation is safe when, for all iterations which

are from two di↵erent points’ traversals, if the two iterations interfere, the node where

the earlier point’s iteration occurs is an ancestor of the node where the later point’s

iteration occurs.

4.3.1 Aside: Multi callset point blocking

While we have focused on single callset applications, where all points’ traversals

are consistent with some canonical traversal order, Jo and Kulkarni developed versions

of point blocking that apply to multi callset algorithms. In multi callset algorithms,

there are multiple possible orders that a point could visit a node’s children. For

example, in a nearest neighbor search, points select an order to traverse the tree

based on which subtree is more likely to contain the nearest neighbor. Thus, when

two points reach a particular node in the tree, one point might visit the left child

before the right, and the other might take the opposite order.

To handle such situations, Jo and Kulkarni’s method creates a separate “next”

block for each possible order of visiting a node’s children. When processing a block

of points, each point is added to the next block associated with the traversal order it

chooses. Then, the two blocks are processed in sequence. The block of points visiting

the right child before the left executes, followed by the block of points visiting the

left child before the right.

The key issue here is that with multiple possible traversal orders, it is no longer

possible to determine which points will visit which nodes first. In particular, consider

two dependent iterations, (p1, n1) and (p2, n2), where point p1 performs its traversal

before point p2. In the point blocked code, which iteration is executed before the other

depends on the particular traversals taken by p1 and p2, which is often statically

unknowable. In contrast, in the single callset case, the ordering only depends on

20

where n1 and n2 are in the tree. Hence, multi callset algorithms can only safely be

transformed if there are no dependences between traversals. Because of this, only

single callset algorithms are analyzed.

21

5. A SIMPLE LANGUAGE FOR TREE TRAVERSALS

To help formalize the discussion of our tree dependence analysis, a simple language is

used to write recursive tree traversal algorithms. Because the analysis concerns itself

with the behavior of the recursive method itself, rather than the code that invokes

the method (much as array dependence analyses primarily concern themselves with

the body of the loop in question, rather than the surrounding code), the language is

used to describe the body of a recursive method that traverses a tree, with a signature

shown in Figure 5.1. The recursive method is invoked from a frame program shown

in Figure 5.2, which repeatedly traverses the tree for each of a (fixed, finite) set of

points. Note that the method takes two arguments: root represents the current tree

node being accessed by the method, while point represents the “point” performing

the current traversal.

The points that traverse the tree and the nodes that constitute the tree are struc-

tures, each consisting of a number of fields. Tree node structures have one or more

primitive fields, f
p

2 F
p

(holding values at each tree node), and one or more recursive

fields, f
r

2 F
r

(references to their children in the tree), while point structures only

have primitive fields. Figure 5.3 defines these structures for a program.

5.1 Syntax and assumptions

Figure 5.4 describes the syntax of recursive methods that traverse trees. Node

references are local variables that can point to di↵erent nodes in the tree. There

is a distinguished node reference, root, which names the reference passed in to the

recursive method. Finally, there is a distinguished variable, point, that refers to the

particular point structure passed in to the recursive method. For a given traversal of

22

void r e cu r s e (root , po int)

Fig. 5.1.: Recursive method signature

Node t r e e = /⇤ root o f t r e e s t r u c tu r e ⇤/

Set<Point> po in t s = /⇤ point s e t ⇤/

fo r each (Point p : p)

r e cu r s e (t ree , p) ;

Fig. 5.2.: Frame program

f
p

2 F
p

(Primitive fields) f
r

2 F
r

(Recursive fields)

Point structure: {f ⇤
p

} Node structure: {f ⇤
p

f ⇤
r

}

Fig. 5.3.: Node and point structures

the tree, this point reference is fixed—the same reference is passed to each recursive

call.

Note that a few features simplify reasoning about the behavior of these algorithms.

First, there are no loops in the method bodies. While some programs (such as Barnes-

Hut) may loop over the children of a node, these loops can be statically unrolled to

straight-line code. Second, once a path through the method body reaches the recursive

calls (c), it performs one or more recursive calls then returns, ensuring that all tree

traversals are pre-order.

The only means of manipulating the tree structure in a recursive method is by

nullifying a subtree (by setting a recursive field to null), or by creating a new subtree

(by setting a recursive field to point to a new tree node using alloc). Hence, if

the traversal is called on a tree, after the traversal completes the resulting structure

remains a tree. Proving that the initial structure is a tree can be done through

shape analysis techniques Assume that programs never dereference null fields, and

23

fp 2 Fp (Primitive fields) fr 2 Fr (Recursive fields)

Point structure: {f⇤
p } Node structure: {f⇤

p f

⇤
r }

v 2 Values ::= Z l 2 Locations ::= L [null

n 2 NodeRefs ::= root | n1 | n2 | . . .

� ::= + | � | ⇥ | ÷

� ::=< | > | = | 6= | � |

s 2 Stmts ::= skip | return | s; s | c; return

| if bexp then s else s

| n := n | n := n.fr | n.fr := null | n.fr := alloc

| n.fp := e | point.fp := e

c 2 Calls ::= recurse (root.fr,point) | c; c

e 2 Exprs ::= n.fp | point.fp | e� e | v

bexp 2 BExprs ::= n.fr = null | n.fr 6= null | e� e

p 2 Body ::= s; return

Fig. 5.4.: Language for defining recursive tree traversals

24

that programs initialize all fields of newly-allocated tree nodes before accessing them.

In addition, any local variable or node reference is only defined once along any path

through the program.

Finally, assume that the recursive method bodies are single callset (see Sec-

tion 3.2), ensuring a single, canonical traversal order. More formally, each straight-line

sequence of recursive calls that occurs in the recursive method body induces a partial

order on the recursive fields of root. If all of those partial orders are consistent with

each other, the program is single callset. 1

Example programs Figure 5.5 shows how a quadtree traversal that occasionally

updates a value at a node can be expressed in the simple language. Figure 5.6 shows

how the BST insertion example from Figure 1.1 can be expressed.

5.2 Concrete semantics

The semantics for programs written in this language are defined in terms of the

semantics of a particular tree traversal (the semantics of a single iteration of the

frame program’s loop). A traversal operates over a heap, h, that contains a set of

cells representing tree nodes. Each tree node’s primitive fields map to values, while

its recursive fields map to other heap locations or null. A subset of the tree nodes

are linked together through their recursive fields to form a tree rooted at tree in the

frame program. The heap also contains a finite set of point structures.

During the execution of a traversal, a store � maps references (including root

and point) to heap locations. The program state contains a return value, ⇢, that

tracks whether the method is supposed to return. Hence, the evaluation relation for

statements and calls is: hs, �, h, ⇢i ! h�0, h0, ⇢0i and the evaluation relation for

expressions is: hs, �, hi ! v.

1In the special case where the call sequences access disjoint sets of recursive fields, point blocking
can be applied directly as presented in Jo and Kulkarni [13]. If the sequences are not disjoint, point
blocking can still be applied, but Jo and Kulkarni’s method will not preserve point ordering.

25

The formal semantics can be found in Appendix A. These semantics are straight-

forward, with variable uses and definitions looking up heap locations in the store

and changing the mapping, respectively, and field dereferences of points and nodes

accessing the heap as expected. The only non-standard aspect is the use of ⇢: once

an execution path encounters return, ⇢ is set to T, and subsequent statements along

the path do not modify the store or heap.

The state at the beginning of a traversal is determined by the invocation of recurse

by the frame program: hp, �[root 7! tree,point 7! p], h, Fi, where p is a reference

to the current point performing the traversal, and root starts out mapped to tree,

the root of the tree structure (which resides in the heap). Assume that the tree

structure has been correctly initialized prior to beginning traversal. All other local

variables are initialized to 0 or null as appropriate.

26

1. root.v := root.v + 1;

2. if point.v = root.v

3. return

4. else skip

5. if root.leaf = 1

6. return

7. else skip

8. recurse (root.c1,point); recurse (root.c2,point);

9. recurse (root.c3,point); recurse (root.c4,point); return

Fig. 5.5.: Recursive method body for quadtree traversal

1. if root.v = �1

2. root.v := point.v; return

3. else

4. if root.v < point.v

5. if root.l = null

6. root.l = alloc; n1 := root.l; n1.v := �1

7. else skip

8. recurse (root.l,point); return

9. else

10. if root.r = null

11. root.r = alloc; n1 := root.r; n1.v := �1

12. else skip

13. recurse (root.r,point); return

Fig. 5.6.: Recursive method body for BST insertion

27

6. PATH-INSENSITIVE DEPENDENCE ANALYSIS

The first and most straightforward approach to dependence testing is a path insen-

sitive analysis that assumes any statement in the method body might execute. This

analysis proceeds in three steps:

1. Extracting the rooted access paths of every read and write performed in the tree.

This involves associating every read and write to a field of a node in the method

body with a field that can be reached through a series of accesses starting from

root.

2. Identifying conflicting access paths. This involves determining whether, for two

access expressions, at least one of which performs a write, there exist two distinct

nodes in the tree where if the first access path were rooted at the first node, and

the second access path were rooted at the second, the two paths would refer to

the same node.

3. Determining whether any conflicting access paths imply a possible dependence

that precludes point blocking.

If step 3 yields no problematic accesses, then point blocking is legal. Each of these

steps are now described in more detail.

6.1 Collecting rooted access paths

First, reads and writes to tree nodes in the heap are transformed into reads

or writes of rooted access paths. This transforms any read or write to tree nodes

in the heap into reads or writes of access paths. Access paths are elements of

the regular set A = root(.f
r

)⇤ and primitive access paths are members of the set

28

A
p

= root(.f
r

)⇤.(f
p

| ◆). This allows reasoning about the locations being read and

written to by the recursive method relative to the current iteration (i.e., the current

values of root and point). The special field ◆ allows us to tell when the node itself is

being read from or written to. Because only accesses to locations within tree nodes

can overlap between recursive calls, only these are used when looking for dependences.

In the simple language, the point structures and locals accessed by each traversal are

disjoint so they cannot induce any cross-traversal dependences.

To collect the access paths, an abstract interpretation [28] is used. Intuitively,

the abstract interpretation executes every path through the recursive method body,

determining what (sets of) nodes each node reference can refer to, and associating

with each read and write of a tree node field an access path starting from root. The

analysis isvloosely based on Wiedermann and Cook’s [29] approach to identifying

paths traversed in object-relational databases.

The abstract store, �̂, maps local variables, primitive fields of point, and primitive

access paths to P(Z [{alloc,null} [?), where ? represents unknown values; and

maps root and node references to sets of access paths, A 2 P(A). The program

state consists of the abstract store, return flag (as in the concrete semantics), and

two access path sets, ⇡
r

, ⇡
w

2 P(A
p

), which collect access paths being read from and

written to, respectively.

The abstract semantics are given in Figure 6.1. The evaluation relation for state-

ments and calls is hs, �̂, ⇡
r

, ⇡
w

, ⇢i ! h�̂0, ⇡0
r

, ⇡0
w

, ⇢0i, and the evaluation relation for

expressions is he, �̂i ! hv̂, ⇡i. Note that expressions return a set of values, and can

generate new access expressions; these expressions are always reads, so the evaluation

relation generates only a single access path set. The initial abstract store maps all

locals, primitive fields and primitive access paths to {?}, and maps root to {root}

and everything else to ?. The initial access path sets are ⇡
r

= {root.◆} (recall that

we assume that root is read in every iteration) and ⇡
w

= ?.

Expressions (ALOAD-P, ALOAD-N) are handled as expected, with the only dif-

ference from the concrete semantics being that they return a set of values instead of

29

v̂ = �̂(point.f
p

)

hpoint.f
p

, �̂i ! hv̂, ?i
[ALOAD-P]

A = �̂(n) v̂ = {�̂(a.f
p

) | a 2 A}

hn.f
p

, �̂i ! hv̂, {a.f
p

| a 2 A}i
[ALOAD-N]

he1, �̂i ! hv̂1, ⇡1i he2, �̂i ! hv̂2, ⇡2i v̂ = v̂1�̂v̂2

he1 � e2, �̂i ! hv̂, ⇡1 [⇡2i
[ABINOP]

he, �̂i ! hv̂, ⇡

e

i A1 = �̂(n) A2 = {a.f
p

| a 2 A1}

hn.f
p

:= e, �, ⇡

r

, ⇡

w

, Fi ! h�̂[mapall(A, f
p

, v̂)], ⇡

r

[⇡

e

, ⇡

w

[A2, Fi
[ASTORE-N]

A1 = �(n2) A2 = {a.f
r

| a 2 A1}

hn1 := n2.fr, �̂, ⇡

r

, ⇡

w

, Fi ! h�̂[n1 7! A2], ⇡

r

[{a.◆ | a 2 A2}, ⇡

w

, Fi
[ADEF-N]

A1 = �(n) A2 = {a.f
r

| a 2 A1}

hn.f
r

:= alloc, �̂, ⇡

r

, ⇡

w

, Fi ! h�̂, ⇡

r

, ⇡

w

[{a.◆ | a 2 A2}, Fi
[AALLOC]

hbexp, �̂i ! hv̂, ⇡

e

i

hs1, �̂, ?, ?, Fi ! h�̂0
, ⇡

0
r

, ⇡

0
w

, ⇢

0i hs2, �̂, ?, ?, Fi ! h�̂00
, ⇡

00
r

, ⇡

00
w

, ⇢

00i

hif bexp then s1 else s2, �̂, ⇡

r

, ⇡

w

, Fi !

h�̂0 t �̂

00
, ⇡

r

[⇡

0
r

[⇡

00
r

[⇡

e

, ⇡

w

[⇡

0
w

[⇡

00
w

, ⇢

0 ^ ⇢

00i

[AIF]

Fig. 6.1.: Abstract semantics to collect access expressions

30

just one, and that expressions that reference the tree (see ALOAD-N) can add ac-

cesses to the access set. Binary operations yield the result of applying the operation

to all pairs of values from the two operands’ value sets (with the operation yielding

? if one of the values is ?).

The rules for skip and return are not presented, as they are analogous to the

concrete semantics, simply passing through the abstract store, heap and access path

sets. The rules for sequencing of statements thread through the access path sets,

setting the return flag and skipping over the execution of subsequent statements if

necessary. Interestingly, function calls (recurse) are handled much like skip. Even

though a call reads an access path to make the recursive call, that read is instead

associated with the beginning of the next iteration (see Section 4.2), and is captured

by the initial access path set of root.◆.

ADEF-L evaluates the expression, collecting any new access paths that arise, and

returning a set of values, which are then mapped to the local variable being defined.

ASTORE-N, which provides the semantics for n.f
p

:= e, shows an example of adding

new access paths. After looking up the set of access paths that n is mapped to, for

each such access path a, we add a.f
p

to the set of written access paths. The helper

function mapall takes care of mapping each of the primitive access paths accessed by

n.f
p

to the result of evaluating e. ADEF-N adds a.f
r

.◆ to the set of read access paths

for all a that n2 is mapped to.

AALLOC is interesting. It creates a new access path, indicating that n.f
r

.◆ has

been written to. It only changes the store by setting the special primitive field n.f
r

.◆

to alloc. No other access paths are changed. In essence, the abstract semantics

assume the tree structure itself already exists. Allocating a new node does not add a

new node to the tree. Instead, it just writes to an existing node, as recorded by the

access. The assumption that programs initialize fields before accessing them means

31

that there is no worry about updating the values of any other fields.1 A similar rule

is used for null.

AIF, unsurprisingly, runs both branches of the if statement, collecting the access

paths from the boolean expression as well as both branches of the if statement. �̂0t�̂00

creates a new abstract store, where variable or access path maps to the union of its

mappings in �̂0 and �̂00. Note, too, that if both branches of the if statement call

return, evaluating the if statement sets the return flag to true.

6.2 Identifying conflicting access expressions

After collecting the accesses for the recursive method, the next step is to determine

which accesses could result in dependences—two accesses that touch the same location

in the tree, with at least one of them a write.

Definition 6.2.1 For a pair of accesses, root.↵ and root.�, the two access paths

collide—written root.↵ ⇠ root.�—if there exists a two nodes in a tree (of unbounded

size), n1 and n2 such that n1.↵ refers to the same location as n2.�.

This definition lends itself to a straightforward approach to finding access paths

that collide. Consider the access path pair root.↵ 2 ⇡
w

and root.� 2 (⇡
w

[⇡
r

).

Without loss of generality, let ↵ be the longer access path than � (i.e., it contains at

least as many field dereferences). Then root.↵ ⇠ root.� i↵ � is a su�x of ↵.

If � is not a su�x of ↵, then, because the access paths traverse a tree, there is no

way for the two to refer to the same field. Conversely, if � is a su�x of ↵, then let �

be a sequence of field accesses such that �.� = ↵. Note that �’s last field access must

be a recursive field (if � 6= ↵, otherwise � = ✏). Then let n1 be an arbitrary node in

the tree (for example, the global root of the tree), and let n2 be the node at n1.�. It

is clear that n1.↵ = n2.�.

1AALLOC introduces some inexactness to the set of accesses: if a new node is allocated for an access
path, old node references that have the same access path will appear to access the new node as well.
This does not a↵ect soundness, as it can only introduce additional dependences.

32

If two access paths collide and one of them is a write, then there is a potential

dependence between them. The set of such pairs can then be computed, S ✓ ⇡
w

⇥

(⇡
w

[⇡
r

):

S = {(a, b) | a 2 ⇡
w

^ b 2 (⇡
w

[⇡
r

) ^ a ⇠ b}

6.3 Applying the dependence test

After collecting the access paths, and identifying potential dependences, the final

step is to determine whether the conflicting access paths preclude point blocking.

Note that the access paths in S are relative to root, which is the index identifier for

the traversal “loop” in the application. When iteration (p, n) executes a statement

that reads from access path root.↵, the field in the tree being read is n.↵. For

each pair of conflicting access paths in S, (root.↵, root.�)2, compute � as described

previously. Let p1 and p2 be points such that p1 � p2. For all nodes n, during iteration

(p1, n.�), location n.�.� may be accessed by some statement s1, and during iteration

(p2, n), location n.↵ may be accessed by some statement s2. By the definition of

conflicting accesses, s1(p1, n.�) on s2(p2, n).

By the dependence test in Equation 4.2, it is clear that for these potential depen-

dences not to preclude point blocking, n.� �
a

n must be true. This can only be the

case if � = ✏. By verifying this condition for all pairs of conflicting access paths, it is

possible to determine whether point blocking is legal.

Soundness The key proof obligation to prove the soundness of this dependence

analysis is to show that the set of accesses collected by the abstract interpretation

is able to find every s
i

and s
j

where there exist p
i

, p
j

, n
i

, n
j

such that s
i

(p
i

, n
i

) on

e

s
j

(p
j

, n
j

). If the set of statements tested for interference is a superset of these s
i

and s
j

, then the remainder of the dependence analysis (which ensures the proper

ordering of p
i

, p
j

, n
i

and n
j

) soundly applies the dependence test from Equation 4.2.

To prove this, it must be shown that if there are two statements that could interfere

2Assume, without loss of generality, that � is a su�x of ↵.

33

with each other in two specific iterations, there must be a pair of conflicting accesses

that conflict in the same two iterations.

Theorem 6.3.1 If there exist s
i

and s
j

such that there exist p
i

, p
j

, n
i

, n
j

and

s
i

(p
i

, n
i

) on

e

s
j

(p
j

, n
j

), there exists an access path pair (root.↵, root.�) 2 S such

that n
i

.↵ = n
j

.�.

Proof sketch: Note that the only way for two statements to interfere in the simple

language is if they access the same fields of a tree node. Note further that any tree

node accessed by a recursive method body must be accessible from root, and it can

be accessed by only one path. Assume, without loss of generality, that s
i

is a write

and s
j

is a read, and that the interference is through a primitive field access. Then s
i

must be of the form n
x

.f
p

:= ... and s
j

must contain an expression of the form n
y

.f
p

By the antecedent, there must be some node m such that when root is mapped to

n
i

, n
x

= m—and there must be exactly one access path root.↵ = m—and likewise,

when root is mapped to n
j

, there must be some access path root.� = m. Hence,

n
i

.↵ = n
j

.�. By structural induction on the abstract semantics, upon encountering

statement s
i

, the abstract store will contain a mapping from n
x

to root.↵, adding

the access root.↵.f
p

to ⇡
w

; likewise, upon encountering s
j

, root.�.f
p

will be added

to ⇡
r

. Because the abstract interpretation explores all paths, both accesses will be in

the access path sets at the end of execution. Moreover, because both accesses refer

to the same node in the tree, and each node in the tree can be accessed by only one

path from the global root of the tree, either ↵.f
p

will be a su�x of �.f
p

or vice versa,

and the pair will be added to the set of conflicting accesses.

6.4 Examples

Quadtree traversal Running the abstract interpretation over the example from

Figure 5.5 generates the following access paths:

⇡
w

= {root.v}, ⇡
r

= {root.◆, root.v, root.leaf}

34

There is one pair of conflicting access paths: (root.v, root.v). For two points, p1 and

p2, with p1 � p2, iteration (p1, n) writes to the same location that (p2, n) does. For

this pair, � = ✏, so the dependence does not preclude point blocking. In particular, if

p1 and p2 are in the same block, p1 will perform its write before p2 does, just as in the

original, non-blocked code. Hence, despite the dependence between traversals, point

blocking is legal for this code. Note that the previously described simple dependence

test of Jo and Kulkarni would have claimed that point blocking is illegal here, as the

traversals are not independent of each other.

BST insertion Running the analysis over the BST insertion example from Fig-

ure 5.6 generates the following access paths:

⇡
w

= {root.v, root.l.◆, root.l.v, root.r.◆, root.r.v},

⇡
r

= {root.◆, root.v, root.l.◆, root.r.◆}

Each access path in ⇡
w

conflicts with itself. But by the same analysis as in the

quadtree example, these conflicts do not preclude point blocking: they all arise when

di↵erent points are at the same node of the tree. However, the access paths root.v 2 ⇡
r

and root.l.v 2 ⇡
w

conflict with each other. Here, iteration (p1, n.l) reads from the

same location that iteration (p2, n) writes to. � is l in this case, so the potential

dependence precludes point blocking. However, point blocking is legal for this code—

the path-insensitive dependence analysis is too conservative. To develop a dependence

analysis that correctly handles this code, the conditions under which certain accesses

happen must also be considered.

35

7. CONDITIONAL DEPENDENCE ANALYSIS

The dependence test covered in the previous section finds point blocking to be legal

unless there is a dependence between an earlier point’s access in a later node in the

traversal to a later point’s access in an earlier node in the traversal. Even using

the dependence test, the code in Figure 5.6 still exhibits a problematic dependence.

This is because dependence test of the previous section assumes that all accesses in

an iteration will happen. However, there are many situations in which it is possible

to rule out some subset of accesses such that the problematic dependences will not

occur. Consider two points p1 and p2 with p1 � p2, and the tree in Figure 3.1(a).

When point p1 is at node c, it reads from c.v in line 1. That is the same field that

point p2 could write to at node b in line 6, when it writes to root.l.v.

However, as previously stated, point blocking is still legal for this code. This is

because reads and writes performed during traversals are not always unconditional

in each iteration. It is often the case that if a traversal performs a particular access,

other traversals cannot perform certain accesses: if iteration (p1, c) reads from c.v,

it is clear that iteration (p1, b) must have established that b.l 6= null (as that is the

only way for recurse (b.l,point) to be executed in line 8). Hence, when iteration

(p2, b) executes, it will not execute line 6, and the access that causes the problematic

dependence will not happen.

This chapter describes how the dependence analysis of the previous section can

be augmented to engage in this type of reasoning on conditions. The key insight is

that the symbolic path conditions under which various accesses might occur can be

determined, relative to arbitrary nodes in the tree. Given these conditions, it is possi-

ble to prove that if the first of two potentially conflicting accesses occurs, the second

cannot. In other words, on⇤, the test for interference between two statements, can

36

v 2 Z b 2 {T,F} a 2 A ap 2 Ap

E = ap | v | E � E

P = E � E | a.◆ = null | a.◆ 6= null

F = b | P | F ^ F | F _ F

Fig. 7.1.: Logical fragment for path conditions

be refined to be more precise about whether the two interfering statements actually

both execute.

7.1 Attaching conditions to access paths

The first step is to attach symbolic path conditions to each access path that can

occur in a program. A path condition is some logical formula, � 2 (F [E), over

access paths and values (including null), produced from the logical fragment given in

Figure 7.1.

To track path conditions, the abstract semantics of the previous section are ex-

tended. First, the access paths are extended to be a 3-tuple of an access path, a

formula in the logic, and a flag that indicates whether the access path was a strong

access. If an access path was generated by a variable dereference that only pointed

to a single access path, the access path is strong, and is amenable to strong updates.

Expressions now yield formulae (� 2 P(F [E)) in addition to sets of values (an

expression can produce more than one conditional formula because variables accessed

in an expression may map to more than one access path). Statements and expressions

carry with them a condition, k, a predicate defining when statement might execute.

The conditions capture a precondition that holds before a basic block executes. Hence,

these conditions are updated when executing if statements. Figure 7.2 shows the

relevant portion of the extended semantics. The evaluation relation for expressions

is now he, �̂, ki ! hv̂, ⇡
e

, �i and the evaluation relation for statements is now

37

v̂ = �̂(point.f
p

)

hpoint.f
p

, �̂, ki ! hv̂, ?, {point.f
p

}i
[FLOAD-P]

A = �̂(n) v̂ = {�̂(a.f
p

) | a 2 A}

hn.f
p

, �̂, ki ! hv̂, {a.f
p

[k][|A| = 1] | a 2 A}, {a.f
p

| a 2 A}i
[FLOAD-N]

he1, �̂, ki ! hv̂1, ⇡1, �1i he2, �̂, ki ! hv̂2, ⇡2, �2i

he1 � e2, �̂, ki ! h{?}, ⇡1 t ⇡2, �1�̂�2i
[FCMPOP]

hbexp, �̂, ki ! hv̂, ⇡

e

, �i 8a[k⇤][b⇤] 2 ⇡

w

. 6 9a[k][⇤] 2 ⇡

e

hs1, �̂, ?, ?, k ^ (
_

{� | � 2 �}), Fi ! h�̂0
, ⇡

0
r

, ⇡

0
w

, k

0
, ⇢

0i

hs2, �̂, ?, ?, k ^ (
_

{¬� | � 2 �}), Fi ! h�̂00
, ⇡

00
r

, ⇡

00
w

, k

00
, ⇢

00i

k

T

= munge(�̂0
, k

0
,⇡

0
w

) ^ ¬⇢0 k

F

= munge(�̂00
, k

00
,⇡

00
w

) ^ ¬⇢00

hif bexp then s1 else s2, �̂, ⇡

r

, ⇡

w

, k, Fi !

h�̂0 t �̂

00
, ⇡

r

t ⇡

0
r

t ⇡

00
r

t ⇡

e

, ⇡

w

t ⇡

0
w

t ⇡

00
w

, k

T

_ k

F

, ⇢

0 ^ ⇢

00i

[FIF1]

hbexp, �̂, ki ! hv̂, ⇡

e

, �i FIF1 does not apply

hs1, �̂, ?, ?, k, Fi ! h�̂0
, ⇡

0
r

, ⇡

0
w

, k

0
, ⇢

0i

hs2, �̂, ?, ?, k, Fi ! h�̂00
, ⇡

00
r

, ⇡

00
w

, k

00
, ⇢

00i

hif bexp then s1 else s2, �̂, ⇡

r

, ⇡

w

, k, Fi !

h�̂0 t �̂

00
, ⇡

r

t ⇡

0
r

t ⇡

00
r

t ⇡

e

, ⇡

w

t ⇡

0
w

t ⇡

00
w

, k, ⇢

0 ^ ⇢

00i

[FIF2]

Fig. 7.2.: Abstract semantics to collect conditional access expressions

hs, �̂, ⇡
r

, ⇡
w

, k, ⇢i ! h�̂0, ⇡0
r

, ⇡0
w

, k0, ⇢0i. The starting path condition for a

program is T.

Expressions accessing fields generate atomic formulae as expected. When an ex-

pression generates an access path, the condition for the expression is attached to the

access path. The cardinality of the access path set in the store is checked to determine

whether the generated access path is a strong access. Comparison operations produce

a new formula set from combining all pairs of formulae from its operands’ formula sets

38

(e.g., if one operand has the formulae {point.x} and the other has the formulae {1, 2},

then combining them with =̂ produces the formula set {point.x = 1,point.y = 2}).

The rules for most statements are not shown; the only di↵erence between these seman-

tics and the semantics in Figure 6.1 is that when an access occurs, the statement’s

condition is associated with the access path. The strong tag is set, and a strong

update performed on the abstract store, if the access path refers to exactly one node.

The other key rules in the semantics are for if statements. The formulae generated

by the test condition are attached to the true and false branches of the if statement.

If the test expression generates multiple formulae, the true branch is taken if any of

the formulae are true, while the false branch is taken if any of the formulae are false;

the conditions for the two branches are assembled appropriately. Joining together

access paths (t) logically ors the conditions under which the access paths occur, and

logically ands the strong tag.

The path condition after the if statement executes is subtle. It seems as though

it should simply revert to the original condition, k, after control has re-converged.

However, along one of the branches of the if statement, a write may have happened

that invalidated part of the path condition. Consider if root.v = 0 then root.v :=

1 else skip. After the statement executes, root.v 6= 0 _ root.v = 1. The path

condition must be updated to account for any writes made along the branch of an if

statement. In other words, writes that occur along a branch of an if statement might

invalidate portions of the condition under which the branch occurred.

The helper function munge(�̂, k, ⇡
w

) creates two formulae: k1, which captures all

possible values of access paths that were definitely written along the branch (deter-

mined by checking the strong tags); and k2, which removes from k conditions that

are invalidated by writes that may happen along the branch. The function returns

k1 ^ k2, which amounts to a postcondition for that branch of the if statement. The

disjunction of the munged conditions from both branches of the if statement yields

the precondition for the following statement. Note that if there are no writes along

the branches, then the resulting path condition will again be k.

39

⇡w = {root.v [root.v = �1],

root.l.◆ [root.v 6= �1 ^ root.v < point.v ^ root.l.◆ = null],

root.l.v [root.v 6= �1 ^ root.v < point.v ^ root.l.◆ = null],

root.r.◆ [root.v 6= �1 ^ root.v � point.v ^ root.r.◆ = null],

root.r.v [root.v 6= �1 ^ root.v � point.v ^ root.r.◆ = null]}

⇡r = {root [T], root.v [T],

root.l.◆ [root.v 6= �1 ^ root.v < point.v],

root.r.◆ [root.v 6= �1 ^ root.v � point.v]}

Fig. 7.3.: Conditional access paths in BST insertion

This treatment of if statements only occurs if the condition of the if statement

accesses portions of the tree that have not yet been written (see the second premise

of FIF1); otherwise, no conditional information is passed along branches of the if

statement (FIF2). Figure 7.3 shows the results of running this analysis on the BST-

insertion example (the tag for strong accesses is elided for brevity).

A similar analysis can be used to determine under which conditions recursive calls

are made. The only di↵erence is that the path condition prior to making the recursive

call is also munged to produce a precondition for the call. In essence, the condition

attached to the recursive call is a statement about the state of the tree when the call

is made. For example, the condition for the recursive call in line 8 of Figure 5.6 is:

root.v 6= �1 ^ (root.v < point.v) ^

((root.l.◆ = alloc ^ root.l.v = �1) _ root.l.◆ 6= null)

7.2 Using conditions to disprove dependences

Suppose there is a potential dependence between two accesses

(root.↵[�
↵

], root.�[�
�

]) where ↵ = �.�. The dependence that appears to preclude

point blocking arises when (p1, n.�) executes access path root.�, and (p2, n) executes

access path root.↵. The formulae �
↵

and �
�

indicate the conditions under which

40

the two accesses occur. If it can be shown that whenever �
�

is true during iteration

(p1, n.�), �↵

will not be true during iteration (p2, n), then the dependence cannot

arise. The procedure for doing this proceeds as follows:

1. First, construct a more precise condition for access root.�. In particular, �
�

is

a formula in terms of access paths rooted at root, which must be bound to the

dynamic iteration instance. This is easily accomplished by substituting n.� for

root to create �0
�

. Then substitute n for root to create �0
↵

and query an SMT

solver to determine �0
�

is incompatible with �0
↵

. If so, continue to step 3.

2. �0
�

being compatible with �0
↵

does not mean that both accesses will happen. �0
�

was computed with a starting path condition of T. To make the condition more

precise, propagate the conditions of the previous iteration down to (p1, n.�).

Define � such that �.f
r

= �. Substituting n.� for the path conditions associated

with all recursive calls recurse (root.f
r

,point), information about the state

of the tree during iteration (p1, n.�), immediately before making a recursive

call to start iteration (p1, n.�), can be obtained. The disjunction of all such

recursive conditions (call this �
�

) is a sound approximation of the state of the

tree before (p1, n.�) executes. Essentially, one instance of the recursive method

is inlined. Then the abstract interpretation with an initial condition of �
�

is

re-run, generating a stronger condition under which access root.� occurs.

This “inlining” process is repeated, backing up one iteration at a time, until

iteration (p1, n) is reached. This cannot be inlined beyond this point—n could

be the global root of the tree, and hence there could be no earlier iteration in

the traversal. Note that this process is decidable, as there are a finite number

of paths through the recursive method body. In practice, potentially-dependent

iterations are nearby in the tree, so inlining only needs to be done one or two

times.

After performing this inlining, the result is a much stronger path condition,

�0
�

, for the problematic access. The SMT solver is then queried once again to

41

determine whether the path conditions are incompatible. If they are not, then

this dependence is declared as a true conflict, and as such it fails the overall

dependence test.

3. If �0
↵

is incompatible with �0
�

, then it is determined that whatever computation

p1 performs during its traversal prevents p2 from performing the access root.↵.

It is possible, however, for a traversal in between p1 and p2 to “reactivate” p2’s

bad access. Thus, it must be ensured that no other accesses can a↵ect the path

condition �0
↵

that prevents p2 from performing the bad access. Any access paths

in ⇡
w

that collide with any access paths in �0
↵

are searched; these writes a↵ect

the path condition, and hence if some iteration performs the write, it may cause

the bad access to occur. The same conditional dependence test is used to ensure

that those accesses cannot happen. Note that any access path that appears in

�0
↵

must also appear in ⇡
r

. Hence, there are a bounded number of access paths

to consider and the number of tests is finite.

7.3 Example

Consider the conflicting access paths (root.v[T], root.l.v[root.v 6= �1^root.v <

point.v ^ root.l.◆ = null]). These access paths preclude point blocking if iteration

(p1, n.l) performs the first access and iteration (p2, n) performs the second access.

Substitute n.l and n for the conditions to generate: �0
�

= T and �0
↵

= n.v 6= �1^n.v <

n.v ^ n.l.◆ = null. These conditions are not incompatible with each other, so the

recursive method is “unrolled” by one iteration, passing the recursion condition from

iteration (p1, n) to (p1, n.l). The new �0
�

is:

n.v 6= �1 ^ (n.v < n.v) ^ ((n.l.◆ = alloc ^ n.l.v = �1) _ n.l.◆ 6= null)

The refined condition under which iteration (p1, n.l) reads n.l.v is clearly incompatible

with the condition under which iteration (p2, n) writes n.l.v—the latter requires that

n.l.◆ = null, while the former only happens when n.l.◆ 6= null.

42

Finally, it must be made sure that there is no intervening traversal that writes to

n.l.◆, possibly “re-activating” the write in iteration (p2, n). Note that the only access

path that writes to n.l.◆ does so under the same condition as the write to n.l.v, and is

therefore invalidated by the same argument. Repeating the process for all conflicting

access paths, it can be determined that all pairs that might introduce a problematic

dependence are incompatible with each other.

43

8. IMPLEMENTATION AND EVALUATION

8.1 Analysis implementation

The analysis was implemented in JastAdd [30], a compilation framework for Java.

The analysis analyzes recursive Java methods that are constrained to only use oper-

ations analogous to the operations in the simple specification language (Section 5); if

a method does not obey those restrictions, it cannot be analyzed. It is assumed that

either a shape analysis or a programmer annotation has established that the recur-

sive data structure being traversed is a tree. The path-insensitive analysis assumes

that local variables cannot overlap between di↵erent traversals. Further analysis to

determine possible aliasing is needed if the algorithm allows assigning tree nodes to

local variables. The conditional analysis (Section 7) passes path conditions to the Z3

SMT solver [31], which checks whether they are compatible or not. The conditional

analysis currently assumes that all writes used to compute post-conditions are strong

(i.e., in a single basic block, each write definitely happens), which is valid for the

benchmarks we have studied.

Table 8.1.: Analysis results, runtimes in seconds (with 95% confidence intervals).

Benchmark Conflicts Z3 calls No Z3 Runtime Total Runtime

ll 1 1 0.7914± .0945 0.8174± 0.0959

bst 8 16 0.8800± 0.136 1.220± 0.154

skew 16 32 0.9527± 0.0430 1.687± 0.0498

kdtree 510 3060 23.94± 0.462 109.0± 0.481

bh 3448 27584 280.3± 6.78 1432± 16.5

44

8.2 Benchmarks

The dependence test of Equation 4.2 was applied to five benchmarks, ranging from

simple microbenchmarks to complex data-structure construction algorithms:

ll: Repeatedly appending values to a linked list, with traversal starting from the head

of the list.

bst: Building a binary search tree, as in Figure 1.1.

skew: Building a skew-heap [32].1

bh: Building a Barnes-Hut quadtree.

kdtree: Building a kd-tree using top-down insertion.

The analysis is able to prove that the each of these benchmarks passes the depen-

dence test, and hence can be soundly transformed using point blocking, as well as

other optimizations; the following section describes the performance benefits of these

transformations. Note that not only do all of these benchmarks modify the contents

of the tree structure being traversed, they also morph the structure of the tree by

adding additional nodes and edges. In all five cases, the full conditional dependence

analysis of Section 7 is required to verify the dependence test.

To see that proving the legality of these transformations is non-trivial, consider

the tree-building code in Figure 8.1. Barnes-Hut is an algorithm for performing n-

body simulation where the tree is built by inserting points one by one from the root.

When an insertion reaches an interior node where the appropriate child node has not

been created yet, it allocates the node and places the appropriate node data there. If

a traversal reaches an interior node where the child node is a leaf (so another point is

already there), it moves the existing point one step farther down the tree and marks

the old child as no longer a leaf, and then continues recursion. Otherwise the traversal

just continues traversing the tree.

1The algorithm was slightly modified to fit our language restrictions.

45

1. if (root.x � point.x)

2. if (root.y � point.y)

3. if root.child0 = null

4. root.child0 := alloc; root.child0.isLeaf := 1;

5. root.child0.x := point.x; root.child0.y := point.y;

6. else

7. if root.child0.isLeaf = 1

8. //Put point at root.child0

9. //at root.child0.childn

10. /* compute childn */

11. root.child0.childn := alloc ...

12. root.child0.isLeaf := 0

13. recurse (root.child0,point);

14. else

15. recurse (root.child0,point); return

16. else

17. //repeat code for root.child1

18. else

19. if (root.y � point.y)

20. //repeat code for root.child2

21. else

22. //repeat code for root.child3

Fig. 8.1.: 2D Barnes-Hut Tree Building

46

There are two potentially problematic dependences here: creating a new child

in lines 3–5, and creating a new grandchild in lines 8–12. In both cases, conditional

dependence analysis rules out the dependence: in the first case, the code only executes

if the child is null, and after executing the code, the child is no longer null. In the

second case, the code only executes if the child is a leaf, and after executing the code,

the child is no longer a leaf. By tracking these conditions, the analysis proves that if

a point performs the first access in a dependence pair, a later point cannot perform

the second access in the dependence.

Analysis performance

Table 8.1 summarizes the results of running our analysis on each benchmark.

Conflicts is the number of pairs that require the conditional dependence analysis

of Section 7 to rule out as problematic. The number of Z3 calls made for each

benchmark is counted, as benchmarks with more recursive calls require that more

paths be checked to rule out conflicts. The upshot of these results is that for all

five benchmarks, the simple independence test is not su�cient (some access paths

interfere); moreover, the conditional analysis is required to verify the dependence

test.

Both the overall analysis time, and the analysis time not including calls to Z3

were measured. Most of the benchmarks are analyzed very quickly. Note that bh

takes quite a bit longer than the other benchmarks, due both to the larger number

of access paths and to the 8 recursive calls in the method body, which leads to a

commensurate increase in the number of Z3 calls.

Transformation evaluation

After proving that the benchmarks pass the dependence test, three di↵erent trans-

formations were applied them, using the legality established by the dependence test:

47

1. Point blocking, described in detail in Section 3.2

2. Traversal splicing [17]. In contrast to point blocking, traversal splicing tiles

the “tree loop” instead of the point loop. The original version of traversal

splicing reorders the point loop during execution, and hence is not amenable

to the dependence test that we develop in this work. However, for benchmarks

where a point only visits one child of any node, traversal splicing performs no

reordering, and hence is legal whenever the dependence test of Equation 4.2

holds.

3. Parallelization. It is well-known that top-down tree building algorithms can

be parallelized by recursively building left and right subtrees in parallel. An

implementation of parallelization from the sequential version of the traversal

code is used where point blocking is applied to the code, then each of the left

and right calls (e.g., the two recursive calls in Figure 1.1(b)) are run in parallel.

The resulting parallel implementation requires no locks and also guaranteed to

produce the same tree as the original sequential code.

Experimental configurations

All experiments were run on a 48-core AMD Opteron system running at 2.3 GHz,

with 64 KB of L1 cache per core, 512K of L2 cache per core, and 6MB of L3 cache

shared among groups of 6 cores. The baseline code for point-blocking is written in

Java (and is the same code analyzed by the analysis framework described above).

Point blocking fully blocks the code, using block sizes equal to the input size. For

infrastructural reasons, the baselines for the traversal splicing experiments and the

parallelization experiments are written in C++: the Java version of the benchmarks

were analyzed to prove the transformations’ legality, then were ported to C++. For

the parallelization transformation, Cilk+ [33] was used for parallelism. The paral-

lelized code was run using 4 threads, and compared to a baseline of the Cilk+ code

running on a single thread.

48

Table 8.2.: Speedups of transformed benchmarks (with 95% confidence intervals).

Bench. Blocking Splicing Parallelization

ll 1.42 (1.39, 1.45) N/A N/A

bst 2.59 (2.52, 2.65) 2.00 (1.87, 2.13) 1.54 (1.53, 1.56)

skew 1.59 (1.53, 1.66) 0.86 (0.85, 0.86) 0.76 (0.73, 0.79)

kdtree 1.80 (1.75, 1.85) 2.65 (2.64, 2.66) 2.07 (2.01, 2.12)

bh 1.17 (1.15, 1.18) 1.28 (1.27, 1.29) 2.67 (2.58, 2.75)

For ll, 60,000 values were inserted; to avoid stack overflow, tail-call optimization

was performed on the transformed code. For each of the other benchmarks, trees were

built using 10 million points/values. The splicing and parallelization transformations

are only applied to the four tree-based benchmarks. Table 8.2 presents the results.

Results discussion

Each of these transformations is able to achieve substantial speedups on most of

the benchmarks. The exceptions are bh, which has no speedup for point blocking, but

good speedup for splicing, and skew, where the opposite is true. This is likely because

of the structure of those benchmarks and transformations: point blocking tiles the

point loop, while traversal splicing tiles the tree loop, and the two benchmarks each

benefit from a di↵erent transformation. Parallelization has no speedup for skew due

to low available parallelism (there is relatively more work to be done at the root node,

which must be done sequentially) and Cilk overheads (a 1.13⇥ speedup is seen when

using two cores, which dissipates when using four cores).

As each of these transformations is enabled by this dependence test, and, more-

over, would not have been proven legal by prior dependence tests, including Jo and

Kulkarni’s [13], this clearly demonstrates the utility of the precise dependence test

and the analyses that check it. he goal of these experiments is not to evaluate these

49

transformations against each other; indeed, these transformations are not a contribu-

tion of this work. Instead, the aim is to show that extending these transformations

to a wider class of kernels through this dependence test and dependence analysis is

beneficial. Note, for example, that by applying the dependence analysis to bh, almost

the entirety of the application—the two major kernels, tree building and tree traver-

sal, comprise 99% of its runtime—is now amenable to point blocking and traversal

splicing.

8.2.1 Benchmarks discussion

It is of note that these tree building algorithms are generally used to set up a

tree for some other algorithm. For the cases of BST, Linked List, and KDTree, this

other algorithm may be run some unbounded number of times, as the data structure

is searched any time data in the tree is needed for something. For Barnes-Hut, the

tree is used to calculate forces acting within the n-body simulation, which may take

much longer than simply building the tree (the tree building took up approximately

3% of the runtime of the baseline benchmark for 10 million nodes). Likewise, skew

heaps are often used to create a balanced heap for a heapsort, which may also take

significantly more time than building the heap. It would appear that if the amount

of time these tree building algorithms take is only a fraction of the amount of time

any other algorithm using the tree takes, then optimizing this tree building part is

not worthwhile. However, in many of these cases, things that use these tree data

structures are highly parallel and easy to heavily optimize; when the parts of the

algorithms that are not building up a tree are optimized enough, the di↵erence in

runtimes between tree building and the rest of the algorithms may be much closer

than initially expected. These sections of programs that are not parallel prove to

be a much more di�cult problem to analyze than the simpler parallelizable sections,

even if they take up a smaller portion of the overall runtime. In addition, it is

very important to note that tree building algorithms are not the only recursive tree

50

algorithms that need this more sophisticated dependence test to prove the legality of

point blocking. Indeed, any application that performs multiple repeated traversals

on that tree while still writing to various nodes might be amenable to point blocking,

and would previously be ruled as unable to be transformed.

51

9. FUTURE WORK AND CONCLUSIONS

9.1 Future work

Interesting avenues of future work abound. While the current analysis is mainly

focused on traversals of trees, note that any acyclic data structure traversed with

a recursive method using a single canonical traversal order should be transformable,

though they likely require a more sophisticated set of aliasing tests to determine when

access paths might collide.

An intriguing problem that bears some similarity to the problem of applying

point blocking is scheduling attribute grammars, which compute attribute values by

performing traversals over a parse tree. A useful optimization for attribute grammars

is to compute multiple attributes in a single traversal [26,34]. This requires reasoning

about the dependences captured by the attribute grammar to ensure that during a

single traversal of the tree, each attribute is computed in the right order. It is likely

that this problem can be thought of as an instance of traversal fusion: each attribute

represents a traversal, and the goal is to determine whether two traversals can be

combined into a single traversal, as in loop fusion. Extending the tree dependence

analysis to handle this scenario is a promising target for future work.

9.2 Conclusions

This thesis presents techniques for analyzing dependences in programs that recur-

sively traverse trees. It develops an accurate dependence test that identifies only those

dependences that preclude point blocking. Through a conditional tree dependence

analysis, it is able to prove the legality of point blocking and other transformations

52

for a wide range of programs, including ones that mutate trees during execution, such

as tree building codes.

Through multiple decades of compiler research sophisticated dependence analysis

frameworks like the unimodular and polyhedral frameworks were developed to apply

transformations like loop tiling to array programs in the face of complex dependences.

Despite these decades of research, similar analyses for pointer-based programs have

been an elusive target. This thesis presents the first dependence analysis toolkit that

can prove the legality of analogous “loop” transformations over pointer-based data

structures. It presents ways to determine potentionally problematic dependences in

programs that execute a recursive call over many points, showing that dependences

that take place only within a single node are never problematic. Because of the way

point blocking transforms traversals, every node is still visited by the same set of

points in the same order, thus preserving any dependences from accesses within a

single node. In addition it shows that even some dependences that happen between

multiple nodes are not problematic by showing the specific set of conflicts that need

to arise to cause the program’s correctness to be violated. By analyzing the paths

through a recursive method, some of these conflicts can be shown to never actually

arise, allowing point blocking to work correctly on these programs.

All of the tree building benchmarks studied show that the analysis proves they are

amenable to some locality- or parallelism-enhancing transformation. While improving

the runtimes of these tree-building algorithms may not be a significant improvement

over the runtime of an overall application by itself, there may be many cases where

algorithms that were previously ruled unable to be transformed could be the majority

of an application, and therefore give very significant overall speedups to programs.

REFERENCES

53

REFERENCES

[1] R. Allen and K. Kennedy, Optimizing compilers for modern architectures: a
dependence-based approach. Morgan Kaufmann, 2001.

[2] J. R. Allen and K. Kennedy, “Automatic loop interchange,” in Proceedings of
the 1984 SIGPLAN Symposium on Compiler Construction, 1984, pp. 233–246.
[Online]. Available: http://doi.acm.org/10.1145/502874.502897

[3] U. Banerjee, “Unimodular transformations of double loops,” in Languages and
Compilers for Parallel Computing, 1991.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
Proceedings of the 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2008, pp. 101–113. [Online]. Available:
http://doi.acm.org/10.1145/1375581.1375595

[5] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance
and optimizations of blocked algorithms,” in Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems, 1991, pp. 63–74. [Online]. Available: http:
//doi.acm.org/10.1145/106972.106981

[6] W. Pugh, “The omega test: a fast and practical integer programming algorithm
for dependence analysis,” in Proceedings of the 1991 ACM/IEEE conference on
Supercomputing, ser. Supercomputing ’91. New York, NY, USA: ACM, 1991,
pp. 4–13. [Online]. Available: http://doi.acm.org/10.1145/125826.125848

[7] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” in
Proceedings of the ACM SIGPLAN 1991 conference on Programming language
design and implementation, ser. PLDI ’91. New York, NY, USA: ACM, 1991,
pp. 30–44. [Online]. Available: http://doi.acm.org/10.1145/113445.113449

[8] M. Wolfe, “More iteration space tiling,” in Proceedings of the 1989 ACM/IEEE
Conference on Supercomputing, 1989, pp. 655–664. [Online]. Available:
http://doi.acm.org/10.1145/76263.76337

[9] P. Feautrier, “Some e�cient solutions to the a�ne scheduling problem: I.
one-dimensional time,” Int. J. Parallel Program., vol. 21, pp. 313–348, October
1992. [Online]. Available: http://portal.acm.org/citation.cfm?id=171447.171448

[10] R. A. van Engelen, J. Birch, Y. Shou, B. Walsh, and K. A. Gallivan, “A unified
framework for nonlinear dependence testing and symbolic analysis,” ser. ICS ’04,
2004.

http://doi.acm.org/10.1145/502874.502897
http://doi.acm.org/10.1145/1375581.1375595
http://doi.acm.org/10.1145/106972.106981
http://doi.acm.org/10.1145/106972.106981
http://doi.acm.org/10.1145/125826.125848
http://doi.acm.org/10.1145/113445.113449
http://doi.acm.org/10.1145/76263.76337
http://portal.acm.org/citation.cfm?id=171447.171448

54

[11] W. Pugh and D. Wonnacott, “Non-linear array dependence analysis,” Languages,
Compilers, and Run-Time Systems for Scalable Computers, pp. 1–14, 1996.

[12] A. Venkat, M. Shantharam, M. Hall, and M. M. Strout, “Non-a�ne extensions
to polyhedral code generation,” ser. CGO ’14, 2014.

[13] Y. Jo and M. Kulkarni, “Enhancing locality for recursive traversals of recursive
structures,” in Proceedings of the ACM international conference on Object
oriented programming systems languages and applications, 2011, pp. 463–482.
[Online]. Available: http://doi.acm.org/10.1145/2048066.2048104

[14] R. Ghiya, L. Hendren, and Y. Zhu, “Detecting parallelism in c programs with
recursive data structures,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 1, pp. 35–47, 1998.

[15] J. R. Larus and P. N. Hilfinger, “Detecting conflicts between structure accesses,”
ser. PLDI ’88, 1988.

[16] M. Sagiv, T. Reps, and R. Wilhelm, “Parametric Shape Analysis via 3-valued
Logic,” ACM Trans. Program. Lang. Syst., vol. 24, no. 3, pp. 217–298, May
2002. [Online]. Available: http://doi.acm.org/10.1145/514188.514190

[17] Y. Jo and M. Kulkarni, “Automatically enhancing locality for tree traversals
with traversal splicing,” in Proceedings of the ACM international conference
on Object oriented programming systems languages and applications, 2012, pp.
355–374. [Online]. Available: http://doi.acm.org/10.1145/2384616.2384643

[18] C. D. Krieger, M. M. Strout, C. Olschanowsky, A. Stone, S. Guzik,
X. Gao, C. Bertolli, P. H. J. Kelly, G. R. Mudalige, B. van Straalen,
and S. Williams, “Loop chaining: A programming abstraction for balancing
locality and parallelism.” in IPDPS Workshops. IEEE, 2013, pp. 375–384.
[Online]. Available: http://dblp.uni-trier.de/db/conf/ipps/ipdps2013w.html#
KriegerSOSGGBKMSW13

[19] M. M. Strout, F. Luporini, C. D. Krieger, C. Bertolli, G.-T. Bercea,
C. Olschanowsky, J. Ramanujam, and P. H. J. Kelly, “Generalizing run-time
tiling with the loop chain abstraction,” in Proceedings of the 2014 IEEE 28th
International Parallel and Distributed Processing Symposium, ser. IPDPS ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 1136–1145. [Online].
Available: http://dx.doi.org/10.1109/IPDPS.2014.118

[20] M. M. Strout, L. Carter, and J. Ferrante, “Compile-time Composition of Run-
time Data and Iteration Reorderings,” in Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation, ser.
PLDI ’03. New York, NY, USA: ACM, 2003, pp. 91–102. [Online]. Available:
http://doi.acm.org/10.1145/781131.781142

[21] K. Stock, M. Kong, T. Grosser, L.-N. Pouchet, F. Rastello, J. Ramanujam, and
P. Sadayappan, “A framework for enhancing data reuse via associative reorder-
ing,” ser. PLDI ’14, 2014.

[22] P. Feautrier, “Automatic parallelization in the polytope model,” The Data Par-
allel Programming Model: Foundations, HPF Realization, and Scientific Appli-
cations, pp. 79 – 103, 1996.

http://doi.acm.org/10.1145/2048066.2048104
http://doi.acm.org/10.1145/514188.514190
http://doi.acm.org/10.1145/2384616.2384643
http://dblp.uni-trier.de/db/conf/ipps/ipdps2013w.html#KriegerSOSGGBKMSW13
http://dblp.uni-trier.de/db/conf/ipps/ipdps2013w.html#KriegerSOSGGBKMSW13
http://dx.doi.org/10.1109/IPDPS.2014.118
http://doi.acm.org/10.1145/781131.781142

55

[23] R. Ghiya and L. J. Hendren, “Is it a tree, a dag, or a cyclic graph? a shape anal-
ysis for heap-directed pointers in c,” in Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, 1996, pp. 1–15.

[24] P. Madhusudan, X. Qiu, and A. Stefanescu, “Recursive Proofs for Inductive
Tree Data-structures,” in Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser. POPL
’12. New York, NY, USA: ACM, 2012, pp. 123–136. [Online]. Available:
http://doi.acm.org/10.1145/2103656.2103673

[25] D. Knuth, “Semantics of context-free languages,” Mathematical systems
theory, vol. 2, no. 2, pp. 127–145, 1968. [Online]. Available: http:
//dx.doi.org/10.1007/BF01692511

[26] L. A. Meyerovich, M. E. Torok, E. Atkinson, and R. Bodik, “Parallel schedule
synthesis for attribute grammars,” ser. PPoPP ’13, 2013.

[27] M. Jourdan, “A survey of parallel attribute evaluation methods,” in Attribute
Grammars, Applications and Systems, ser. Lecture Notes in Computer Science,
H. Alblas and B. Melichar, Eds. Springer Berlin Heidelberg, 1991, vol. 545,
pp. 234–255. [Online]. Available: http://dx.doi.org/10.1007/3-540-54572-7 9

[28] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, 1977, pp. 238–252. [Online]. Available:
http://doi.acm.org/10.1145/512950.512973

[29] B. Wiedermann and W. R. Cook, “Extracting queries by static analysis of
transparent persistence,” in Proceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser. POPL
’07. New York, NY, USA: ACM, 2007, pp. 199–210. [Online]. Available:
http://doi.acm.org/10.1145/1190216.1190248

[30] T. Ekman and G. Hedin, “The JastAdd Extensible Java Compiler,” in
Proceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems and applications, ser. OOPSLA ’07. New
York, NY, USA: ACM, 2007, pp. 1–18. [Online]. Available: http:
//doi.acm.org/10.1145/1297027.1297029

[31] L. De Moura and N. Bjørner, “Z3: An E�cient SMT Solver,” in Proceedings
of the Theory and Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, ser.
TACAS’08/ETAPS’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 337–340.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1792734.1792766

[32] D. D. Sleator and R. E. Tarjan, “Self Adjusting Heaps,” SIAM J.
Comput., vol. 15, no. 1, pp. 52–69, Feb. 1986. [Online]. Available:
http://dx.doi.org/10.1137/0215004

[33] M. Frigo, C. E. Leiserson, and K. H. Randall, “The Implementation of the
Cilk-5 Multithreaded Language,” in Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and Implementation, ser. PLDI
’98. New York, NY, USA: ACM, 1998, pp. 212–223. [Online]. Available:
http://doi.acm.org/10.1145/277650.277725

http://doi.acm.org/10.1145/2103656.2103673
http://dx.doi.org/10.1007/BF01692511
http://dx.doi.org/10.1007/BF01692511
http://dx.doi.org/10.1007/3-540-54572-7_9
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/1190216.1190248
http://doi.acm.org/10.1145/1297027.1297029
http://doi.acm.org/10.1145/1297027.1297029
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dx.doi.org/10.1137/0215004
http://doi.acm.org/10.1145/277650.277725

56

[34] U. Kastens, “Ordered attribute grammars,” Acta Informatica, vol. 13, pp. 229–
256, 1980.

APPENDIX

57

l = �(point) v = h(l.f
p

)

hpoint.f
p

, �, hi ! v

[LOAD-P]
l = �(n) v = h(l.f

p

)

hn.f
p

, �, hi ! v

[LOAD-N]

he1, �, hi ! v1 he2, �, hi ! v2 v = v1 � v2

he1 � e2, �, hi ! v

[BINOP]

hskip, �, h, Fi ! h�, h, Fi [SKIP] hreturn, �, h, Fi ! h�, h, Ti [RETURN]

hs1, �, h, Fi ! h�0
, h

0
, Ti

hs1; s2, �, h, Fi ! h�0
, h

0
, Ti

[SEQ-RET]

hs1, �, h, Fi ! h�0
, h

0
, Fi hs2, �

0
, h

0
, Fi ! h�00

, h

00
, ⇢i

hs1; s2, �, h, Fi ! h�00
, h

00
, ⇢i

[SEQ-CONT]

he, �, hi ! v l = �(point)

hpoint.f
p

:= e, �, h, Fi ! h�, h[l.f
p

7! v], Fi
[STORE-P]

he, �, hi ! v l = �(n)

hn.f
p

:= e, �, h, Fi ! h�, h[l.f
p

7! v], Fi
[STORE-N]

l1 = �(n2) l2 = h(l1.fr)

hn1 := n2.fr, �, h, Fi ! h�[n1 7! l2], h, Fi
[DEF-N]

l = �(n)

hn.f
r

:= alloc, �, h, Fi ! h�, h[l.f
r

7! fresh], Fi
[ALLOC]

hbexp, �, hi ! Ths1, �, h, Fi ! h�0
, h

0
, ⇢

0i

hif bexp then s1 else s2, �, h, Fi ! h�0
, h

0
, ⇢

0i
[IF-T]

l = h(�(root).f
r

)hp, �[root 7! l], h, Fi ! h�0
, h

0
, ⇢i

hrecurse (root.f
r

,point), �, h, Fi ! h�, h

0
, Fi

[CALL]

Fig. 1.: Concrete semantics for traversal

58

A. CONCRETE SEMANTICS FOR SPECIFICATION

LANGUAGE

Figure 1 gives a subset of the concrete semantics for performing a traversal; the

rules not shown follow the same pattern. The state at the beginning of a traversal

is determined by the invocation of recurse by the frame program: hp, �[root 7!

tree,point 7! p], h, Fi, where p is a reference to the current point performing

the traversal, and root starts out mapped to tree, the root of the tree structure

(which resides in the heap). Assume that the tree structure has been initialized

prior to beginning traversal. All other local variables are initialized to 0 or null as

appropriate.

SKIP has standard semantics, leaving the store and heap untouched. RETURN

changes the return flag to T. This flag is checked during statement sequencing (SEQ-

RET and SEQ-CONT); if the first statement returns T, the second statement does not

execute. IF-T has standard semantics, executing the true branch of the if statement;

the semantics for the false branch are analogous. STORE-P stores the result into the

appropriate point structure in the heap (looking up the heap location using �).

Accessing tree nodes follows a similar pattern. DEF-N extracts the heap location

pointed to by n2.fr, and maps n1 to it. STORE-N dereferences n to update the prim-

itive field of the appropriate tree node. ALLOC is similar to STORE-N, except that

it updates the appropriate recursive field in the heap to point to a freshly-allocated

tree node (with recursive fields initialized to null and primitive fields initialized to 0).

The semantics for assigning null to a tree node’s recursive field are similar.

Expressions have standard semantics. The rules for loading from point and ref-

erences are shown. Loading from point requires looking up which point structure is

referenced in the store, then loading the appropriate field from the heap. Loading

59

from a reference loops up the appropriate location in the store. Binary operations

combine the results of their operands as expected.

The semantics of calls are relatively straightforward. The method body is re-

executed with a new store, where root is remapped to the canonical access path the

recursive call is invoked on and point retains the same mapping as the original store.

Note that local variables are not remapped; however, because programs assumed to

be well-formed, these variables will be re-initialized before being used. After the call

returns, execution continues with the old store (thus returning to the old mapping for

root), but the updated heap. Note, also, that the return flag of the call is always reset

to F; if calls are sequenced, all calls execute, following the semantics of SEQ-CONT.

	Purdue University
	Purdue e-Pubs
	Spring 2015

	Recursive tree traversal dependence analysis
	Yusheng Weijiang
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	GLOSSARY
	ABSTRACT
	INTRODUCTION
	Problem Context
	Point Blocking

	Thesis Statement
	Objectives
	Procedures

	LITERATURE REVIEW
	Analysis for Regular Programs
	Analysis for Irregular Programs

	BACKGROUND AND MOTIVATION
	Loop transformations for array programs
	Loop transformations for trees
	``Multi callset'' traversals

	POINT BLOCKING LEGALITY
	A conservative approach
	A dependence test for point blocking
	DAG traversals

	Simplified dependence tests
	Aside: Multi callset point blocking

	A SIMPLE LANGUAGE FOR TREE TRAVERSALS
	Syntax and assumptions
	Concrete semantics

	PATH-INSENSITIVE DEPENDENCE ANALYSIS
	Collecting rooted access paths
	Identifying conflicting access expressions
	Applying the dependence test
	Examples

	CONDITIONAL DEPENDENCE ANALYSIS
	Attaching conditions to access paths
	Using conditions to disprove dependences
	Example

	IMPLEMENTATION AND EVALUATION
	Analysis implementation
	Benchmarks
	Benchmarks discussion

	FUTURE WORK AND CONCLUSIONS
	Future work
	Conclusions

	REFERENCES
	CONCRETE SEMANTICS FOR SPECIFICATION LANGUAGE

