
Purdue University
Purdue e-Pubs

Open Access Theses Theses and Dissertations

Spring 2015

Studying the effect of parallelization on the
performance of Andromeda Search Engine: A
search engine for peptides
Jigna Shah
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses

Part of the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Shah, Jigna, "Studying the effect of parallelization on the performance of Andromeda Search Engine: A search engine for peptides"
(2015). Open Access Theses. 607.
https://docs.lib.purdue.edu/open_access_theses/607

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F607&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F607&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F607&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F607&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F607&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_theses/607?utm_source=docs.lib.purdue.edu%2Fopen_access_theses%2F607&utm_medium=PDF&utm_campaign=PDFCoverPages

30
 08 14

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

Department

Jigna Shah

STUDYING THE EFFECTS OF PARALLELIZATION ON THE PERFORMANCE OF THE
ANDROMEDA SEARCH ENGINE : A SEARCH ENGINE FOR PEPTIDES

Master of Science

John Springer

Dawn Laux

Michael Kane

John Springer

Jeffrey Whitten 04/27/2015

To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement,
Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation
adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of
copyrighted material.

i

STUDYING THE EFFECT OF PARALLELIZATION ON THE PERFORMANCE OF

ANDROMEDA SEARCH ENGINE: A SEARCH ENGINE FOR PEPTIDES

A Thesis

Submitted to the Faculty

of

Purdue University

by

Jigna Shah

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2015

Purdue University

West Lafayette, Indiana

ii

 ACKNOWLEDGEMENTS

I extend my gratitude to my major Professor, John Springer for motivating me and

guiding me from the beginning to the end. I also want to thank Prof. Dawn Laux and Prof.

Michael Kane for their invaluable inputs and support.

I am also grateful to Lake Paul and Ernesto Nakayasu for their patience and for

working with me and helping me to understand the Andromeda Search Engine.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES .. v

LIST OF FIGURES ... vi

GLOSSARY ... vii

LIST OF ABBREVIATIONS .. viii

CHAPTER 1. INTRODUCTION... 1

1.1 Introduction ... 1

1.2 Research Question ... 1

1.3 Statement of Problem .. 1

1.4 Scope ... 2

1.5 Significance ... 3

1.6 Assumptions .. 4

1.7 Limitations... 4

1.8 Delimitations ... 5

1.9 Chapter Summary .. 5

CHAPTER 2. LITERATURE REVIEW.. 6

2.1 Introduction ... 6

2.2 Overview of the Andromeda Search Engine ... 7

2.3 Improving the Performance of Bioinformatics Algorithms 9

2.4 Use of Parallelization Techniques in Bioinformatics Applications 11

2.5 Parallelizing C# Code.. 12

2.6 Hadoop in Bioinformatics Applications .. 14

2.7 Conclusion ... 17

CHAPTER 3. METHODOLOGY .. 18

iv

 Page

3.1 Apparatus/Details .. 18

3.2 Conditions ... 21

3.3 Procedure ... 24

3.4 Method... 28

3.4.1 Population .. 28

3.4.2 Sample ... 29

3.4.3 Data Collection .. 29

3.4.4 Variables .. 29

3.4.5 Hypothesis ... 29

3.4.6 Data Analysis ... 30

3.5 Threats/Weaknesses .. 31

CHAPTER 4. DATA ANALYSIS ... 32

4.1 Correctness .. 32

4.2 Performance... 33

4.2.1 ParAndromeda-I Experiments ... 33

4.3 Statistical Analysis .. 37

4.4 Summary ... 40

CHAPTER 5. CONCLUSION , DISCUSSION AND FUTURE DIRECTIONS.......... 41

5.1 Conclusions ... 41

5.2 Discussion ... 42

5.3 Future Directions ... 45

5.4 Summary ... 46

LIST OF REFERENCES .. 47

APPENDICES

Appendix A Steps Followed to Parallelize Code ... 49

Appendix B Data Analysis Report ... 50

v

LIST OF TABLES

Table .. Page

4.1 Parallel Andromeda Experiments- Time of Execution for Samples on Varying

Core Sizes ... 34

4.2 Parallel Andromeda Experiments- Speedup for Samples on Varying Core Sizes...... 36

4.3 Statistical Significance for Various File Sizes for 4 cores ... 38

4.4 Statistical Significance for Various File Sizes for 8 cores ... 38

4.5 Statistical Significance for Various File Sizes for 12 cores 39

4.6 Statistical Significance for Various File Sizes for 16 cores 39

Appendix Table

B.1 The Summary Values for 15 Iterations Performed for Parallel Implementations of

Andromeda .. 50

vi

LIST OF FIGURES

Figure ... Page

4.1 Time of Execution for Samples on Different Number of Cores in Parallel

Version of Andromeda………………………………………………………………….35

4.2 Speed Up for the Samples on Different Number of Cores in Parallel Version of

Andromeda……………………………………………………………………………….37

vii

GLOSSARY

Biological Marker (Biomarker) – It is an indicator of a disease and severity of it that can
be me.

Computational performance – The time taken by a software and its constituent functions
to complete their execution and return results is called computational performance.
(Lichtenberg et al., 2010)

iTRAQ Reagents – “The iTRAQ Reagents are the first set of multiplexed, amine-specific,

stable-isotope reagents that can label all peptides in up to eight different biological
samples enabling simultaneous identification and quantitation.” (iTRAQ Reagents,
n.d)

Mass Spectrometry- Mass spectrometry is a technique used in analytical chemistry that

measures the mass-to-charge ratio and gas phase ions abundance that in turn help in
characterizing the sample on the basis of the chemicals present. (Sparkman, O.
David , 2000).

Proteomics- A study of a cell proteome. (Srinivas, Verma, Zhao, & Srivastava, 2002)

SNP genotyping- “It is the measurement of genetic variations of single nucleotide

polymorphisms (SNPs) between members of a species. It is a form of genotyping,
which is the measurement of more general genetic variation.” (Harbron S; Rapley R
2004)

Speed-up - The speedup of any computer algorithm is obtained by dividing the time taken

to execute the algorithm in parallel by the time taken to execute the algorithm
serially. (Lichtenberg et al., 2010)

TPL- “Task Parallel Library is a set of APIs that is present in System.Threading and

System.Threading.Tasks namespaces of .NET framework.”(Task Parallel Library,
2009)

viii

LIST OF ABBREVIATIONS

 API- Application Program Interface

 BLAST- Basic Local Alignment Search Tool

 CLR- Common Runtime Library

 DNA- Deoxyribonucleic Acid

 FDR- False Detection Ratio

 GSEA- Gene Set Enrichment Analysis

 HDFS- Hadoop Distributed File System

 HPC- High Performance Computing

 iBAQ- Intensity Based Absolute Quantification

 I/O- Input/Output

 LCMS- Liquid Chromatography Mass Spectrometry

 NCBI- National Center for Biotechnology Information

 PEP- Posterior Error Probability

 SSD- Solid State Drive

 SNP- Single Nucleotide Polymorphism

 TPL- Task Parallel Library

ix

ABSTRACT

Shah, Jigna. M.S., Purdue University, May 2015. Studying the Effect of Parallelization
on the Performance of the Andromeda Search Engine: A Search Engine for Peptides.
Major Professor: John Springer.

Human body is made of proteins. The analysis of structure and functions of these

proteins reveal important information about human body. An important technique used

for protein evaluation is Mass Spectrometry. The protein data generated using mass

spectrometer is analyzed for the detection of patterns in proteins. A wide variety of

operations are performed on the data obtained from a mass spectrometer namely

visualization, spectral deconvolution, peak alignment, normalization, pattern recognition

and significance testing. There are a number of software that analyze the huge volume of

data generated from a mass spectrometer. An example of such a software is MaxQuant

that analyzes high resolution mass spectrometric data. A search engine called Andromeda

is integrated into MaxQuant that is used for peptide identification.

One major drawback of the Andromeda Search Engine is its execution time.

Identification of peptides involves a number of complex operations and intensive data

processing. Therefore this research work focuses on implementing parallelization as a

way to improve the performance of the Andromeda Search Engine. This is done by

partitioning the data and distributing it across various cores and

x

nodes. Also multiple tasks are executed concurrently on multiple nodes and cores.

A number of bioinformatics applications have been parallelized with significant

improvement in execution time over the serial version. For this research work Task

Parallel Library (TPL) and Common Library Runtime (CLR) constructs are used for

parallelizing the application. The aim of this research work is to implement these

techniques to parallelize the Andromeda Search Engine and gain improvement in the

execution time by leveraging multi core architecture.

1

CHAPTER 1. INTRODUCTION

1.1 Introduction

This chapter contains an introduction to the research by stating the research

question and then elaborating on the problem statement. This chapter also contains the

scope of this research and its significance. In the end the chapter concludes by giving the

assumptions, limitations and delimitations.

1.2 Research Question

How does parallelization effect the performance of Andromeda Search Engine: A

probabilistic search engine for peptides?

1.3 Statement of Problem

The Bindley Bioscience Center at Purdue University Discovery Park has

historically employed its Omics Discovery Pipeline for quantifying and identifying

proteins. As per the National Cancer Institute, Office of Cancer Clinical Proteomics

Research , “Proteomics is comprehensive study of a specific proteome, done on large

scale that provides information on protein abundances, their variations and modifications,

along with their interacting partners and networks, in order to understand cellular

processes.”(What is Cancer Proteomics, n.d.)

2

Cancer is a major health issue, and cancer research had shown that early cancer

detection can lead to better treatment and higher chances of recovery. Proteomics based

techniques help in identifying the difference between the biomarkers of patients and

healthy people. These results are used to design individual therapy that result in effective

treatments. During a mass spectrometry based proteomics analysis for cancer detection, a

large number of subjects are present and large amount of data is obtained. This data then

undergoes a series of complex computations to get the final output. MaxQuant is one of

the tools that is used for quantification and identification of proteins. For identification

purposes, MaxQuant utilizes a search engine called Andromeda. This helps in analyzing

large volumes of data in a simple and easy to understand workflow on a commodity

computer. However the search process is still slow.

 Therefore, this thesis determined whether the performance of the Andromeda

Search Engine can be improved by leveraging a multithreading and multiprocessing

architecture

1.4 Scope

In this research standalone Andromeda Search Engine was deployed on multiple

cores using virtualization. The thesis work used Task Parallel Library (TPL) for the

analysis of input files on a multi core architecture.

The code for Andromeda search engine is written in C# language. Hence

implementing TPL, which is a set of public types and APIs in the System.Threading and

System.Threading.Tasks namespaces in the .NET framework 4.5, (“Task Parallel

Library”, 2009) was effective because it has been written specifically for the C# language.

3

TPL constructs were used to execute the functions and tasks concurrently to reduce the

time of execution.

TPL uses the concept of a task that is a higher-level abstraction of a system’s

thread. The functions were remodeled as tasks and then multiple functions were executed

concurrently. Finally the results from all the cores were collected and displayed.

This thesis work involved incremental parallelization. This means that the entire

code was not re-written using a parallel programming approach. Instead certain parts of

the code that involved a lot of loops or complex computations were parallelized first

using TPL. Also dependencies between tasks were studied and then independent tasks

were executed concurrently or else dependent tasks were pipelined together to get

performance gain.

For parallelizing the Andromeda source code a combination of fine-grained

parallelism and coarse-grained parallelism was used on a multi core architecture.

1.5 Significance

Past studies have shown that certain diseases like cancer can alter the structure of

proteins in human beings. Thus the proteins in a healthy person and a cancer patient will

be different. To identify these differences protein analysis is done. A quicker analysis

would lead to early detection of cancer and thus increase the chance of recovery of the

patients. Two major steps are involved in this protein analysis: Quantification and

Identification. Both these steps are computationally intensive and process a huge amount

of data. This data is then compared against a given protein database to identify the

peptides and consequently the entire protein. If the time taken to process this data was

4

reduced by executing operations concurrently the performance can be improved. This

was beneficial for this application as it involved complex processing of large amount of

data.

1.6 Assumptions

The given assumptions were made for this research:

 The network between various cores and various nodes was assumed to be constant

at all times.

 The underlying hardware of the cores and nodes has no effect on the

parallelization strategies used for this research work.

 The effect of parallelization remained the same as we increased the file size.

1.7 Limitations

This research study had the following limitations:

 The research work was based on incremental parallelization. This means that the

author did not rewrite the entire code with the aim of parallelization. Instead the

author took snippets of the code and parallelized it.

 Only the most recent version of Andromeda Search Engine was used to

incorporate the parallelization constructs into the code. Older versions were not

touched upon.

5

1.8 Delimitations

This research study had the following delimitations:

 Andromeda is a part of the MaxQuant software suite that can also be used as a

standalone software. This research work studied the effect of parallelization on

the standalone version of the Andromeda software. It did not study the effect of

parallelization on MaxQuant with Andromeda integrated into it.

 This experiment did not test the performance of the parallelized version for

complex configurations and parameters of the search engine. Instead for

performance evaluation it performed a basic search with default parameters.

1.9 Chapter Summary

This chapter contains an introduction to the research that was done for this thesis

work. This chapter also explained the author’s motivation to do this research and its

significance. Also this chapter outlined the research question and the assumptions

limitations and delimitations that applied to this research.

6

CHAPTER 2. LITERATURE REVIEW

This chapter contains a brief summary of recent advancements in the fields of

protein analysis, code parallelization and Task Parallel Library pertaining to the scope of

this research work. This literature review helps the author in understanding the existing

methods pertaining to the research area and in formulating a robust methodology for the

experiment.

2.1 Introduction

The advent of distributed programming has had a great effect on the development

and implementation of various computational software. Distributed computing

architecture makes use of parallelization to execute code on multiple cores and multiple

nodes. This is done by concurrently executing multiple independent functions and by

dividing the data that serves as the input to the various functions among various nodes.

This improves the execution time of the software that is parallelized. A number of

existing bioinformatics applications have already been parallelized using multicore and

multi node architecture. Bioinformatics applications deal with huge amount of data and

involve complex processing on those datasets. As a result techniques are required which

lead to faster processing and are scalable. Bioinformatics applications involve intensive

7

data processing on huge datasets. This chapter contains information about parallelization

of existing bioinformatics applications using distributed programming approach by

leveraging multicore and multi node architecture Different paradigms used for parallel

computing like OpenMP (Open Message Passing), MPI (Message Passing Interface) and

MapReduce are also studied. With respect to mass spectrometry based proteomics Lewis

(2012) found the following:

For shotgun mass spectrometry based proteomics the most

computationally expensive step is in matching the spectra against an

increasingly large database of sequences and their post-translational

modifications with known masses. Each mass spectrometer can generate

data at an astonishingly high rate, and the scope of what is searched for is

continually increasing. Therefore solutions for improving our ability to

perform these searches are needed.

Thus there is a vast scope for parallelization in the Andromeda Search engine and

significant time gains can be achieved.

2.2 Overview of the Andromeda Search Engine

Andromeda is an open source search engine that uses probabilistic scoring for

searching and identifying peptides.

Cox et al. (2011) in their paper on Andromeda discuss the algorithm that

Andromeda uses and how it can be integrated with MaxQuant as well as used as a

standalone application. When Andromeda is used in an integrated environment with

8

MaxQuant it presents a simplified and pipelined workflow for the analysis of large

datasets that can be easily used on a desktop computer (p. 69).

 Andromeda uses a probability based search algorithm for searching for peptides

that uses binomial distribution. It takes as input a peak list file that is obtained from the

mass spectrometer and a parameter file that sets the parameters for the search. The output

is a scored list of peptides. Andromeda search engine generates a scored list of peptides

based on the matches with the fasta database. The peptide with the highest score is the

best match. For performing the search, Andromeda uses indexing of this generated

peptide lists instead of maintaining the entire peptide list in memory. These indices

contain the location of the records with respect to the beginning of the file. The list can be

very large and hence the indices can exceed the available memory; therefore instead of

the index pointing to each record, the index entries point to a block of elements. These

block of elements are contained in a file whose block sizes are chosen in such a way that

the indices have a fixed size and fit in the memory. This approach is typically called a

sparse index. A two-layered index structure is used to store protein list. The first layer is

present in the primary memory and its entries point to the secondary index that is stored

on the disk memory. This secondary index contains index entries that point to block of

data stored on the disk. These blocks of data contain all the information about proteins.

The protein list is stored alphabetically and the index and disk entries are sorted on the

basis of increasing peptide mass. This results in quick retrieval of candidate peptides.

After this the scoring algorithm is used to match the fragments to peptides. This

algorithm is computationally very intensive and scores the peptides based on their

9

probability of matching to the fragments. The peptide with the highest score is the best

match.

As seen from the discussion above, Andromeda Search Engine processes a large

amount of data by using a computationally intensive algorithm, and hence it takes a long

time to generate results. To improve the efficiency, the code needs to effectively use a

parallel and distributed computing framework that will distribute the data on multiple

nodes on which computations can be performed in parallel, and this in turn will improve

the overall efficiency of the algorithm.

2.3 Improving the Performance of Bioinformatics Algorithms

Trelles (2001) gave the factors to be taken into account in order to improve the

execution time of bioinformatics algorithms. Time complexity of the algorithm is the first

factor that should be considered when trying to improve the performance of any

algorithm. If the time complexity has already been considered then the next step is to

consider code parallelization by using a distributed computing approach that leverages a

multicore or multimode architecture. Parallel computing model has two important aspects:

communication and granularity. Granularity in parallel computing model is of the can be

achieved in the following different ways:

 Parallelizing the instructions at a hardware level.

 Parallelizing using compiler directives. This is called software level parallelism

and is achieved by dividing the data among the various available cores and nodes

and then executing individual instructions on them.

10

 Analyzing the code to determine the code snippets that can be parallelized such

that multiple instructions run in parallel.

The final type that involves parallelization of multiple instructions can be done at

two different levels: coarse grained parallelism and fine-grained parallelism. In fine-

grained parallelism the instructions within a function are parallelized to run

concurrently whereas in coarse-grained parallelism multiple independent functions

are executed concurrently.

Communication is another key aspect of parallel computing model. Depending on

how processes access the memory communication requirements may vary. Processes can

communicate with each other using semaphores, messages, pipes, signals or shared

memory. (Stallings, 1992). Out of these mechanisms semaphores, pipes, signals and

shared memory are used to perform inter process communication when there is a shared

memory architecture. For communication between processes running on a distributed

memory system messages are passed over the network connecting the distributed system.

The way network is structured can also effect the communication between nodes

in a parallel computing. Jiuxing et al. (2003) analyzed the effects of varied network

structures on the performance of parallel computing systems.

Analysis of different bioinformatics applications reveals some prominent types of

algorithms. Majority of these algorithms are based on sequence- database searching. In

Andromeda search engine the search for peptides identification is made against a fasta

database. This is a huge database and a lot of complex operations are involved which

makes this process time consuming. In this case parallelizing the application can result in

11

substantial performance gain. This is done by finding the code snippets that are

computationally intensive and executing them on multiple cores concurrently. This leads

to efficient load division among various cores and nodes and hence an improvement in

the execution time can be achieved.

2.4 Application of Parallelization Paradigms in Bioinformatics Algorithms

Message Passing Interface (MPI) has found number of applications in the field of

bioinformatics. One such application of MPI is Basic Local Alignment Search Tool

(BLAST) that contains algorithms for searching against a sequence database. In this

application a protein or a DNA sequence is searched against a database that contains

previously known sequences. These databases against which the search is made are huge

and the size keeps increasing exponentially. Hence BLAST algorithms are slow and it is

important to improve their performance. Chi et al. (1997) made the initial efforts to

parallelize BLAST by using multithreading. In this new algorithm they split the database

between multiple threads for execution. This splitting was however confined to a single

node and all the threads worked on the same node. However due to increase in the size of

the database storing the complete database on one node was not feasible.

Thorsen et al. (2007) tried to parallelize BLAST by implementing it using

distributed memory. In this algorithm the sequence being looked for or the database

against which the search is made is partitioned across the multiple participating nodes

where each node is independent, has a separate memory and is connected to the other

nodes by some interconnection network. They called this implementation mpiBLAST.

This implementation used Message Passing Interface for communication between the

12

nodes. This implementation uses a master –slave architecture wherein all the I/O

operations are executed either by the master or the slaves. If the master alone performs

the I/O operations then it should have sufficient memory that is expensive to get. Also

this will hamper the performance of master and other tasks that the master does like

distribution of data across nodes and load balancing will be effected. Thorsen et al. (2007)

found out that if all the workers together perform the I/O operations the load will be

equally distributed among the slaves and this will result in an improved performance. The

workers write the results at a certain offset that is communicated to them by the master.

MPI-IO (Corbett et al., 1995) is used to implement parallel I/O. This is an example of

application in which tasks are run on multiple cores and multiple nodes. MPI is used for

communication in this setup for communication between virtual nodes that are actually

the cores of one machine.

2.5 Parallelizing C# Code

“The Task Parallel Library (TPL) is a set of public types and APIs in the

System.Threading and System.Threading.Tasks namespaces” (Task Parallel Library,

2009). TPL has simplified the way developers parallelize applications and add

concurrency to them thereby making developers efficient. TPL constructs are scalable

and are designed in such a way that they can dynamically add concurrency to the number

of available cores. TPL also handles a number of low level details like division of work

between the various cores, scheduling threads on the ThreadPool, task state management,

13

cancellation and exception handling. By performing these tasks TPL ensures that

programmer can focus on the performance, robustness and correctness of the code.

Although TPL is the preferred way to write code which uses multithreading and

follows a distributed and parallel computing model on a .NET framework, it should be

realized that parallelizing code is not always beneficial. Parallelizing any code involves a

lot of overhead and the tradeoff between the performance gain and overhead should be

analyzed before parallelizing any code. For instance it is not beneficial to parallelize a

loop that does not perform complex operations, runs a small number of iterations or

processes a small amount of data. Also with parallelization the program execution

becomes more complex.

The Task Parallel library employs both data parallelism and task parallelism. In data

parallelism the input data is partitioned among various cores or nodes so that same

operations can be performed on that data. This is done by creating multiple threads that

operate simultaneously on the partitioned data.

The basic concept of the Task Parallel library is ‘task’ which is a higher-level

abstraction of a thread. (“Task Parallel Library”, 2009). For implementation of Task

Parallel library constructs a task is considered as an asynchronous operation. When one

or more tasks are executed concurrently it is called task parallelism. Using tasks has the

following benefits:

 Tasks are queued for execution on the ThreadPool. This ThreadPool is highly

advanced in the sense that it does load balancing to generate maximum

14

throughput by adjusting the number of tasks to suit the number of threads. Since

tasks are lightweight any number of tasks can be created to achieve fine-grained

parallelism. All these things lead to better efficiency and scalability of the system.

 Tasks have an advanced set of APIs associated with them which perform a

number of operations like scheduling, continuations, cancellations, waiting,

detailed status and exception handling. Thus better control is available with a task.

For the reasons mentioned above, Task Parallel Library is preferred for writing

parallel code which employs multithreading in the .NET framework.

Another important factor to consider while parallelizing any algorithm is

Amdahl’s law (Rogers 1985, p. 226). This law is used in parallel computing for the

prediction of maximum theoretical speedup that can be attained when using multiple

processors. According to this law the maximum speedup that can be attained by a parallel

program is bound by the sequential part of the program. Hence the time taken by

sequential part of the program places an upper limit on the speedup that can be attained.

2.6 Hadoop in Bioinformatics Applications

Lee et al. (2009) stated that an open source implementation of MapReduce is

Apache Hadoop. It can be installed on a commodity Linux server and is used when

analyzing large-scale distributed data. The commodity servers can be used as it is without

any change in the configuration. Shvachko et al. (2010) stated that Hadoop resides on top

of HDFS (Hadoop Distributed File System) that is used to access data. It uses a Java

based API or Python scripts to run and execute codes. In HDFS data is partitioned and

replicated among the various compute nodes. This replication ensures fault tolerance in

15

case any of the nodes go down. In that case the data could be pulled from any other node

on which it was replicated. Hadoop utilizes data localization for quicker data access and

computation thus improving data bandwidth and performance. The tasks using Hadoop

are independent of each other except for the mappers whose output goes into reducers

under the control of Hadoop. In case a node fails the computations being executed on it

can be restarted and executed on any other node. Thus Hadoop provides a very simple

framework that is very reliable, scalable, robust, fault tolerant, where dataflow is implicit

and requires no coding. The following paragraphs present a few examples of a few

bioinformatics applications implemented using Hadoop.

 Taylor et al. (2009) came up with the Cloudburst software that was used for SNP

genotyping. In this next generation short read data was mapped to a reference genome

using Hadoop. This was the first paper that outlined Hadoop application in bio-

informatics. Their study focused on how Hadoop provides a reliable, fast and effective

way to process huge datasets.

Schatz et al. (2009) developed algorithms that analyzed next generation sequence

data using Hadoop. In their paper they elaborate on the following tools:

 There are a number of tools like Crossbow that use Hadoop for genome

sequencing and SNP genotyping. This is very similar to proteomics identification

that is performed by the Andromeda search engine.

 Myrna is another algorithm that is used for calculating differential gene

expression from large RNA-sequence data sets. This algorithm also has some

common aspects with the Andromeda search algorithm.

16

The study done at Indiana University by Qiu et al. (2009) analyzed a number of

cloud-based solutions like Apache Hadoop, Microsoft Azure and Dyrad. These

technologies were used for implementing datasets that were doubly data parallel (all

pairs). The input data for Andromeda search engine uses the same kind of data. The

studies found that these cloud technologies will become preferred option for

bioinformatics applications because of the flexibility provided.

Gene set enrichment analysis (GSEA) is a method for testing association between

a gene expression profile and a subset of genes. The method can also be reversed to test

for interesting expression profiles given a subset of genes. Gagerro et al. (2008) have

implemented BLAST and GSIA using Hadoop and have reported their work as very

positive with MapReduce being a very versatile framework. They found Hadoop

particularly impressive because of its scalability, reliability and fault tolerance.

Matsunaga et al. (2008) compared a Hadoop based version of NCBI BLAST2

algorithm called CloudBlast with mpiBLAST which is a leading parallel version of

BLAST and it was found that Hadoop based implementation was advantageous in terms

of failure management, job scheduling and data partitioning. This again can be attributed

to the replication of data and the presence of independent jobs characteristic of the

Hadoop architecture and HDFS.

Studies done by Leo et al. (2009) show that Hadoop provides a robust and

scalable environment for all types of applications that is compute intensive, data intensive

or a combination of both. The MapReduce paradigm used by Hadoop provides some

flexibility in the sense that the researcher could simply use only the Map part, only the

Reduce part or both and if needed multiple maps and reduce can also be chained together.

17

When examined for skewed and randomly distributed datasets, Hadoop proved to be very

scalable. According to Lewis et al. (2012), “A sequence search engine called Hydra has

been specifically designed to run on distributed computing framework i.e. MapReduce.

The search engine uses the K-score algorithm and produces comparable output as the

original implementation.”

2.7 Conclusion

A summary of how various parallel computing models have been used to

implement parallelization in various software and algorithms in recent times is presented

in this chapter. The techniques studied above provided a basis for formulating a

methodology and determining a way to approach the research that was studying the

effects of parallelization on the performance of the Andromeda Search Engine.

18

CHAPTER 3. METHODOLOGY

This chapter outlines the research framework, data sets and methodology used for

running experiments in this thesis.

3.1 Apparatus/Details

The server was configured as follows for this experiment

Processors

 AMD Opteron™ Processor 6172 @2.10 GHz

 Processor Speed: 2.10 GHz

 Processor Socket: 4

 Processor Cores per Socket: 1

 Logical Processors: 4

 Hyperthreading Enabled Processors

System

 System Manufacturer: VMware, Inc

 System Model: VMware Virtual Platform

 BIOS Version: Phoenix Technologies LTD 6.00

 Release Date: 4/14/2014

Memory

19

 Installed Physical Memory (RAM) 4.00 GB

 Total Physical Memory 4.00 GB

 Total Virtual Memory 8 GB

Server Middleware

 VMware® ESXi™ 5.5

Server Software

 OS Microsoft Windows Server 2008 HPC Edition

 Version 6.1.7601 Service Pack 1 Build 7601

Compute Node Configuration

Processors

 AMD Opteron™ Processor 6172 @2.10 GHz

 Processor Speed: 2.10 GHz

 Processor Socket: 4

 Processor Cores per Socket: 1

 Logical Processors: 4

 Hyperthreading Enabled Processors

System

 System Manufacturer: VMware, Inc

 System Model: VMware Virtual Platform

 BIOS Version: Phoenix Technologies LTD 6.00

 Release Date: 4/14/2014

20

Memory

 Installed Physical Memory (RAM): 4.00 GB

 Total Physical Memory: 4.00 GB

 Total Virtual Memory: 8 GB

Compute Node Software

 OS Microsoft Windows Server 2008 HPC Edition

 Version 6.1.7601 Service Pack 1 Build 7601

For baselining Andromeda experiments were also executed on a standalone

system that belonged to the D.A.T.A lab of the Computer and Information Technology

department at Purdue University.

Standalone System Configuration

Processors

 Intel® Core™ i7-45000 CPU @ 1.80GHz, 1801 MHz

 Processor Speed: 1.80 GHz

 Processor Socket: 1

 Processor Cores per Socket: 2

 Logical Processors: 2

 Hyperthreading Enabled Processors

System

 System Manufacturer: Dell Inc.

 System Model: VMware Virtual Platform

21

 BIOS Version: Dell Inc. A01

 Release Date: 7/24/2013

Memory

 Installed Physical Memory (RAM): 8.00 GB

 Total Physical Memory: 7.71 GB

 Total Virtual Memory: 8.96 GB

System Software

 OS Microsoft Windows 8.1

 Version 6.3.9600 Build 9600

 CPU 4vCPU

3.2 Conditions

This program ran on a cluster whose specifications are provided in the details

section. The performance of the program was affected by the following factors.

 Size of the peptide database. This covers

o The size and the number of proteins considered

o The enzyme used for cleavage

o Number of variable modifications and fixed modifications.

 The size of the data sets used.

 Available computer resources.

Andromeda Configuration allowed one to add in new protein databases, as they

are updated, new or unusual modifications, and different enzymes or combinations of

22

enzymes. This enabled the search engine Andromeda to interrogate the MS data the way

the author required it to be done.

Andromeda requires three important specifications

 Protease that the proteins were cleaved.

 A sequence database to search against.

 Modifications or labels present.

 While using Andromeda search engine the above mentioned parameters need to

be specified like labels and modifications settings. These settings describe the chemistry

done to the proteins. Any chemistry done which may have an effect on mass must be

included in these settings. Modifications that might be possible that is Variable

Modifications were not considered. Modifications that must occur are Fixed

Modifications and the database was searched only with this modification. The enzyme

chosen for digesting the protein was trypsin. Labels were not specified since no labeling

strategy is used. Multiplicity is selected as 1. This did a label free search. The First

Search 20ppm and Main Search 6ppm were left as they were- this was for the purpose of

Andromeda identifying the maximum number of peptides for mass and retention time

calibration, and then to refine the results at the ‘Re-Quantification’ step. This was

particularly effective since we were using a first search database. Missed cleavages

accounted for the enzyme not being 100% effective- this is common and the default

setting was the accepted tolerance for this. The ‘Type’ setting was machine dependent.

The Author plans on using an Exactive, therefore All Ion Fragmentation was selected. A

double digest with 2 enzymes was not used so Separate Enzyme for First Search was not

23

checked. The Andromeda config files were not modified for labels and modifications and

the standard versions were only used.

The machine specific settings are found in MS-MS sequences field. The defaults

found in the top panel were fine for the majority of searches. The fixed modifications

author used was Carbamidomethyl. The .fasta files for the database to be searched was

the one that is supplied with MaxQuant. Human and mouse first search .fasta files are

provided with MaxQuant. These contain commonly seen proteins which are expected in

samples, and were used in the first search as calibration points for the more exact Main

Search and re-calibration steps later on.

The values in the top panel described the stringency of the searches performed,

such as False Discovery Rate (FDR), number of peptides required for identification, and

Posterior Error Probability (PEP) score cut off. The author used default values for False

Discovery Rate (FDR), number of peptides required for an identification and Posterior

Error Probability (PEP) score cut off for setting the stringency of the searches performed

since they were a good standard set up. ‘Filter Labelled amino acids’ box was deselected

since the Author is doing label –free. Second peptides looks for mixed spectra and is very

useful for further peptide identification, this setting was left as it is. The author was not

using any variable modifications hence those boxes are left unchecked. The settings in

the Protein Quantification panel are appropriate for most analyses and were left as the

defaults. The Misc. panel defaults are also appropriate for most analyses and were left as

it is. The iBAQ Quantification (Intensity Based Absolute Quantification) was used for

label free quantitation (calculating intensities from peak intensities, including isotopic

peaks, with some additional calculations) and can match retention times between samples.

24

Re-Quantify was also used, as this allows for a second peak finding to occur after protein

identification has been done.

For Andromeda configuration modifications the composition of modifications (C,

H, N, O etc.) was entered from the drop down list, specifying the number of molecules

with the count arrow on the right. Next the author specified which amino acid was

affected by the modification- in the specificity tab. This amino acid was trypsin. There

were no neutral losses or diagnostic peaks associated with the modifications. Correction

factors that were given in the commercial information for iTRAQ reagents were inserted

in the Correction factors panel. The default proteases found in Andromeda were used

since they cover most of the experiments.

3.3 Procedure

The author wanted to test the program against larger searches so as to validate the

performance and speed with respect to the ability to process large loads and scalability.

Sample data sets used for the experiments ranged from 100 to 1000 MB. The serial

version of the Andromeda search engine source code ran on a single core on the

standalone machine whose configuration is provided in the Apparatus/Details section.

The time taken for the execution of the serial version on single core was used for

benchmarking.

The author had used a combination of fine-grained parallelism and coarse-grained

parallelism. Coarse-grained parallelism involved parallelizing multiple functions and

chaining them together. Fine-grained parallelism focused on parallelizing individual

25

functions. It concentrated on the loops and tried to parallelize the loops by executing the

iterations simultaneously.

The author had used task parallelism for parallelizing the code of the Andromeda

search engine. The code of the Andromeda search was examined to find parts that contain

nested loops or were otherwise computationally intensive. These snippets were

appropriate for parallelization. The author used the following strategy to determine which

code snippets to parallelize. First of all hotspots were found in the code. These hotspots

were the parts of the code that contain loops (that is, For loops and While loops) and take

significant time to run. To determine hotspots execution timing of functions were

measured. The ones that took similar time were executed together; this lead to efficient

utilization of cores. TPL constructs were used to divide the indices of the for loop into

chunks and then to running these chunks concurrently on the multiple cores. Each core

executed the iterations that were assigned to it. Similarly the iterations were also divided

among various nodes. One node was assigned the head node and it performed the task of

dividing the input between the various nodes. Each node then processed the input

assigned to it. After the completion of the execution each node sent its result back to the

head node. The head node combined all the results and displayed. The various nodes

communicated with each other and with the head node using TPL constructs which used

MPI.

 After analyzing the code for hotspots the author found that there were mostly for

loops and hardly any while loops. Therefore the author decided to use the parallel.for

construct. The author found that the computationally intensive iterations of certain for

loops were independent of each other. Thus in that case the author used parallel.for with a

26

custom partition and converted the for loop range into chunks and then processed them.

This led to optimization according to the number of available cores.

 The author also used imperative task parallelism to optimally parallelize the code.

Under this, tasks were created pertaining to individual functions that had no dependencies

and then these tasks were executed in parallel. This involved much less overhead and

gave better performance. Also using tasks parallelism had many other advantages; for

instance, individual tasks could be chained to each other such that the result of one can be

used as the input to other. The author was careful to mention critical sections when using

task parallelism and chaining.

 An extension of chaining is pipelining. While parallelizing the code the author

had extensively used pipelining. Pipeline used the concept of producer consumer wherein

the producer produced results that are in turn used by the consumer. The advantage of

using pipelining was that as soon as the producer gave a result the consumer started

working on that result. It need not wait for the producer to complete its execution thus

saving time. While pipelining the pipeline was divided into multiple stages. For optimal

execution the number of stages in pipeline should be equal to the number of cores. All

these stages were executed in parallel.

 When using pipelining the author needed to synchronize concurrent tasks. This

was because a group of tasks run a series of phases in parallel but each new phase has to

start after all the other tasks finish the previous phase. This cooperative work was

synchronized with an instance of barrier class. Each phase requires synchronization

between tasks, a Barrier object prevented individual tasks from continuing until all tasks

reach barrier. Each task in the group called participant signals its arrival at the Barrier in

27

each given phase and implicitly waited for all other participants to signal their arrival

before continuing. The same barrier instance was used for multiple phases.

 The author broke up the problems in such a way that synchronization became

explicit not implicit. The functions were broken in such a way that they can work

independently so as to avoid explicit synchronization and make code more efficient and

scalable. This is because explicit synchronization, atomic operations and locks always

add an overhead, require processor time and reduce scalability. If they can be avoided

better speedup can be achieved.

 Andromeda search engine matches the peak list file against the fasta database.

The database used for this experiment is approximately 2.5GB is size. As this database

was not too big in size the author stored this database on every node instead of

distributing it across various nodes or storing it only on the head node.

 Exception handling was done using timeouts and cancellations when working

with barriers and other synchronization mechanism because an error in the code or an

unpredictable situation can generate a task or a thread that will be waiting forever.

The experiments were executed on the High Performance Computing cluster at the

CIT department of the Purdue University. These experiments were benchmarked against

the experiments ran on the standalone machine. The experiments involving the parallel

version of the code ran on the Windows Server HPC cluster at Purdue University. They

were called ParAndromdeda-I. The experiments that ran on the standalone system were

called ParAndromeda-II. The time of execution for both the variants of the experiment

ParAndromeda-I and ParAndromeda-II were recorded. The document henceforth uses the

following conventions:

28

 pan1-I denotes the time of execution time for the serialized code of the

Andromeda search engine executed on the standalone system using

ParAndromeda-II,

 pan1-II denotes the time of execution of the parallelized version of the

Andromeda code executed on the cluster using ParAndromeda-I,

The author measured pan1-I values by changing the number of cores as 4,8,12 and

16. The effect of varying input sizes was also analyzed by using files sized 100MB,

200MB, 400MB, 600MB, 800MB and 1000MB. In order to verify the correctness of the

experiments the outputs from the serial and parallel versions were verified and matched

for all the combinations of number of cores and file sizes.

The experiment was done 15 times for every combination of input file size and the

number of cores. These results were recorded in a tabular format which maps the

execution time to the number of nodes for a given file size.

3.4 Method

The section contains information about the data, its source and the manipulations

done.

3.4.1 Population

The population consisted of a collection of MS-MS proteomics spectra present

in .wiff.scan format.

29

3.4.2 Sample

The sample datasets consisted of MS-MS datasets selected from

ftp://bpcore@ftp.bbc.purdue.edu which is maintained by the Bindley Bioscience Center

at the Purdue University. The input was divided into different sizes of 100MB, 200MB,

400MB, 600MB, 800MB and 1000MB.

3.4.3 Data Collection

The MS-MS datasets of varying sizes described above were provided to both the

parallel version and serial version of Andromeda Search Engine. For the parallel version

the same input were provided to the parallelized code running on different number of

cores. The execution time for all the combinations of input size and number of cores was

recorded in a .CSV file.

3.4.4 Variables of the Experiment

The independent variables of the experiments were

 Task Parallel Library

 Total number of cores used

 Size of the input

The dependent variable of this experiment was the time of execution of the

parallelized variant of the code of the Andromeda Search Engine. It was measured in

seconds and this unit was used throughout the research work.

3.4.5 Hypothesis

Ho: Parallelizing Andromeda source code does not improve the execution time of

Andromeda Search Engine.

30

Ha: Parallelizing Andromeda source code does improves the execution time of

Andromeda Search Engine.

3.4.6 Data Analysis

Finally, a paired t test was performed in order to test the above stated hypothesis.

As per McDonald (2009) a paired t test can be used if we need to analyze the before and

after effects of certain treatment on the given group. In this experiment the author

measured how parallelizing the Andromeda search engine effects the time of execution

for different file sizes. The p-values were calculated by comparing the execution times

for the parallel version and serial versions.

In order to perform a t-test certain conditions should be met. These are:

 There should be one dependent variable, which was the execution time in this

experiment.

 There should be one categorical independent variable which was the number of cores.

 The dependent variable should be normally distributed. This was tested using chi-

squared test. The results of the chi-squared test indicated that the dependent variable

was indeed normally distributed.

After fulfilling all the above conditions a paired t-test was performed.

The results of the experiments were summarized in the form of various tables and

graphs. The graphs showed the relationship between the execution time and the number

of cores and the input file size. The graphs also showed the speedup achieved by the

parallelized code when compared to the serial code for all possible combinations of

number of cores and input sizes.

31

3.5 Threats/Weaknesses

The searching algorithm that Andromeda used generated a lot of false positives.

Using Task Parallel Library to implement this algorithm increased the processing speed

but had no effect on the false positives generated. If the false positives generated were to

be reduced the algorithm needs to be changed which is beyond the scope of this thesis

work. The network speed was also a bottleneck in this approach. Since this research work

was implemented on a distributed computing framework, data transfer between the nodes

was an integral part. Hence if the network slows down or fails it will affect the overall

performance of the system.

 The Andromeda code that was available with the author had certain gaps in it.

Thus the time gain achieved by parallelizing can change when the complete code is

parallelized and executed.

 The search performed by author for this experiment was very basic and did not

deal with complex configurations. Therefore when settings are changed and some

complex scenarios are taken into account with variable modifications, labels and multiple

enzymes there might be a difference in the results and some fine-tuning in the code might

be required.

32

CHAPTER 4. DATA ANALYSIS

This chapter presents the evaluation of the performance and correctness of the

parallelized version of the Andromeda Search Engine according to the findings of

different matrices. It also contains summary of execution of the serial version on one core

and the parallel version on 4,8,12 and 16 cores.

4.1 Correctness

Two different versions of the Andromeda search engine source code were used as per

the methodology

 Serial

 Parallel

The execution of the serial version on a single core was used for the creation of the

baseline. The correctness of parallel version of the Andromeda search engine was

determined by comparing its output with the serial version. Hence, an output folder was

created for each core and file size combination. The outputs converted into .txt file are

stored in these folders. For correctness the outputs from the serial version and the parallel

versions should match. The outputs were found identical upon comparing the output

folders for all the versions.

33

4.2 Performance

The experiments for the parallelized version of Andromeda, were executed

according to the methodology discussed in Chapter 3. The author changed the number of

cores used for executing the parallel version. This was achieved using Windows HPC

server wherein only the required number of cores were active and connected to the server.

These number of cores were incremented or decremented as per the requirement. The

standard deviation was calculated by running the experiments multiple times, 15 times to

be exact as mentioned in chapter 3.

4.2.1 ParAndromeda-I Experiments

Parallelized version of the Andromeda search engine code was run on Windows

HPC-cluster on 4,8,12, and 16 nodes. According to the methodology discussed in chapter

3, the time taken to complete the execution of the parallelized code was noted and is

called pan-I. Table 4.1 contains the values for pan-I. Serial code for the Andromeda

search engine is executed on a single core for the creation of baseline. Since the code was

not completely available the time in the table essentially represents the time taken to

complete the execution of the available code in both parallel and serial versions. When a

sample of size 600 MB is executed on a single core it takes 854 seconds. This serves as

our baseline. However when parallelized version of the code is executed on 16 nodes it

takes 224.981 seconds for a file of 600 MB.

34

Table 4.1 Parallel Andromeda experiments – Time of execution for the samples on

varying core sizes

Sample Size/ Cores Baseline 4 8 12 16

100 MB 84 44.001 34.123 23.453 23.412

200 MB 169 86.225 66.864 48.356 46.364

400 MB 435 227.242 172.983 133.432 115.223

600 MB 854 438.6434 332.4893 263.298 224.981

800 MB 1752 901.345 689.340 535.893 474.256

1000 MB 3296 1679.422 1323.364 977.751 893.513

 Figure 4.1 represents the execution time for pan-I experiments on different

number cores for varying sample sizes. In the graph the pan-I values are plotted against

the various sample sizes. Different number of cores are represented using different

colored bars. The right hand side of the graph shows the color mapping used. Appendix B

contains the detailed summary and values for average and standard deviation for all the

core and sample size combination.

35

Figure 4.1 Time of execution for the samples on different number of cores in Parallel

version of Andromeda

The table 4.2 shows the speedup achieved for different file sizes on different

number of cores. As is evident from the table, file sizes do not have much effect on the

speed up. However speed up increases significantly on increasing the number of cores.

Speedup values helped the author to evaluate the gain in performance as compared to the

serial code. The graph 4.2 which maps speedup vs. the number of cores helped the author

understand how scalable the parallelized version of the Andromeda source code is. An

average speed up of 3.5 was obtained when the parallelized version of the Andromeda

code was run on 12 cores.

0

500

1000

1500

2000

100 MB 200 MB 400 MB 600 MB 800 MB 1000 MBEx
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Sample Size

Execution Time v/s Sample Size for 4,8,12 and 16
cores

4 Cores 8 Cores 12 Cores 16 Cores

36

Table 4.2 Parallel Andromeda experiments – Speedup for the samples on varying

core sizes

Sample Size/Cores Baseline 4 8 12 16

100 MB 1 1.909 2.464 3.227 3.706

200 MB 1 1.925 2.572 3.370 3.863

400 MB 1 1.921 2.544 3.271 3.767

600 MB 1 1.954 2.568 3.255 3.765

800 MB 1 1.947 2.546 3.266 3.671

1000 MB 1 1.952 2.528 3.365 3.690

37

Figure 4.2 Speed Up for the samples on different number of cores in Parallel version of

Andromeda

4.3 Statistical Analysis

The data obtained by performing the above experiments was then analyzed to

determine its statistical significance. This was done using T-test as mentioned in section

3.4.6. The result of that statistical analysis is presented in the tables below.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

100 MB 200 MB 400 MB 600 MB 800 MB 1000 Mb

Sp
ee

d
U

p

Sample Size

Speedup vs Number of Cores

4 Cores 8 Cores 12 Cores 16 Cores

38

Table 4.3 Statistical Significance for Various File Sizes for 4 cores

Implementation
Name

Sample Size p-value t-value

Parallel Andromeda 100 <0.0001 11.765

Parallel Andromeda 200 0.0030 8.1045

Parallel Andromeda 400 0.0002 8.3364

Parallel Andromeda 600 0.0001 8.5882

Parallel Andromeda 800 0.0002 8.3247

Parallel Andromeda 1000 0.0020 8.5938

Table 4.4 Statistical Significance for Various File Sizes for 8 cores

Implementation
Name

Sample Size p-value t-value

Parallel Andromeda 100 <0.0001 11.985

Parallel Andromeda 200 0.0002 8.3125

Parallel Andromeda 400 0.0030 8.1032

Parallel Andromeda 600 0.0040 8.0796

Parallel Andromeda 800 0.0003 8.2248

Parallel Andromeda 1000 0.0001 8.5874

39

Table 4.5 Statistical Significance for Various File Sizes for 12 cores

Implementation
Name

Sample Size p-value t-value

Parallel Andromeda 100 <0.0001 11.604

Parallel Andromeda 200 0.0040 8.0865

Parallel Andromeda 400 0.0002 8.3263

Parallel Andromeda 600 0.0001 8.5677

Parallel Andromeda 800 0.0003 8.2133

Parallel Andromeda 1000 0.0030 8.0943

Table 4.6 Statistical Significance for Various File Sizes for 16 cores

Implementation
Name

Sample Size p-value t-value

Parallel Andromeda 100 <0.0001 11.897

Parallel Andromeda 200 0.0002 8.3142

Parallel Andromeda 400 0.0001 8.5612

Parallel Andromeda 600 0.0002 8.3203

Parallel Andromeda 800 0.0004 8.0871

Parallel Andromeda 1000 0.0030 8.1024

40

As can be seen from the above tables 4.3, 4.4, 4.5 and 4.6 the p-values for all the

combination of file sizes and core sizes are less than alpha (0.01). Hence it was proved

that the result is statistically significant and hence the null hypothesis that Parallelization

has no effect on the performance of the Andromeda Search engine was rejected.

4.4 Summary

The graphs and tables used in this chapter provide an adequate summary of the

result of the research work. It further contains the trends followed by the data with

respect to the metrics used to measure the performance. It analyzes the correctness and

performance of the parallelized version of the Andromeda search engine by studying the

time taken and speed up obtained for all the core and sample size combinations.

41

CHAPTER 5. CONCLUSIONS, DISCUSSIONS AND FUTURE DIRECTIONS

This chapter contains the findings of the research work. It also provides in brief

detailed discussion regarding the future scope and extension of this research work.

5.1 Conclusions

In this thesis the author had implemented a parallelized version for the

Andromeda search engine that leveraged multi-core architecture in order to improve the

performance of the Andromeda Search Engine. The study primarily concentrated on

incremental parallelization of the source code by determining the computationally

intensive and parallelizable parts of the source code and then using parallel constructs

based on TPL to parallelize the same.

The results obtained by parallelizing the source code of Andromeda showed that

execution time was improved with increasing number of cores. An analysis of the results

show that there was a speedup of about 2 times was obtained for 4 cores, 2.5 times for 8

cores, 3.5 times for 12 cores and little under 4 times for 16 cores.

42

An analysis of the Andromeda search engine determined that significant

parallelization could be achieved in the loops. Processes and threads were synchronized

across loops. Other than this tasks were chained together to be executed in a pipeline.

Dependencies between tasks were removed and independent tasks were executed

concurrently. To synchronize all these operations an instance of the barrier class was used.

To resolve dependencies between tasks Public variables and Private variables

were used. The variables which were used in a single task were declared using Private

construct in C#. The variables shared between multiple tasks were declared using Public

construct of C#. The communication between tasks and that of shared variables was taken

care of using TPL constructs.

5.2 Discussion

As mentioned earlier barrier class was used to synchronize operations between the

Using a barrier class had certain drawbacks with the most important one being that it

negatively affected the performance of the code. This is because all the functions for

which the barrier was set had to wait till the data from the previous stage was received

before proceeding on to the next stage. This meant that if a certain stage completed its

execution it still had to wait for the remaining stages to finish their execution before

going forward. In this way the performance of the parallelized code was limited by time

taken by the slowest part of the algorithm.

It was observed that there is a significant improvement in execution time from 1

core to 4 cores and from 4 cores to 8 and 12 cores. However the improvement from 12

cores to 16 cores was not that significant. Although each part of the code that had been

43

parallelized can be scheduled either statically or dynamically the author had not used

dynamic scheduling instead static scheduling was used. Also the division of chunks for

the for loop indices and the number of tasks pipelined together was such that the code had

been optimized for 12 cores. Another reason for this was that when implementing

pipelining the maximum number of stages in which the author was able to divide the

pipeline into was 11. All the stages were executed concurrently on cores. Since the

number of stages is close to the number of cores that is 12 therefore the code was

optimized for 12 cores and hence not much improvement was observed as we increased

the number of cores from 12 to 16. This was as per Amdahl’s law which was discussed in

section 2.5. As per the law there is a limit to the amount of speedup that can be attained.

The speedup is limited by the serial part of the code which was also true for this case

since until the serial code completed its execution and returned the result the parallel part

of the algorithm could not start its execution.

Another application of Amdahl’s law that can be seen in this thesis is the speedup

achieved per core. The speedup achieved for 4 cores was about 2 times which gave 0.5

times per core, speedup achieved for 8 cores was about 2.5 times which meant about 0.25

per core, for 12 cores the speedup was about 3.5 times which equaled a little over 0.25

per core and finally for 16 core the speedup was under 4 times and hence a speed up of

less than 0.25 times per core was achieved. This was also evident from the speedup

obtained for various number of cores that is 2 times for 4 cores but the speed up obtained

for 12 cores is 3.5 and for 16 cores is 4 which is not proportional to the speedup obtained

for 4 cores. So although the speedup increases as we increase the number of cores the

speedup achieved per core decreases which is in accordance with Amdahl’s law which

44

says there is only so much parallelization that can be done in an algorithm. By

extrapolating these results we can safely say that as we keep on increasing the number of

nodes after a certain point there will be no speedup and the graph between number of

cores and speedup will flatline and become constant.

For this experiment a virtualized environment is used. As a result the

interconnection network between the nodes did not play a big role since all of the nodes

resided on the same virtual network. This lead to a better execution time and higher

performance gain. As mentioned in section 3.3 the fasta database against which the

sequence was matched was stored completely on every node. This saved the time

required by the nodes to access the data present on other nodes which is done by using

TPL constructs for communication which are based on MPI. Both of the above

mentioned factors reduced the effect of the interconnection network between the nodes

on the performance of the Andromeda Search Engine.

The search done by the Andromeda search engine for the purpose of this research

work was kept very simple. Complex configurations of the parameters in the Andromeda

search engine were not explored. The author decided to use the basic and default

parameters because most of results after the first run can be obtained with these

parameters and there is seldom any need for running the search using the complex

combinations.

In order to study the practicality of implementing this software the author did a

cost benefit analysis. As per this analysis the author calculated the total cost of this

implementation as a sum of the money spent on hardware and the money spent on skills

for developing and deploying this algorithm. The benefit was the amount of time saved

45

which the author converted into monetary value as well. On performing the calculations

the author found that it would take close to 75 weeks to break even and any return on

investments would come after that. In order to reduce the amount of time taken to break

even the speedup obtained needs to be at least doubled. That is the maximum speedup

obtained in this experiment was about 3.8 times. The value of speedup needs to go up to

about at least 8 times to attain a practical breakeven point such that implementation of

this algorithm becomes feasible and profitable.

The author hopes that this attempt to improve the performance of the Andromeda

search engine will have benefits in the field of cancer detection and recovery. Using the

parallelized algorithm and further improving on it to get faster results will help in

identifying the cancer patients and with this identification made in good time the chances

of recovery of the patients will improve.

5.3 Future Directions

The scope of this research focuses only on the performance gain of the

Andromeda Search Engine. However given the improvement in execution achieved by

parallelizing the Andromeda code parallelization in other stages of the MaxQuant

software can also be considered. This research work does not consider the effect of the

interconnection network. A study evaluating the effect of the network on the performance

gain can also be included in the future scope.

The author had used default configuration in Andromeda for searching and

scoring peptides. This configuration can however be changed as per specifications to

46

individualize search. In future various configurations can be tried and performance can be

measured.

5.4 Summary

Most important finding of the research work were presented in this final chapter.

It also included a discussion section and some recommendations for future improvements

and work on this research.

47

LIST OF REFERENCES

47

LIST OF REFERENCES

Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., & Mann, M. (2011).
Andromeda: a peptide search engine integrated into the MaxQuant
environment. Journal of Proteome Research, 10(4), 1794-1805.

Dai, L., Gao, X., Guo, Y., Xiao, J., & Zhang, Z. (2012). Bioinformatics clouds for big

data manipulation. Biology Direct, 7(1), 43.

Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1), (pp. 107-113).

Dean, J., & Ghemawat, S. (2010). MapReduce: A Flexible Data Processing Tool.

Communications of the ACM, 53(1), (pp. 72-77). DOI:10.1145/1629175.1629198.

Ekanayake, J., Gunarathne, T., & Qiu, J. (2011). Cloud technologies for bioinformatics

applications. Parallel and Distributed Systems, IEEE Transactions on, 22(6), 998-
1011.

Gaggero, M., Leo, S., Manca, S., Santoni, F., Schiaratura, O., Zanetti, G., & Ricerche, S.

(2008). Parallelizing bioinformatics applications with MapReduce. Cloud
Computing and Its Applications, 22-23.

Huai-hsin Chi, E., Shoop, E., Carlis, J., Retzel, E., & Riedl, J. (1997). Efficiency of

Shared-Memory Multiprocessors for a Genetic Sequence Similarity Search
Algorithm.

Liu, J., Chandrasekaran, B., Wu, J., Jiang, W., Kini, S., Yu, W., & Panda, D. K. (2003,

November). Performance comparison of MPI implementations over InfiniBand,
Myrinet and Quadrics. Supercomputing, 2003 ACM/IEEE Conference (pp. 58-58).
IEEE.

Leo, S., Santoni, F., & Zanetti, G. (2009, September). Biodoop: bioinformatics on hadoop.

Parallel Processing Workshops, 2009. ICPPW'09. International Conference
on (pp. 415-422). IEEE.

48

Lewis, S., Csordas, A., Killcoyne, S., Hermjakob, H., Hoopmann, M. R., Moritz, R. L., &
Boyle, J. (2012). Hydra: a scalable proteomic search engine which utilizes the
Hadoop distributed computing framework. BMC bioinformatics,13(1), 324.

Lichtenberg, J., Kurz, K., Liang, X., Al-Ouran, R., Neiman, L., Nau, L. J., ... & Welch, L.

R. (2010). WordSeeker: concurrent bioinformatics software for discovering
genome-wide patterns and word-based genomic signatures. BMC
bioinformatics, 11(Suppl 12), S6.

Matsunaga, A., Tsugawa, M., & Fortes, J. (2008, December). Cloudblast: Combining

mapreduce and virtualization on distributed resources for bioinformatics
applications. eScience, 2008. eScience'08. IEEE Fourth International Conference
on (pp. 222-229). IEEE.

Qiu, X., Ekanayake, J., Beason, S., Gunarathne, T., Fox, G., Barga, R., & Gannon, D.

(2009, November). Cloud technologies for bioinformatics applications.
Proceedings of the 2nd Workshop on Many-Task Computing on Grids and
Supercomputers (p. 6). ACM.

Rabenseifner, R., Hager, G., & Jost, G. (2009, February). Hybrid MPI/OpenMP parallel

programming on clusters of multi-core SMP nodes. Parallel, Distributed and
Network-based Processing, 2009 17th Euromicro International Conference
on (pp. 427-436). IEEE.

Schatz, M. C. (2009). CloudBurst: highly sensitive read mapping with MapReduce.

Bioinformatics, 25(11), 1363-1369.

Taylor, R. C. (2010). An overview of the Hadoop/MapReduce/HBase framework and its

current applications in bioinformatics. BMC Bioinformatics, 11(Suppl 12), S1.

Thorsen, O., Smith, B., Sosa, C. P., Jiang, K., Lin, H., Peters, A., & Feng, W. C. (2007,

May). Parallel genomic sequence-search on a massively parallel system.
Proceedings of the 4th International Conference on Computing Frontiers (pp. 59-
68). ACM.

Trelles, O. (2001). On the parallelisation of bioinformatics applications. Briefings in

Bioinformatics, 2(2), 181-194.

What is Cancer Proteomics. In Office of Cancer Clinical Proteomics Research. Retrieved

from http://proteomics.cancer.gov/whatisproteomics.

Zou, Q., Li, X. B., Jiang, W. R., Lin, Z. Y., Li, G. L., & Chen, K. (2013). Survey of

MapReduce frame operation in bioinformatics. Briefings in Bioinformatics,
bbs088.

49

APPENDICES

49

Appendix A Steps Followed to Parallelize Code

The following steps were followed for parallelizing the code

 Loops along with the variables and data structures were identified

 Loop parallelization was done using TPL and CLR constructs

 Nested loops were analyzed for parallelization

 For loops indices were divided into chunks according to number of available

cores

 Functions that are independent were taken into account

 Dependencies between functions were reduced

 Independent functions were executed concurrently

 Functions were chained such that pipelining is possible

 Barrier Class was used to synchronize the execution of the task

 Exception handling was implemented using time outs.

50

Appendix B Data Analysis Report

Table B.1The summary values for 15 iterations performed for parallel implementation of

Andromeda

Sample Cores Average Standard Deviation

100 MB 4 42.4562 0.000131

100 MB 8 32.4519 0.000500

100 MB 12 26.1986 0.000352

100 MB 16 23.2349 0.095741

200 MB 4 90.458 0.013541

200 MB 8 64.7895 0.231145

200 MB 12 49.3987 0.248879

200 MB 16 43.3279 0.918752

400 MB 4 230.7942 1.078439

400 MB 8 169.5875 1.097282

400 MB 12 145.7872 1.785722

400 MB 16 120.5875 2.987756

600 MB 4 441.2845 3.557511

600 MB 8 352.1765 3.854751

600 MB 12 270.9782 3.975851

600 MB 16 231.8765 3.875755

51

Table B.1 Continued

Samples Cores Average Standard Deviation

800 MB 4 921.8689 3.907576

800 MB 8 687.5428 4.872752

800 MB 12 551.2788 5.428517

800 MB 16 487.5855 7.245891

1000 MB 4 1723.8712 9.024874

1000 MB 8 1204.7513 10.17863

1000 MB 12 998.2751 11.0751

1000 MB 16 887.1721 9.24713

	Purdue University
	Purdue e-Pubs
	Spring 2015

	Studying the effect of parallelization on the performance of Andromeda Search Engine: A search engine for peptides
	Jigna Shah
	Recommended Citation

	1598133.pdf

