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ABSTRACT 

Trotochaud, Joseph. M.S.A.B.E., Purdue University, May 2015.  Climate Change Impact 

Assessments using the Water Erosion Prediction Project Model. Major Professors: 

Bernard Engel and Dennis Flanagan. 

 

 

This study was conducted to develop a simplified method of obtaining future climate data 

inputs for natural resource models and apply that method to three locations within the 

continental United States to assess the effect of climate change on soil erosion, runoff, 

and fire risk. A method was developed for quickly obtaining future climate data over a 

wide range of scenarios, General Circulation Models (GCMs), and timescales from the 

Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) 

and Fifth Assessment Report (AR5) model families using the MarkSim
®

 DSSAT 

Weather Generator and a Microsoft Excel VBA Macro, the final result being a properly 

formatted parameter file which can be used by CLIGEN (CLImate GENerator) within the 

Water Erosion Prediction Project (WEPP) model. By using software which already exists 

on most computers and not requiring climatological or modeling knowledge to operate, 

the method herein for creating WEPP climate input files is fast and simple, requiring as 

little as 15 minutes. 

 

At the first site, analysis of a small (6.7 acre, 2.71 ha) field site monitored as part of the 

USDA-ARS Conservation Effects Assessment Project in NE Indiana was conducted to 

determine the effect of climate change on agricultural resources. Precipitation, runoff, 

soil erosion, and crop growth were modeled using WEPP and the four Representative 

Concentration Pathway (RCP) scenarios used with the CMIP5 model family from the 

IPCC 5AR to determine the effectiveness of common agricultural Best Management 

Practices (BMPs) under predicted climate change. Although precipitation is predicted 

 



xiii 

here to increase by 2100, sediment loss and runoff will decrease due to a reduction of 

concrete frost conditions during late winter. However, an increase in the amount of 

precipitation falling in spring and earlier soybean senescence was predicted to lead to 

increased soil loss in early spring and fall. 

 

At the second site, a small agricultural hillslope managed by the USDA-ARS in the 

Southern Coastal Plain of the United States was modeled using WEPP under current and 

future climates to assess the effect of predicted future climate change on soil erosion, 

runoff, and BMP effectiveness. Future climate data was similar to that used at the first 

site. Predicted climatic shift caused soil loss and runoff to be reduced in the first three 

months of the year, while late fall and early winter months had increases in predicted soil 

loss and runoff. Increased temperatures were predicted to cause winter cover crops to 

grow faster, unhindered by frost in winter. Soil loss increased when cotton senesced 

earlier under warmer temperatures. Early season water deficits and higher 

evapotranspiration also increased irrigation demands in the growing season. The 

combination of no-till, rye cover crop, and riparian buffer increased in effectiveness into 

the future, while all other management systems had either similar or slightly reduced 

effectiveness under predicted future climate. 

 

At the third site, the Blackwood Creek watershed, a tributary of Lake Tahoe in 

California, was assessed for potential changes in climate and fire risk under 21
st
 century 

climates projected by the IPCC AR5. While total precipitation varied by decade, the 

portion of precipitation falling as snow decreased by as much as 26%, and projected air 

temperatures increased by as much as 3.4°C by 2090. Total soil water (TSW) predictions 

by WEPP indicated that fire ignition in the Sierra Nevada region from 1984-2013 

coincided with simulated minimum TSW. Risk categories based on simulated TSW 

changed under projected future climate, with an increase in the number of high risk days 

defined by TSWs less than 40 mm. Simulated TSW in the Blackwood Creek watershed at 

the time of historic fires in the region also indicated that the Keetch-Byram Drought 

Index (KBDI) was correlated to TSW (R
2
 = 0.59) when KBDI was less than 500. 
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CHAPTER 1. INTRODUCTION 

Stationarity, the concept that natural systems operate within fixed boundaries, has 

dominated the engineering and natural science disciplines since their inception. Design 

and/or practices based on results of empirically derived models of historical data may be 

flawed due to now poor (or invalid) stationarity assumptions (Milly et al., 2008). As such, 

the scientific and engineering communities must begin to adopt planning strategies to 

account for changes in natural systems, particularly climate, if we are to adequately 

address the problems discovered today. Large scientific and political bodies, most 

recognizably the Intergovernmental Panel on Climate Change (IPCC), exist which aid in 

guiding national and regional policies to curtail the extent of and adapt to the realities of 

climate change. Meanwhile, research continues to satisfy the need to understand how 

climate change will impact communities, industries, and ecosystems on more localized 

scales. Evidence based studies which examine specific relationships between climate and 

other natural or human systems are needed to help policymakers and communities adapt 

to the future. 

 

A critical first step in conducting climate change assessments is obtaining projected 

future climate data. While the IPCC is the authoritative body on climate change studies, 

obtaining future climate projections from their databases presents several challenges for 

those desiring to conduct impact assessments. The General Circulation Models (GCM), 

atmospheric and oceanic mathematical models which are used to project future climate, 

have large map grid cells which generate climate over areas of hundreds of thousands of 

square kilometers. This complicates studies which examine a specific point on the globe, 

requiring the individual conducting a site assessment to scale the larger GCM output 

down to a specific point on the globe (Wilby et al., 2004). Chapter 2 contains more detail 
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on the scaling process, as well as a tool based on a Microsoft Excel Visual Basic for 

Applications macro which simplifies the process of obtaining and scaling GCM outputs 

from the IPCC Fourth (AR4) and Fifth (AR5) Assessment Reports. 

  

Once climate projections have been obtained, natural resource models which use weather 

to drive fundamental equations can be used to examine the response of specific 

environmental variables to climate change. Each region will likely have different 

concerns with regards to weather, requiring engineering practices or risk metrics assessed 

to be specific to those regions. Three regions are examined in this body of work, two 

agricultural and one forestland, using the Water Erosion Prediction Project (WEPP, 

Flanagan and Nearing, 1995) model. WEPP is a mathematical model which combines 

fundamental equations of soil water, sediment erosion and transport, and plant growth to 

simulate hillslope and field-scale natural processes related to soil erosion. The WEPP 

model has been continuously developed since 1985 as a replacement to more simplistic 

soil erosion tools so that engineers, scientists, and government agents can be more well 

informed on soil and water conservation and environmental planning and assessment 

(Flanagan et al., 2007). The WEPP model is used throughout this body of work to assess 

soil water, soil erosion, best management practices, and crop growth under historical and 

potential future climate projected under the IPCC AR4 and AR5 model families. 

 

In the Midwestern United States, increasing concern over agro-chemical pollution in 

runoff from agricultural fields has spurred governments and communities to monitor 

freshwater drinking sources for agricultural pollutants (Flanagan et al., 2003, 2008). 

Further downstream, these same pollutants have been linked to the algal blooms and 

eutrophication which has plagued coastal (Alexander et al., 2008) and inland lake 

(Michalak et al., 2013) communities. Research in that region has therefore focused 

heavily on identifying the sources of agricultural pollutants and assessing best 

management practices for mitigation of pollutant flux and runoff into receiving waters 

(Flanagan et al., 2008; Heathman et al., 2008; Cechova et al., 2010; Ascough et al., 

2012). In Chapter 3, projected future climate is used as an input to the WEPP model to 
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assess various agricultural practices on a small 2.7 hectare catchment in Northeast 

Indiana to determine their effectiveness into the future.  

 

In the Southeastern United States, a similar concern exists with regard to the highly 

erosive, sandy soils which dominate the southeastern coastal plain. Convective summer 

thunderstorms provide much of the rain in the region (Bosch et al., 1999) while 

supplemental irrigation during periods of drought is common. The use of riparian buffers 

and strip-tillage to limit pollutant and sediment transport to streams is widespread in the 

region, but despite the agroeconomic value of the cash crops grown in the fertile soils, 

only a few studies have examined other BMPs to compare effectiveness in sequestering 

agricultural pollutants (Suttles et al., 2003; Cho et al., 2010b). In Chapter 4, multiple 

BMPs are assessed for their effectiveness in reducing runoff and soil losses under current 

and future climates at an experimental plot in South Georgia. 

 

Forested regions have very different ecologies and climates compared to agricultural 

lands. Additionally, forested lands are not managed to the same degree or with the same 

tools as agricultural lands. A growing concern in the Western United States is the 

occurrence of large, severe wildfires during drought periods. Earlier spring snowmelt and 

higher spring and summer temperatures have been linked to recent increases in wildfire 

severity (Westerling et al., 2006). In some watersheds of the Sierra Nevada mountains in 

particular, a legacy of fire fuel removal through logging has created a fire deficit and the 

lowest level of wildfire occurrence in thousands of years (Beaty and Taylor, 2009; 

Marlon et al., 2012). In Chapter 5, one such watershed is examined to assess changes in 

climate and fire risk using the Keetch-Byram Drought Index and soil water simulated by 

the WEPP model. 

 

In Chapter 6, the conclusions from the entire body of work are summarized. This work is 

intended to show the utility of the climate data tool described in Chapter 2, as well as 

provide detailed impact assessments for various regions of agricultural and natural value. 
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CHAPTER 2. A SIMPLE TECHNIQUE FOR OBTAINING FUTURE CLIMATE 

DATA INPUTS FOR NATURAL RESOURCE MODELS 

2.1  Abstract  

Those conducting impact studies using natural resource models need to be able to quickly 

and easily obtain downscaled future climate data from multiple GCMs, future scenarios, 

and timescales for multiple locations. This paper describes a method of quickly obtaining 

future climate data over a wide range of scenarios, GCMs, and timescales from the 

Intergovernmental Panel on Climate Change AR4 and AR5 model families using the 

MarkSim
®
 DSSAT Weather Generator and a Microsoft Excel VBA Macro, the final 

result being a properly formatted .par file which can be used by CLIGEN (CLImate 

GENerator) within the Water Erosion Prediction Project (WEPP) model. By using 

software which already exists on most computers and not requiring climatological or 

modeling knowledge to operate, the method herein for creating WEPP climate input files 

is much faster and simpler than commonly used statistical methods currently described in 

the literature. Ultimately, the method was modified to create continuous daily data for use 

with the Soil and Water Assessment Tool (SWAT) as well. The final product is an 

automated spreadsheet with a simple user interface which imports, analyzes, and 

generates climate input files for the WEPP and SWAT models. This paper describes the 

methods, development, and testing of the tool for use with CLIGEN and WEPP model 

simulations. 
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2.2  Introduction 

With the reality of a changing climate comes the need for scientists, policymakers, and 

engineers to consider the effects of increasing weather extremes when analyzing, 

regulating, and designing natural resource conservation systems and strategies. Soil 

research needs to determine if erosion will increase under projected future climates and 

whether or not current conservation measures will be effective in the future. The lack of 

the latter, referred to as impact studies, can partially be explained by two factors: the 

difficulty of retrieving and downscaling future climate data, and the uncertainty 

associated with predicting future climates as far as 80 years into the future. With 

persistent advances in General Circulation Models (GCM) and ever-expanding climate 

databases comes a decrease in uncertainty, allowing for the gap between the detailed 

science of climate change and the use of future climate data in localized impact studies to 

close.  

 

To obtain precipitation and temperature projections from GCMs for use in localized 

impact studies, the combined technique of spatial and temporal downscaling is 

recommended (Wilby et al., 2004). GCMs produce synoptic-scale data which must be 

scaled down to avoid leaving out local meteorological, topographical, and circulatory 

phenomena which exist at the meso- or micro-scale. Downscaling is a quantitative 

method which involves regressing modeled 20
th

 century synoptic-scale atmospheric 

trends to observed micro-scale localized weather to determine correlations which are then 

applied to modeled 21
st
 century synoptic-scale data in the same location to create micro-

scale, localized weather. The Intergovernmental Panel on Climate Change (IPCC) is the 

most widely recognized source for GCM output (IPCC website is http://www.ipcc.ch). 

 

Downscaling methods can be broken into several simplified categories based on the 

mathematical or technological methods they use. Delta-change or change-factor methods 

are the simplest and involve linearly scaling 21
st
 century GCM outputs based on the 

absolute or relative difference between micro-scale historical observations and synoptic-

scale 20
th

 century GCM output for each variable independently (Zhang, 2004; Joh et al., 
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2011; Woznicki et al., 2011). Transfer function methods operate similar to change-factor 

methods, in that they scale GCM output variables independently, but use non-linear 

relationships to scale historical data relative to synoptic-scale GCM output (Zhang et al., 

2005; Sheshukov, 2011). More sophisticated statistical methods regress one or more 

input predictors to one or more local variables and scale synoptic-scale 21
st
 century GCM 

output based on those multi-variable regression models to obtain downscaled data on a 

much finer scale (Mearns et al., 1999; Wilby et al., 2002). Cutting-edge computer 

modeling methods such as meso-scale Regional Circulatory Model coupling or artificial 

neural networks generate high-quality downscaled data, but require computational, 

financial, and human resources which are prohibitive to most institutions (Kendon et al., 

2010). 

 

The chaotic nature of the atmosphere and the uncertainty of any one model to produce 

realistic results necessitate the use of multiple GCMs under multiple greenhouse gas 

forcings to conduct a comprehensive impact assessment of climate change (Mearns et al., 

2003; Wilby et al., 2004; Chiew et al., 2009, 2010). Issues arise when determining which 

downscaling method to use, since emulating previous impact studies which have 

traditionally focused on a single downscaling method, GCM, scenario, or time period 

limit the scope of results. Creating a spread of possible climates using multiple GCMs 

and emission scenarios involves an often steep learning curve, and can take substantial 

resources and time to downscale for even a single location. Additionally, locating raw 

GCM output and predictor variables has only recently become readily available through 

the IPCC.  

 

Several combinations of GCMs and future time periods have been used in published 

research involving the Water Erosion Prediction Project (WEPP, Flanagan et al., 2007; 

Flanagan and Frankenberger, 2012), with little to no similarity in the techniques 

employed by each author. Zhang published a number of papers in which he used several 

different downscaling techniques for use with WEPP (Zhang et al., 2004, 2011; Zhang, 

2005, 2007). Taken as a whole, these papers represent a spread of the most common 
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statistical and transfer function downscaling techniques. In the first three papers, Zhang 

used native GCM output cells from the Hadley Centre Coupled Model version 3 under 

various IPCC Special Reports on Emission Scenarios (SRES) and Greenhouse Gas (GGa) 

emission scenarios from the IPCC 3AR and 4AR for a variety of locations. He then 

spatially and temporally downscaled the GCM outputs to modify the precipitation and 

temperature parameters within a CLIGEN (CLImate GENerator, Nicks et al., 1995) input 

file. These three studies analyzed only a single location using climate data from a single 

model, possibly due to time and resource constraints. However, the most recent study 

(Zhang et al., 2011) used multiple GCMs and emission scenarios. 

 

The IPCC acknowledges that impact studies have traditionally been restricted to single 

locations and climate scenarios, likely due to the resource requirements involved with 

advanced statistical methods and computer software (Wilby et al., 2004). Several barriers 

exist for those wishing to obtain downscaled future climate data for impact studies. Time 

requirements for learning and applying downscaling methods, while absent from the 

literature, can be daunting for those with limited statistical or programming skills. 

Statistical downscaling methods, for example, represent a balance between spatial 

resolution and resource requirements, but have steep learning curves which require 

extensive time to produce data for a single location. Time requirements can be 

compounded in regional or national collaboration projects where climate data inputs must 

be developed for multiple locations. Additionally, with each new iteration of the IPCC 

assessment report every few years, new or updated GCMs and emission scenarios are 

released, and regression equations or transfer functions must be updated to downscale the 

GCM output. For regions outside of the United States, and in developing countries in 

particular, is that it may be difficult to obtain observed weather data required for 

validating the accuracy of the chosen downscaling method to reproduce historical 

climate, a key requirement for assessing the usefulness of any future climate impact 

analysis. A rapid method of obtaining downscaled future climate data using models 

which are already globally validated to observed datasets would therefore greatly expand 
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the availability of such data to scientists and policy planners wishing to conduct future 

climate impact analyses. 

 

The objective of this study was to develop a rapid and simple method for creating future 

climate inputs for the WEPP model. WEPP is a continuous simulation, physically-based 

model which uses process-based equations to predict runoff, soil erosion, water balance, 

and crop yield with input from four parameter files: slope topography, crop/land 

management, soil, and climate. Climate input to WEPP is normally simulated using the 

CLIGEN stochastic weather generator (Nicks et al., 1995), which requires monthly 

means of daily weather for various temperature and precipitation statistics stored in a 

parameter file. The goal of this project was to devise a method of creating CLIGEN 

parameter files which takes less than 15 minutes and has a minimal learning curve. The 

purpose of this paper is to describe the tool developed and the procedure to use it together 

with CLIGEN and WEPP model simulations. We also present results of example 

applications. The MarkSim
®

 Decision Support System for Agrotechnology Transfer 

(DSSAT) Weather Generator was used to downscale climate data from various GCMs 

under three SRES scenarios for multiple future time periods.  

 

2.3  Materials and Methods 

MarkSim
®
 is a weather simulator based on a third-order Markov Chain process which 

predicts the occurrence of a rain day (Jones and Thornton, 1993, 1997, 1999, 2000) and 

as a result of its continuous development over the past 20 years, is now a globally valid 

model. MarkSim
®
 has been calibrated to the WorldClim dataset which incorporates 

historical weather data from a number of databases including the National Oceanic and 

Atmospheric Administration’s (NOAA) National Climate Data Center (NCDC) Global 

Historical Climatology Network (GHCN), which uses stochastic downscaling and climate 

typing to downscale future climate projections for the IPCC GCM model families 

(Hijmans et al., 2005; Jones and Thornton, 2013). The DSSAT weather file generator was 

developed for use with the DSSAT crop model, but can also be used to produce rainfall, 

temperature, and solar radiation information for other model applications.  
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Figure 2.1: Screen captured image of the MarkSim
®
 DSSAT Weather Generator for the 

IPCC 4
th
 Assessment Report, available online at 

http://gismap.ciat.cgiar.org/MarkSimGCM/ 

 

In addition to the standalone DSSAT weather generator, an easy-to-use online web 

application (http://gismap.ciat.cgiar.org/MarkSimGCM) has also been released to retrieve 

MarkSim
®

 model output (Figure 2.1) for the 4
th

 IPCC assessment report (Pachauri and 

Reisinger, 2007). The web application downscales future climate data from 6 GCMs 

using 3 SRES scenarios from the IPCC 4AR (Pachauri and Reisinger, 2007). An 

ensemble average of the 6 GCMs is also available. The data generated are representative 

of a climate that could be expected within a 10-year time slice. The user can also specify 

a number of replications to produce, each containing continuous daily series for 

precipitation, minimum temperature, maximum temperature, and solar radiation. 
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The MarkSim
®
 DSSAT weather file generator web application was used to acquire 

downscaled future climate data on a daily time step. A Microsoft Excel VBA macro 

(Figure 2.2) specifically designed as a user interface was then used to produce and write a 

CLIGEN parameter file based on the future climate data. CLIGEN is a stochastic weather 

generator which generates daily weather variables for a single location using summary 

statistics for precipitation, temperature, solar radiation, and wind patterns derived from 

historical observations (Nicks et al., 1995). Initially, 40 replicates representing 40 years 

of daily future weather were generated, based on the observation that existing CLIGEN 

.par files were typically generated from around 40 year periods of record. The replicates 

are downloaded from the web application as 40 individual text files formatted for use in 

the DSSAT model; aggregation is needed to format the data for use with CLIGEN.  

 

Figure 2.2: Screen captured image of the main screen of the Excel VBA Macro 

 

The Microsoft Excel VBA macro automated importing, analyzing, aggregating, 

calculating the necessary statistics, and writing the CLIGEN .par file, a process which 

undertaken manually takes several hours. The function of this macro is similar to adding 

a climate station in the WEPP windows interface, with the added benefit of being able to 

visualize the data, compare the new data with other CLIGEN .par files, and make 

changes to the data before creating a new .par file. Microsoft Excel was chosen for 
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several reasons, the most immediate being its availability on most computers. 

Additionally, file reverse-compatibility and VBA persistence over multiple releases of 

Excel eliminates compatibility issues, as confirmed by testing on three computers with 

different Excel releases and Windows operating systems. 

 

2.3.1 Calculated Values 

For non-precipitation variables, the CLIGEN parameter file (.par file) requires mean and 

standard deviations for minimum temperature, maximum temperature, and solar radiation 

variables. Monthly standard deviations and means for temperature and solar radiation 

were determined using conventional methods in which all days of the month were 

aggregated. Precipitation statistics were calculated based only on those days in which 

precipitation occurred. Additional probability variables required by CLIGEN include the 

probability of a wet day following a wet day (PW/W), probability of a wet day following a 

dry day (PW/D), and a skew coefficient for the distribution of the precipitation data.  

 

Mean daily dew point temperature for future climates (TDPfuture) was determined using the 

delta change method based on the historical and future mean temperatures, as direct 

prediction and calculation of this variable are not possible using the MarkSim
®
 output. 

The following equation was used: 

TDPfuture = (Tfuture – Thist) + TDPhist  (2.1) 

where Tfuture is the mean daily projected future temperature, Thist is the mean daily 

historical temperature for the location, and TDPhist is the historical mean daily dew point 

temperature. 

 

2.3.2 Assumed Values 

CLIGEN uses several variables which relate to storm intensity distribution curves that 

require sub-daily or sub-hourly future climate data to calculate. Most GCMs report 

climate variables on daily time steps, and most do not forecast precipitation directly but 

regress precipitation based on other atmospheric variables. This makes it difficult to 

forecast daily rainfall with any confidence, more so at the sub-daily level required for 
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peak intensity hyetographs. Nearing et al. (1990) found in a detailed sensitivity analysis 

of WEPP that the peak rainfall intensities and time to peak rainfall intensities did not play 

a significant role in soil loss prediction. 

 

Table 2.1: Summary of parameter data sources for modified CLIGEN .par file inputs 

    Source  

Parameter description 
CLIGEN 

variable 

Line in 

.par file 

Historical 

.par file 
MarkSim

®
 

output 

From 

macro 

Max 6hr and 

30min precip. depth 
TP5/6 3 X   

Mean precip. 
for a wet day 

MEAN P 4  X  

Standard deviation 

of daily precip. 
S DEV P 5   X 

Skewness coeff. 
of daily precip. 

SKEW P 6   X 

Prob. of wet day 

after a wet day 
PW/W 7   X 

Prob. of wet day 
after a dry day 

PW/D 8   X 

Mean daily max. 

air temperature 
TMAX AV 9  X  

Mean daily min. 
air temperature 

TMIN AV 10  X  

Standard deviation 

of TMAX AV 
SD TMAX 11   X 

Standard deviation 
of TMIN AV 

SD TMIN 12   X 

Mean daily 

solar radiation 
SOL.RAD 13  X  

Standard deviation 
of SOL.RAD 

SD SOL 14   X 

Mean max. 30min precip. 

Intensity 
MX .5P 15 X   

Mean daily dew point 
temperature 

DEW PT 16   X 

Time to peak 

rainfall intensity 
Time Pk 17 X   

Wind direction 
and speed values 

WIND 18-82 X   

 

Therefore, based on the lack of downscaled sub-daily data, historical values for variables 

related to intensity were assumed for the future climate. The macro extracts these values 
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from a user-specified historical CLIGEN .par file from the WEPP database. Over half of 

the text in a CLIGEN .par file provides information on surface wind direction and speed 

(Table 2.1). Synoptic-scale wind patterns at higher altitudes are modeled within GCMs, 

but the turbulence associated with near-surface wind patterns is not, forcing historical 

near-surface wind patterns to be assumed for the future climates, also from the historical 

CLIGEN .par file. 

 

2.3.3 Validation 

MarkSim
®
 downscales future data by calibrating 20

th
 century output from the GCMs to 

match the WorldClim data through Markov Chain regression (Jones and Thornton, 2013). 

The regression equations developed are then applied to 21
st
 century output from GCMs to 

create downscaled future climate data. For the United States, the WorldClim dataset 

primarily utilized NCDC data, so the 20
th
 century calibration data from MarkSim

®
 should 

closely match the historical CLIGEN files which were derived from National Weather 

Service (NWS) data. The option to download the calibrated MarkSim
®
 20

th
 century 

climate for 1961-1990 (herein referred to as the MarkSim
®
 baseline) exists. To determine 

if the MarkSim
®

 baseline climate matched well with the historical .par file from the 

WEPP directory created from NWS data (herein referred to as the WEPP baseline), the 

macro was written to include a graphical and tabular comparison of the .par file created 

from the MarkSim
®
 baseline and the WEPP baseline for all calculated variables. 

  

Climate data were compared for twelve locations in the contiguous United States (Table 

2.2). These were chosen based on their spatial separation, different climatic regimes, 

unique agricultural conditions, and availability of a WEPP baseline for that site. 

Comparisons were also performed by conducting WEPP version 2012.8 model 

simulations under both baseline climates as well as for three future time periods forecast 

by MarkSim
®
 under the IPCC SRES A1b storyline (Pachauri and Reisinger, 2007). 

WEPP runs were conducted for four sites representing one good (WI), two acceptable 

(CO, IN), and one poor (GA) fits according to correlations between MarkSim
®
 baselines 

with WEPP baselines as described in the previous paragraph. CLIGEN version 5.3 was 
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used with the Fourier interpolation scheme to simulate 100 years of weather. A USLE 

Unit Slope, 22.1 m long at 9% uniform grade, was used throughout, with soils specific to 

each region as determined by USDA Natural Resources Conservation Service (NRCS) 

soil surveys. Tilled fallow field conditions were used throughout. WEPP 100-year model 

simulations were run for each climate, with annual means analyzed for percent change 

from the WEPP baseline and MarkSim
®
 baseline. 

 

2.4  Results and Discussion 

Validation comparisons for each of the twelve sites were conducted using Q-Q plots to 

indicate how well the MarkSim
®

 baseline reproduced a particular variable compared to 

the WEPP baseline. The MarkSim
®
 baseline showed a mix of good and poor fits, with 

temperature expectedly showing a better fit than precipitation as indicated by both Q-Q 

plots and R
2
 values (Figure 2.3). Mean precipitation showed mixed results, with stations 

in the southern and southeastern United States showing the poorest, most scattered Q-Q 

plots. All other regions’ mean precipitation correlations were better with R
2
 greater than 

0.47. Mean precipitation correlations were best in Wisconsin (WI) and California (CA) 

with R
2
>0.80, although the MarkSim

®
 baseline under-predicted the precipitation mean 

and standard deviation for the CA site. Precipitation standard deviations were also mixed, 

with an average R
2
 of 0.43, and only five sites had R

2
≥0.50. Precipitation skew 

coefficient fits were poor for all sites and had scattered Q-Q plots, as was also evidenced 

by low correlation across sites. R
2
 values for the twelve sites’ precipitation variables are 

shown in Table 2.2. 

 

Initially, low means and skew coefficients for precipitation were observed from the 

MarkSim
®

 baseline. Upon removal of days in which precipitation was below 1.0 mm, the 

standard deviations and skew coefficients had much better fits to the observed data. 

Errors in the historical CLIGEN .par files were ruled out by reanalysis of historical data 

from the NCDC. The scattered nature of the Q-Q plots for precipitation skew could not 

be explained. Probability values for PW/W were generally poor and showed non-linear 

correlation for most sites. PW/D showed a better fit than PW/W as was evidenced by higher 
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R
2
 values for all but one site. NCDC reanalysis was also conducted to create historical 

CLIGEN .par files which had identical periods of record to the MarkSim
®
 Baseline 

(1961-1990), but showed R
2
 and Q-Q plots similar to the WEPP Baseline. This ruled out 

differences in the periods of record as an explanation for the poor correlations. 

 

Table 2.2: Coefficients of determination for regression comparisons of precipitation 

variables for MarkSim
®
 and WEPP baseline climates 

Site 
Mean 

Precip. 

S.D. of 

Precip. 

Skew of 

Precip. 
P(W/W) P(W/D) 

San Bernardino, CA 0.80 0.49 0.01 0.65 0.87 

Boulder, CO 0.57 0.80 0.01 0.52 0.76 

Clermont, FL 0.47 0.23 0.04 0.48 0.55 

Tifton, GA 0.02 0.01 0.00 0.03 0.30 

Waterloo, IN 0.77 0.67 0.37 0.25 0.56 

Springfield, MO 0.48 0.27 0.00 0.00 0.25 

Greenville, NC 0.23 0.04 0.00 0.00 0.18 

Bismarck, ND 0.60 0.44 0.00 0.00 0.50 

Albany, NY 0.71 0.67 0.00 0.31 0.38 

Portland, OR 0.64 0.48 0.10 0.87 0.74 

El Paso, TX 0.48 0.19 0.05 0.22 0.87 

Merrill, WI 0.89 0.93 0.01 0.71 0.75 

 

 

Q-Q plots for the four representative sites used in WEPP simulations are shown in Figure 

2.3. Wisconsin (WI) showed the best overall fit, with R
2
 values over 0.80 for all but the 

skew variable. Tifton, Georgia (GA) was the worst, with 4 out of 5 precipitation variables 

having R
2
0.04. These four sites were further analyzed to determine if changes in the 

number of years replicated by MarkSim
®
 had any effect on correlation to historical data. 

All metrics had lower R
2
 values for sample sizes less than 45. For sample size over 50, R

2 

increased for precipitation mean and variance, but decreased for the probability and skew 

values. Therefore, while the macro allows the user to download and generate a future .par 

file based on 1-99 replications, a sample size of 50 is recommended.
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Figure 2.3: Selected Q-Q plots for MarkSim
®

 baseline (horizontal axis) comparison to WEPP baseline 

(vertical axis) 20
th

 century files. Units for precipitation in mm, temperature in degrees Celsius. 1:1 Line 

shown as solid black on each plot. For variable names, refer to Table 2.1. 16
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WEPP erosion model outputs for hydrology and sediment loss were analyzed for each 

site under five climates: the WEPP Baseline, the MarkSim
®

 Baseline, and MarkSim
®

 

forecasts for three future climates in 2050, 2070, and 2090. Hydrology was analyzed for 

total precipitation, total number of precipitation events, total number of runoff events, 

and the proportion of runoff events to precipitation events (Table 2.3). The proportion of 

runoff events to precipitation events gives an indication of whether the number of storms 

capable of producing runoff will change compared to the baseline climate. Comparison 

shows that total precipitation differences between MarkSim
®
 baseline and WEPP 

baseline were low, while changes in the average annual number of precipitation events, 

number of runoff events, and proportion of precipitation versus runoff events were much 

greater. The MarkSim
®
 baseline simulations show less precipitation events at the 

Boulder, CO site due to MarkSim
®
 underpredicting the PW/D and PW/W for some months. 

Alternately, the MarkSim
®
 baseline shows greater precipitation and runoff events for the 

other three locations due to an overprediction of PW/W to a much greater degree. The 

paradoxical increase in runoff events for the Boulder, CO site can be explained by the 

overprediction of summer rain-day depths, with most of the rain historically occuring 

during the summer months for that location. While the results of the hydrology values 

alone give an idea of the general climatic changes between potential climate scenarios, 

runoff and sediment results show the implications of these changes. 

 

In general, each site examined showed substantial variation between the two baseline 

climates while showing more obvious trends when comparing the MarkSim
®

 baseline to 

the three future periods (Table 2.3). Even at the site with the highest level of correlation 

between the MarkSim
®
 baseline and the WEPP baseline climates (WI), the runoff and 

sediment loss results were different enough to question absolute evaluation of sediment 

loss when comparing the WEPP baseline with the three future periods. As such, it is 

recommended that the future climate inputs created by the macro be used to compare 

only relative changes in runoff, sediment loss, and precipitation due to climate change. In 

that case, one would compare the MarkSim
®
 baseline to the three future periods, and 

avoid using the WEPP baseline climate when conducting impact studies. 
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Precipitation and runoff trends simulated by WEPP for the four representative locations 

(Figure 2.4) showed variations among sites which indicated that future climate impacts 

will be regional in nature. In the already arid region around Boulder, CO, precipitation 

decreases further, while an increase in total precipitation was observed for the 

Midwestern climates of IN and WI. While WI showed an increase in precipitation and 

runoff by 2090 (Table 2.2, Figure 2.4), the sediment yield increased by a much greater 

percentage (Table 2.4), implying that the frequency of intense, erosion-inducing storms 

will increase for this region. Unlike WI, GA shows a more direct correlation between 

rainfall, runoff, and erosion where all three variables decrease slightly with time. For the 

Waterloo, IN location, runoff frequency was predicted to increase by 23% to 51%, 

compared to an 8% to 31% increase in precipitation event frequency, implying that the 

frequency of runoff-inducing storms will increase.  

 

Unlike the other three locations, the Boulder, CO location had a predicted decrease in all 

precipitation, runoff, and soil loss variables. A common theme at all four sites was a 

decrease in the number of snowmelt events and runoff depth from snowmelt. This is 

likely due to the increase in temperature at all four sites of almost 4°C, as shown in 

Figure 2.5. It is possible that the increase in runoff from rain at the IN site from 2000 to 

2050 is due to less snowfall/snowmelt and more rainfall/runoff, although the same trend 

is not seen in the two later periods. Determining the replacement of one type of runoff 

with another would require additional analysis which is beyond the scope of this paper, 

so it may be more beneficial to compare total precipitation and the number of runoff 

events to simulated erosion to gain a better understanding of the frequency of erosion-

inducing events (Table 2.4). 
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Table 2.3: Average annual precipitation and runoff results from WEPP v2012.8 for the 

four representative locations 

 Precipitation 
Precipitation 

Events 
Runoff Events 

Precip as 

Runoff 

Climate 
Depth Diff. Storms Diff. Events Diff. 

% as 

Runoff 
Diff. 

mm % Avg/Year % Avg/Year %  % 

Boulder, Colorado 

WEPP 439 - 85.9 - 1.1 - 1.27 - 

MarkSim
®

 421 -4.1 71.7 -16.5 1.3 16.5 1.77 39.6 

2050 422 -3.9 75.7 -11.9 1.0 -7.3 1.33 5.2 

2070 407 -7.2 80.8 -5.9 1.0 -9.2 1.22 -3.4 

2090 391 -10.8 86.3 0.4 0.8 -28.4 0.90 -28.7 

Tifton, Georgia 

WEPP 1185 - 102.1 - 16.2 - 15.84 - 

MarkSim
®

 1200 1.2 133.7 31.0 18.3 12.9 13.65 -13.8 

2050 1152 -2.7 134.2 31.4 19.3 19.2 14.36 -9.3 

2070 1134 -4.3 136.1 33.3 17.1 5.9 12.59 -20.5 

2090 1165 -1.7 135.9 33.0 18.3 12.9 13.44 -15.1 

Waterloo, Indiana 

WEPP 867 - 100.8 - 5.3 - 5.30 - 

MarkSim
®

 890 2.7 109.3 8.4 6.6 22.7 5.99 13.2 

2050 936 8.0 109.8 8.9 7.2 34.3 6.53 23.3 

2070 957 10.4 110.6 9.7 7.2 33.9 6.46 22.0 

2090 977 12.7 132.0 30.9 8.1 8.1 6.12 15.5 

Merrill, Wisconsin 

WEPP 759 - 103.8 - 3.4 - 3.24 - 

MarkSim
®

 819 7.9 128.9 24.1 4.9 44.3 3.76 16.3 

2050 825 8.7 106.1 2.2 7.3 116.4 6.85 111.7 

2070 879 15.9 106.1 2.2 7.2 113.7 6.77 109.1 

2090 896 18.1 107.2 3.2 7.5 123.5 7.01 116.6 

CLIGEN v5.3 generated weather inputs. Precip as Runoff category represents the 

percentage of the number of precipitation events which produce runoff. WEPP is WEPP 

baseline climate. MarkSim
®

 is MarkSim
®
 baseline climate. Diff. is change from WEPP 

baseline climate. 

 

 

 



20 

 

 

 

 

Figure 2.4: Average annual precipitation and runoff outputs from WEPP. Runoff depth 

from snowmelt appears as diagonal-filled bars to right of runoff depth from rain as solid 

bars. 

  

Table 2.4 highlights the predicted changes in runoff, interrill detachment, and total 

detachment (soil loss) over the next century. Total runoff (from both rain and snowmelt 

events) was predicted to decrease between 5% and 19% at the Waterloo, IN location. 

Interrill and total detachment changes, however, were mixed, ranging from decreases in 

2070 of 4.5% to 3.1%, respectively, to increases of up to 10% in 2050. Impacts of 

predicted climate changes in Merrill, WI were much more pronounced, with average 

annual runoff increases of up to 35% and average annual soil losses increasing between 

33% and 54%. For both of these locations, decreasing snow cover and melt, and 

increasing runoff from rainfall were the main factors. At the Boulder, CO site, average 

annual runoff was predicted to decrease by 50% to 60%, and an associated soil loss 

decrease of 41% to 56%, indicating that at this semi-arid location future climate will 

become drier (and warmer, Figure 2.5), with lower risks of soil erosion by water. For the 
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Tifton, GA location, predicted average annual runoff decreased by 5% to 10% compared 

to 2000, while total soil loss was predicted to decrease by 3 to 9%. The slightly decreased 

average annual precipitation, combined with the increased temperatures at the GA site 

modified the water balance towards more evaporation and somewhat less runoff and soil 

loss. 

 

Table 2.4: WEPP predicted average annual runoff, interrill detachment, and total 

detachment from the hillslope profile simulations at the four locations. 

 Precipitation Precipitation Events Runoff Events 

Climate Amt./Yr. Diff.  Amt./Yr. Diff.  Amt./Yr. Diff. 

 mm %  T ha
-1 

%  T ha
-1 

% 

Boulder, Colorado 

2000 3.70 -  3.29 -  10.1 - 

2050 1.97 -49.8  1.95 -40.7  5.34 -47.1 

2070 1.97 -46.8  2.09 -36.5  5.95 -41.1 

2090 1.47 -60.2  1.69 -48.6  4.43 -56.1 

Tifton, Georgia 

2000 63.7 -  50.8 -  102 - 

2050 60.8 -4.58  46.3 -8.9  98.5 -3.4 

2070 57.0 -10.6  45.6 -10.2  93.2 -8.6 

2090 59.6 -6.48  48.1 -5.3  98.6 -3.8 

Waterloo, Indiana 

2000 44.2 -  15.6 -  74.9 - 

2050 42.1 -4.80  16.5 5.8  82.4 10.0 

2070 40.6 -8.10  14.9 -4.5  72.6 -3.1 

2090 36.0 -18.5  16.1 3.2  76.2 1.7 

Merrill, Wisconsin 

2000 32.6 -  12.0 -  48.8 - 

2050 43.9 -34.9  15.1 25.8  65.6 34.4 

2070 41.4 -27.1  14.1 17.5  65.0 33.2 

2090 43.6 -34.0  17.3 44.4  75.1 53.9 

MarkSim
®
 is MarkSim

®
 baseline climate. Diff. is change from MarkSim

®
 baseline 

climate. 
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Figure 2.5: Mean monthly temperature at the four representative locations for the four 

simulated periods. 

 

There are several advantages to the method outlined in this paper for obtaining future 

climate data for the WEPP model. A .par file ready for use with CLIGEN in WEPP takes 

less than 15 minutes to create on a modestly equipped computer, and the learning curve 

to use this method is virtually non-existent, since the MarkSim
®
 application uses the 

familiar Google Earth interface and completes the downscaling, while the macro formats 

the file properly using automated scripts. The Microsoft Excel VBA Macro described in 

this paper is available free-of-charge from the internet 

(http://www.ars.usda.gov/Research/docs.htm?docid=24824) and includes a detailed step-

by-step instructions manual for downloading the data from MarkSim
®
 and creating 

CLIGEN/WEPP or SWAT input files.  

  

As with all climate model downscaling, each GCM and/or downscaling technique may 

not be appropriate for some regions. A model developed in Europe may not adequately 

represent North America, while more heterogeneous landscapes may require more 
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advanced downscaling methods to adequately fit GCM output to a specific location. A 

verification tool is included in the Excel workbook to determine if the method 

demonstrated in this paper is suitable to a site. The verification tool consists of scatter 

plots showing the monthly CLIGEN parameters generated by the VBA macro using the 

MarkSim
®
 baseline climate alongside the default WEPP .par file for the same location. In 

this way, users can obtain a rough idea of how well MarkSim
®
 recreates historical 

climate at the site in question by comparing the scatter plots for both baseline climates. 

As has been shown here, more advanced downscaling methods may be required in 

regions where MarkSim
®
 poorly replicated historical climates. The primary assumption 

with using this method lies in the accuracy of the MarkSim
®
 downscaling model; 

however the verification tool can validate the MarkSim
®

 baseline for specific locations. 

Another concern is raised with regards to the iterative aggregation and disaggregation of 

data inherent in MarkSim
®

; the MarkSim
®

 weather generator aggregates GCM data, and 

then statistically reproduces daily time series. These replications of a statistical nature are 

then summarized by the macro and used as the input for another weather generator. This 

creates the possibility for compounding errors which originate in either the CLIGEN or 

MarkSim
®
 weather generator. The differences in period of record for each site and the 

MarkSim
®
 baseline climate cannot be ignored either, as the period of record for the 

MarkSim
®

 historical climate is fixed from 1960-1990, while .par files which come with 

WEPP may have periods of record extending many years earlier and/or later than that 30-

year window. However, recreating historical .par files based on observed NCDC weather 

station data did not substantially improve R
2
 values at the 4 selected sites. 

 

The method described here for climate inputs to WEPP was also modified to create 

continuous daily data for use with the Soil and Water Assessment Tool from the same 

spreadsheet (SWAT, Arnold et al., 1998), after a request from another researcher. This 

was accomplished by using portions of the macro used to create the WEPP .par file to 

string together multiple replicates of MarkSim
®

 daily output, end-to-end, to create the 4 

relatively simple climate input text files used by SWAT (daily precipitation, daily 

minimum air temperature, daily maximum air temperature, daily solar radiation). More 
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information and an example application with SWAT are described in Flanagan et al. 

(2014). Additionally, the VBA macro source code is unlocked, and can be edited by the 

user for adaptation to other climate data which is reported in a similar format to 

MarkSim
®
. 

 

2.5  Conclusions 

The MarkSim
®
 DSSAT weather generator was used to generate downscaled future 

climate datasets for precipitation, minimum temperature, maximum temperature, and 

solar radiation values on a daily timescale. The data was then aggregated and formatted 

into parameter files for use with the CLIGEN weather generator via a user-friendly tool 

created using a macro-enabled Microsoft Excel Workbook. The macro makes obtaining 

future climate inputs for the WEPP model fast and simple. Additionally, the ability to 

create SWAT model climate input files was also added as an option with the tool. 

 

Twelve locations throughout the contiguous United States were analyzed using Q-Q plots 

and R
2
 values to determine that the WEPP baseline parameter files and those created by 

the MarkSim
®

 baseline climate differed enough that only relative changes in erosion 

should be calculated using this downscaling method. WEPP outputs generated for four 

representative locations were compared for the two baseline climates as well as 3 future 

time periods and showed that regional variations in precipitation and temperature due to 

future climate change will have different impacts on water balance, runoff, and soil 

erosion depending on geographic location.  

 

During the writing of this paper, a new version of the MarkSim
®
 web application was 

released which generates future climate data based on the IPCC Fifth Assessment Report 

(5AR) data (http://gisweb.ciat.cgiar.org/MarkSimGCM/). The baseline MarkSim
®

 

climate generated using the IPCC AR5 data showed slightly better R
2
 values at the four 

selected sites, but the improvement was not substantial enough to be considered different 

from the baseline climate comparisons made in this paper. The format of the files from 
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this updated application are identical to those referenced in the methods portion of this 

paper, and can be used in the same manner with the same macro. 
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CHAPTER 3. AN IMPACT ANALYSIS OF CLIMATE CHANGE FOR A SMALL 

AGRICULTURAL CATCHMENT IN THE UNITED STATES MIDWEST USING 

WEPP AND THE IPCC FIFTH ASSESSMENT REPORT 

3.1  Abstract 

The effects of predicted future climate change are variable from region to region, and the 

extent to which greenhouse gas emissions and temperature changes will affect 

precipitation, crop production, sediment loss, and runoff is still being examined. New 

methods for obtaining future climate data for use with natural resource models allows 

scientists and engineers to evaluate and design agricultural practices to adapt to predicted 

changes in climate change earlier, in order to mitigate the potential harmful effects of 

climate change or capitalize on opportunities for agricultural investment. Analysis of a 

small (6.7 acre, 2.71 ha) field site monitored as part of the USDA-ARS Conservation 

Effects Assessment Project in NE Indiana was conducted to determine the effect of 

climate change on agricultural resources. Precipitation, runoff, soil erosion, and crop 

growth were modeling using the Water Erosion Prediction Project (WEPP) model and the 

four Representative Concentration Pathway (RCP) scenarios from the Intergovernmental 

Panel on Climate Change (IPCC) Fifth Assessment Report (5AR) to determine the 

effectiveness of common agricultural Best Management Practices (BMPs) under 

predicted climate change. Decadal analysis of 21
st
 century climate and model results 

showed that although precipitation will increase, sediment loss and runoff will decrease 

due to a reduction of concrete frost conditions during late winter. An increase in the 

amount of precipitation falling in spring and earlier soybean senescence will also lead to 

increased soil loss in early spring and fall, which favored field management practices 

which maximize ground cover during those periods. Overall, the best management option 

into the future will likely include in-field (no-till, grassed waterway) and edge-of-field 

(buffer strips) practices to reduce soil migration to lower slopes as well as filter fine 
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sediments from runoff and increase infiltration prior to discharging agricultural runoff to 

receiving waters. 

 

3.2  Introduction 

Potential impacts of climate change on agricultural production in the United States have 

been examined in-depth and are widely understood to vary from region to region 

(Howden et al., 2007; Hatfield et al., 2011, 2014). Elevated atmospheric CO2 

concentrations may increase yields (Southworth et al., 2002b; Karl et al., 2009; Hatfield 

et al., 2014), while additional spring soil moisture and an increase in the number of 

extreme precipitation events may delay and reduce crop planting and productivity 

(Rosenzweig et al., 2002; Hatfield and Prueger, 2004). Higher summer air temperatures 

could increase the frequency of heat stress and reduce soil moisture through increased 

evapotranspiration (Southworth et al., 2000, 2002a), and temporal redistributions of 

rainfall could cause plants to be water stressed during critical growing periods (Hatfield 

and Prueger, 2004). In addition to plant-growth impacts, changes in soil-water 

interactions under climate change are important to producers and present environmental 

concerns for receiving waters of non-point source pollution from farmlands (Nearing, 

2001; Nearing et al., 2004). Shifts in the timing of rainfall and maximum temperatures, 

increases in the number of extreme precipitation events (Fowler and Hennessy, 1995; 

Lenderink and van Meijgaard, 2008) and a potential shift towards growing more corn and 

soybeans instead of wheat (Southworth et al., 2002a; O’Neal et al., 2005) also add to soil 

erosion mitigation practices losing effectiveness (Hatfield and Prueger, 2004). Timely 

and proactive adaptation is essential to preventing increased agronomic, nutrient, and soil 

losses as a result of climate change. 

 

Agricultural production in the United States Midwest has come under increasing scrutiny 

due to hypoxia issues in the Gulf of Mexico where as much as 70% of nitrogen and 

phosphorus pollution originates from agricultural regions (Alexander et al., 2008) and the 

increasing severity of algal blooms in the Great Lakes (Michalak et al., 2013). Row crop 

agriculture must be supplemented with soil management to reduce soil erosion and 
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nutrient loss from fields. To increase understanding of the effects that agricultural BMPs 

have on off-site water quality, the United States Department of Agriculture (USDA) 

initiated the multi-agency Conservation Effects Assessment Project (CEAP) (Mausbach 

and Dedrick, 2004). The Agricultural Research Service (ARS) portion of CEAP 

examines fourteen benchmark watersheds in the US, including the 281,000 acre St. 

Joseph River Watershed in northeastern Indiana. Pesticide and nutrient pollution of 

drinking water in the city of Ft. Wayne has bolstered persistent monitoring of the 

watershed by the USDA-ARS National Soil Erosion Research Laboratory (Flanagan et 

al., 2003, 2008) since 2002. The sites monitored contain soils and agricultural 

management typical of the entire watershed, and portions of the Midwest by extension. 

Periods of records in the region are now reaching lengths required for detailed 

hydrological modeling (Flanagan et al., 2008; Heathman et al., 2008; Cechova et al., 

2010; Ascough et al., 2012).  

 

Concurrently, methods for obtaining projections of future climate are reaching the point 

that localized impact studies can be carried out using a variety of natural resource 

models. The IPCC has acknowledged that in the past a lack of coherence and quantity of 

impact studies may be a result of the difficulty associated with obtaining future climate 

data projections due to resource limitations of researchers (Wilby et al., 2004). In this 

paper, the WEPP model (Flanagan and Nearing, 1995; Flanagan et al., 2007) is used with 

the most recent observed data from a small field catchment in the St. Joseph River 

Watershed to assess the soil erosion mitigation effectiveness of several common 

agricultural BMPs and management practices under projected future climate. Future 

climate was defined by using an ensemble of the CMIP5 (Coupled Model 

Intercomparison Project Phase 5) model family (Taylor et al., 2012) under all four of the 

RCP scenarios used in the IPCC 5AR. 

 

3.3  Materials and Methods 

The WEPP model was used to simulate the impact of climate change on agricultural 

resources, including water balance, soil erosion, and crop growth, on a small 2.7 ha (6.7 
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acre) field in the Cedar Creek basin of the St. Joseph River Watershed. Cedar Creek is the 

largest tributary of the St. Joseph River, draining 707 square kilometers of land roughly 

three quarters of which is used for agricultural production (Flanagan et al., 2008). 

Geology in the region consists of poorly drained glacial till with a silt loam to clay loam 

texture on gently rolling topography with large amounts of surface water depression 

storage. The field site examined (AS2 in Figure 3.1, N40°27’29” W84°58’06”) has been 

under agricultural management for over a century, and currently with a primarily corn-

soybean rotation since monitoring of the site began in 2002. WEPP is a continuous 

simulation, physically based model, which uses four input files of climate, soil, slope, and 

management to calculate water balance, soil loss, and crop growth based on fundamental 

equations (Flanagan and Nearing, 1995). 

 

 

Figure 3.1: a) Map of Upper Cedar Creek, with NSERL monitoring sites from Flanagan 

et al. (2008). b) AS2 site closeup with waterway (green) and tile lines (blue) highlighted. 

(a) 

(b) 
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3.3.1  WEPP Model Inputs 

GIS data were used to define the hillslopes’ dimensions and determine flow paths for the 

watershed model. Subsurface tile drainage is present in the field, but is irregular and the 

tile condition is unknown; tile drainage routines were not used when building the model 

inputs. 

 

Automated data collectors have monitored weather and water quantity/quality in a small 

concentrated flow channel which drains the field site since 2007. An adjacent field site 

(AS1) has been monitored since 2002, and weather data from the adjacent site was used 

when conducting calibration/validation of the WEPP model. Temperature and wind 

speed/direction data were obtained from the National Climatic Data Center (NCDC) 

(NOAA, 2014), but a reliable and easily accessible source for solar radiation data could 

not be identified. Since 2004 was outside of the calibration window (2007-2010), the 

solar radiation values were assumed based on the monthly averages from the period 

2005-2011. Solar radiation, temperature, and wind data were taken from the NCDC for 

2004 and from the adjacent field site for 2005-2011. 

 

Management files were created based on the farmer’s field logs which were provided for 

at least two years each for soybeans and corn during the calibration/validation window. 

The management for the field consisted of a corn-soybean rotation with use of harrow-

spike tillage and a planter with double disk openers before corn and a no-till drill with 

single disk openers for soybeans without winter cover or residue management. 

  

3.3.2  Calibration/Validation 

Calibration/validation was conducted using the combined weather file from 2004-2011 to 

calibrate runoff and soil loss, in that order. The calibration window was 2007-2009, the 

validation window included 2010 and 2011, and 2004-2006 was used as a warm-up 

period since sediment data were not available for much of that period. Runoff was 

calibrated by varying the input effective baseline hydraulic conductivity, as well as the 

soil parameters associated with restrictive layers. The parameters of the restrictive layer 
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were used to roughly simulate any effects that the existing irregular tile drainage network 

may have had on hydrology. Specifically, the anisotropy ratio, which is a measure of the 

ratio of lateral versus vertical flow, was used to approximate the drainage effect of tile 

tiles. Measurements at the tile flow outlet indicated that the tiles are operable, but the 

exact depth and condition of the tiles are unknown. Additionally, the WEPP model uses 

parameters for artificial drainage more common to patterned tile networks, which are 

inappropriate for the irregular tiles present at the site. By using the anisotropy ratio, the 

lateral flow effect caused by the cone of depression made by the tiles could be 

approximated without knowing the exact size, depth and drainage coefficient required by 

WEPP for the drainage paramenter. While this is an unorthodox use of the anisotropy 

ratio, the effect of drainage tile on hydrology in poorly drained Midwestern fields was 

deemed too important to leave out entirely. Soil loss was calibrated by varying the 

erodibility parameters in the soil file. Soil and management files for all hillslopes were 

identical within each management scenario. Crop yields were calibrated to match farmer 

reported values for corn and soybeans.  

 

3.3.3  Future Climate Data 

The WEPP/SWAT Future Climate Input File Generator (Chapter 2CHAPTER 2) was 

used to format output from the MarkSim
®
 DSSAT weather file generator (Jones and 

Thornton, 2013) web application. The web application allows selection of one of the four 

RCP scenarios, and an ensemble of one or more of the 17 CMIP5 GCMs. MarkSim
®
 is a 

third-order Markov chain rainfall generator that predicts the occurrence of a rain day and 

has been modified to work as a GCM downscaler using stochastic downscaling and 

weather typing (Jones and Thornton, 2013). Future climate is defined by obtaining daily 

data for 5 future time slices directly from the GCMs, calculating monthly climate 

anomalies for each of the future time slices relative to the baseline climatology (1961-

1990), and fitting a functional relationship to the future time slices to interpolate years in-

between. Spatial downscaling is completed through the use of a climate record supplied 

by the WorldClim dataset (Hijmans et al., 2005). GCM differentials are calculated using 

the interpolation of the functional relationships and applied to the climate record using 
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inverse square distance weighting of the nine nearest GCM cells to create local future 

climate projections (Jones and Thornton, 2013). 

 

The MarkSim
®
 web application (http://gisweb.ciat.cgiar.org/MarkSimGCM/) produces 

daily cumulative precipitation, minimum and maximum temperature, and solar radiation 

in the form of text files. The WEPP/SWAT Future Climate Input File Generator was used 

to format these text files into a .par file for use with the CLIGEN weather generator 

(Nicks et al., 1995) in WEPP. CLIGEN was then used to create 100-years of simulated 

climate on a decadal basis for the 21
st
 century for each of the 4 RCP scenarios from the 

AR5 CMIP5 model family. Tools in the WEPP/SWAT Future Climate Input File 

Generator were used to analyze the default WEPP climate files for Waterloo, IN to 

determine if the WorldClim climate record matched the observed precipitation and 

temperature data from the region closely enough that the modeled WEPP results could be 

used to evaluate absolute changes in soil loss, precipitation, and runoff generated by 

WEPP. Fifty replicates for each decade and RCP scenario were downloaded from the 

MarkSim
®
 application and formatted using the WEPP/SWAT Future Climate Input File 

Generator, for a total of 29 .par files including the baseline climate. Each .par file 

generated by the macro therefore represents a statistical mean for the five years preceding 

and succeeding each 0-year (i.e. 2030 would represent 2025-2034). The total dataset 

represents the potential climate from 2015-2094 for each of the four RCP scenarios, plus 

the historic climates generated by MarkSim
®

 (the MarkSim
®
 Baseline), which represents 

the years 1960-1990. The .par files were used to generate 100 years of continuous 

weather data using CLIGEN version 5.3 with a Fourier interpolation method. 

 

3.3.4  Management 

Ten potential land-management scenarios were modeled using the calibrated WEPP 

model (Table 3.1). BMP and conservation practice effectiveness were simulated by 

modifying the management parameter files within WEPP. The management simulations 

were divided into three groups. The first group examined the differences between various 

tillage practices representing the best, middle, and worst case scenarios in terms of 
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disturbance levels. The second group covered the implementation of common agricultural 

BMPs used on flatter croplands under the baseline tillage system. The third group 

included a combination of BMPs and two conservation management options. Grassed 

waterways were modeled to reflect those which were recently installed at the site. 

 

3.4 Results and Discussion 

3.4.1  Calibration/Validation 

Flow values which corresponded to dates in which the channel was frozen or the flow 

was outside of the instrument's readable range were removed from the record obtained 

from the field site. Runoff peaks were observed on 269 days over 31 months from 2007-

2011. A thaw and snow melt event from March 27-31, 2008 resulted in instrument 

malfunction and was removed from the record.  

Table 3.1: List of management scenarios assessed at the Indiana location 

Management Description 

Control 
Repeated 2-year corn-soybean rotation with spike 

tooth harrow before corn. 

 Tillage Managements 

No-Till Transition to no-till planters for corn and soybeans. 

Fall Moldboard Control management with fall moldboard plowing. 

Spring Chisel Control management with spring chisel plowing. 

 BMP Managements 

Grassed Waterway 
Control management with the addition of 6m wide 

grassed waterways. 

Buffer Strips 
Control management with 15m long edge-of-field 

grassed buffers. 

Rye Cover 
Control management with rye cover crop planted in 

the fall. 

 Conservation Managements 

Alfalfa 
Conservation management with low-impact tillage and 

a corn-soybean followed by a 4-year alfalfa rotation. 

Combination 
Combination of the No-Till, Rye Cover, Grassed WW, 

and Buffer managements. 

Prairie Conversion of all fields to continuous brome grass. 
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Sediment data from the field site are available during events which were field or auto-

sampled. A total of 63 sediment loss events were recorded from 2007-2011; however no 

data were available for 2008. Sediment data were recorded every 30 minutes, so to 

determine daily sediment totals for each day, the ten minute flow data for the periods 

corresponding to sediment measurements were used. Since sediment levels in streams are 

proportional to discharge, the 30-minute sediment concentrations were interpolated over 

the 10-minute flow data to obtain 10-minute resolution sediment discharge rates. These 

were then multiplied by the interpolated time step, to obtain total sediment loss over that 

time step. All sediment losses over each time step during each day were summed to 

obtain total daily sediment loss. 

 

Optimal calibration results for AS2 were obtained by optimizing the three model 

quantitative statistics (NSE – Nash-Sutcliffe efficiency, PBIAS – percent bias, and RSR – 

ratio of the root mean square error to the standard deviation of measured data) outlined in 

Moriasi et al. (2007). Their conditions state that a model can be considered good if total 

NSE > 0.50, total RSR is at most 0.70, PBIAS is within 25% for runoff, and PBIAS is 

within 55% for sediment. All criteria were not met for runoff, as NSE was maximized at 

0.481 and RSR total was minimized at 0.721. PBIAS for runoff was 2.05%, indicating 

that the model tended to only slightly overestimate runoff on the average. Sediment 

yielded very poor calibration NSE when the calibration window was considered from 

2007-2009 (Table 3.2). Sediment data were not available for 2008.  

 

When the calibration/validation window was reduced to only include the initial validation 

period (2010-2011), sediment modeling efficiencies increased, likely due to the small 

sample size (26) in the reduced window. Attempts were made to expand the validation 

window to include 2012 and 2013, but these years only contained 2 and 4 sediment loss 

events, respectively. Multi-parameter calibration would likely yield better sediment 

calibration using the larger window, however an extreme runoff event occurred in 2009 

which resulted in atypically high sediment yields during the next several observed 

storms. 
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Table 3.2: Calibration/validation results for WEPP watershed model 

Observation Period ’07-‘11 ’10-‘11 

Soil File 

Ki (kg s m
-4

) 2.72E+06 2.72E+06 

Kr (s m
-1

) 3.281E-03 3.281E-03 

τcrit (Pa) 5.267 5.267 

Mean Daily Sediment 

Loading 

Calibration 98.33 268.18 

Validation 201.71 146.33 

Total 151.23 201.71 

Results 

NS CAL -0.062 0.908 

NS VAL 0.809 0.673 

NS Total 0.114 0.809 

RSR Total 0.941 0.438 

PBIAS Total (%) 51.85 7.93 

 

3.4.2  Note on Crop Parameters under Future Climate 

The general assumptions of an unchanging crop planting schedule and no change in plant 

cultivars is unrealistic. Changes in temperature and atmospheric CO2 concentrations will 

be important factors in determining future cultivars and management options for farmers. 

While increasing annual temperatures may make frost tolerance for corn a non-issue in 

the future (Southworth et al., 2000), maximum daily temperatures above 33.3
o 

C in 

August and July have been shown to be negatively correlated to corn yield, and 

temperatures above 37.7
o 

C can cause severe damage to corn (Rosenzweig et al., 2002). 

Southworth et al. (2000) found that rising temperatures could shift corn planting dates to 

later in the year by 14-39 days by 2050, while Southworth et al. (2002a) found that winter 

wheat yields would be optimized by planting as early as September 2. Overlap of harvest 

and planting dates caused by these type of shifts have been speculated to create 

competition for time in the field (Southworth et al., 2002a) and economic analyses related 

to yields under higher temperatures have found that wheat may be eliminated from crop 

rotations in all but the southernmost regions of the Midwest by 2050 (O’Neal et al., 

2005). Farmers in the North and Central Midwest may not require soybean cultivar 

changes to deal with temperature changes, while southern regions will require more heat-

resistance (Southworth et al., 2002b). Soybean yields are also very sensitive to CO2 

concentrations, with planting dates for optimal growth and increased soybean yield found 

to be 50 days later in Eastern Illinois by 2050 (Southworth et al., 2002b). 
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A very simple analysis of crop yield impacts was conducted using the WEPP model to 

determine if changing planting and harvest dates would have a significant impact on 

sediment loss rates. Crop yields were calibrated to the MarkSim
®
 baseline climate using a 

simplified identical 2-year rotation to match NASS 5-year average statistics for DeKalb 

County, IN. The Biomass Energy Ratio (BER), a parameter within the WEPP 

management file which determines growth rate based on photosynthetic activity 

(Flanagan and Nearing, 1995) was varied to adjust the crop yield. A BER of 62.34 kg/MJ 

for the 125 bu/ac Jefferson corn management file brought average corn yields up to 

modern yields, while the soybean biomass energy ratio remained unchanged. These 

biomass energy ratios were also used when assessing changes due to future climate in 

sections 3.4.4 and 3.4.5.  

 

Two climates were used in the assessment, the MarkSim
®

 Baseline and the RCP 8.5 2090 

climate. The RCP 8.5 climate was chosen for comparison because it showed the greatest 

deviation in average annual temperature from the baseline condition, and would therefore 

likely see the greatest change in crop growth given that average annual precipitation and 

monthly distribution of precipitation were similar for all scenarios by 2090. Crop growth 

parameters within WEPP were not changed when assessing the future climate, which is to 

say that the cultivar was not changed for the baseline climate. Planting and harvest dates 

were shifted earlier and later in the year, while keeping the total time spent in the field 

unchanged from the baseline condition.  

 

In this manner, average annual crop yield was maximized according to Table 3.3. The 

purpose of this research was not to assess crop growth changes under future climate, but 

to determine if soil erosion losses would change in the future. Therefore, the objective of 

examining optimal crop growth was to determine if changing planting and harvest dates 

to optimal times would also alter sediment losses. Average annual corn yields by 2090 

were 11% higher than in the baseline climate using the same planting dates. Optimal 

yields were modeled when the growing season was shifted 22 days earlier (April 1), but 
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yields were only 1% higher than the initial planting dates. Further adjustment of the 

harvest date resulted in negligible changes to corn yield. Adjusting planting dates later 

than the baseline did not produce higher yields, regardless of harvest date. 

 

Table 3.3: Comparison of baseline and optimal crop yields obtained by shifting planting 

dates. 

Crop 
Planting 

Date 
Harvest Date Yield 

Corn April 27 November 10 1.28 kg/m
2
 (158 bu/ac) 

Soybeans May 10 October 20 0.27 kg/m
2
 (40.5 bu/ac) 

Corn (2090) April 27 November 10 1.41 kg/m
2
 (174 bu/ac) 

Soybeans (2090) May 10 October 20 0.22 kg/m
2
 (31.9 bu/ac) 

Corn (Opt. 2090)* April 10 October 25 1.43 kg/m
2
 (177 bu/ac) 

Soybeans (Opt. 2090)* April 1 September 10 0.24 kg/m
2
 (35.5 bu/ac) 

*Opt. 2090 represents highest modeled yields obtained by shifting planting dates. 

 

Planting and harvest dates were shifted for soybeans in the same manner as corn. 

Average annual soybean yields by 2090 were 22% lower than in the baseline climate 

using the same planting dates. Optimal yields were modeled when the growing season 

was shifted 40 days earlier (April 1), but yields were only increased by 11% over the 

initial planting dates, or 12.5% lower than the baseline climate using initial planting 

dates. Further adjustment of the harvest dates resulted in negligible changes in yield. 

Adjusting planting dates later than the baseline did not produce higher yields, regardless 

of harvest date. Additionally, changing planting date alone could not bring soybean yields 

to those simulated under the baseline climate. 

 

For the RCP 8.5 2090 climate, using optimal planting conditions for corn and soybeans in 

the same management file reduced average annual sediment loss by only 0.2 g/m
2
 

(0.10%) compared to the future climate using the initial planting and harvest dates. The 

RCP 8.5 2090 climate represents the most extreme scenario for changes in crop growth, 

so the degree of shift in optimal planting date, and the subsequent effects on sediment 
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loss will decrease with reduced scenario severity. Thus, the minimal sediment loss 

differences between the baseline and optimal condition shown here did not merit the 

adjustment of cropping dates when assessing BMP effectiveness to reflect a changing 

climate.  

 

The increase in average annual sediment loss under the 2090 climate was not 

significantly greater than under the baseline climate (p>0.05) when equal cropping 

practices were applied, but the fact that the differences in future baseline and optimal 

cropping practices showed little absolute differences indicated that factors other than the 

cropping practices are affecting sediment loss from the site. Additionally, the optimal 

planting dates found here contradict previous publications which found that these dates 

will likely move further into the future (Southworth et al., 2000, 2002b). The differences 

could be due to those studies’ use of the AR4 GCM data, use of crop growth models 

which also account for increased atmospheric CO2 levels, or the fact that they also 

investigated the possibility of cultivar changes in the future.  

 

For this sediment loss study, the modification of planting dates for the most extreme 

future scenario and time period did not affect sediment losses to a degree which merits 

the modification of the less severe scenarios and time periods. As such, the baseline 

cropping practices were maintained for all future climates and time periods. Future 

research work should look at the potential changes in yields and sediment loss due to 

cultivar changes using the WEPP model, as well as potentially including effects of 

increased atmospheric CO2 levels in future WEPP crop growth equations. 

 

3.4.3  Comparison of MarkSim
®
 Output to Historical CLIGEN .par Files 

The MarkSim
®
 and CLIGEN baseline climates were compared using the tools in the 

WEPP/SWAT Future Climate Input File Generator (Table 3.4). Generally good 

correlations between the two baseline climates were found for mean precipitation and 

precipitation probability variables. Differences in mean rain day precipitation and 

precipitation skew showed no significant variation (p>0.05), while the difference in 



39 

precipitation S.D. between the two baselines was significant at all confidence intervals. 

MarkSim
®
 generally underpredicted mean rain day precipitation by an average of 0.53 

mm/day (~5% in summer) and overpredicted precipitation S.D. by almost 2.54 mm on 

average (~20% in summer). While precipitation skew was not significantly different 

(p>0.05) between the two baseline climates, it did show great variability between months. 

Pw/d showed a nearly-perfect correlation in most months both graphically and statistically 

(p=0.451). Differences in Pw/w were significant (p<0.05), with MarkSim
®
 overpredicting 

this probability by 0.058 on average. 

 

For non-precipitation variables, temperature showed poor correlations, with significant 

differences in Mean Tmax and Tmin S.D. (p<0.05), while differences in Mean Tmin were 

only significant when raising the confidence interval to 99.9%. Tmax S.D. barely met the 

criteria at the 95% confidence interval (p=0.064). MarkSim
®
 consistently underpredicted 

Mean Tmax and Tmin for all months. Temperature standard deviations varied less than the 

Means, but were underpredicted in all but three months for Tmax and all but one month for 

Tmin. Solar Radiation exhibited great variability, with MarkSim
®

 underpredicting the 

mean in late winter, and overpredicting the mean during the rest of the year. Summer 

solar radiation was overpredicted by MarkSim
®
 by 40% above the CLIGEN baseline 

climate. 

 

3.4.4  Climate Change Impact Assessment 

100-year climate files were created using CLIGEN for each decade and RCP scenario 

from .par files obtained through the MarkSim
®
 DSSAT weather generator and the 

WEPP/SWAT Future Climate Input File Generator (Chapter 2). Each climate was used as 

input for 100 years of continuous simulation in WEPP under the baseline management 

scenario. By fixing all other inputs, differences among climate scenarios were assessed to 

identify changes in water balance and soil loss resulting from the predicted climate 

change. 
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Predicted precipitation under all four RCP scenarios showed similarities with one another 

in the future (Figure 3.2). When considering all RCPs together, average annual 

precipitation was predicted to increase by 7-10% by 2100, with the majority of this 

increase (4-8%) taking place by 2030. From 2030 to 2090, precipitation increased by 2-

5%. The highest decadal precipitation occurred in 2070 under the RCP 8.5 scenario at 

1006 mm while the minimum occurred in 2040 under the RCP 6.0 scenario at 932 mm. 

The greatest divergence among scenarios was predicted to occur in 2040, with a 

difference of 56.3 mm, while the smallest divergence was predicted in 2080 (15.1 mm). 

The RCP 8.5 scenario had the greatest precipitation totals of any scenario to 2070.  

 

 

Figure 3.2: Average annual precipitation predicted under all four RCP scenarios for 

Waterloo, IN. 

 

The extreme jump from the baseline to 2030 for some scenarios was questioned initially, 

but analysis of NCDC data from Ft. Wayne, IN (the nearest long term weather record 

available, Figure 3.3) showed that the mean annual precipitation for the area from 1960-

1990 was 905 mm, which is within 1 mm of the predicted baseline precipitation produced 

by MarkSim
®
. Additionally, extending linear trend lines for the mean annual 

precipitation from 1960-2014 and 1940-2014 showed that the precipitation was predicted 

to be between 1000 mm and 1100 mm by 2030, which is a greater value than from any 

RCP projection used here. This has another implication, in that the increase in average 

annual precipitation may be slowing for all possible scenarios, and that the largest 
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increases in annual precipitation for this region may have already occurred by 2030 for 

most scenarios. Only the RCP 6.0 scenario shows a much larger increase from 2030 on, 

which was not examined further. Predicted monthly precipitation averaged for the entire 

future period is shown in Figure 3.4. May had the largest increase in predicted 

precipitation (>25%), while November showed no change when averaging all decades. 

June through December showed minimal increases of between 0% and 4% over the 

future period, while the late winter and spring months had predicted increases of between 

9% and 28%. 

 

 

Figure 3.3: Annual observed precipitation totals for Fort Wayne, IN. 1940-2013 
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Figure 3.4: Predicted change in average monthly precipitation for 21
st
 century for 

Waterloo, IN. 

 

Modeled runoff results indicated that factors other than precipitation affected the 

predicted changes in runoff into the future (Figure 3.5). Of interest was the observation 

that runoff dropped in the early century, peaked in mid century, then decreased towards 

the late-century. The RCP 8.5 scenario decreased to the lowest level of any scenario by 

2090, which could indicate that temperature had some effect on runoff generation. 

Average monthly runoff analysis (Figure 3.6) indicated runoff changes which were not 

obviously correlated to precipitation changes. Of note is the decrease in runoff for 

February and increase in runoff for spring and fall. As with precipitation, this scenario 

had only a marginal impact on runoff volumes, while the divergence between scenarios 

was greater here than it was for precipitation.  
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Table 3.4: Comparison of MarkSim® and CLIGEN baseline CLIGEN parameters for Waterloo, IN. 

 Month Jan. Feb. Mar. April May Jun July Aug. Sep. Oct. Nov. Dec. 

C
L

IG
E

N
 b

as
el

in
e 

cl
im

at
e 

p
ar

am
et

er
 v

al
u
es

 (
1
9
5
9

-1
9
9
5
) Mean P (mm) 6.60 6.86 7.37 8.38 8.64 10.92 11.18 10.67 10.41 8.64 7.62 7.11 

SD P (mm) 7.87 7.37 7.87 9.14 9.65 12.19 12.45 12.19 13.46 9.40 9.14 8.38 

Pw/w 0.36 0.35 0.35 0.46 0.49 0.35 0.37 0.37 0.40 0.41 0.45 0.40 

Pw/d 0.22 0.21 0.25 0.30 0.26 0.27 0.23 0.20 0.20 0.17 0.23 0.24 

Mean Tmax (°C) -0.18 1.89 7.76 15.75 22.22 27.35 29.19 28.26 24.68 18.32 9.50 2.52 

SD Tmax (°C) 6.08 5.88 6.54 6.37 5.24 3.92 3.01 3.12 4.52 5.64 6.42 5.80 

Mean Tmin (°C) -9.34 -8.13 -3.19 2.71 8.24 13.64 15.78 14.56 10.62 4.83 -0.53 -6.12 

SD Tmin (°C) 7.08 6.76 5.51 5.32 5.02 4.39 3.73 3.93 5.04 5.38 5.61 6.37 

M
ar

k
S

im
®
 b

as
el

in
e 

cl
im

at
e 

p
ar

am
et

er
 v

al
u
es

 (
1
9
6
0

-1
9
9
0
) Mean P (mm) 5.32 6.05 6.43 9.44 7.98 9.86 9.72 10.64 9.38 8.03 8.84 6.29 

SD P (mm) 9.89 8.55 8.39 13.41 11.54 14.84 15.15 14.98 13.71 12.55 11.62 9.29 

Pw/w 0.42 0.39 0.49 0.47 0.49 0.45 0.43 0.46 0.45 0.45 0.49 0.47 

Pw/d 0.23 0.19 0.24 0.27 0.25 0.28 0.25 0.23 0.23 0.20 0.22 0.25 

Mean Tmax (°C) -0.40 1.32 6.78 14.40 21.28 26.33 28.11 27.60 23.84 14.01 8.98 1.79 

SD Tmax (°C) 6.03 5.80 5.62 5.01 4.32 3.82 3.47 3.52 4.26 4.71 5.51 6.08 

Mean Tmin (°C) -9.49 -8.45 -3.57 2.05 8.05 13.38 15.28 14.51 10.61 4.66 -0.64 -6.90 

SD Tmin (°C) 6.62 6.34 5.82 4.95 4.57 3.91 3.24 3.46 4.27 4.84 5.19 6.34 

 Mean P is mean daily precipitation on precipitation days, SD is standard deviation. 
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Figure 3.5: Predicted annual runoff under baseline management at Waterloo, IN. 

 

February runoff was predicted to decrease by 35-56% by 2030, and decrease another 10-

31% between 2030 and 2090 (Figure 3.7) for a total decrease of 57-68% from the 

baseline condition by 2090. This decrease in runoff by 2090 contrasts with the 8-22% 

predicted increase in precipitation for February. Storm frequency and intensity, changes 

in snowmelt timing, frequency, and intensity, and frequency and intensity of rain on snow 

events were initially suspected, but could not be correlated to the increase in runoff either 

alone or together. A condition known as concrete frost may have a significant impact on 

runoff and erosion from open landscapes in colder regions (Zuzel et al., 1982; Shanley 

and Chalmers, 1999). Concrete frost is the condition in which a layer of near-surface soil 

is close to saturation and freezes, reducing effective hydraulic conductivity to zero. 

Precipitation intensity is not a factor in runoff generation or sediment loss when this 

condition existed, as rainfall energy is dissipated by overlying snowpack. If a snowpack 

is absent, sediment loss and runoff are higher during rainfall events due to the low 

infiltration rates. However, when the soil surface thaws quickly, there is the potential for 

increased infiltration, and less runoff and sediment loss.  
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Figure 3.6: Predicted change in average monthly runoff for 21
st
 century at Waterloo, IN. 

 

Figure 3.7: Predicted mean runoff depth in February for 21
st
 century at Waterloo, IN. 

 

Analysis of modeled baseline February runoff events for the catchment in this study 

showed that frozen soil runoff events were visually distinguishable from events in which 

soils were thawed (Figure 3.8). Additionally, those events which occurred when frozen 

soils were present showed a direct linear correlation between incident precipitation 

(rainfall reaching the ground + snowmelt) and runoff, which would be expected if 

infiltration was zero. Similar trends were observed for all future scenarios. There was a 

large reduction (67-82%) in the number of events falling on frozen soils in the future. 
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This transition from frozen to thawed soils resulted in a reduction in runoff (Figure 3.9). 

The RCP 8.5 scenario showed no frozen soil runoff events larger than 1000 m
3
, which 

were numerous in the baseline climate. Since the thawed events already showed lower 

runoff volumes per mm of incident precipitation than frozen events, the increase in 

thawed soil runoff events did not generate enough runoff to replace the larger events 

coming from frozen soils, leading to the reduction in runoff for February. A similar trend 

was found in the other winter months and March, which explains the increase in runoff 

but decrease in sediment for those months as well. 

 

The increase in September runoff was interesting because other months with similar 

small increases in precipitation showed no or limited increases in runoff. Additionally, 

canopy cover is at its highest during this period, and therefore, there should be minimal 

runoff from the fields during this time. As with February, the change in precipitation, 

runoff, and soil loss by 2030 was to a much larger degree than from 2030 to 2090, and 

typically peaked in the early to mid century before decreasing towards the end of the 

century. Years planted in corn saw limited change in runoff from the baseline condition 

(9-15%), while runoff for soybean years increased by 84-121%. This indicated a crop-

specific effect which was causing runoff to increase. Increased air temperatures resulted 

in more rapid accumulation of growing degree days, and earlier crop senescence. 

Soybean biomass accumulation was also slightly depressed due to somewhat greater 

temperature stress, resulting in lower yields and less residue cover. Examining the date of 

initial senescence showed that senescence shifted back 10-15 days to August 13 or earlier 

(Figure 3.10). This caused the soybeans to already be fully senesced by September 1, 

whereas before they did not fully senesce until the middle or end of September. 

Senescence reduced canopy cover by 90% as well as terminated all plant transpiration. 

RCP 2.6 produced the lowest average annual runoff for 2030 while RCP 4.5 produced the 

highest average annual runoff. Average storm intensity and frequency were mostly 

unchanged from the baseline condition, however the number of storms greater than 40 

mm increased sharply in the RCP 4.5 scenario (24%) compared to the baseline and RCP 

2.6 scenarios (10% and 15%) (Figure 3.11). This shift also appeared in the form of a 
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lower cumulative probability plot for RCP 4.5 (Figure 3.12). These larger precipitation 

depths were tied to runoff volumes greater than 400 m
3
 (14.8 mm) from the AS2 

catchment, which increased from 6% to 22% of all storms from RCP 0.0 to RCP 4.5. 

 

   

 

Figure 3.8: Simulated runoff events in February comparing those on frozen (blue) vs. 

thawed (red) soils for baseline (top) and RCP 8.5 2090 (bottom) climates. Events based 

on 100 years of weather simulated for each climate. Linear trend lines with coefficient of 

determination values shown for each soil condition. 
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Figure 3.9: Predicted mean February runoff depth for Waterloo, IN, from thawed and 

frozen soils. 

 

Figure 3.10: Average start date of soybean senescence. 

 

Increases in spring runoff were initially suspected to be due in part to a 15% increase in 

precipitation. Evidence could not be found for any other contributing factors. Unlike 

September, the distribution of storm depths and runoff volumes did not change 
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planted in late April, canopy cover was not sufficiently established until late May or early 

June for either soybeans or corn. ET was analyzed, but showed an increase into the future 

for all scenarios. The increase in precipitation was greater than the increase in ET. The 

increase in total precipitation for April was also found to be the primary contributing 

factor to the increase in runoff for that month as well. 

 

Figure 3.11: Runoff producing precipitation events for September at Waterloo, IN. 

Events based on 100 years of weather simulated for each climate. 0.0 is baseline climate, 

2.6 and 4.5 are RCP 2.6 2030 and RCP 4.5 2030 climates. 

  

Figure 3.12: Cumulative probability plot for storms from Figure 3.11 (5 mm bin size). 
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3.4.5  Assessing BMP Effectiveness under Potential Future Climate 

BMP effectiveness into the future was compared in two ways. In section 3.4.6, 

comparisons are made to the baseline climate for all managements, including the control, 

where percent change is defined as the difference between the average of 21
st
 century 

climate simulations and the baseline condition for each RCP scenario. That is, each 

management was assessed for its effectiveness compared to the baseline climate through 

the 21
st
 century. In section 3.4.7, comparisons are made to the control conditions for all 

managements using only those model results from the 21
st
 century forecasts, and not to 

the baseline climate. That is, each practice was examined for its effectiveness compared 

to the control management through the 21
st
 century. In both comparisons, we found that 

examining results for each decade presented variability between decades which clouded 

the overall results and made it difficult to determine the effectiveness of different 

practices. When considering the average of all decades, more obvious trends could be 

observed. However, the selection of scenario did have a greater effect on soil loss and 

runoff than in the previous sections, and these differences will be highlighted.  

  

3.4.6  Comparison to Baseline Climate 

Predicted 21
st
 century average annual soil losses for all management are shown in Figure 

3.13. Total soil losses were lowest for all BMP management as well as the combination 

and prairie management, and greatest for the fall moldboard and spring chisel 

management. Figure 3.14 shows that the alfalfa management had the greatest predicted 

reductions (18-36%), while the no-till showed the greatest predicted increases (20-68%) 

in average annual soil loss. The combination of practices had the lowest predicted soil 

loss under both the baseline and 21
st
 century climates. While the no-till management 

showed the largest percent increases in predicted soil loss into the future, the absolute 

changes were less than those for the other two tillage managements. Average predicted 

soil losses for the 21
st
 century were not significantly different from the baseline climate 

for the control, grassed waterway, buffer strip, or combination scenarios (p>0.05). 
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Figure 3.13: Average annual sediment yields for the average of all future decades. 

Baseline values are shown as dotted black lines over RCP bars. 

 

Figure 3.14: Percent change in average annual sediment yields under 21
st
 century 

projected climates compared to baseline climate for Waterloo, IN, for ten different 

management scenarios 
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the reduction in frozen soils during spring snowmelt events referred to in the previous 

section. Changes in runoff volume and variation among managements were to a lesser 

2 T/ha 

1 T/ha 

6 T/ha 6 T/ha 

1 T/ha 
0 T/ha 

1 T/ha 

3 T/ha 

0 T/ha 0 T/ha A
v
er

a
g
e 

A
n

n
u

a
l 

 

S
o
il

 L
o
ss

 

RCP 2.6 

RCP 4.5 

RCP 6.0 

RCP 8.5 

Control 

No-Till 

Fall  
Moldboard 

Spring  
Chisel 

Grassed  
WW 

Buffer  
Strips 

Rye Cover 

Alfalfa 

Combination 

Prairie 

-40% 

-20% 

0% 

20% 

40% 

60% 

P
er

ce
n

t 
C

h
a
n

g
e 

fr
o
m

  

B
a
se

li
n

e 
C

li
m

a
te

 

RCP 2.6 RCP 4.5 

RCP 6.0 RCP 8.5 



52 

degree than with soil loss (Figure 3.16). Runoff yield also decreased with increasing RCP 

(RCP 2.6>RCP 4.5>RCP 6.0>RCP 8.5) for seven of the ten managements examined in 

this study. The alfalfa and prairie managements showed the greatest predicted reduction 

in runoff in the future, with both decreasing by an average of 19-20%. 

 

Figure 3.15: Percent change in average annual runoff for 21
st
 century. Forecasts 

compared to baseline climate at Waterloo, IN for ten different management scenarios. 

 

 

Figure 3.16: Average annual runoff for 21
st
 century forecasts. Baseline values are shown 

as dotted black lines over RCP bars. 
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3.4.7  Comparison to Control Management 

Predicted soil losses for the no-till, BMP management, and conservation management 

were lower than the control management for the 21
st
 century climate scenarios (Figure 

3.17). Predicted runoff volumes were lower for the BMP management as well as for the 

combination and prairie conservation management (Figure 3.18). Those scenarios which 

showed higher or similar sediment losses (fall moldboard, spring chisel, and alfalfa) also 

showed higher runoff volumes compared to the control management. No-till deviated 

from this trend by showing minimally greater runoff but over a 50% reduction in soil loss 

compared to the control. Soil losses for the seasonally plowed management were around 

200% higher over the 21
st
 century future climate scenarios compared to the control 

management, with all management other than alfalfa having greater than 50% decreases 

in soil loss. The prairie management had the greatest predicted reduction in runoff, while 

the combination management had the greatest predicted reduction in sediment losses. The 

combination of grassed waterways, buffer strips, and rye cover crops was only marginally 

more effective (82% reduction) at reducing sediment losses than the buffer strips alone 

(81% reduction). The prairie condition had the greatest predicted reduction in runoff, but 

did not show significantly different (p<0.05) soil loss when compared to the combination 

scenario.  

 

Figure 3.17: Percent difference in soil loss from each management compared to control 

management. Average results from all RCPs shown. 
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Figure 3.18: Percent difference in predicted average annual runoff from each 

management compared to control management.  Average results from all RCPs shown. 
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increases in sediment losses and runoff in the late spring have greater implications for 

agrochemical transport to receiving waters. Unmentioned here also is the potential for 

increased heat stress and crop failure in the late summer months, which could affect soil 

loss similar to that seen in September. 

 

Results found here were similar to those by other authors using WEPP, specifically 

Pruski and Nearing (2002), where precipitation and soil loss were predicted to increase 

from 1990-2099 while runoff decreased due to dissimilar changes in precipitation and 

runoff from month to month. They reported a similar projected increase in precipitation 

in April and May, resulting in increased runoff and soil loss. However, Pruski and 

Nearing (2002) found a projected decrease in precipitation in June through September, 

leading to reductions in runoff and soil loss. The net effect in their study was a decrease 

in the runoff and sediment loss under soil, slope, and cropping conditions similar to those 

modeled herein. The increases in temperature resulting in earlier senescence of soybeans 

have also been noted by other authors using WEPP at a site in Indiana (Savabi and 

Stockle, 2001). Unlike previous studies, the observation here that a reduction in concrete 

frost reduced runoff in early spring is unique to this study. 

  

The buffer strips provided the same or better predicted filtration of sediments as the 

grassed waterways while maintaining a sediment trap during the fallow period, the 

combination of both being more effective than using a rye cover crop alone. However, 

the fallow and spring cover provided by the rye cover crop means that the sediments are 

retained further up on the hillslope, while the use of only grassed buffers would build up 

sediment deposits on the toeslope. In practice, buffer strips in this type of terrain will 

likely be accompanied by grassed waterways, and simulation of grassed waterways and 

buffer strips without rye cover would likely show less runoff, but may result in higher 

soil losses due to increased detachment compared to the combination scenario modeled 

here. 
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Based on these findings, producers will first need to identify the most critical type of 

nonpoint source pollution from their fields before selecting a BMP which will be most 

effective into the future. If soluble nutrient loss requires the most attention, then 

management practices which reduce total runoff (buffer strips and conversion to rotations 

that include multiple years of sod/hay) should be considered, while if off-site sediment 

loss or soil-bound nutrients are of most concern then practices such as grassed waterways 

or buffer strips should be considered. Overall, the best management options into the 

future will likely include in-field (no-till) and edge-of-field (grassed waterways and 

buffer strips) to reduce soil migration to lower slopes as well as filter fine sediments from 

runoff and increase infiltration prior to discharging agricultural runoff to receiving 

waters. 

  



57 

CHAPTER 4. AN IMPACT ANALYSIS OF CLIMATE CHANGE ON 

AGRICULTURAL RESOURCES IN THE UNITED STATES SOUTHEASTERN 

COASTAL PLAIN USING WEPP AND THE IPCC FIFTH ASSESSMENT 

REPORT 

A small agricultural hillslope managed by the USDA-ARS in the Southern Coastal Plain 

of the United States was modeled using the Water Erosion Prediction Project (WEPP) 

model under current and future climates to assess the effect of predicted future climate 

change on soil erosion, runoff, and BMP effectiveness. Future climate data reflected the 

four Representative Concentration Pathways (RCP) scenarios used with the CMIP5 

model family as part of the IPCC Fifth Assessment Report, and represent a spread of 

potential radiative heating increases through the 21
st
 century. Simulation results showed 

that runoff and soil loss changed for most months under the existing conventional 

management, with these changes typically accompanied by similar changes in total 

rainfall. Predicted climatic shifts caused soil loss and runoff to be reduced in the first 

three months of the year, while little change was modeled during the growing season. 

Late fall and early winter months, when ground cover is low, had increases in predicted 

soil loss and runoff which corresponded with an increase in total late-year precipitation. 

Increased temperatures resulted in the winter cover crop growing faster and unhindered 

by frost in the early months of the year, reducing soil loss during this traditionally low-

cover period. Soil loss was also predicted to increase prior to harvest as a result of the 

reduction in canopy cover caused by the earlier senescence of cotton under warmer 

temperatures. Increased runoff in March and more ET in July from temperature-enhanced 

crop growth also increased irrigation demands in the growing season under the baseline 

management. Of the ten management systems examined under the future climate, the 

combination of no-till, rye cover crop, and riparian buffer increased in effectiveness into 

the future, while all other management systems had either similar or slightly reduced 
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effectiveness under predicted future climate. In general, the effectiveness of the various 

practices did not change much into the future. 

 

4.1  Introduction 

Agriculture in Georgia’s Coastal Plain is primarily rain-fed by convective summer 

thunderstorms (Bosch et al., 1999), with supplemental irrigation during periods of 

drought being common. Climate stationarity is no longer a valid assumption, and a better 

understanding of future rainfall patterns throughout the year will help land planners 

prepare for not only rainfall changes which could influence crop growth, but also 

determine if conservation practices meant to reduce runoff and soil loss need to be 

bolstered or altered. Temperature changes may also influence crop growth and lead to 

short and long-term growth promotion and/or reduction. The use of natural resource and 

crop growth models with future climate data can expose strengths and weaknesses in 

current agricultural systems which can be addressed by farmers through adaptations to 

land management and BMP implementation.  

 

The runoff and erosion occurring on agricultural lands are important processes that must 

be understood in order to prevent sediment, nutrient, and agro-chemical losses which can 

contaminate receiving waters. The benefits of conservation land management and tillage 

practices have been well documented in the Coastal Plain. Studies in the region have 

traditionally focused on the effectiveness of riparian buffers (Lowrance et al., 1984, 1985, 

1986, 2000; Cooper et al., 1987; Phillips, 1989; Welsch, 1991; Bosch et al., 1994; 

Daniels and Gilliam, 1996; Sheridan et al., 1999) and, more recently, strip-tillage (Potter 

et al., 2004, 2010; Bosch et al., 2005, 2012; Feyereisen et al., 2008). Only a few studies 

(Suttles et al., 2003; Cho et al., 2010a) have compared multiple BMPs or land covers. 

Additionally, these studies have all used observed data which assumes climate stationary 

and were not designed to assess the effectiveness of these practices under a variable 

climate. 
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The lack of research in the region assessing the effects of projected future climate change 

on soil erosion, nutrient, or agrochemical losses present a key knowledge gap which 

exists due to the lack of prediction tools which account for rainfall erosivity and cropping 

changes (Delgado et al., 2013) and the difficulty in creating site-specific future climate 

data for impact assessments (Wilby et al., 2004). Detailed climate change impact studies 

on a site-specific basis will provide farmers and conservationists with projections 

required to implement BMPs and cropping changes to prevent losses in the future. This 

study aims to provide a general climate assessment, as well as a comparison of various 

Best Management Practices (BMPs) under observed historical and projected future 

climate to depict the general climatic changes and agro-environmental changes that can 

be expected in the region over the next 100 years using a combination of the current 

GCM projections to the end of this century, detailed site specific experimental and 

agricultural records, and an advanced natural resource model. This research uses methods 

developed in the previous chapters to show their applicability to an important agricultural 

location in the US. 

 

4.2  Materials and Methods  

4.2.1  Site Description 

The Water Erosion Prediction Project (WEPP) model was used to simulate runoff, soil 

loss, and crop growth on a typical US Southern Coastal Plain hillslope under current and 

future projected climates. WEPP is a physically-based model founded on fundamental 

equations of water balance, soil erosion, and plant growth to model the agro-

environmental effects of various farming, rangeland, and forestland practices (Flanagan 

and Nearing, 1995). The hillslope selected for this study was located on the University of 

Georgia Gibbs Farm in Tift County, Georgia (Figure 4.1, Bosch et al., 2005, 2012). 

Extensive management records, including tillage, cropping and irrigation, as well as 

surface runoff and erosion measurement systems make the plots ideal for calibrated soil 

erosion modeling. A conventional tillage plot was selected for calibration/validation of 

soil erodibility and hydraulic conductivity parameters to represent a baseline condition. 

Once calibrated, the management and climate files were varied to simulate different 
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combinations of alternative land management and future predicted climates, while fixing 

the base hillslope and soil input files to the calibrated values. 

 

Figure 4.1: Layout of the Gibbs Farm experimental site. Inset map shows location within 

the Southeastern Coastal Plain in Georgia, USA (Endale et al., 2014) 

  

4.2.2  Calibration/Validation 

Observed data from 2000-2009 for one of the three conventional tillage plots, referred to 

as plot 3 in prior research (Bosch et al., 2005, 2012; Endale et al., 2014), at the Gibbs 

Farm was used for calibration/validation. The 0.2 ha plot had a slope gradient of ~3.5%, 

and the soil was a Tifton loamy sand. Detailed descriptions of soils and instrumentation 

at the site can be found in Bosch et al. (2005). A continuous WEPP management file was 

created to reflect the reported management practices on plot 3 (Endale et al., 2014). This 

management file consisted of 196 management operations, including tillage, planting, 
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harvest, irrigation, shredding/cutting, killing, and initial conditions. Cropping consisted of 

a cotton-peanut rotation with spring disk and fall chisel plow tillage. Irrigation was 

applied from 2000-2009 at a rate of 11.5 mm h
-1

 on 66 occasions with application depths 

ranging from 6.3 mm to 25.4 mm, using the fixed-date scheduling irrigation scheduling 

option in WEPP.  

 

Runoff and sediment were collected from each plot through a system of weirs, berms, and 

data loggers. Weather data were measured at a weather station immediately adjacent to 

the plots. More details on management and data collection equipment during this period 

are provided in Endale et al. (2014). Soil loss and hydrology were calibrated to attempt to 

meet the model performance standards described by Moriasi et al. (2007), wherein a 

hydrologic/erosion model can be considered satisfactory if NSE>0.50, RSR≤0.70, 

PBIAS±55% for sediment, and PBIAS±25% for runoff
1
. WEPP model calibration was 

conducted by varying the baseline interrill erodibility and effective hydraulic 

conductivity within the soil parameter input file. No rill erosion is evident on the plots, so 

input baseline critical shear values were set at a high level (47.88 Pa) to prevent rill 

erosion simulation. All observed runoff events were used for calibrating/validating 

hydraulic conductivity for runoff prediction, while all recorded sediment loss events were 

used for soil erodibility. 

 

In addition to calibration for runoff and soil loss, irrigation scheduling needed to be 

incorporated into the simulations assessing potential future climates. Sprinkler irrigation 

scheduling can be designated in WEPP inputs by specifying minimum and maximum 

irrigation depths and the percentage of the irrigation requirement to be applied (Kottwitz, 

1995), as well as start and end dates of irrigation, and irrigation rate. In order for the 

future irrigation to be considered equivalent to the observed irrigation, roughly the same 

number of events must occur per year and the soil water content at the beginning and end 

of the irrigation events must be similar. A two-sample t-test was used to determine if the 

                                                
1
 NSE – Nash-Sutcliffe model efficiency (Nash and Sutcliffe, 1970); RSR - ratio of the root mean square 

error to the standard deviation of measured data (Singh et al., 2005); PBIAS – percent bias (Gupta et al., 
1999). 
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soil water content under the irrigation scheduling specified for a 30-year continuous 

simulation of the MarkSim
® 

baseline climate was similar to the irrigation patterns from 

the 10-year observed record. The mean water content of the soil profile before and after 

irrigation was extracted from the calibration/validation model outputs. 

 

4.2.3  Future Climate Data 

Projected future climate information was obtained from the MarkSim
® 

DSSAT weather 

file generator (Jones and Thornton, 2013) web application 

(http://gisweb.ciat.cgiar.org/MarkSimGCM/) that allows users to download up to 99 

replicates of potential single-year realizations of future climate on a daily timescale, 

representative of one of the CMIP5 GCMs from the IPCC fifth assessment report. Fifty 

replicates representing the baseline climate based on the WorldClim dataset (Hijmans et 

al., 2005), plus seven decades in the 21
st
 century from 2030-2100, were downloaded from 

the web application for each RCP scenario, centered on the location of the Gibbs Plots 

(31° 26’ 13” N, 83° 35’ 17” W). The WEPP/SWAT Future Climate Input File Generator 

(Chapter 2) was used here to convert the output from the MarkSim
®

 web application for 

use with the CLIGEN weather generator (Nicks et al., 1995). CLIGEN version 5.3 was 

used with the Fourier interpolation method to generate 100 years of continuous data for 

each decade, resulting in 29 unique climate inputs to be used with WEPP. 

 

4.2.4  Management 

Ten land management scenarios (Table 4.1) with the potential for implementation in the 

Southeastern Coastal Plain of the US were modeled under each of the 29 future climate 

scenarios by modifying the input WEPP management file. The scenarios were divided 

into three groups. The first group represented heavy, moderate, and light tillage. The 

second group examined implementation of common agricultural BMPs used on flatter 

croplands together with the baseline tillage system. The third group simulated 

combination or conservation managements, including the conversion of all land to native 

Loblolly Pine. The conversion to Loblolly Pine would be expected to yield the lowest soil 

loss of any scenario due to its persistent cover.  
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Table 4.1: List of management scenarios assessed at the Tifton location 

Management Description 

Control 
Repeated 2-year cotton-peanut rotation with 

Spring disk and Fall chisel plowing. 

Tillage Managements (Control Rotation) 

No-Till No-till planters and standing residue in Fall. 

Strip-Till Strip-tillage in Spring. 

Moldboard Control management with Fall moldboard plowing. 

BMP Managements 

Contouring Control management with rows planted on 0.5% contours. 

Riparian Buffer Control management with edge of field riparian buffer. 

Rye Cover Control management with rye cover crop planted in the fall. 

Conservation Managements 

Sorghum Cotton-Peanut-Sorghum conservation rotation with winter wheat. 

Combination 
Control rotation with rye cover crop, no-till, contouring, and 

riparian buffer. 

Loblolly Pine Conversion of all land to Loblolly Pine. 

 

Three of the management scenarios were based on the experimental plots at the Tifton 

site. The control management was reflective of the actual conventional tillage practice, 

wherein spring disking and fall chisel plowing are conducted every year. The strip-till 

management simulated the conservation practice being used on an adjacent plot in the 

same experimental set (Endale et al., 2014), which includes spring strip-tillage (similar to 

no-tillage, except that a 0.15 m wide strip of soil is cleared of residue by coulters on the 

planter, into which seeds are planted) with no fall tillage. For these two scenarios, the rye 

cover crop present on the actual experimental plots was excluded so that the rye cover 

could be examined independently as a BMP. The baseline management, used for the 

independent climate assessment in section 4.3.3, was dissimilar to the future management 

and included spring disk and fall chisel tillage as well as a winter rye cover crop. 

 

4.3  Results and Discussion 

4.3.1  Calibration/Validation 

Input files for calibration/validation of the WEPP hillslope model were created using 

reported crop management and observed weather data. Weather and irrigation data 

collected at the site between 2000 and 2009 were used to create a continuous breakpoint 
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format input WEPP climate file. Statistics for these climate years are shown in Table 4.2. 

Average annual precipitation from 1981-2010 at the nearby city of Tifton was 1201 mm 

(NOAA, 2014), while the average for this location was 1165 mm from 2000-2009. 2005 

was a wet year with ‘08 and ‘09 being moderately wet, and ‘01 and ‘07 being dry. 2007 

had the most sprinkler irrigation events. 2006 and ‘07 also had the fewest runoff and 

sediment loss events, while ‘03 and ‘04 had the most. 2000-2001 was selected as the 

warmup period, with 2002-2004 for calibration and 2005-2009 for validation. The 

calibration and validation windows were selected to provide a roughly even distribution 

of storm events, runoff depths, and sediment yields. 

 

Crop yield was calibrated first, followed by runoff and soil loss. The default plant 

parameter files for cotton and peanuts distributed with the WEPP model were used as a 

starting point for calibration of plant growth and crop yields. Using these files, modifying 

the Biomass Energy Ratio (BER) resulted in cotton yields at about 450% above observed 

yields. The “optimum yield under no stress conditions” parameter is typically set to zero 

in other plant parameter files, but here was set to 1 kg m
-2

 in the cotton file. Changing this 

parameter to zero and the BER for cotton to 5.581 kg MJ
-1

 optimized cotton yield to 0% 

difference, but the Leaf Area Index (LAI) at maturity was then very low at just over 2. 

Based on this conflict, it was determined to be more appropriate to calibrate LAI, rather 

than yield, and adjusting BER to roughly match typical mature LAI levels. A BER of 

7.524 kg MJ
-1

 resulted in a LAI at maturity of between 5 and 6, which was considered 

adequate. Changing the harvest index (HI) to 23% resulted in a 1% difference in 

predicted and observed average annual cotton yield from 2000-2009. An uncalibrated 

LAI at maturity of 4 for peanuts was found to be adequate, as LAI for peanuts have been 

reported to be between 4 and 7 (Kiniry et al., 2005). 

 

Runoff and soil loss from the hillslope were calibrated by varying the baseline effective 

hydraulic conductivity in the WEPP soil input file until the three qualitative model 

statistics (NSE, RSR, PBIAS) were satisfied. Results are shown in Table 4.3. Hydrology 

statistics were optimized and satisfied for all but PBIAS, using a hydraulic conductivity 
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of 12.7 mm h
-1

, which resulted in NSE of 0.542, RSR of 0.697, and PBIAS of 25.5%. 

Soil loss was optimized with a baseline interrill erodibility of 7.628x10
5
 kg s m

-4
, 

resulting in NSE of 0.537, RSR of 0.681, and PBIAS of 24.2%. 

Table 4.2: Climate, runoff and soil loss summary for model calibration/validation periods 

Year Storms 
Precip. 

(mm) 

Irrigation 

Events 

Precip + 

Irrigation 

(mm) 

Runoff 

Events 

Runoff 

Depth 

(mm) 

Soil 

Loss 

Events 

Sediment 

Yield 

(t/ha) 

2000 93 1042 5 1148 31 125 15 0.485 

2001 102 886 9 1115 49 171 30 0.676 

2002 124 1145 7 1323 87 417 37 3.069 

2003 132 1246 1 1271 58 529 41 2.344 

2004 122 1131 6 1258 34 197 17 0.944 

2005 123 1487 4 1564 33 275 19 1.259 

2006 98 1113 7 1259 12 128 9 1.175 

2007 95 903 16 1205 22 32 8 0.092 

2008 107 337 9 1547 26 169 15 0.255 

2009 125 1360 5 1442 25 310 18 4.428 

Average 112 1165 7 1313 38 235 21 1.473 

’00-‘01 195 1928 14 2262 80 296 45 1.161 

’02-‘04 378 3522 14 3852 179 1143 95 6.357 

’05-‘09 548 6199 41 7017 118 914 69 7.209 

 

Table 4.3: Calibration/validation results for WEPP hillslope model. 

Parameter Calibrated Value  

Soil File 

Parameters 

Ki (kg s m
-4

) 7.628 x 10
5
 

Kr (s m
-1

) 3.281 x 10
-3

 

τcr (Pa) 47.88 

Kb (mm h
-1

) 12.7 

 Period 
Runoff 

(m
3
) 

Soil 

Loss 

(kg) 

Observed 

Mean Event 

Loading 

Calibration 8.27 8.54 

Validation 10.11 13.48 

Total 9.00 10.61 

Modeled 

Mean Event 

Loading 

Calibration 3.64 5.35 

Validation 11.40 11.79 

Total 6.70 8.04 

Results 

NS CAL 0.474 0.452 

NS VAL 0.542 0.551 

NS Total 0.514 0.537 

RSR Total 0.697 0.681 

PBIAS Total (%) 25.47 24.16 
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A two-sample t-test was used to determine if the soil water contents simulated under the 

irrigation scheduling specified for a 30-year continuous simulation of the MarkSim
® 

baseline climate were similar to the irrigation patterns from the 10-year observed record. 

The optimal irrigation schedule is shown in Table 4.4. During the 10-year window, 

irrigation was typically applied on the plots from April through August to a depth of 25.4 

mm over 138 minutes. The minimum depth was set to 12.7 mm and the maximum to 25.4 

mm, since irrigation depths in the field varied between those values during the 10-year 

window.  

Table 4.4: Optimal irrigation scheduling parameters and t-test results 

Irrigation 

Parameters 

Schedule Depletion 

System Stationary 

Minimum Depth (mm) 12.7 

Maximum Depth (mm) 25.4 

Start Date April 1 

End Date Sept. 1 

Rate (mm/hr) 11.54 

Depth Ratio 1.73 

Max Ratio 0.35 

Nozzle Energy 0.6 

 
Observed Simulated 

Average  # events per year 7 6.7 

Starting 

Water  

Content 

Mean 366.00 365.89 

Variance 844.13 735.05 

P(T<=t) two-tail 

 

0.977 

Ending 

Water  

Content 

Mean 382.31 378.44 

Variance 725.86 478.96 

P(T<=t) two-tail 

 

0.281 

Confidence Level of 95% 

 

Calibration was conducted by adjusting the WEPP input irrigation Depth Ratio and Max 

Ratio. The Depth Ratio is the ratio of irrigated depth to depth of water needed to bring the 

soil to field capacity, while the Max Ratio is the depletion ratio at which irrigation will 

occur. The timing of irrigation was found to be more sensitive to the Depth Ratio, while 

the Max Ratio could be adjusted to reduce or increase the variance of the mean starting 

soil water depth. These two values were adjusted until the simulated 30-year average 

annual number of irrigation events closely matched the observed 10-year average annual 
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number, and the p-value of the two sample t-test was maximized for both the starting and 

ending soil water depth. The irrigation schedule shown in Table 4.4 resulted in mean 

starting and ending soil water depths during the 30-year simulation which were not 

statistically different from the 10-year mean (p=0.997 and p=0.281, respectively). The 

nozzle energy was left at the default value, as it was found that changing this parameter 

had no effect on soil erosion or runoff results using the stated intensity and maximum 

irrigation depth. 

 

4.3.2  Comparison of MarkSim
®
 Output to Observed CLIGEN .par File 

The CLIGEN parameter files were compared to the default WEPP parameters files for 

the same location using tools within the WEPP/SWAT Future Climate Input File 

Generator (Table 4.5). The comparison of MarkSim
®
 generated and historical CLIGEN 

monthly means showed poor correlations for many variables. Mean precipitation 

differences were significant at the 99.5% confidence level, while Pw/w, mean and S.D. for 

solar radiation, and mean TMin and TMax differences were significant at all confidence 

levels.  

 

While mean precipitation trends were similar for both baseline climates, MarkSim
®

 

underpredicted monthly mean rain day precipitation by between 3 and 10 mm. The same 

was true for rain day precipitation S.D., although the mean difference between the 

baseline climates for this variable was not found to be statistically significant (p>0.05). 

Q-Q plots also showed poor correlations for precipitation mean and standard deviation. 

Pw/d showed good correlation both statistically (p>0.05) and graphically (results not 

presented in this paper). Precipitation skew also correlated well in the summer months, 

when convective thunderstorms provide the majority of intense storms to the region 

(Bosch et al., 1999) 
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Table 4.5: Comparison of MarkSim® and CLIGEN baseline climates for Tifton, GA. 

Month  Jan. Feb. Mar. April May Jun July Aug. Sep. Oct. Nov. Dec. 

     CLIGEN baseline climate parameter values (1959-1995) 

Mean P (mm)  12.45 12.19 13.97 14.73 11.94 11.43 10.92 11.18 10.41 10.67 9.40 10.92 

S.D. P (mm)  14.99 16.26 17.78 20.32 14.48 13.21 13.72 14.73 14.73 13.72 14.48 13.21 

Pw/w  0.45 0.45 0.40 0.37 0.44 0.49 0.52 0.48 0.49 0.44 0.36 0.43 

Pw/d  0.22 0.24 0.23 0.19 0.19 0.25 0.34 0.29 0.19 0.11 0.17 0.21 

Mean Tmax (°C)  15.96 17.58 20.97 25.43 29.31 32.05 32.73 32.65 30.83 26.39 21.16 17.03 

SD Tmax (°C)  6.02 5.61 5.35 4.09 3.31 2.86 2.38 2.44 3.43 3.97 4.97 5.77 

Mean Tmin (°C)  3.77 4.88 8.22 12.30 16.50 20.11 21.42 21.12 19.03 12.98 7.79 4.44 

SD Tmin (°C)  6.04 5.68 5.23 4.19 3.16 2.16 1.42 2.42 2.89 4.77 5.64 5.84 

     MarkSim
®
 baseline climate parameter values (1960-1990) 

Mean P (mm)  11.99 8.27 9.29 7.96 6.89 11.89 11.97 10.39 8.02 6.00 7.65 6.58 

SD P (mm)  19.81 13.62 12.56 11.66 10.42 16.87 16.96 14.93 11.21 9.00 11.81 10.56 

Pw/w  0.49 0.54 0.62 0.53 0.58 0.49 0.54 0.60 0.54 0.49 0.55 0.53 

Pw/d  0.26 0.31 0.32 0.27 0.30 0.23 0.27 0.33 0.27 0.20 0.21 0.27 

Mean Tmax (°C)  15.67 17.21 20.57 24.88 28.71 31.31 32.03 32.45 30.04 25.78 20.68 16.60 

SD Tmax (°C)  4.54 4.38 4.07 3.72 3.40 3.14 3.00 3.05 3.46 3.63 4.25 4.55 

Mean Tmin (°C)  3.61 4.42 7.99 11.73 16.31 19.78 21.03 21.10 18.78 12.98 7.74 3.97 

SD Tmin (°C)  4.92 4.74 4.19 3.65 3.36 2.87 2.50 2.57 3.19 3.89 4.23 4.83 

Mean P: mean precipitation event depth, SD P: standard deviation of precipitation events, Pw/w: probability of a wet 

day following and wet day, Pw/d: probability of a wet day following a dry day, Mean and SD for temperatures are 

calculated from daily data. 

68
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Solar radiation means and standard deviations differed significantly at all confidence 

intervals, with means being overpredicted and S.D. being underpredicted. The two 

baseline means differed most during the growing season, which could have a noticeable 

impact on crop growth simulation for the region. Means for both TMax and TMin also 

differed at all confidence levels, however MarkSim
®
 underpredicted TMax by only 0.55

o 
C 

on average, and TMin by only 0.29
o 

C on average. These differences were also less than 

the average difference in the late winter and early spring, when soil temperature and any 

potential thaw or frost-kill would impact crop growth in the early growing season. 

Temperature S.D. were not significantly different (p>0.05). 

 

4.3.3  Climate Change Impact Assessment 

Continuous 100-year climate files were created using CLIGEN for the four RCP 

scenarios of the IPCC 5AR using the MarkSim
®
 DSSAT weather generator web 

application and the WEPP/SWAT Future Climate Input File Generator. A conventional 

tillage management file, reflecting the typical two-year cotton-peanut rotation which 

existed during the 10-year observed period, was used to assess the impact of a changing 

climate on a typical Southern Coastal Plain agricultural plot. By fixing all other inputs, 

differences among climate scenarios were assessed to identify changes in water balance 

and soil loss that may result from projected climate change. 

 

Figure 4.2 shows the changes in average monthly precipitation, runoff, and soil loss 

modeled under the four RCP scenarios for the 21
st
 century. Total annual precipitation 

increased slightly, while runoff and soil loss were marginally affected. Predicted runoff 

and soil loss changed for most months, with these changes typically accompanied by 

similar changes in total rainfall. The RCP 8.5 scenario usually had the greatest change in 

runoff and soil loss over the entire future period, while RCP 4.5 had the greatest change 

in precipitation for most months. Soil loss and runoff were reduced in the first three 

months of the year, while growing season months (May-August) had little change from 

the baseline climate. September, October, and December all had significant predicted 

increases in soil loss and runoff (p<0.05) with a corresponding increase in precipitation. 
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November had relatively small changes in all three variables under all but the RCP 8.5 

Scenario. Some months in particular (February, April, July, and September) exhibited 

behavior which was explained by further analysis, such as increased rainfall but reduced 

soil loss. A more detailed analysis follows. 
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Figure 4.2: Predicted mean monthly precipitation (a,b), runoff (c,d), and soil loss (e,f) for 

the 21
st
 century at Tifton, Georgia, due to projected climate change. 

 

 

4.3.4  February Soil Loss Decreased, Despite Increasing Precipitation 

The roughly 20% reductions in runoff and soil loss in the month of February do not 

appear to make sense with the over 10% increase in precipitation for that month. 

However, growth of the rye cover crop was found to be enhanced by the higher 
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temperatures of the future climates, which explained why the RCP with the greatest 

temperature change (RCP 8.5) also had the greatest reduction in predicted runoff and soil 

loss. Increasing temperatures promoted crop growth in the coldest months, particularly. 

While temperatures never fell below -5
o 
C in any of the 100 years of the baseline climate, 

approximately 75% of those years had temperatures which fell below 0
o
 C in December 

or January. In those years, predicted rye growth was stunted for anywhere between three 

days and several weeks, which resulted in reduced LAI in February. Under all projected 

RCP scenarios in the 21
st
 century, however, fewer or no stunted growth periods were 

simulated in December and January, resulting in drastically higher rye growth (Figure 

4.3). 

 

 

Figure 4.3: Predicted February rye cover crop LAI (a) and February mean temperature (b) 

under the baseline management at Tifton, Georgia, due to projected climate change. 
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4.3.5  Increases in April Runoff and Soil Loss Could Not be Readily Explained 

Rye is killed at the end of March, followed by 2 disk tillage operations designed to 

incorporate the dead biomass fully into the soil. With the increase in biomass produced 

by the rye and subsequently higher levels of surface and buried residues, it would be 

expected that runoff and soil loss would be reduced in April; however, higher runoff and 

soil loss was simulated. Predicted runoff was 18-27% greater over the future period, 

while predicted soil loss was 2-15% greater for the month of April. The total water 

balance for April (calculated as precipitation – runoff + irrigation - deep percolation - ET) 

did not change significantly into the future (p>0.05). ET increased by less than 10% or 2 

mm, irrigation increased by 57-84% or 3-5 mm, and deep percolation increased by 18% 

or 3 mm; the combination of which could not explain the increase in runoff. While the 

average depth of storms increased absolutely, the change was not significant (p>0.05). 

When considering all 100 years simulated for all 5 scenarios in 2070, the number of large 

storms resulting in 60 mm or more of precipitation increased by 3-10 storms per 100 

years. Of these, the largest storms for the RCP 6.0 and 8.5 scenarios were nearly twice as 

large as in the baseline climate. The number of precipitation events resulting in runoff 

increased in April over the course of the 21
st
 century, but did not appear to correspond to 

the increase in runoff. Adjusted interrill erodibility also decreased slightly into the future, 

further obscuring the cause of the changes. 

 

In other months, the changes in runoff and soil loss appeared to correspond in a linear 

manner to changes in precipitation depth. April did not exhibit such a linear response, 

with runoff increasing to a much greater degree than precipitation changes. Further 

investigation of individual precipitation variables generated by CLIGEN revealed that 

storm characteristics, such as average peak intensity, storm depth, and storm frequency, 

did not change to a degree that would explain the greater increase in runoff and soil loss. 

However, combined together all these changes apparently caused enough variation to 

result in the noticeable increases in runoff and soil loss. 
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4.3.6  July Runoff Decreased, Despite Increased Precipitation 

July, like February, showed an increase in precipitation but a decrease in runoff and soil 

loss (Figure 4.4). However, most of the change in precipitation for February occurred by 

2030, and remained around 100 mm per year throughout the entire future period. In July, 

precipitation peaked by 2030, and gradually decreased to 1-8 mm above baseline levels 

by the end of the century. Runoff, on the other hand, gradually decreased starting in 

2030, with 2090 levels being 1-6 mm below the baseline level. LAI, while decreasing at 

the end of the century for RCP 8.5, increased significantly (p<<0.05) for all scenarios in 

2030 (Fig. 2a). Therefore, the initial jump in precipitation appears to have been offset by 

an initial increase in LAI; since the LAI did not change through the future period, the 

gradual reduction in precipitation explained the corresponding reductions in runoff. This 

was also supported by the numbers from 2030, when RCP 6.0 had a slight reduction in 

predicted runoff and no change in precipitation. 

 

4.3.7  Earlier Senescence of Cotton Increased Soil Loss 

Earlier senescence of cotton was predicted to occur into the future, with senescence 

occurring 9 days earlier by 2090 under the RCP 2.6 forcing, and a full month earlier by 

2090 under the RCP 8.5 forcing. Precipitation also increased significantly (p<0.05) under 

all but the RCP 2.6 scenario. The combination of increased precipitation and earlier 

senescence reduced canopy cover and increased runoff, resulting in increased predicted 

soil loss in September and October. Insignificant (p>0.10) changes in precipitation, 

coupled with greater levels of biomass in the soil from increased crop growth, reduced 

soil losses in November under all but the RCP 8.5 scenario. Precipitation was predicted to 

increase in December by 12-21% over the 21
st
 century, and this resulted in more soil loss 

events under all scenarios. 

 

4.3.8 Irrigation Requirements Increased in the 21
st
 Century 

One important aspect of agriculture in the Southeastern Coastal Plain is the requirement 

for many row crops planted in the sandy loam soils to be irrigated during the summer 

months, when precipitation is heavily dependent on unpredictable convective 
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thunderstorms. Assuming irrigation scheduling does not change into the future, predicted 

total irrigation depths and frequency were forecast to increase for the growing season 

through the 21
st
 century. Irrigation requirements in June were reduced, while 

requirements in April, May, and August were simulated to increase. 

 

 

Figure 4.4: Predicted runoff (a) and precipitation (b) for July under the baseline 

management at Tifton, Georgia, due to projected climate change. 
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due to both higher temperatures and the related increase in crop growth associated 

therewith, this increase in ET was offset in all but the RCP 8.5 scenario by an increase in 

precipitation, reduction in deep percolation losses, and a slight reduction in runoff. This 

resulted in no significant change in irrigation for July. August, however, saw the largest 

increase in irrigation requirements due to a reduction in precipitation coupled with a 

reduction in the soil water content at the beginning of the month of 2-10 mm. The 

increase in ET for August was offset by a reduction of deep percolation losses. Irrigation 

changes in May and September were insignificant (p>0.05). 

 

4.3.9  Assessing BMP Effectiveness under Potential Future Climate 

Effectiveness of individual land management systems changed into the future (Figure 

4.5). Results showed that using conservation tillage options (strip-till and no-till) were the 

most effective in reducing soil loss into the future, while systems that included riparian 

buffers had the greatest predicted reductions in runoff into the future. Results also 

showed that the rye cover and combination management systems were more effective in 

the future compared to under the baseline climate.  

 

One of the most interesting findings is that the combination management, which was a 

combination of the no-till, riparian buffer, and rye cover systems, had only a slightly 

lower total predicted soil loss compared to just the no-till management, but had an 

increase in effectiveness into the future, which neither the no-till nor the riparian buffer 

managements exhibited individually. The combination management system was the only 

one, out of the ten examined, to have a significant decrease in predicted soil loss in the 

future compared to the baseline climate. The combination management also had the 

lowest predicted future total runoff. However, predicted runoff did not differ significantly 

(p>>0.05) when comparing the baseline and future climates for any management system. 
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Figure 4.5: Predicted soil loss (a,b) and runoff (c,d) under the ten management scenarios 

for the 21
st
 century. Black lines in the bar graph show baseline climate levels. 
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Overall, effectiveness of different management systems did not show much change into 

the future. The conversion to Loblolly pine had the lowest predicted soil loss of any 

management system, while the control had the highest, followed by rye cover and fall 

moldboard plowing. The fact that the baseline and rye cover management systems did not 

differ into the future indicated that little erosion occurs in the months preceding sowing 

or harvest, when temperature-related crop promotion was most drastic. This was also 

reinforced by the fall moldboard plow management, which omitted the double disk spring 

plowing, and having only marginally lower predicted soil loss than the control. The 

inclusion of a riparian buffer alone was not enough to limit soil loss on a plot, and was 

only made effective with the inclusion of no-till and a rye cover crop. A separate analysis 

(not shown) of various grasses in the buffer zone closest to the field also indicated that 

the type of cover in that zone of the buffer was not as important in soil loss mitigation as 

the presence of the zone itself. Strip-till, a practice being adopted in this and other 

regions, was also effective in limiting soil losses from the field, with about only a third of 

the total losses compared to the baseline management. 

 

4.4  Conclusions 

A small, experimental, agricultural hillslope managed by the USDA-ARS in the 

Southeastern Coastal Plain of the United States was modeled using WEPP under current 

and projected future climates to assess the effect of predicted future climate change on 

runoff, soil erosion, and BMP effectiveness. Simulation results showed that runoff and 

soil loss changed for most months under the existing conventional management, with 

these changes typically accompanied by similar changes in total rainfall. Predicted 

climate change caused soil loss and runoff to be reduced in the first three months of the 

year, while limited change was modeled during the growing season. Late fall and early 

winter months, when ground cover was low, had predicted increases in runoff and soil 

loss which corresponded with an increase in total late-year precipitation. Increased air 

temperatures resulted in the winter cover crop growing faster and unhindered by frost in 

the early months of the year, reducing predicted soil loss during this traditionally low-

cover period. Soil loss was also predicted to increase prior to harvest as a result of the 
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reduction in canopy cover caused by the earlier senescence of cotton due to the projected 

warmer temperatures. Increased predicted runoff in March and more ET in July from 

temperature-promoted crop growth also increased irrigation demands during the growing 

season under the baseline management. Ten management systems were examined under 

the future projected climate scenarios, and effectiveness of the combination of no-till, rye 

cover crop, and riparian buffers was the only one that increased into the future. All other 

management systems had either similar or slightly reduced effectiveness. In general, the 

effectiveness of the various land management practices did not change much into the 

future. 

  

This study has several drawbacks which may limit the use of results for management 

decisions, separate from limitations which have previously been noted regarding the 

method of future climate data acquisition (Section 2.5). First, an important and largely 

unpredictable measure of adaptation in agriculture which has not been detailed here is the 

gradual selection and change-over to crop cultivars better suited for future altered 

temperature and precipitation patterns. These cultivar changes were not assessed in the 

current study, and limitations in the predictability of economic drivers for crop viability 

make speculation and simulation of these changes difficult. As modeling technologies 

improve, the effect of cultivar changes will need to be assessed alongside BMP 

implementation to determine the interplay of each to natural resource management. 

Second, the size of the hillslope examined was small, limiting the extrapolation of results 

to a larger geographic area. On the other hand, the small controlled area allowed for high 

resolution records to be obtained for climate, soil, topography, management, and 

observed runoff and soil loss, resulting in high calibration/validation prediction 

efficiencies and providing high levels of confidence in the WEPP model results and 

projections. 

  

Despite these limitations, the results from this study indicate that current conservation 

practices and BMPs being implemented at this location will likely be sufficient for 

mitigating soil erosion and runoff into the future. 
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CHAPTER 5. FIRE RISK ASSESSMENT UNDER FUTURE CLIMATE FOR THE 

BLACKWOOD CREEK WATERSHED IN THE LAKE TAHOE BASIN, 

CALIFORNIA/NEVADA 

5.1  Abstract 

The Blackwood Creek watershed, a tributary of Lake Tahoe in California, was assessed 

for potential changes in climate and fire risk under 21
st
 century climates projected by the 

Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (5AR). 

While total precipitation varied by decade, the portion of precipitation falling as snow 

decreased by as much as 26%, and projected air temperatures increased by as much as 

3.4°C by 2090. Total soil water (TSW) predictions by the Water Erosion Prediction 

Project (WEPP) model indicated that fire ignition in the Sierra Nevada region from 1984-

2013 coincided with simulated minimum TSW. Risk categories based on simulated TSW 

changed under projected future climate, with an increase in the number of high risk days 

defined by TSW less than 40 mm. Simulated TSW in the Blackwood Creek watershed at 

the time of nearby historic fires also indicated that the Keetch-Byram Drought Index 

(KBDI) was correlated to TSW (R
2
 = 0.59) when KBDI was less than 500. Corrections to 

the aggregated WEPP model used here as well as retooling of KBDI to be more 

applicable to lands in the Western US would likely provide better datasets to assess fire 

risk in the Lake Tahoe Basin. 

 

5.2  Introduction 

The Blackwood Creek watershed is a 2900 hectare watershed that is located on the 

western shore of and is a tributary to Lake Tahoe in California, USA. This watershed has 

a history of logging and gravel mining which cleared and altered the forest stand in much 

of the watershed prior to 1960 (Coats et al., 2008). Logging in the 19
th

 century has been 

attributed to the promotion of a fire deficit in many western regions (Taylor and Beaty, 
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2005; Westerling et al., 2006), with current fire frequency being at its lowest point in 

thousands of years (Beaty and Taylor, 2009; Marlon et al., 2012). In addition to fuel 

accumulation, a changing climate may also have an effect on fire risk, with recent 

increases in wildfire severity being linked to earlier spring snowmelt and higher spring 

and summer temperatures (Westerling et al., 2006). Climatic change in the basin has 

already been observed in the historical record as increases in air temperature, less 

precipitation as snowfall, earlier spring snowmelt, and increased rainfall intensity (Coats, 

2010). 

 

No wildfires are known to have occurred in the Blackwood Creek basin since Euro-

American settlement in the 18
th
 century. A large fire there or in other large watersheds 

along the western shore of Lake Tahoe could have major impacts on suspended sediment 

loads into the lake. Currently, most of the sediment loadings in Blackwood Creek come 

from channel degradation (Gavigan and Curtis, 2007), but the volcanic soils which make 

up 14.9% of the watershed deliver 65.8% of the total sediment load (Brooks et al., 2010). 

The combination of channel degradation due to logging activities on the hill slopes and 

gravel mining in the river (Gavigan and Curtis, 2007) no doubt contribute to Blackwood 

Creek having higher observed sediment loads than other nearby watersheds (Nolan and 

Hill, 1991). Wildfires leading to the clearing of vegetated lands which buffer the streams 

in the watershed from highly erodible badlands at the higher elevations of the Blackwood 

Creek and nearby Ward Creek watersheds (Stubblefield et al., 2009; Brooks et al., 2010) 

could further increase sediment loadings and threaten the clarity of the lake. 

 

The Keetch-Byram Drought Index (KBDI) is a commonly used metric for fire risk in the 

US which uses a simple relationship between temperature and precipitation to budget soil 

moisture deficits on a daily timescale (Keetch and Byram, 1968). While the initial 

publication which presented this method emphasized that it was not a substitute for more 

established fire criteria, such as the National Fire Danger Rating System (Bradshaw et al., 

1984), the KBDI was intended as a reference for deep-drying which can be used for 

planning fire control operations (Keetch and Byram, 1968). As such, it provides a 
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benchmark for other fire risk assessment tools which are developed from relatively 

simple datasets, such as those available from future climate projections by GCMs.  

 

The KBDI has been used elsewhere to assess historical and future fire likelihood at global 

and local scales. McKelvey and Busse (1996) used the KBDI to assess twentieth century 

forest fires on federal lands with a specific emphasis on the Sierra Nevada Mountains in 

California. They found that periods of drought consistent with those which occurred in 

the twentieth century cause a significant increase in the likelihood of large wildfires. 

They also found that KBDI can be used to accurately describe risk zones in the Sierra 

Nevada, but their results indicated that Tahoe City had much lower KBDI values 

compared to other stations in the region. On a larger scale, KBDI was used by Liu et al. 

(2010) to assess trends in wildfire potential due to climate change under scenarios 

defined by the Special Report on Emission Scenarios from the IPCC 4AR (IPCC, 2000). 

Liu et al. (2010) found that fire potential will increase in the United States and globally, 

with fire seasons lengthening by 2 to 8 months. They also noted that the degree of 

increase in fire potential was sensitive to GCM and emission scenario. 

 

The IPCC is the scientific intergovernmental authority on climate change research, using 

the latest science and technology to publish regular assessment reports which detail the 

current understanding of climate change. The latest Intergovernmental Panel on Climate 

Change (IPCC) Fifth Assessment Report (AR5, IPCC 2014) used projections from the 

Coupled Model Intercomparison Project (CMIP5, Taylor et al. 2012) under the four 

Representative Concentration Pathways (RCP, Moss et al. 2010). The RCP scenarios 

from the AR5 represent four possible radiative forcings by 2100, with the number of each 

scenario corresponding to the global radiative forcing in W/m
2 

(Taylor et al., 2012). RCP 

scenarios have been used by a number of scientific institutions to drive General 

Circulation Models (GCM). GCMs are mathematical atmospheric and oceanic models 

which predict atmospheric conditions such as precipitation and temperature at various 

spatial and temporal scales. These projections have been made available through the 

IPCC for use in further research, particularly impact assessments. 
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WEPP is a physically-based soil erosion model founded on fundamental equations of 

water balance, soil erosion, and plant growth to model the agro-environmental effects of 

various farming, rangeland, and forestland practices (Flanagan and Nearing, 1995) at 

hillslope and small watershed scales. The WEPP model has been continuously developed 

since 1985 as a replacement to more simplistic soil erosion prediction technologies so 

that engineers, scientists, and government agents can be better informed on potential on-

site erosion and off-site sediment losses  (Flanagan et al., 2007). WEPP is capable of 

modeling forestland erosion and water balance (Elliot and Hall, 1997; Elliot, 2004; Dun 

et al., 2009) and has been used in the past to evaluate soil, water, and vegetative 

processes in post-fire forest landscapes (Soto and Díaz-Fierros, 1998; Robichaud, 2000, 

2005; Covert et al., 2005; Spigel and Robichaud, 2007). CLIGEN is a stochastic weather 

generator provided with WEPP which uses monthly statistics for precipitation, 

temperature, wind patterns, and solar radiation to generate daily weather which can then 

be used to conduct simulations with the WEPP model (Nicks et al., 1995). 

 

Understanding factors which can help predict the likelihood of wildfire occurrence is 

important for forest fire prevention, but the precipitation and temperature changes 

associated with climate change are likely to alter how forest managers assess fire risk. 

Additionally, the relationships which govern empirically derived models for drought and 

fire risk assessment may change as the atmosphere changes and vegetative responses to 

those changes occur. The Angora (2007) and Gondola (2002) fires in the Lake Tahoe 

basin have increased local concerns of fire safety and the effects that post-fire increased 

sediment loadings could have on the clarity of the waters of Lake Tahoe.  

 

The goals of this study were to characterize the nature of climate change in the 

Blackwood Creek basin, as well as determine if changes in wildfire likelihood would 

occur under current projected future climate. To accomplish these goals, the latest IPCC 

AR5 projections from the CMIP5 under the four RCP scenarios were used to assess 

potential changes in annual precipitation, snowfall, Total Soil Water (TSW), and fire risk 

defined by TSW and KBDI in the Blackwood Creek watershed of the Lake Tahoe basin 
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using the WEPP model and the CLIGEN weather generator. This research also presents 

the first example of downscaling future climate projections to a specific watershed in the 

Lake Tahoe basin, as well as the first use of the IPCC AR5 data in an impact assessment 

in the region. 

 

5.3  Materials and Methods 

The Water Erosion Prediction Project (WEPP) model was used to simulate water balance 

in the Blackwood Creek watershed of the Lake Tahoe Basin (Figure 5.1) under current 

and projected future climates. An extension of WEPP, referred to as the WEPP-UI 

approach in Brooks et al. (2010) and herein as the 626 hillslope model, was used to 

simulate and aggregate 626 individual hillslope profiles, which as a whole represent the 

Blackwood Creek watershed. The 626 individual hillslopes each contain up to 19 

overland flow elements which are defined by slope, vegetation, and soil input files 

derived from GeoWEPP, an ArcGIS extension which allows users to define the input 

files for and run a WEPP watershed model based on publically available landcover, soil 

survey, and topographical databases (Renschler and Harbor, 2002).  

 

Annual precipitation in the Blackwood Creek watershed has been reported to average 

around 1500 mm over the entire basin with 90% of precipitation falling as snow (Tetra 

Tech, 2001) and the remainder falling as a result of infrequent summer thunderstorms 

(Stubblefield, 2002). A daily breakpoint weather file, provided by Tetra Tech for the 

Lake Tahoe Total Maximum Daily Load (NDEP, 2011) report, was obtained for 1988-

2006 at the Tahoe City Natural Resources Conservation Service (NRCS) Snow 

Telemetry (SNOTEL, http://www.wcc.nrcs.usda.gov/snow/) station. This climate file was 

used to run a 626 hillslope model simulation to obtain the baseline total TSW 

characteristics used for the fire risk assessment.  
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Figure 5.1: Map showing location of Blackwood Creek on the Western shore of Lake 

Tahoe. Inset shows location of Lake Tahoe on Eastern border of California, USA. Image 

modified from Stubblefield et al. (2009) 

 

Projected future daily weather patterns from a variety of GCMs using the AR5 RCP 

scenarios were obtained from the MarkSim
®

 DSSAT weather file generator (Jones and 

Thornton, 2013) web application (http://gisweb.ciat.cgiar.org/MarkSimGCM/) and 

formatted for use with WEPP using the WEPP/SWAT Future Climate Input File 

Generator (Chapter 2). MarkSim
®
 is a weather generator which works as a GCM 

downscaler by using stochastic downscaling and weather typing (Jones and Thornton, 

2013). Future climate is created using daily data created by GCMs for five future time 

periods, calculating monthly climate anomalies for each time period relative to the 

baseline climate (WorldClim, Hijmans et al. 2005), and interpolating years in-between by 

fitting a functional relationship to the future time periods. Spatial downscaling is 

completed through regression of synoptic atmospheric variables to local weather events 

from the WorldClim dataset (Hijmans et al., 2005). CLIGEN version 5.3 was used with 

the Fourier interpolation method to generate 100 years of continuous data for each decade 



86 

of the four RCP scenarios used in the IPCC AR5, resulting in 29 unique future climate 

inputs. 

 

A modeling challenge identified by Brooks et al. (2007) when working in the Tahoe 

basin is accurate representation of the spatial variability in climate. Climate in the basin 

varies by region as well as elevation, and no weather stations exist within the Blackwood 

Creek watershed, requiring information for use within the watershed to be scaled from a 

nearby weather station. For this purpose, 800 m resolution Parameter-elevation 

Relationships on Independent Slopes Model (PRISM, Daly et al., 2008) maps of average 

monthly precipitation, minimum temperature, and maximum temperature were used to 

scale climate data from Tahoe City, California, to each hillslope (Brooks et al., 2010). 

The same scaling factor was used for the 626 hillslope model under both the historical 

SNOTEL climate as well as the future RCP climates, which assumes that the relationship 

between precipitation and temperature at the Tahoe City SNOTEL location and the rest 

of the Blackwood Creek watershed will remain the same into the future. 

 

Fire risk was assessed by comparing the timing of fires in the Sierra Nevada region with 

TSW modeled by WEPP and the KBDI. Timing of fires was obtained from the Modeling 

Trends in Burn Severity Project (Eidenshink et al., 2007), which has a useful web tool 

which allows users to download data on wildfires by region or state 

(http://www.mtbs.gov/). The data is available from 1984-2013, which contains the period 

for which observed SNOTEL weather data exists. The MTBS data for the Western US 

includes only burned areas larger than 400 ha, which excludes the Gondola fire which 

occurred in the Lake Tahoe Basin in 2002 and burned an estimate 280 ha. The Gondola 

fire was included in the fire assessment herein. 

 

A representative hillslope was selected from the 626 hillslope model to compare TSW 

and KBDI during the period of record coincident with the observed SNOTEL weather 

data. The timing of wildfires in the region was compared to TSW and KBDI to identify 

three fire risk categories. These fire risk categories were then applied to the future climate 

http://www.mtbs.gov/
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data to assess changes in the fire risk categories into the future. KBDI is an estimation of 

moisture deficit in a landscape based on the assumption that the available water at field 

capacity in the zone where drought occurs is equal to 8 inches (Keetch and Byram, 1968). 

The calculated value of KBDI is equivalent to the estimated water deficit of the soil in 

hundredths of an inch and ranges from 0 to 0.800 inch. KBDI is a function of 

precipitation and temperature, and was calculated using the equation from Janis et al. 

(2002): 

    
                    

                            

                
  

where     is the drought factor on the current day,         is the drought factor on the 

preceding day,       is the daily maximum temperature (°C), and R is the mean annual 

rainfall (cm). The mix of English and metric units is presented here, as it was in Janis et 

al., (2002) because KBDI is traditionally represented in English units, while the weather 

data used to calculate KBDI was provided, and presented here, in metric units. The 

drought index for the current day is calculated by subtracting the net precipitation from 

the previous 24 hours from the preceding day’s KBDI and then adding the calculated 

value of    . KBDI is a continuous calculation, so the first day in the calculated series 

has a KBDI equal to zero. As such, it is important to start the calculation on a date in 

which the ground is assumed to be saturated (Keetch and Byram, 1968), such as after 

spring snowmelt or several days of rain. Herein, the calculation was started in September 

of 1988, when reliable weather records begin, so that the KBDI reached zero after the 

spring snowmelt in 1989. 

 

Several conditions apply to KBDI regarding temperature and days with consecutive 

precipitation. First, solving the numerator of Equation 5.1 shows that the drought factor is 

equal to zero when the maximum daily temperature is less than 6.79
o
C. Second, only the 

amount of precipitation over 0.51 cm should be subtracted from the current day’s KBDI. 

Third, when there are consecutive rain days, only the portion of net rainfall greater than 

0.51 cm which fell on the previous day can be subtracted for the current day’s KBDI 

calculation. Fourth, when snow is considered to be covering the fire fuel layer, there is no 

drying and all precipitation is considered as net precipitation.  
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The fourth condition presents some confusion when calculating the drought factor on 

days with snow cover which had not been addressed in the literature to this point, and 

must be considered in climates such as Lake Tahoe, where snowfall is the dominant 

precipitation. Keetch states that all precipitation can be transferred to the net rainfall 

columns of the KBDI worksheet in the event that no drying of the fuel cover occurs, 

which would be the case in the event of snow accumulation. A literal translation would 

therefore mean that when snow exists, the net rainfall is not reset to zero following dry 

spells. This means that rain-on-snow events would result in all precipitation counting 

towards net rainfall and the precipitation depth subtracted from the drought factor. While 

there are likely to be a very limited number of such instances which occur in a given year, 

and the total cost of such an omission would be at most 0.51 cm on any single day, the 

wording with regards to this is vague, likely due to the fact that this index was developed 

for the southeastern US forests where snowfall accumulation is rare. Another question is 

whether or not the drought factor will increase during dry spells if there is snow on the 

ground. This possibility is not explicitly addressed in any of the literature or the original 

documentation. However, it is highly likely that low temperatures will be limiting during 

these periods, and thus cause the drought factor to be zero except in the case of a multi-

day thaw event. In fact, this same assumption was made but not stated in Liu et al. (2010) 

(Yongqiang Liu, personal correspondence, 3/16/2015). In such an event, fire cover would 

not increase in dryness until all of the snow has melted. As such, we assumed that the 

drought factor would be equal to zero at any point that snow is evident on the ground. 

Again, it is highly unlikely that snow presence will limit the drought factor, since 

temperature should almost certainly be limiting in this case as well. For this study, net 

rainfall was assumed to continue to accumulate during dry spells when snow is present, 

but resets to zero as soon as a dry spell occurs without snow cover. The presence of snow 

was determined using the water output from WEPP model simulations using a breakpoint 

precipitation format climate input file of the Tahoe City SNOTEL weather record. The 

mean annual rainfall in the KBDI equation was set equal to the annual precipitation under 

the MarkSim
®
 baseline climate. 
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5.4 Results and Discussion 

The complete SNOTEL record for 1988-2006 at the Tahoe City, California, station 

includes large sections at the beginning and the end of the record which are missing 

weather data. The record was therefore trimmed to include the years 1989-2006 with the 

exception of the last 15 days of 2006, for which weather data was unreliable. A SNOTEL 

station exists in the Ward Creek watershed, a watershed immediately adjacent and to the 

north of the Blackwood Creek basin. However, the Tahoe City station was selected to be 

consistent with the location of downscaled data obtained from MarkSim
®

; the Global 

Historical Climate Network Dataset (GHCND; Peterson and Vose, 1997) includes a 

weather station in Tahoe City but not one in the vicinity of Ward Creek. Additionally, the 

SNOTEL record used herein at both Ward Creek and Tahoe City have a period of record 

which overlaps with the period of record using in the GHCND from 1989-90 only. 

 

Initially, water balance, soil loss, and fire risk were going to be assessed for the entire 

Blackwood Creek basin for this research. However, running 100-year long simulations of 

the 626 hillslope model revealed that there is a problem in the winter water balance 

processes which results in a net accumulation of TSW equivalent to about 1% of total 

precipitation in the basin. By the end of the 100-year simulation, this resulted in an extra 

1.27 m of TSW in the water balance for the watershed. A similar trend was not observed 

in the individual hillslope outputs, pointing towards the aggregation processes in the 626 

hillslope model output processing as the source of the error. Further identification and 

remedy of this error was beyond the scope this study. Additionally, re-simulation with the 

626 hillslope model using the 29 different climates assessed in this study would have 

required additional time and digital storage volumes exceeding those allocated to this 

research. Water balance and fire risk were therefore assessed using representative 

hillslopes taken from the individual WEPP outputs of the 626 individual hillslopes. 

 

WEPP outputs for three representative hillslopes were inspected to determine which 

hillslope in the Blackwood Creek watershed would give the most representative results. 

Elevations varied from 1920 m at the outlet to 2598 m at the highest point, and it was 
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found that hillslopes of similar elevation at the highest and lowest elevations also 

experienced similar weather, regardless of the proximity of the hillslopes to one another. 

According to the PRISM adjustments, lower elevations had the lowest average annual 

precipitation and higher temperatures while higher elevations had more precipitation and 

lower temperatures. Using this knowledge, representative hillslopes were selected based 

on elevation, with the three categories representing a hillslope near the bottom of the 

elevation spectrum, one near the top, and one near the median elevation (2166 m). 

Hillslopes were selected which had forested cover and only a single overland flow 

element (OFE). Overland flow elements are used in WEPP to represent heterogeneity in 

soil type and land cover within a single hillslope. A hillslope with only one OFE has 

uniform soil and land cover, making the model structure and the outputs generated 

simpler. Several hillslopes meeting these criteria existed near the median elevation, so the 

hillslope which also had average annual precipitation near the median value (1508 

mm/year) was selected. 

 

5.4.1 Assessment of Future Climate 

Mean annual temperatures in the basin (Figure 5.2) were projected to increase by 1.2-

1.7
o
C by 2030, with mean temperatures diverging depending on the scenario thereafter. 

The RCP 2.6 scenario did not increase substantially from 2030-2090, while the RCP 8.5 

scenario increased by nearly 6
o
C over the baseline climate by 2090. The RCP 4.5 and 6.0 

scenarios projected temperature increases of roughly 3
o
C over the baseline climate by 

2090. 
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Figure 5.2: Mean annual temperatures at Tahoe City, California, under projected future 

climates with the four RCP scenarios 

 

Annual precipitation depths are shown in Figure 5.3. Precipitation depths in 2090 were 

5% lower compared to the baseline in the RCP 8.5 scenario, and 6% higher by 2090 in 

the RCP 2.6 scenario. Decadal variations were evident for annual precipitation depth, 

with a general decrease in RCP 8.5 scenario after 2060. The highest precipitation totals 

were at the higher elevations, while the lowest were found closer to the Lake Tahoe 

shoreline. 

 

Figure 5.3: Mean annual precipitation depths at the median hillslope under the four RCP 

scenarios 

 

Annual snowfall depths showed only slight differences when comparing the low 

elevation hillslope with the two higher ones (Figure 5.4). In general, the snowfall tended 

to decrease with increasing RCP severity, with RCP 8.5 projecting a 44% reduction in the 
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fraction of precipitation falling as snow. Under the RCP 8.5 scenario, snowfall at the 

higher elevation hillslope decreased from the baseline level of 1037 mm (63% of total 

precipitation) to 564 mm (47% of total precipitation) by 2090. The other two elevations 

were similar, with the lower elevation decreasing from 436 mm (45%) to 222 mm (24%) 

of snowfall, and the medium elevation dropping from 640 mm (55%) to 482 mm (41%) 

of snowfall under the RCP 8.5 scenario. Since average annual precipitation varied by less 

than 100 mm at the highest elevation through the 21
st
 century, the majority of this 

snowfall reduction is likely due to temperature increases. 

 

Figure 5.4: Predicted snowfall trend at the three representative hillslopes (high, medium, 

and low elevations) for the RCP 2.6 and RCP 8.5 scenarios 

 

5.4.2 Fire Risk 

Around 2400 wildfires were reported in the MTBS from 1984-2013 in the states of 

Nevada and California combined. Of these, approximately 258 occurred in and around 

the Sierra Nevada Mountains, burning a total of 908,614 ha. Approximately 48 of the 258 

occurred within 50 km of Lake Tahoe (defined as having a center at 39.010N, 

120.033W), burning 129,620 ha. Of those 48, 20 occurred to the west of the lake center, 

burning 48,610 ha. During the period which coincides with SNOTEL weather data, 150 

fires occurred on 126 days during the period of complete SNOTEL data from 1989-2006, 

burning 434,828 ha. Of the 150 fires, 29 occurred within 50 km of the lake, burning 

92,825 ha. For these 29 fires, 14 occurred to the west of the lake center, burning 41,842 

ha. 
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Figure 5.5: Histogram of fires near Lake Tahoe sorted by month (1984-2013) 

 

For the Sierra Nevada Mountains (Figure 5.6), there was a higher instance of fire in the 

period from 2000-2008, with 56% of the fires in the region occurring during 27% of the 

observed period. The timing of fires within years was similar when comparing the Sierra 

Nevadas with fires near Lake Tahoe, with nearly 80% of fires occurring during the 

summer months. The most active month both in the Sierra Nevadas as a whole and near 

Lake Tahoe was August, with more than a third of all fires taking place in this month. 

August had both the highest total area burned (492,618 ha) and the highest average area 

burned per fire (5,131 ha) (Figure 5.5). September had the second largest average area 

(4,356 ha) and the third most total area burned (130,706 ha) compared to July which had 

the third highest average area (2564 ha) and the second most total area burned (151,288 

ha). Put another way, while there were more fires started in July, the fires which started 

in September were more severe and burned more land per fire. 
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Figure 5.6: Total area burned by fires and average area burned by fires in the Sierra 

Nevada mountain range by year (1984-2013) 

 

TSW and KBDI were calculated for the period 1988-2006 using the WEPP model and 

Equation 5.1, respectively. The TSW simulated at the high elevation hillslope was 

consistently at the minimum level of 8 mm, with TSW rapidly dropping to the minimum 

level following all precipitation events. This was likely a result of the steep slope and 

shallow restrictive layer assigned to that hillslope. Similar results were found for all 

hillslopes at a similar elevation. Due to the consistent low TSW, the high elevation 

hillslope was deemed unacceptable for assessing fire risk due to TSW. Additionally, 

KBDI was ruled to be an unsatisfactory metric for fire risk at these elevations due to the 

fact that the hillslopes with persistent low TSW coincided with highly erosive, sandy 

soils underlain by bedrock and bare of vegetation referred to as “badlands” in the upper 

reaches of the Blackwood Creek watershed (Leonard et al., 1979; Stubblefield, 2002; 

Stubblefield et al., 2009). The low elevation and median elevation hillslopes had similar 

TSW graphs (not shown), while the lower elevation hillslope had consistently higher 

KBDI values due to lower precipitation and higher mean annual temperatures. Only 

results for the median elevation hillslope are presented here, as it was considered to be 

most representative of the entire Blackwood Creek watershed. 
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Of the 150 fires which occurred in the Sierra Nevada range from 1989 to 2006 (Figure 

5.7), 78 (62%) occurred when TSW was simulated at the median hillslope to be below 40 

mm. An additional 36 fires (29%) occurred when TSW was between 40 mm and 220 

mm, and the remaining 12 fires (9%) occurred when TSW was greater than 220 mm. 

Based on these observations, three fire risk categories were defined based on the TSW 

listed above: low risk (220 mm < TSW), moderate risk (40 mm < TSW ≤ 220 mm), and 

high risk (TSW ≤ 40 mm). The number of days in each year matching these criteria was 

compared between the observed climate, baseline MarkSim
®
 climate, and projected 

future climate to determine changes in the length of fire risk seasons. 

 

 

Figure 5.7: Histogram of fires sorted by WEPP simulated Total Soil Water (TSW) 

content (1989-2006)  

 

The risk seasons were found to be markedly different for all three fire risk categories 

when comparing the MarkSim
®

 baseline climate and the observed climate. The high risk 

season was 20% shorter (9 days), the moderate risk period was 29% shorter (45 days), 

and the low risk period was 56% longer (65 days) under the MarkSim
®

 baseline climate 

compared to the observed 17-year record from 1989-2005. This difference can most 

immediately be attributed to the difference in period of record between the MarkSim
®

 

baseline climate (1960-1990) and the observed SNOTEL weather file (1989-2006). This 

may also be due to the fact that MarkSim
®
 generated more frequent probabilities of a wet 

0% 

20% 

40% 

60% 

80% 

100% 

0 

10 

20 

30 

40 

50 

60 

70 

80 

0
 

2
0
 

4
0
 

6
0
 

8
0
 

1
0
0
 

1
2
0
 

1
4
0
 

1
6
0
 

1
8
0
 

2
0
0
 

2
2
0
 

2
4
0
 

2
6
0
 

2
8
0
 

3
0
0
 

3
2
0
 

3
4
0
 

3
6
0
 

M
o

re
 

C
u

m
u

la
ti

v
e 

P
er

ce
n

t 

F
re

q
u

en
cy

 

TSW (mm) 

Frequency 

Cumulative % 



96 

day following a wet day (PW/W) precipitation during the summer compared to the 

observed climate at Tahoe City. As such, the results for the moderate and low risk 

categories must be interpreted with caution. 

 

KBDI results showed correlation between fire occurrence and KBDI when KBDI was 

less than 500, with an R
2
 of 0.59 (Figure 5.8). The cumulative probability plot of KBDI 

on the day of fire ignition was linear with constant bin size. However, over 50% of all 

fires occurred when KBDI was greater than 500, almost all of which take place when 

TSW is at a minimum, making this correlation difficult to use. Since the correlation 

between fire occurrence and soil moisture was more apparent, TSW was used as a metric 

for fire risk instead of KBDI. KBDI was not correlated with fire size. 

 

 

Figure 5.8:  TSW predicted by WEPP versus KBDI, with linear regression equation and 

coefficient of determination shown for KBDI < 500 

 

The number of high risk days per year was projected to increase under all scenarios and 

time periods, with the exception of RCP 8.5 in the 2040s. Upon closer examination, it 

was found that solar radiation reported by MarkSim
®
 was abnormally low from October 

to December for this scenario and decade combination. The error appears to be in the 

MarkSim
®
 web application, as recreation of CLIGEN .par files yielded similar results. 

Similarly, this underprediction of solar radiation also caused the low risk days for the 
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(Figure 5.9) increased by 13-30 days, the number of moderate risk days decreased by 16-

18 days, and the number of low risk days was mostly unchanged (±3 days), except for the 

RCP 8.5 scenario which had a decrease of 14 low risk days by 2090. 

 

 

Figure 5.9: Average annual number of high risk days (TSW < 40mm) through 21
st
 

century 

 

Several trends were observed regarding the three risk categories defined previously. A 

typical risk year (2004, Figure 5.10) is shown as an example. This highest risk season 

was identified to be when soil moisture was at a minimum, typically around 10 mm, 

during the summer months. The majority of the low risk season occurred during the 

spring, when infiltration of snowmelt increases TSW, however some low risk days occur 

before snow starts to fall in the early winter. The moderate risk season typically occurs in 

three portions: 1) partially in late fall when liquid precipitation replenishes TSW lost 

during the dry summer, 2) primarily during the winter when snowfall accumulates and 

water is lost gradually to deep percolation, and 3) during a short period in early summer 

when a lack of rainfall slowly depletes the TSW provided by spring snowmelt. While 

rainfall timing, distribution, and depths varied by year, most years contained at least the 

winter and early summer portions of the moderate risk period. Most fires which occurred 

in the moderate risk period from 1989-2006 occurred during the moderate risk period in 

early summer. 
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Figure 5.10: A typical year (2004) showing TSW, risk category length, and fire ignitions 

 

KBDI has been used in the past to assess fire risk for future climates (Liu et al., 2010) as 

well as in the Sierra Nevada range (McKelvey and Busse, 1996). McKelvey and Busse 

(1996) found that elevations where KBDI did not exceed 500 on a regular basis also had 

very little or no fire activity. Here, KBDI with values over 500 corresponded exclusively 

to fire occurrences where TSW at the median hillslope was at a minimum. The fact that 

TSW approached and remained at a minimum value throughout most of the high risk 

period indicates that KBDI may be underestimating the true TSW deficit at this site. 

Better correlation between KBDI and TSW may be obtained by modifying the maximum 

KBDI value in the drought factor equation to better reflect the water holding capacity of 

soils in the Blackwood Creek watershed. The modification of the drought factor equation 

based on local environmental variables was beyond the scope of this study, but should be 

considered when applying KBDI to regions other than the Southeastern United States 

where it was developed. 

 

Another drawback to the use of any empirically derived method, including KBDI, is that 

the equations and relationships between environmental variables and fire risk are based 

on historical observations which assume climate stationarity, a concept that is now 

widely accepted to no longer apply (Milly et al., 2008). As climate normals change, so 

will the relationships between climate variables and fire occurrence which were used to 
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develop the indices in the past. This may require the implementation of a dynamic 

component of the index, or the reworking of observational data at intervals depending on 

the rate of change of climate. The effect of the stationarity assumption has been 

demonstrated here, in that the risk seasons were found to be markedly different for all 

three fire risk categories when comparing the MarkSim
®

 baseline climate and the 

observed climate. The lack in overlap of periods of observation for these two climate 

datasets may have contributed to poor correlation between the two due to a lack of 

stationarity. Weather records containing many of the factors required by WEPP which 

influence TSW, such as wind direction, wind speed, and daily solar radiation could not be 

found for the Tahoe City weather station. Had such records existed for the period 1960-

1990, using them to simulate TSW at the Tahoe City station may have reduced the 

discrepancies in fire risk seasons. 

 

5.5 Conclusions 

Presented here are two methods of assessing forest fire risk, one based on an established 

fire index which uses observed precipitation and temperature, and the other based on 

simulated TSW which uses more sophisticated soil, land cover, climate, and topographic 

inputs. A large dataset of wildfires greater than 400 ha in area which occurred in the 

Western US states of California and Nevada from 1984-2013 was then used to obtain a 

shortened list of 150 fires which occurred in the Sierra Nevada mountain range between 

1989 and 2006. The Keetch-Byram Drought Index was compared to TSW simulated by 

the WEPP model to develop fire risk categories based on TSW. Fire risk was assessed 

using this new metric to determine if fire risk would change under projected future 

climate change scenarios. 

 

KBDI was found to be a less clear indicator of historic fire timing than periods of 

minimum TSW. Over 60% of fires in both the Sierra Nevadas and near the Lake Tahoe 

basin occurred when TSW was simulated to be at a minimum in the Blackwood Creek 

watershed, whereas KBDI varied from 250-700 over these same fires. KBDI and TSW 

did, however, show some correlation when KBDI values were below 500, but the KBDI 
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values over 500 accounted for more than half of all historical fires. Three fire risk 

categories were, therefore, assigned based on simulated TSW from 1989-2006 to assess 

the change in the number of days per year corresponding to each fire risk category. The 

high risk category, when TSW was below 40 mm at the median hillslope, coincided with 

over 60% of all fires which occurred between 1989 and 2006 in the Sierra Nevadas. 

Results showed that the number of high risk days increased under three of the four RCP 

scenarios, while the number of high risk days increased steadily for most scenarios 

through the 21
st
 century. By 2090, the number of high risk days had increased by nearly 

two weeks under the least extreme scenario and by three and a half weeks under the most  

extreme scenario. 

 

Very basic risk categories were defined here for a single hillslope in the Blackwood 

Creek watershed. If a solution can be found to the water balance problem in the 626 

hillslope model, a more thorough TSW study could be conducted based on total TSW in 

the basin, which may eliminate the long stretch of minimum TSW which clouded the 

results of KBDI during the high risk season. Additional information could be gathered by 

using a different climate base station, or by augmenting the current SNOTEL data with 

information outside of the 1989-2006 window used here. These two improvements could 

provide important information for forecasting changes in fire risk in the greater Sierra 

Nevadas as well as basins in the Lake Tahoe region which have a fire deficit.  
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CHAPTER 6. SUMMARY AND CONCLUSIONS 

This study was conducted to develop a simplified method of obtaining future climate data 

inputs for natural resource models, and then apply that method to three locations within 

the continental United States to assess the effect of climate change on soil erosion, runoff, 

and fire risk.  

 

In Chapter 2, The MarkSim
®
 DSSAT weather generator was used to generate downscaled 

future climate datasets for precipitation, minimum temperature, maximum temperature, 

and solar radiation values on a daily timescale for multiple locations for localized future 

climate impact assessments. The downscaled future climate data was then aggregated and 

formatted into parameter files for use with the CLIGEN weather generator via a user-

friendly tool created using a macro-enabled Microsoft Excel Workbook. The macro made 

obtaining future climate inputs for the WEPP model fast and simple, which allowed for 

the study of three unique locations in a relatively short time. Additionally, the ability to 

create SWAT model climate input files was also added as an option with the tool. 

 

Twelve locations throughout the contiguous United States were analyzed using Q-Q plots 

and R
2
 values to determine that the WEPP baseline parameter files and those created by 

the MarkSim
®

 baseline climate differed enough that only relative change in erosion 

should be calculated using this downscaling method. WEPP outputs generated for four 

representative locations were compared for the two baseline climates as well as 3 future 

time periods and showed that regional variations in precipitation and temperature due to 

future climate change will have different impacts on water balance, runoff, and soil 

erosion depending on geographic location.  
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The updated version of the MarkSim
®
 web application allows users to create downscaled 

data using the latest IPCC AR5 model family, the baseline MarkSim
®
 climate generated 

using the AR5 data showed slightly better R
2
 values at the four selected sites, but the 

improvement was not substantial enough to be considered different from the baseline 

climate comparisons made under the AR4 model family. The AR5 data was used in the 

impact assessments herein to represent the latest in climate science understanding. 

 

In Chapter 3, predicted changes in precipitation, runoff, and sediment losses were 

analyzed under a continuous minimally-tilled corn-soybean rotation for a small 

agricultural field catchment in Northeastern Indiana. Findings indicated that changes due 

to climate change will be most pronounced in late winter, late spring, and early fall. 

Precipitation was predicted to increase in the first five months of the year, with minimal 

changes from June-December. Increasing temperatures were predicted to cause runoff 

and sediment loss to decrease substantially in late winter due to a reduction in the number 

of days in which rainfall and snowmelt are incident on frozen soils. Runoff and sediment 

loss were predicted to increase in late spring due to a 15-25% increase in precipitation 

coupled with a lack of vegetation in the early growing season. With soybean cultivars 

unchanged, runoff and sediment loss were also predicted to increase in early fall for years 

planted to soybeans due to earlier senescence as a result of more rapid crop maturity. 

  

These predicted changes, however, are likely to be mitigated to some degree as a result of 

farmer adaptations in the form of earlier planting dates and changes in cultivars, 

especially in the late spring and late fall months. However, the predicted relative 

increases in sediment losses and runoff in the late spring have greater implications for 

agrochemical transport to receiving waters. Unmentioned here also is the potential for 

increased heat stress and crop failure in the late summer months, which could affect soil 

loss similar to that seen in September. 

 

Results found here were similar to those by other authors using WEPP, specifically 

Pruski and Nearing (2002), where precipitation and soil loss were predicted to increase 
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from 1990-2099 while runoff decreased due to dissimilar changes in precipitation and 

runoff from month to month. They observed a similar increase in precipitation in April 

and May, resulting in increased runoff and soil loss. However, Pruski and Nearing (2002) 

modeled a decrease in precipitation in June through September, leading to reductions in 

runoff and soil loss. The net effect in their study was a decrease in the runoff and 

sediment loss under soil, slope, and cropping conditions similar to those modeled herein. 

The increases in temperature resulting in earlier senescence of soybeans have also been 

noted by other authors using WEPP at a site in Indiana (Savabi and Stockle, 2001). 

Unlike previous studies, the observation here that a predicted reduction in concrete soil 

frost reduced runoff in early spring is unique to this study. 

  

Evaluation of various BMPs indicated that buffer strips provided the same or better 

predicted filtration of sediments as the grassed waterways while maintaining a sediment 

trap during the fallow period, the combination of both being more effective than using a 

rye cover crop alone. However, the fallow and spring cover provided by the rye cover 

crop means that the sediments are retained further up on the hillslope, while the use of 

only grassed buffers would build up sediment deposits on the toeslope. In practice, buffer 

strips in this type of terrain will likely be accompanied by grassed waterways, and 

simulation of grassed waterways and buffer strips without rye cover would likely show 

less runoff, but may result in higher soil losses due to increased detachment compared to 

the combination scenario modeled here. 

 

Based on these findings, producers will first need to identify the most critical type of 

nonpoint source pollution from their fields before selecting a BMP which will be most 

effective into the future. If off-site soluble nutrient loss requires the most attention, then 

management practices which reduce total runoff (buffer strips and/or inclusion of a 

sod/hay crop in rotation) should be considered, while if sediment loss or soil-bound 

nutrients are of most concern then practices such as grassed waterways or buffer strips 

should be considered. Conversion to rotations including sod/hay are somewhat unrealistic 

though, so combinations of practices that maintain corn/soybean row crops but utilize 
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high levels of crop residues and live vegetation may be more acceptable. Overall, the best 

management options into the future will likely include in-field (no-till and cover crops) 

and edge-of-field (grassed waterways and buffer strips) to reduce soil migration to lower 

slopes as well as filter fine sediments from runoff and increase infiltration prior to 

discharging agricultural runoff to receiving waters. 

 

In Chapter 4, a small, experimental, agricultural hillslope managed by the USDA-ARS in 

the Southeastern Coastal Plain of the United States was modeled using WEPP under 

current and projected future climates to assess the effect of predicted climate change on 

runoff, soil erosion, and BMP effectiveness. Simulation results showed that runoff and 

soil loss changed for most months under the existing conventional management, with 

these changes typically accompanied by similar changes in total rainfall. Predicted 

climatic shifts caused soil loss and runoff to be reduced in the first three months of the 

year, while limited change was modeled during the growing season. Late fall and early 

winter months, when ground cover was low, had predicted increases in runoff and soil 

loss which corresponded with an increase in total late-year precipitation. Increased air 

temperatures resulted in the winter cover crop growing faster and unhindered by frost in 

the early months of the year, reducing predicted soil loss during this traditionally low-

cover period. Soil loss was also predicted to increase prior to harvest as a result of the 

reduction in canopy cover caused by the earlier senescence of cotton due to the projected 

warmer temperatures. Increased predicted runoff in March and more ET in July from 

temperature-promoted crop growth also increased irrigation demands during the growing 

season under the baseline management. Ten management systems were examined under 

the future projected climate scenarios, and effectiveness of the combination of no-till, rye 

cover crop, and riparian buffers was the only one that increased into the future. All other 

management systems had either similar or slightly reduced effectiveness. In general, the 

effectiveness of the various land management practices did not change much into the 

future. 
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This study has several drawbacks which may limit the use of results for management 

decisions, separate from limitations which have previously been noted regarding the 

method of future climate data acquisition (Section 2.5). First, an important and largely 

unpredictable measure of adaptation in agriculture which has not been detailed here is the 

gradual selection and change-over to crop cultivars better suited for future altered 

temperature and precipitation patterns. These cultivar changes were not assessed in the 

current study, and limitations in the predictability of economic drivers for crop viability 

make speculation and simulation of these changes difficult. As modeling technologies 

improve, the effect of cultivar changes will need to be assessed alongside BMP 

implementation to determine the interplay of each to natural resource management. 

Second, the size of the hillslope examined was small, limiting the extrapolation of results 

to a larger geographic area. On the other hand, the small controlled area allowed for high 

resolution records to be obtained for climate, soil, topography, management, and 

observed runoff and soil loss, resulting in high calibration/validation prediction 

efficiencies and providing high levels of confidence in the WEPP model results and 

projections. 

  

Despite these limitations, the results from this study indicate that current conservation 

practices and BMPs being implemented at this location will likely be sufficient for 

mitigating soil erosion and runoff into the future. 

 

In Chapter 5, two methods of assessing forest fire risk were used in the Lake Tahoe basin, 

one based on an established fire index which uses observed precipitation and 

temperature, and the other based on simulated TSW which uses more sophisticated soil, 

land cover, climate, and topographic inputs. A large dataset of wildfires greater than 400 

ha in area which occurred in the Western US states of California and Nevada from 1984-

2013 were used to obtain a shortened list of 150 fires which occurred in the Sierra 

Nevada mountain range between 1989 and 2006. The Keetch-Byram Drought Index was 

compared to TSW simulated by the WEPP model to develop fire risk categories based on 



106 

TSW. Fire risk was assessed using this new metric to determine if fire risk would change 

under projected future climate change scenarios. 

 

KBDI was found to be a less clear indicator of historic fire timing than periods of 

minimum TSW. Over 60% of fires in both the Sierra Nevadas and just near the Lake 

Tahoe basin occurred when TSW was simulated to be at a minimum in the Blackwood 

Creek watershed, whereas KBDI varied from 250-700 over these same fires. KBDI and 

TSW did, however, show some correlation when KBDI values were below 500, but the 

KBDI values over 500 accounted for more than half of all historical fires. Three fire risk 

categories were, therefore, assigned based on simulated TSW from 1989-2006 to assess 

the change in the number of days per year corresponding to each fire risk category. The 

high risk category, when TSW was below 40 mm at the median hillslope, coincided with 

over 60% of all fires which occurred between 1989 and 2006 in the Sierra Nevadas. 

Results showed that the number of high risk days increased under three of the four RCP 

scenarios, while the number of high risk days increased steadily for most scenarios 

through the 21
st
 century. By 2090, the number of high risk days had increased by nearly 

two weeks under the least extreme scenario and by three and a half weeks under the most 

extreme scenario. 

 

Several trends were observed regarding the three risk categories defined previously. A 

typical risk year (2004, Figure 5.9) is shown as an example. The highest risk season was 

identified to be when soil moisture was at a minimum, typically around 10 mm, during 

the summer months. The majority of the low risk season occurred during the spring, 

when infiltration of snowmelt increases TSW, however some low risk days occur before 

snow starts to fall in the early winter. The moderate risk season typically occurs in three 

portions: 1) partially in late fall when liquid precipitation replenishes TSW lost during the 

dry summer, 2) primarily during the winter when snowfall accumulates and water is lost 

gradually to deep percolation, and 3) during a short period in early summer when a lack 

of rainfall slowly depletes the TSW provided by spring snowmelt. While rainfall timing, 

distribution, and depths varied by year, most years contained at least the winter and early 
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summer portions of the moderate risk period. Most fires which occurred in the moderate 

risk period from 1989-2006 occurred during the short moderate risk period in early 

summer. 

 

KBDI has been used in the past to assess fire risk for future climates (Liu et al., 2010) as 

well as in the Sierra Nevada range (McKelvey and Busse, 1996). McKelvey and Busse 

(1996) found that elevations where KBDI did not exceed 500 on a regular basis also had 

very little or no fire activity. Here, KBDI with values over 500 corresponded exclusively 

to fire occurrences where TSW at the median hillslope was at a minimum. The fact that 

TSW approached and remained at a minimum value throughout most of the high risk 

period indicates that KBDI may be underestimating the true TSW deficit at this site. 

Better correlation between KBDI and TSW may be obtained by modifying the maximum 

KBDI value in the drought factor equation to better reflect the water holding capacity of 

soils in the Blackwood Creek watershed. The modification of the drought factor equation 

based on local environmental variables was beyond the scope of this study, but should be 

considered when applying KBDI to regions other than the Southeastern United States 

where it was developed. 

 

Another drawback to the use of any empirically derived method, including KBDI, is that 

the equations and relationships between environmental variables and fire risk are based 

on historical observations which assume climate stationarity, a concept that is now 

widely accepted to no longer apply (Milly et al., 2008). As climate normals change, so 

will the relationships between climate variables and fire occurrence which were used to 

develop the indices in the past. This may require the implementation of a dynamic 

component of the index, or the reworking of observational data at intervals depending on 

the rate of change of climate. The effect of the stationarity assumption has been 

demonstrated here, in that the risk seasons were found to be markedly different for all 

three fire risk categories when comparing the MarkSim
®

 baseline climate and the 

observed climate. The lack in overlap of periods of observation for these two climate 

datasets may have contributed to poor correlation between the two due to a lack of 



108 

stationarity. Weather records containing many of the factors required by WEPP which 

influence TSW, such as wind direction, wind speed, and daily solar radiation could not be 

found for the Tahoe City weather station. Had such records existed for the period 1960-

1990, using them to simulate TSW at the Tahoe City station may have reduced the 

discrepancies in fire risk seasons. 

 

Very basic risk categories were defined here for a single hillslope in the Blackwood 

Creek watershed. If a solution can be found to the water balance problem in the 626 

hillslope model output processing, a more thorough TSW study could be conducted based 

on total TSW in the basin, which may eliminate the long stretch of minimum TSW which 

clouded the results of KBDI during the high risk season. Additional information could be 

gathered by using a different climate base station, or by augmenting the current SNOTEL 

data with information outside of the 1989-2006 window used here. These two 

improvements could provide important information for forecasting changes in fire risk in 

the greater Sierra Nevadas as well as basins in the Lake Tahoe region which have a fire 

deficit. 

 

Climate change was found to vary by region into the future. However, rising 

temperatures, reduced snowfall, and changes in growing seasons of agricultural crops 

appear to be common across the three diverse biomes studied. Predicting climate as far as 

80 years in the future presents uncertainties in many forms, and it is important to 

understand that climate change studies are limited by the current state of atmospheric 

science and projections based on events yet to occur. Studies of this type must be 

reevaluated with every iteration of the IPCC Assessment Report, as well as every update 

to the mathematical downscaling and natural resource models used. Weather datasets get 

larger with time, and the discrepancies between simulated and observed baseline climates 

are likely to decrease as datasets expand. Despite the limitations presented herein and 

elsewhere, these studies are critical to understanding, mitigating, and adapting to climate 

change. 
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