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ABSTRACT

Rodŕıguez-Simmonds, Héctor Enrique M.S.E.C.E., Purdue University, May 2015. Ex-
ploiting Intra-Warp Address Monotonicity for Fast Memory Coalescing in GPUs.
Major Professor: Mithuna S. Thottethodi.

Graphics Processing Units (GPUs) are growing increasingly popular as general

purpose compute accelerators. GPUs are best suited for applications which have

abundant data parallelism wherein the computation expressed as a single thread can

be applied over a large set of data items. One key constraint that affects application

performance on GPUs is that the underlying hardware is single-instruction, multiple

data (SIMD) hardware which requires parallel instructions from the multiple threads

to execute in a lock-step manner. The benefits of lock-step execution can be seriously

degraded if the threads diverge (because of memory or branches). Specifically in the

case of memory, the addresses from each thread in a SIMD ”wavefront/warp” must

be coalesced to enable parallel memory access to minimize divergence.

The general problem of coalescing assumes arbitrary address distribution which

can be slow. This thesis aims to exploit intra-warp address monotonicity (as measured

in a recent study by Holic) to achieve fast memory coalescing. Holic’s study reveals

the intra-warp addresses are monotonically increasing or decreasing in the common

case. The key contributions of this thesis are twofold. First, I design novel hardware

coalescing mechanisms to achieve fast-coalescing and quantify the area/delay of my

coalescing designs. Second, I quantify the impact of fast-coalescing on overall GPU

performance for a suite of GPU benchmarks.
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1. INTRODUCTION

Graphics Processing Units (GPUs) are growing increasingly popular as general pur-

pose compute accelerators. GPUs are best suited for applications which have abun-

dant data parallelism wherein the computation expressed as a single thread can be

applied over a large set of data items. Such general-purpose GPUs (GPGPUs) exploit

the abundant data-level parallelism available across threads to tolerate the latencies

of individual threads by executing other threads in the interim.

One key constraint that affects application performance on GPUs is that the

underlying hardware is single-instruction, multiple data (SIMD) hardware which re-

quires parallel instructions from the multiple threads to execute in a lock-step manner.

The benefits of lock-step execution can be seriously degraded if the threads diverge

(because of memory or branches). Specifically in the case of memory, the addresses

from each thread in a SIMD ”wavefront/warp” must be coalesced to enable parallel

memory access to minimize divergence.

Consider the problem of memory coalescing. The memory requests from each

thread in the warp that targets the same cache block must be merged to avoid unnec-

essary repeated accesses. In general, this is the problem of detecting unique addresses

(at the cache block granularity) from among the addresses accessed by each warp. (In

reality there are other considerations because of cache banking. Two addresses that

are unique may still cause divergence if they cause a bank conflict which precludes

parallel access.) The general problem of coalescing addresses the worst-case challenge

of arbitrary address distribution. That is, the problem is one of finding unique cache

block addresses among all addresses in a warp (typically 32 or 64 addresses).

Further simplifications can be made based on the observation that there is an

upper bound on unique accesses that can be coalesced because of hardware bandwidth.

For example, in a memory system in which no more than four unique addresses
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can be accessed, coalescing can be reduced to detecting four unique cache blocks

(rather than all unique cache blocks). In spite of such simplifications, coalescing is

expensive because it fundamentally requires comparisons of all pairs of addresses. My

evaluations using Synopsis Design compiler reveals that the coalescer logic delay can

exceed 100 FO41 units.

This thesis aims to exploit intra-warp address monotonicity (as measured in a

recent study by Holic) to achieve fast memory coalescing. Holic’s study reveals the

intra-warp addresses are monotonically increasing or decreasing in the common case.

Formally, if the threads in a warp are numbered in increasing order from 1 to 32

(or 64), monotonicity requires that the addresses from the threads are either non-

increasing or non-decreasing in thread order (i.e., ∀i, j|0 ≤ i, j ≤ 31, i > j =⇒
A[i] ≤ A[j] for monotonically decreasing addresses and i > j =⇒ A[i] ≥ A[j] for

monotonically increasing addresses.)

I make the key observation that monotonicity can be leveraged to achieve faster

coalescing. Specifically, unique cache blocks can be determined solely by comparing

neighboring addresses (i.e., comparing the memory request address from thread i to

that of thread (i + 1) and (i− 1)) because duplicate addresses must be consecutive.

One can offer a simple proof-by-contradiction to the possibility that identical block

addresses (say A[i] and A[i+2]) are non-adjacent by assuming an intermediate address

A[i+1]. In the trivial case where A[i+1] = A[i], transitivity ensures that the duplicate

addresses are in fact adjacent (because A[i] = A[i + 2]). If on the other hand, we

assume that A[i+1] �= A[i] we can show that monotonicity is violated. My evaluations

show that leveraging the above property can significantly reduce coalescer delays.

While the above insight works for warps where the addresses are monotonic, coa-

lescers must indeed work for the general case. To that end we propose to use the fast-

coalescing approach speculatively in parallel with the traditional general coalescer.

If the address distribution is monotonic, we can proceed with the output of the fast

1FO4 refers to the ‘fan-out 4’ delay of an inverter driving four other inverters, which is a technology
independent delay unit.
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coalescer. However, if the addresses are not monotonic, one must fall back on the

slower traditional coalescer. In either case, redundant cache block accesses are guar-

anteed to be eliminated. This approach requires fast detection of monotonicity among

the addresses of a warp. Fortunately, monotonicity detection requires neighbor-to-

neighbor address comparison (in this case subtraction, rather than equality testing)

and neighbor-to-neighbor comparison to ensure monotonicity.

The key contributions of this thesis are twofold. First, I design novel hardware

coalescing mechanisms to achieve fast-coalescing and quantify the area/delay of my

coalescing designs. Second, I show that the abundant latency tolerance for the bench-

marks I consider results in minimal direct speedup even if latency of memory accesses

is increased due to slow coalescing. However, I offer evidence that my fast-coalescing

technique places less demand on the latency tolerance mechanisms; which preserves

the ability to use latency tolerance for other unavoidable long-latency operations. I

show that with reduced latency tolerance, the performance benefits of fast-coalescing

increase.
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2. BACKGROUND

This chapter discusses Graphics Processing Units (GPUs), how they’re used in general

purpose applications, and includes a brief discussion about the relevant terms and

architectural features of GPUs. The primary architectural features of the two main

design houses for recent GPUs, AMD and NVIDIA, are mostly the same. For the

purposes of this thesis I use NVIDIAs terminology and programming model, Compute

Unified Device Architecture (CUDA), unless otherwise stated.

2.1 Graphics Processing Unit Background

Graphics Processing Units (GPUs) are highly parallel computing structures. They

were originally developed for graphical applications [1]. Graphics applications are in-

herently highly parallelizable. Therefore, the hardware structures that computed

them were more efficiently implemented as Single Instruction Multiple Data (SIMD)

structures. In contrast, Central Processing Units (CPUs) are Single Instruction Single

Data (SISD). As GPUs are highly parallel structures, many general-purpose appli-

cations and algorithms that are also easily parallelizable have been implemented or

ported to GPUs. The use of GPUs in these general-purpose applications has been

steadily increasing in the last decade as both hardware and software implementations

by AMD and NVIDIA have made programmability on these platforms simpler, more

efficient, and more robust [1, 2].

APIs such as CUDA that abstracted GPU-specific structures helped alleviate pro-

grammer effort. The increase in programmability of GPUs as well as their evolution

to more flexible general-purpose hardware has led to General Purpose Graphics Pro-

cessing Units (GPGPUs) [3]. For example, NVIDIA uses ”warps” as their construct

for handling SIMD instruction types. Each of these warps contains one instruction
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and up to 32 data elements on which to perform this instruction in lockstep. In

constrast to CPU designs, GPU memory latencies are conceled by interlacing warps.

CPUs use large caches to conceal these latencies. Smaller caches allow GPUs to ded-

icate more chip area to execution units, the main element responsible for the highly

parallelizable feature of GPUs. The memory subsystem of a GPU is of particular

interest to this research. I will now cover NVIDIAs memory subsystem.

2.1.1 Memory types

Using CUDA, NVIDIA allows the use of their GPGPUs in many programming lan-

guages [4]. In the following section I discuss the different memory types on GPGPUs

and their relevance to my memory access coalescer.

Global Memory

This memory, which resides on the device, can be accessed through “32-, 64-, or

128-byte memory transactions” [4]. The compute capability of the GPU will change

the transaction size [4]. Memory accesses within a warp are coalesced together into

accesses that align with these memory transaction sizes. If multiple thread’s accesses

cannot be coalesced into one memory transaction, more accessess will be generated.

The more accesses that are generated, the more unused data is transferred. This

reduces instruction throughput.

Maximizing this type of coalescing with respect to the device’s compute capability

is important to keep in mind when designing applications. Devices with compute ca-

pability 2.x or higher are able to cache memory transactions. Creating data structures

of appropriate sizes to fit within the GPUs memory transaction size is important to

maximizing coalescing [4].
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Texture and Surface Memory

Both of these memories reside in device memory. They are cached in texture

cache. Only on texture cache misses does the memory fetch go to surface memory.

The texture cache is optimized for “threads of the same warp that read from memory

locations that are close together” [4].

Local Memory

This memory is located in device memory as well. Local memory is used auto-

matically by the hardware if Kernels use more registers than available, when array

structures would use up excessive register space, and when arrays are indexed with

inconsistent quantities [4]. Local memory is optimized to offer consecutive 32-bit

word reads by consecutive thread IDs in a warp. Also compute capability dependant,

these types of memory accesses mirror global memory policies and are cached in L1

and L2 [4].

Constant Memory

Also residing in device memory, this memory observes caching policies depending

on compute capability. The CUDA programming guide states that for devices with

compute capability 1.x, this memory is accessed through an exclusive read-only cache

that is constant. This cache is “shared by all functional units” [4].

Shared Memory

This on-chip memory shared by the L1 cache in devices with compute capability

2.x [4]. It can be arranged as 48KB of shared memory and 16KB of L1 cache or as

16KB of shared memory and 48 KB of L1 cache [4]. It is arranged into 16 banks. It

can handle 8-, 16-, and 32-bit strided accesses. Accesses larger than 32-bits per thread

generate bank conflicts. In the case of a 32-bit access, each warp’s memory access



7

is split into two half-warp accesses such that there is no conflict between threads in

the first or second half. In the event of a non-atomic instruction writes to a shared

memory location, it is undefined which thread will perform the write [4].

Summary

Of the five types of memory in GPGPUs, the Rodinia GPGPU benchmark suite

I’m using primarily used Global and Shared memory. Rodinia includes 18 benchmark

applications. All of the benchmarks used Global memory, texture was accesed by 3

of them, local memory by one, constant memory by one, and shared memory by 10

of them. Together, the two types account for 85% of total memory accesses.

2.1.2 The Challenge of Memory Coalescing

Coalescing multiple memory accesses into one access is important in order to fully

utilize the bandwidth of SIMD memory architectures. Duplicate memory requests

made by multiple threads in a block can be avoided using coalesced memory accesses.

The most heavily utilized memories in GPGPUs are cached and benefit greatly from

maximizing their memory bandwidth.

Since these coalesced accesses must be found and given to the memory subsystem

before the cache (or TLB), the latency requirements for coalescing hardware struc-

tures is very tight. Assuming arbitrary address distribution, finding unique memory

addresses requires O(n2) accesses. This hardware does not scale well and is very slow.

In this thesis I implement a coalescer that can handle an arbitrary address distribu-

tion. The impact of this coalescer has a significant penalty. Rotating out to another

warp in order to hide these memory latencies increases the hardware-warp-contexts

that must be used. Doing this has its own costs. GPUs do not currently switch out

warps for coalescing, so this option isn’t discussed any further.
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2.1.3 Monotonicity of Accesses

Previous work by my collaborator Calvin Holic has shown that a large fraction

of warps have monotonic memory accesses. For the Rodinia benchmarks 11 of them

were 100% monotonic. Four of the remaining seven had at least 98% monotonicity.

Of the remaining three, two (bfs and mummergpu) had monotonicity rates of at least

85% and the last (gaussian) had a monotonicity rate of only 25%.

Our goal is to exploit these monotonicity findings in the creation of hardware that

will efficiently coalesce memory accesses.
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3. DECOUPLING PERFORMANCE AND

NON-REDUNDANT CACHE BLOCK ACCESSES IN

COALESCER DESIGN

Recall from (1) that my approach relies on address monotonoity within warps to

achieve faster coalescing in the common case. In this chapter, I describe the baseline

coalescing circuits which guarantee the reduction of redundant cache block accesses

(3.1), the faster coalescing circuits for monotonic intra-warp addresses (3.2), and

finally the combined design.

3.1 The Baseline Coalescer

In order to find unique addresses without assuming monotonicity, the baseline

coalescer must do an all-to-all comparison of all 32 addresses (in the case of NVIDIA’s

CUDA architecture) across a warp. The first address must be compared with all

other addresses. The second with all the subsequent addresses, the third with all

subsequent, and so on. This would result in
n−1∑

i=1

i comparisons where n is the number

of addresses being compared. For example, an NVIDIA warp of 32 addresses would

take
31∑

i=1

i = 512 comparisons. This coalescer guarantees no redundant cache block

accesses without needing monotonicity to be true. Later, I show the precise hardware

organization of the baseline coalescer in section 4.1.3.

3.2 A Fast Coalescer for Monotonic Address Coalescing

The fast coalescer performs a neighbor-to-neighbor comparison of the 32 addresses

in a warp. This comparison yeilds a vector that defines the addresses within the

warp that are unique. This comparator relies on monotonicity being true in order
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for its results to reduce redundant cache block accesses. Assuming monotonicity is

maintained across the addresses in the warp, only adjacent addresses need to be

compared in order to find which of these in a warp are unique. If monotonicity across

the addresses in the warp is preserved, this comparator would take n−1 comparisons.

In the case of an NVIDIA warp comprised of 32 threads/addresses, 31 comparisons

would happen. Later, I show the precise hardware organization of the fast neighbor-

to-neighbor coalescer in section 4.1.4.

3.3 Monotonicity Detector

The monotonicity detector is responsible for determining whether the warp is

monotonic. This circuit takes in the 32 (or 64) addresses that make up a warp and

compares two addresses at a time starting from the first. The first and second address

are compared for three things:

1. Whether the two addresses are equal

2. Whether the first address is larger

3. Whether the second address is larger

The second and third addresses are then compared for the same 3 things. The same

pattern continues successively until the n− 1 and n comparisons.

Each comparison yeilds three outputs: equality, 1st address greater, 2nd address

greater. If across all 31 comparisons it is found that either the addresses are equal

or that the 1st address is always greater, the warp is monotonic. If across all 31

comparisons it is found that either the addresses are all equal or that the 2nd address

is always greater, then this warp is monotonic. However, if within a warp there is at

least one occurence where both the second and third condition are met, the warp is

not monotonic. The hardware organization for the monotonicity detector is shown

later in section 4.1.5.
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3.4 Putting it together

The full coalescer is created by incorporating the baseline coalescer, the fast mono-

tonically dependent coalescer, and the monotonicity detector together. Fastest coa-

lescing is achieved when monotonicity can be leveraged to find unique memory ad-

dresses within a warp. The intuition here is that the baseline coalescer will take the

longest in finding unique addresses. The fast coalescer performs minimal neighbor-

to-neighbor comparisons and would thus be a very fast circuit but depends on mono-

tonicity to reduce redundant cache block accesses. The monotonic detector assists

the fast coalescer to determine if the addresses it deems unique are actually unique.

In the event monotonicity holds true for the warp, the results of the fast coalescer

can be used to find unique memory addresses. If monotonicity does not hold for the

warp, the baseline coalescer can be used to find unique addresses.

Based on my collaborators findings that a vast majority of memory accesses on

the Rodinia benchmarks were monotonic, running all three circuits simultaneously

ensures fast and correct results are generated for memory coalescing. In the event a

warp is not monotonic, unique addresses can still be coalesced into a memory access,

albeit taking longer to compute than in the monotonic case.
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4. METHODOLOGY

My evaluation methodology has (1) a delay analysis component to analyze the advan-

tage of monotonicity-based coalescing, and (2) architectural evaluation via simulation

of execution time.

For the first component, I designed and analyzed the coalescer and monotonicity

detection circuits. Specifically, in order to coalesce memory accesses efficiently I

created a neighbor-to-neighbor address comparator as described in 3.2 and a naive all-

to-all address comparator described in (3.1). I also created an address monotonicity

detector (3.4) which is necessary to recognize cases where the monotonicity-based

fast-coalescer is inadequate. These three circuits were created in both 32-address

and 64-address variants to handle NVIDIA’s 32 thread Warp and AMD’s 64 thread

vectors, respectively.

Synopsis’ Design Compiler was used to analyze these circuits and acquire timing

and area information. To avoid dependence on the specific technology library, the

delays of these circuits are also reported in FO4 units. (The “fan-out 4” delay of an

inverter driving four other inverters is a technology independent delay unit.)

For the second component I use a GPU simulator to characterize the performance

of the monotonicity coalescer in GPGPU applications. This timing information is

also used in our simulations to drive the coalescer delays in GPGPU-SIM in order to

investigate how memory access latencies were affected.

4.1 Toolchain

Verilog was used to implement all of the circuits used in this thesis. Functional

verification was performed using ModoelSim SE-64 10.1b. Delay analysis was com-

puted using Synopsis Design Compiler.
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4.1.1 Synopsis Design Compiler

Synopsis Design Compiler version G-2012.06 on a 64-bit Red Hat Enterprise Linux

system was used to analyze the delay of each circuit. The Synopsis SAED EDK90 CORE

90nm Digital Standard Cell Library was used to synthesize the circuits [5]. This cell

library was chosen because of the limited options available; it most closely resembles

the 45nm process NVIDIA currently uses in their Fermi architecture GPU’s. My col-

laborator, Calvin Holic, acquired his monotonicity statistics by modeling an NVIDIA

Tesla C2050, a Fermi architecture chip. This cell library was created for educational

and training purposes [5].

There are 27 characterization models included in the SAED EDK 90 cell library

that vary process, voltage, and temperature conditions. Figure 4.2 contains all the

options available. The ’typ ht’ model was chosen for this project because it most

closely modeled typical conditions for the circuits on these cards. This model operates

at 125 centigrade, has a power supply voltage of 1.2V, and has a typical-typical

(TT) process corner (NMOS-PMOS) [5]. Because we are interested in more recent

technology nodes, the delay analysis of the circuits are also reported in FO4 (the

delay of an inverter with a fanout of four equally-sized inverters) units.

By default Synopsis Design Compiler is configured to optimize Verilog designs

within boundaries. To avoid a chain of inverters from being optimized out, each

inverter was instantiated in its own Verilog module. These modules were then con-

nected as shown in figure 4.1. Circumventing Design Compiler’s optimizations in this

way allowed me to measure the delay of the middle inverter.

The following parameters were used to synthesize the circuit and generate timing

and area information. This TCL script reads the source Verilog files, compiles them

with the highest effort, and generates timing and area reports into a file. Compiling

with the highest effort makes Design Compiler try “still more gate minimization

strategies. The “tool adds gate composition to the process and allocates more CPU

time than medium effort” [6]. I found that for the “compile” command “-map effort
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medium” and “-map effort high” made no difference in the synthesized design for the

critical path.

r e a d v e r i l o g SOURCE VERILOG.sv

r e a d v e r i l o g SOURCE VERILOG.sv

l i n k

un iqu i f y

s e t d r i v i n g c e l l − l i b c e l l NBUFFX2 { address0 }
s e t d r i v i n g c e l l − l i b c e l l NBUFFX2 { address1 }
s e t d r i v i n g c e l l − l i b c e l l NBUFFX2 { address2 }

.

.

.

s e t d r i v i n g c e l l − l i b c e l l NBUFFX2 { addressn }

compi le −map effort high

r epo r t t im ing −path f u l l −delay max −max paths 25 −nworst 1 > FILE

r epo r t a r e a >> FILE

w r i t e f i l e −format v e r i l o g −hierarchy −output SCHEMATIC FILE.v

4.1.2 FO4 circuit

We decided to report delays for the comparators and monotonicity detector using

the fanout-of-4 inverter (FO4) standard to normalize against advances in process

technologies, feature sizes, process corners, etc [7]. As shown in figure 4.1 one inverter

feeds four inverters which in turn feed four more. In the diagram I’ve separated the

three sets of inverters with group numbers.

I decided to use group two’s inverter delay because it most closely captured realis-

tic operating conditions of our circuits by being loaded on both sides. The implemen-

tation of this Verilog circuit involved creating this tree of inverters in separate modules

so as to disallow Design Compiler from optimizing away the separate inverters.



15

Fig. 4.1. FO4 circuit schematic

4.1.3 The Baseline Coalescer

As mentioned in (3.1) this comparator is attempting to find unique memory ad-

dresses within the warp without assuming the addresses are laid out monotonically.

This results in an all-to-all comparison of addresses. I implemented the circuit us-

ing the naive approach. Figure 4.3 contains a schematic of my design. I used an

equality comparator module comprised of XOR gates across every bit to compute

if two addresses are the same. If the result of this comparison is 0, the addresses

are identical. If the result is a 1, the addresses are different. The current address is

compared against all other remaining addresses in the warp in this way. Once this is

completed the results of this addresses comparison with all subsequent addresses are

ANDed together. If all addresses are different, the output of each comparison is a 1,

and the AND will output a 1 to signifying this address is unique.
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Fig. 4.2. Base Characterization Corners from [5]

4.1.4 Fast Neighbor-to-Neighbor Coalescer

As discussed in (3.2) the neighbor-to-neighbor comparator compares adjacent

memory addresses in a warp to find which are unique as quickly as possible. The

schematic of this circuit is in 4.4. The implementation of this comparator is as fol-

lows: Each adjacent address is compared bit by bit via an XOR operation using a

comparator module. The result of each bits’ comparison is then ORed together in the

module. If the result of this operation is found to be a 1, the address is unique and

can be coalesced into one memory access. This result is placed in the unique address

vector.
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Fig. 4.3. Baseline all-to-all comparator

Fig. 4.4. Fast Neighbor-to-Neighbor Comparator

4.1.5 Monotonicity Detector

As discussed in (3.3) the monotonicity detector must take as input 32 addresses

(1 warp), each 32-bits wide, and output whether this warp is monotonic or not.

The monotonicity detector is comprised of three main parts: 1

• A subtraction unit that takes in two 32-bit addresses and calculates which of

the two is greater

• An equality unit that takes in two 32-bit addresses and calculates if these two

are equal
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• Glue logic that instantiates 32 (or 64) subtraction and equality units and uses

these to calculate monotonicity across all addresses.

This circuit was implemented in Verilog using a Carry-lookahead adder. The sub-

tractor unit is based on a 4-bit Carry-lookahead adder [8]. A schematic of the circuit

is included in figure 4.5. Figure 4.6 contains the internal hierarchical design of the

CLA subtractor module. The adder is made into a subtractor by inverting the second

address fed into the unit and feeding a carry-in of 1 into the circuit. The creation

of this entire circuit necessitated both addresses and the result to be extended by

one bit, from 32-bit to 33-bits. This allows for the most significant bit (MSB) of the

subtraction to denote whether the result was positive or negative, thus allowing me

to know which of the two input numbers was larger. If the MSB is a 1 the bigger

address is in the subtrahend. If the result is a 0, the bigger address is in the minuend.

The equality unit uses XOR gates between each bit in the address to see if they

are the same. The output of these results are then ORed together and if the result

of this ORing is 0 the addresses are equal. Otherwise, the addresses are not equal.

The result of this unit is then negated to make the continuing logic easier.

Each set of addresses is fed to each of these modules. Starting with the first

address, it is compared against the second. The subtraction and equality units find

out whether the first or second address is greater and whether the addresses are equal

to one another. The result of the subtraction is ORed twice: once each with the

results of the equality unit. This tells us if the pattern between these addresses is a

>= or <=. The results of these OR’s are output for each set of addresses. The next

set of addresses, the second and third, go through this same process, as well as all

subsequent pair of addresses.

The 2 outputs of each of these comparisons (>= and <=) are then ANDed

together in the following way: all >= outputs are ANDed together and all <=

outputs are ANDed together. If either of the results of these AND’s is a 1 (found

via an OR gate) the addresses maintain a monotonic behavior.



19

With the addresses extended, a simple 4-bit Carry-lookahead adder was found

online and expanded to compute 8-bits, then to do 16, then to the compute all 33

bits. Once the adder was working, I inverted the second of the two inputs and fed in

a Carry-in of 1 at the beginning of the circuit, effectively creating a subtractor.

Fig. 4.5. Monotonicity Detector Circuit

4.2 Simulator

In order to characterize the performance of the monotonicity coalescer in GPGPU

applications, I use the simulator from the University of British Columbia, GPGPU-
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4.3 Benchmarks and Data Sets

The Rodinia benchmark suite version 2.4, created at the University of Virginia,

was used to analyze the workload on the GPUs. This benchmark suite was chosen

because it helps computer architects explore the architectures of GPUs by providing a

diverse set of applications that cover the gamut of typical computation seen by GPG-

PUs [12,13]. For these benchmarks I used the same configurations as my collaborator.

These configurations allow an ample number of memory accesses within a realistic

simulation time. Simulation times for specific applications in the suite ranged from

one day to one week. CFD Solver is the only benchmark included in the suite that I

did not run. This is because it would run for over nine days and crash. Results for

the remaining 18 benchmarks are found in the following subsections [10].

4.3.1 Back Propagation (backprop)

As discussed on the Rodinia documentation website for this benchmark, this

machine-learning algorithm trains a neural-network. The first phase of the train-

ing computes values. In the second phase, these values are compared against the

requested values and their difference is used as input in the first phase to train the

neural-network. I used the largest of the included data sets to get sizable memory

accesses. This data set is larger than that used in real hardware, so it will be sufficient

for measuring the effects of the coalescer. [10, 12].

4.3.2 Breadth-First Search (BFS)

This application traverses millions of vertices in a graph. This type of algorithm

is common to many scientific and engineering applications. The configuration used

for my testing was the largest available in this Rodinia version at 1 million graph

vertices [10, 12]. Similar to Backprop, this data set is larger than that used by real
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hardware so it should be sufficient for the purposes of measuring the effects of the

coalescer.

4.3.3 B+ Tree (b+tree)

B+ is a graph traversal algorithm used primarily in database searches [14]. These

searches can be parallelized using GPUs without having to alter the structure of the

B+ data structure to check for records. Only one benchmark configuration is included

with Rodinia so this is the one used in my experiments.

4.3.4 Gaussian Elimination (gaussian)

This benchmark solves “for all the variables in a linear system” row by row [15].

The algorithm synchronizes iterations but can calculate the values in each iteration

in parallel [15]. I match my collaborators configuration of a matrix that’s 1024x1024

to thoroughly gather experimental data for this work [10].

4.3.5 Heart Wall Tracking (heartwall)

This medical imaging application reconstructs approximated full shapes of mice

heart walls by tracking sample points over 104 ultrasound images of a mice’s heart.

There are two highly parallel portions of this program: SRAD (discussed later on)

and Tracking. The program uses these to remove noise from the images and to track

movement of the walls through the images, respectively [15]. I use Rodinia’s default

configuration in running the benchmark to collect enough data and to be able to run

the benchmark within a reasonable amount of time [10].
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4.3.6 HotSpot (hotspot)

This application uses a grid layout to estimate “processor temperature based on

an architectural floor plan and simulated power measurement” [15]. It solves a series

of differential equations to estimate the temperatures [12].

4.3.7 K-means (kmeans)

This benchmark is primarily used in data mining. It identifies related data points

and clusters them together to compute a new centroid of this cluster. The data set

chosen for my experiments mirrors that of my collaborator. He chose this configura-

tion to fit within reasonable simulation times (4 days in this case) [10].

4.3.8 LavaMD (lavaMD)

This benchmark calculates the potential energy and relocation of particles based

on the forces between them in 3D space [15]. My collaborator used the default config-

uration included with Rodinia at a runtime of 4 days [10]. To run these benchmarks

within a reasonable time frame, I use the same configuration.

4.3.9 Leukocyte (leukocyte)

This program tracks white blood cells in video microscopy. The algorithm relies

primarily on Gradient Inverse Coefficient of Variation and Motion Gradient Vector

Flow to track the cells [12]. I match my collaborators configurations for running these

benchmarks to optimize time spent running them and the amount of memory accesses

generated by the benchmark [10].
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4.3.10 LU Decomposition (lud)

LUD is a matrix algebra algorithm that solves a set of linear equations. When op-

timized properly this classical algorithm benchmark “exhibits significant inter-thread

sharing and row and column dependencies.” High inter-thread communication is ac-

complished through advanced data structures and is important for performance gains

in parallel architectures [13]. My collaborator used the largest included configura-

tion to run this benchmark, a 2048x2048 matrix, to increase the number of memory

accesses [10].

4.3.11 MUMmerGPU (mummergpu)

As per the documentation on the Rodinia website, this application is a local-

sequence alignment program. The GPU is used to align many request sequences to

a single request. The query is performed in a pairwise, parallel manner [13]. My

collaborator changed the code so that it would run properly on the simulator. The

offending call to the GPU which the simulator couldn’t handle was changed to a call to

the CPU instead. In my experiments I use the same configuration as my collaborator,

50,000 25-character sequences, to collect my results [10].

4.3.12 Myocyte (myocyte)

Myocyte models heart muscle cells (myocytes) in order to research heart failure.

The model is comprised of differential equations that are solved in parallel at a very

fine grain, similar to ILP [15]. I use the default configuration settings included with

Rodinia, just like my collaborator. This default simulates 100 milliseconds [10].

4.3.13 k-Nearest Neighbors (nn)

This dense linear algebra data mining application finds “the k-nearest neighbors

from an unstructured data set” [15]. It calculates the Euclidean distance between a
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target point and many other points in parallel. This benchmark had to be modified

in order to run on the simulator, as my collaborator states [10]. A CUDA call:

cudaMemGetInfo() had to be changed to use hardcoded memory information. The

data set used for this benchmark is the largest option with 32M records, just like my

collaborator.

4.3.14 Needleman-Wunsch (nw)

This is a bioinformatics DNA sequencing and matching application that uses Dy-

namic Programming. It tries to maximize the score of the path through a matrix

that represents potential DNA sequences. Once the optimal path is found, the path

is traced backwards to find the optimal alignment of the sequences [15]. My collab-

orator chose to follow the same 2048x2048 configuration used in [12, 13]. Growing

the input size caused memory constraint issues, so I use the same configuration as

him [10].

4.3.15 Particle Filter (particlefilter)

Another medical imaging application; Particle Filter uses a structured grid to

track objects in video. While it can be used in any video tracking application, this

implementation was optimized for tracking leukocyte and myocardial cells [15]. My

collaborator chose to use an input set of 400K as per [16]. Since I’m also interested

in generating memory accesses to study the effects of the coalescer, I use the same

configuration as him [10].

4.3.16 PathFinder (pathfinder)

Pathfinder is a grid traversal algorithm that uses dynamic programming in finding

a path on a 2-dimensional grid [15]. The input size used for this application during

my simulations was 400K. This input size is used by [16] on real hardware and by
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my collaborator during his experiments. This input size was sufficient for him to

characterize memory accesses and it is sufficient for my purposes.

4.3.17 Speckle Reducing Anisotropic Diffusion (SRAD)

“SRAD is used in ultrasonic and radar imaging applications” [15]. It removes

speckles in an image without removing important features. Speckle removal is ac-

complished by using a partial differential equation algorithm. [12]. Rodinia includes

two versions of this benchmark. My collaborator used the second version which makes

more use of the GPUs shared memory. I match my collaborators choice to run this

benchmark for 10 iterations, instead of 100 used in [12], due to time constraints.

4.3.18 Streamcluster (streamcluster)

Streamcluster is a dense linear algebra benchmark. The benchmark tries to find

the number of medians for points such that every point is near its center. Originally

from the Parsec benchmark suite, this version was parallelized by making the “pgain”

function parallel [15]. This function calculates the trade-off of creating a new point

against the savings of minimizing distances of two points x and y for all points.

For my experiments I use the simmedium input data size used in [17] mirroring my

collaborators choice due to time constraints [10].
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5. RESULTS

The key results of this thesis are summarized below.

• I designed fast memory fetching hardware to reduce redundant cache block ac-

cesses that can coalesce accesses across a warp significantly faster when using

observed monotonic access trends, but still finds unique accesses when mono-

tonicity does not hold.

• Even though the address monotonicity property largely holds for the Rodinia

benchmark suite, coalescing designs did not increase performance of these bench-

marks. I offer preliminary evidence that the latency of slow coalescing is hidden

by the GPU’s natural latency tolerance mechanism. With reduced latency tol-

erance, the performance gap widens.

I expand on each of the above results below.

5.1 Delay Results

5.1.1 FO4 circuit and clock period selection

To calibrate FO4 delays, I used the the circuit shown in 4.1 from section (4.1.2).

To avoid corner cases where the inverter does not drive other inverters (e.g., group

three) or are not driven by other inverters (group one), we considered the delay of

inverters from group 2 to be an FO4 delay. All other delays are normalized to this

FO4 delay unit.

We assume that a single clock cycle should accommodate the monotonicity detec-

tion circuit which amounts to 48 FO4 and 56 FO4 for 32 and 64-wide vectors. These

numbers also correspond to observed trends wherein modern CPUs (with about 16-20
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FO4 delays) use a 3GHz clock speed. GPUs which are typically clocked at 1/3rd of

that delay (e.g. 1GHz) should have thrice that clock period. Further, because these

delays are approximate we also explored above and below the 48 FO4 delay estimate

to 40 and 56 FO4 delays per cycle.

5.1.2 Coalescing Hardware

The results for all 3 coalescing hardware components are discussed below.

The Baseline Coalescer

My implementation of this circuit takes 56 FO4s, for 32 addresses. It takes 112

FO4s, to complete for 64 addresses.

Fast Neighbor-to-Neighbor Coalescer

This circuit is extremely fast for 32 and 64 addresses. The delays are the same

because the critical path for either circuit is only 4 elements deep in order to compute

results. This translates to 5 FO4s latency for these circuits. As we see below, the

clock critical computation for our design is the monotonicity detector rather than the

neighbor-to-neighbor coalescer.

Monotonicity Detector

This circuit takes 46 FO4s to compute monotonicity for 32 addresses, and 55 FO4s

for 64 addresses. The delay results for the circuits are listed in the tables below in

cycles. As you can see, the delays significantly grow with the number of threads in a

warp.

In general, the delay results support the key claims that fast-coalescers can exploit

monotonicity to speed up coalescing.
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Table 5.1.
Delay results for 32 address warp

Clock Delay (FO4) Näıve Coalescer (cy-

cles), [55.92 FO4]

Fast coalescer (if

monotonic)

40 2 2

48 2 1

56 1* (56 vs. 55.92) 1
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Table 5.2.
Delay results for 64 address warp

Clock Delay (FO4) Näıve Coalescer (cy-

cles), [112.25 FO4]

Fast coalescer (if

monotonic)

40 3 2

48 3 2

56 3 1 (56 vs. 55.17)

5.2 Architectural Simulation Results

Simulations using GPGPUSim (recall the Tesla-like configuration from 4) are

shown in 5.1. The simulations plot normalized execution time (lower is better) on the

Y axis and benchmarks from the Rodinia suite on the X axis. The key result is that

there is no meaningful performance difference between the fast and slow coalescers.

Even the ideal coalescer which always completes in 1-cycle is no different from the

slow coalescer which always takes 3 cycles.

To understand this surprising result, consider the two possible implementations

of coalescing. One alternative is to implement it as a blocking function wherein the

whole pipeline stalls for 3 cycles whenever the slow coalescing has to occur. This

approach would indeed show the slow down because of coalescer latencies that are

exposed. The second and more sophisticated alternative, which is the one I imple-

mented, does indeed delay the affected warp by 3 cycles. However, it allows for other

warp contexts to swap in and use the pipeline instead. Such a design allows for the

GPUs natural latency tolerance mechanisms to hide the latency of coalescing. How-

ever, if the fixed number of warp contexts is reduced, coalescer latency eats into the

available latency tolerance. To further explore if this hypothesis is valid, I evaluate
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6. RELATED WORK

My collaborator Calvin Holic investigated the monotonicity of intra-warp memory

accesses in his thesis [10]. He showed that the majority of Rodinia benchmarks

have very high rates of monotonicity (greater than 98%). He speculated that these

observations could be used to influence the design of memory coalescing hardware

that would only require neighbor-to-neighbor comparisons within a warp in order to

find unique addresses.

Bakhoda et.al. discuss their extensions to GPGPU-Sim in [18]. They discuss Co-

operative Thread Array (CTA) distribution and saturation characteristics, intercon-

nection designs, memory coalescing hardware, and caching of the different memories

on a GPU. With respect to the simulator, they discuss the warp scheduler. They

state: ”Every 4 cycles the round robin scheduler issues a warp that is ready. The

simulator skips warps, such as those waiting on global memory accesses, and sched-

ules those that have threads that are ready for execution. Therefore, throughput is

maintained and long latency operations are tolerated in this way.” They mention that

for certain applications, performance can be improved by alleviating contention in the

memory system. This can be alleviated by not running the full number of threads

allowed by hardware.

They go on further to discuss the intra-warp memory coalescing they implement.

They group memory accesses into 32 byte payloads that saturate the memory sys-

tem. Grouping accesses that fetch from contiguous memory regions fully utilize the

bandwidth of the memory system and increase performance [4] . They do not use

memory access characteristics to inform their coalescing hardware. In this paper

they discuss their implementation of an inter-warp coalescer that satisfies redundant

memory requests made by multiple warps running on the same shader core.
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Jang et.al. investigated techniques for improving memory efficiency of applica-

tions in [19]. They create a model that captures memory access patterns. By using

characteristic memory access patterns within loop nests they create a guide that can

be used to optimize software for GPU architectures.
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7. SUMMARY

Graphics Processing Units (GPUs) have increasing relevance for accelerating general

purpose computing by exploiting data-level parallelism (DLP). GPUs are able to

achieve energy-efficient computation by leveraging the SIMT programming model

on SIMD hardware. A result of this choice is that any divergence can significantly

degrade performance.

Memory coalescing is a key function that is necessary to minimize unnecessary

memory accesses and prevent memory-related warp divergence. The general problem

of memory coalescing requires all-to-all comparisons of memory addresses from all

threads in a warp, which can be slow. We leverage the observations of a previous

study that found that the intra-warp addresses are largely monotonic.

The main contribution of my thesis is the design of a coalescer that is fast when

warp addresses are monotonic (the common case) and still eliminates redundant cache

block accesses when they are not. Delay analysis shows that the fast coalescer is

significantly better than the traditional coalescer for both 32-wide and 64-wide warps.

While the effect on bottomline performance (as measured by simulation) is min-

imal, it is my conjecture that the traditional coalescer latencies are eating into the

available latency tolerance. A more careful architectural study on the opportunity

cost of eating into available latency tolerance is left for future work.
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