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ABSTRACT 
 

Typical thermal control systems automated based on the use of “widely acceptable” thermal comfort metrics cannot 

achieve high levels of occupant satisfaction and productivity since individual occupants prefer different thermal 

conditions. The objective of this study is to develop environmental control systems that provide personalized indoor 

environments by learning their occupants and being self-tuned. Towards this goal, this paper presents a new 

methodology, based on Bayesian formalism, to learn and predict individual occupant’s thermal preference without 

developing different models for each occupant. We develop a generalized thermal preference model in which our key 

assumption, “Different people prefer different thermal conditions” is explicitly encoded. The concept of clustering 

people based on a hidden variable which represents each individual’s thermal preference characteristic is introduced. 

Also, we exploited equations in the Predicted Mean Vote (PMV) model as physical knowledge in order to facilitate 

modeling combined effects of various factors on thermal preference. Parameters in the equations are re-estimated 

based on the field data. The results show evidence of the existence of multi-clusters in people with respect to thermal 

preference. 

 

1. INTRODUCTION 
 

Heating and cooling systems in buildings have been automated based on the use of “widely acceptable” thermal 

comfort metrics and simple heuristic rules. However, field studies show that individual occupants prefer different 

thermal conditions (Brager & de Dear, 1998; de Dear & Brager, 1998; Fanger, 1967, 1970). As a result, typical thermal 

control systems cannot achieve high levels of occupant satisfaction and productivity. Moreover, because of the 

conservative control settings designed for “widely acceptable” conditions, there is high probability of energy waste 

(Hwang et al., 2009; Nicol & Humphreys, 2009). Studies have recognized that the aforementioned problems can be 

resolved by incorporating building occupants in sensing and control frameworks, and tuning systems based on 

individual preferences to achieve personalized indoor environments (Auffenberg et al., 2015; Feldmeier & Paradiso, 

2010; Murakami et al., 2007). Learning occupant’s preference is an essential part of this innovative concept.  

 

Several studies have been conducted to develop methods for learning individual occupant’s thermal preference (Daum 

et al., 2011; Erickson & Cerpa, 2012; Ghahramani et al., 2014; Ghahramani et al., 2015; Guillemin & Molteni, 2002; 

Jazizadeh et al., 2014).  Although the studies have demonstrated the feasibility of learning occupants’ thermal 

preference and have shown that occupants’ thermal satisfaction has been improved by controlling HVAC systems 

based on it, there are two significant problems associated with the implementation of these methods in real buildings. 

First, learning requires a long-term data collection, since the rate of data collection is limited by the fact that occupants 

should not be exposed to potentially uncomfortable conditions for long time. Second, in order to avoid overfitting, the 

limited data availability imposes model structures that may be too simple to describe the human preference. Therefore, 

the majority of existing models consider only the effect of air temperature and ignore other parameters, e.g., local 



 

 3661, Page 2 
 

4th International High Performance Buildings Conference at Purdue, July 11-14, 2016 

airflow, mean radiant temperature that could be important. Although (Humphreys & Nicol, 2002) reported that a 

prediction made with the air temperature was not inferior to using a complex model in typical buildings, if the other 

environmental factors either do not highly co-vary with air temperature or not remain constant, the simple model may 

not provide reliable predictions. For example, in perimeter zones, occupants are affected by both solar radiation and 

long-wave radiation which may vary significantly according to the sky condition and the position of the sun (La 

Gennusa et al., 2007). Also, in cases that the HVAC system controls not only air temperature but also other parameters 

in order to create comfortable thermal environments (e.g., radiant heating/cooling systems or local systems exploiting 

the effect of increased air velocity), the simple air-temperature based model cannot predict occupant’s thermal 

preference. 

 

In order to overcome these limitations, a new method has been designed for learning and predicting individual 

occupant’s thermal preference based on a Bayesian approach.   

 

2. METHODOLOGY 
 

2.1 Model Structure 
Collecting enough data to train a model from an individual occupant is challenging especially if the model structure 

is complex and many parameters in the model have to be estimated. Therefore, we designed a method to develop a 

generalized thermal preference model based on a large dataset collected from various people and use the model for 

learning and predicting an individual occupant’s preference by explicitly encoding our key assumption: “Different 

people prefer different thermal condition” in the model instead of developing different models for each occupant. 

In order to develop the model, first, a graph representing connections between occupant’s thermal preference and 

related factors (i.e. environmental, human, contextual, hidden features, and occupant’s behaviors) has been developed 

based on our knowledge and beliefs. Fig. 1 shows a simplified version of the graph. Grey and white nodes correspond 

to observed and hidden random variables, respectively. The arrows of the graph represent conditional probabilistic 

relationships between the nodes. An important point is that individual occupant’s thermal preference characteristic, 

which is an unobserved variable, is included in the graph denoting our aforementioned key assumption. This study 

assumes that occupant’s thermal preference is mainly governed by an overall energy balance condition and the 

individual occupant’s thermal preference characteristic (bold elements in Fig. 1) for simplicity. 

 

 

 

Figure 1: A graph representing our knowledge and beliefs regarding occupants’ thermal preference 

 

The graph corresponds to a decomposition of the joint probability density of all the random variables (observed 

and hidden) (Eq. 1): 

 

 ( , , , ) ( | , ) ( | , ) ( ) ( )P y E z P y E z P E z P z Px x x  (1) 
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where y  denotes occupant’s thermal preference, E  denotes energy balance condition, z denotes thermal preference 

characteristic of an individual occupant and x denotes input variables (i.e. air temperature, MRT, air velocity, relative 

humidity, clo, met). In this study, y , i.e. occupant’s thermal preference, is discretized to take only three values: “want 

warmer”, “no change”, “want cooler”. Also, by assuming that there is an unknown number K  of possible clusters of 

people who have similar z , i.e. thermal preference characteristic, z is discretized to take K  values. In order to 

quantify the energy balance condition, imbalance between the actual heat flow from the body and the heat flow 

required for optimum comfort is used. 

 

Eq. 1 represents that the two sub-parts for ( | , )P y E z  and ( | , )P E z x  are required in the model. ( | , )P E z x  predicts 

the energy balance condition and since the energy transfer processes depend on the combined effects of the input 

variables, modeling this condition with classical regression methods is challenging and requires estimating many 

parameters for which we don’t have prior knowledge and a large dataset. This problem can be resolved by introducing 

physical knowledge and results of previous studies in the model and estimating fewer parameters with our prior 

knowledge. In this study, equations in PMV model developed by Fanger to predict occupant’s thermal sensation are 

used (Fanger, 1970). Although previous studies have shown that occupant’s thermal sensation and preference are 

different (Van Hoof, 2008), and the PMV model with its parameters estimated based on the laboratory study by Fanger 

cannot explain occupant’s thermal preference in real buildings (Barlow & Fiala, 2007; Corgnati et al., 2007; Wagner 

et al., 2007), it has significant advantages as it calculates the energy balance condition by combining the effects of 

major environmental factors based on physical mechanisms examined in previous research. Therefore, the equations 

are introduced in our model as a physical knowledge. However, 15 major parameters (Table 1) are re-estimated since 

they were originally estimated to predict thermal sensation based on data collected from chamber experiments. 

Moreover, since six of the major parameters ( 1:6ξ , in Table 1) may relate to the thermal preference characteristic z , 

the model is designed to allow each cluster to have its own values for these six parameters. ( | , )P y E z  maps the 

energy balance condition to occupant’s thermal preference, and since y  is ordered discrete variable, ordered logit 

function is used for the mapping (McCullagh, 1980). The model allows each cluster to have its own values for 

parameters in ordered logit function for the same reasons described above. 

 

The aforementioned parts are assembled into one model and the parameters are estimated using a large dataset along 

with the hidden cluster value of each occupant in the dataset (representing individual occupant’s thermal preference 

characteristic) with a fully Bayesian approach. The rationale behind our modeling choice is related to its inherent 

advantages: it allows encoding and testing our prior knowledge and beliefs about the relationships of the various 

variables; it can easily account for hidden (unobserved) variables; and it can seamlessly combine data from 

heterogeneous sources (Jaynes, 2003). Eq. 2 and Eq. 3 show the posterior density and likelihood of the modeling 

problem respectively. In order to develop the model in fully Bayesian approach, the parameters and the hidden cluster 

values should be sampled from the posterior distribution. However, since the posterior distribution is intractable 

analytically, MCMC (Markov Chain Monte Carlo) is used for the estimation. MCMC provides samples from the 

posterior distribution for each parameter, and it allows quantifying the uncertainty of the model and its prediction. In 

this study, we used Python package PyMC and select adaptive Metropolis-hasting algorithm for MCMC sampling 

(Fonnesbeck et al., 2015).  

 

Detailed information for the parameters and prior distribution for each parameter in the Bayesian estimation is 

presented in Table 1 and Fig. 2 shows the overall model structure. 
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Table 1: Estimated parameters and prior distributions in Bayesian estimation 

Parameter Related Element Prior Distribution 

,w θ  Cluster Specific Ordered logistic function Normal Mean: 0 Std.: 100 

1ξ  

Cluster Specific 

Balance between the actual heat flow from 

the body and the heat flow required for 

optimum comfort 

Exp. λ: 3.300  

2ξ  Normal Mean: -0.036 Std.: 0.013 

3ξ  Exp. λ: 35.71  

4ξ  
Cluster Specific 

Optimal skin temperature making human 

comfortable 

Normal Mean: 308.7 Std.: 0.658 

5ξ  Normal Mean: 0.028 Std.: 0.002 

6ξ  Cluster Specific Heat emission through sweating Normal Mean: 0.42 Std.: 0.099 

7ξ  
Shared 

Forced convective heat transfer Normal Mean: 12.1 Std.: 1.316 

8ξ  Natural convective heat transfer Normal Mean: 2.38 Std.: 0.263 

9ξ  

Shared Evaporative heat transfer from the skin 

Exp. λ: 1.0  

10ξ  Normal Mean: 5733 Std.: 131.6 

11ξ  Normal Mean: 6.99 Std.: 1.656 

12ξ  

Shared Clothing area factor estimation based on clo 

Exp. λ: 2.0  

13ξ  Exp. λ: 0.775  

14ξ  Exp. λ: 1.818  

15ξ  Exp. λ: 1.550  
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Figure 2: Overall model structure 

 

2.2 Individual Occupant’s Thermal Preference 

Exactly the same process is used to learn the thermal preference of a new individual occupant. When observations 

have been collected for the occupant, they are added into the large dataset, and the model is updated based on the new 

dataset. During this process, 1: 1:( | , , ), 1,, ...,new D D new newP z k y y k K x x , which denotes the probability of the 

occupant being in cluster k  is estimated. Then, occupant’s thermal preference under certain condition can be predicted 

by a mixture of sub-models for each cluster with the set of probabilities following Eq. 4. 

 

inference inference

inference infer

1: 1:

1: 1:ence 1: 1:

1

( , , , , , , )

( , , , , , , , ) ( | , , ),    0, ,

| ,

| , , 2
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K

D D new new new new D D new new

k

p y j y y

p y j y y z k P z k y y j





     

x x x w θ ξ

x x x w θ ξ x x
 (4) 

 

The overall process for learning and predicting individual occupant’s thermal preference is shown in Fig. 3. 

First, a large dataset collected from various people with which our prior knowledge, beliefs, and hypotheses can 

be tested is prepared. Then, a cluster model for general people dealing with observed data and unobserved hidden 

variables are developed. With the dataset and the model, a new individual occupant’s thermal preference can be 

learned and prediction problem can be solved. 

 

 

 
Figure 3: Overall process for learning and predicting individual occupant’s preference  
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2.3 Data 
A large dataset regarding occupant’s thermal comfort was collected by ASHRAE through RP-884 (de Dear et al., 

1997). This dataset consists of physical data (e.g., indoor and outdoor air temperature, MRT, air velocity, etc.), human 

attributes (e.g., age, gender, etc.), survey data (e.g., thermal preference, sensation, acceptability). In this study, a subset 

of this dataset with data collected from HVAC conditioned office buildings in North America is used to evaluate the 

feasibility of our method. The dataset includes 3,070 observations collected from 1,248 occupants and supports the 

rationale for re-calibrating the parameters in PMV equations instead of using the original PMV model. Fig. 4 shows 

the thermal preference distribution with respect to the original PMV values. As shown in the figure, some people do 

not prefer a warmer condition even though the PMV value is quite low. Moreover, a non-negligible percentage of the 

occupants prefer cooler conditions with PMV of less than -1. In other words, the PMV model with its original 

parameters cannot predict or explain occupant’s thermal preference in real buildings. 

 

 

Figure 4: Thermal preference distribution with respect to PMV (ASHRAE RP-884) 

 

 

 

3. RESULTS 
 

3.1 Single Cluster Model 
Since the thermal preference characteristic is a hidden variable, the number of clusters for the characteristic is also 

unknown. Therefore, the optimal number of clusters K  for this general model should be identified with the large 

dataset before using this method to learn and predict individual occupant’s preference. In order to determine the 

optimal number of clusters, models which have different number of clusters should be developed and evaluated. First, 

a model having a single cluster was developed, i.e. modeling without clustering. Fig. 5 shows estimated parameters 

(histograms) and Fanger’s original values (red vertical line) in the equations. As shown in the figure, most of estimated 

parameters are different from Fanger’s values. 

 

Fig. 6 (a) shows the probability distribution of an occupant being in each preference class (i.e., “want warmer”, “no 

change”, “want cooler”) with respect to the air temperature variation, where MRT is equal to the air temperature, air 

velocity is 0.1m/s, relative humidity is 50%, met is 1.2, clo is 0.65. In this figure, since each sample from MCMC is 

equally probable to be a model, the expected probabilities and the associated 95% credible intervals for each set of 

inputs are calculated with the sample sets, and plotted as solid lines and shaded areas respectively. Since the number 

of data in both lower and higher temperature ranges are insufficient, the width of the shaded area in these ranges are 

wider than that of the middle range. 

 

Fig. 6 (b) and (c) show the probability distribution for different air velocity (0.2 m/s) and clo (1.0) respectively. In 

accordance with general knowledge about thermal comfort, the shape of the probability curves changes. For example, 

curves move to the right with increased air velocity, i.e. people prefer warmer condition, and curves move to the left 

with higher clo, i.e. people prefer cooler condition.  

× 103 
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However, although the calculated probability distributions follow reasonable trends, since the model is developed with 

a dataset collected from various people and there are many contradicting observations, the shape of distributions is 

quite smooth, and the maximum probability of an occupant preferring no change is only around 0.6. As a result, 

although this model could be used for explaining general thermal preference of people, it cannot be used for learning 

and predicting individual occupant’s thermal preference. 

 

 

Figure 5: Estimated parameters (histograms) and Fanger’s original values (red vertical line) 

 

 

 

(a) 

    

(b) (c) 

Figure 6: Probability distribution of an occupant being in each preference class 

 with respect to air temperature change (MRT is equal to air temperature) 

(a) air velocity = 0.1m/s, relative humidity = 50%, met = 1.2, clo = 0.65 

(b) air velocity = 0.2m/s, relative humidity = 50%, met = 1.2, clo = 0.65 

(c) air velocity = 0.1m/s, relative humidity = 50%, met = 1.2, clo = 1.00 
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3.2 Two Clusters Model 
A model which has two clusters (i.e. 2K  ) was developed. Since developing a full model including PMV equations 

is computationally expensive, a simpler model was developed for a preliminary study. The simpler model is an ordered 

logit model of which input is only air temperature. Note that the full model is being developed, and the result will be 

reported. 

 

Fig. 7 shows MCMC samples for the parameters. The blue histogram and crosses are samples for one of the clusters 

and the green ones are samples for the other cluster. As shown in the figure, the blue crosses and the green circles for 

the parameter w  and θ  are clearly distinguished. This provides evidence that there is a high probability of classifying 

two or more clusters of people with respect to thermal preference characteristic.  

 

Fig. 8 shows the estimated hidden cluster value for each occupant in the dataset. Blue and red pixels denote each 

cluster respectively, each row of pixels in the figure is a set of samples sampled together from one MCMC iteration 

and the x-axis denotes each occupant. Therefore, each column means probability of the occupant being in cluster k  

(i.e. 1: 1:( | , ), 1or 2d D DP z k y k x ). Note that the order of occupants was sorted by the probability of the occupant 

being in cluster 1, 1: 1:( 1| , ),d D DP z y x in order to visualize the results more clearly. As shown in the figure, occupants 

on the left side of the figure are highly probable to be in the cluster 1, and occupants on the opposite side are highly 

probable to be in the cluster 2. This provides more evidence that there are two clusters of people having different 

thermal preference characteristic. If there was only one cluster, the results would show that most of the occupants have 

the same cluster value z . In case of occupants in the middle, since 1: 1:( | , )d D DP z k y x  is not highly biased, it can 

be explained that the occupants are between the two clusters or there are not observations to decide in which cluster 

the occupants belong too. For the occupants in the dataset, their thermal preference can be predicted by a mixture of 

sub-models for each cluster with 1: 1:( | , )d D DP z k y x  visualized in the figure following Eq. 4. 

 

Fig. 9 shows the probability distribution of an occupant being in each preference class with respect to the air 

temperature variation for each cluster. As shown in the figures, sub-models for a cluster of people preferring cooler 

condition and another cluster preferring warmer condition were developed respectively. Since the sub-models are 

developed for each cluster, the shape of distributions becomes sharper compared to that of the single cluster model 

and the maximum probabilities of an occupant preferring no change are higher than 0.6. These are good characteristics 

in terms of predicting occupant’s thermal preference. 

 

The results from the two clusters model imply that there is a high probability of existence of multi-clusters in people 

with respect to thermal preference characteristic. 

 

 

Figure 7: MCMC samples for parameters 
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Figure 8: Estimated hidden cluster value for each occupant in the dataset 

 

Figure 9: Probability distribution of an occupant being in each preference class 

 with respect to air temperature change for each cluster. 

 

 

4. DISCUSSION AND CONCLUSIONS 
 

In this paper, a new method for learning and predicting individual occupant’s thermal preference was introduced. The 

results show that the probabilities calculated by the models are in accordance with the general knowledge, and there 

is a high probability of classifying two or more clusters of people with respect to thermal preference characteristic. As 

a result, the two cluster model is more promising than the single cluster model considering our modeling purpose, i.e. 

learning and predicting individual occupant’s thermal preference. 

In this paper, a single cluster model and a two cluster model were qualitatively evaluated and compared with each 

other, however, the models should be also evaluated and compared in an objective and quantitative way, which will 

be presented in forthcoming publications by the authors. Also, the optimal number of clusters will be identified by 

testing different models and consequently, the hidden cluster value of a new occupant will be predicted.  

Since the authors believe that occupant’s thermal preference is affected by other factors, additional relationships and 

variables will be introduced in the general model and tested. Also, carefully designed experiments will be conducted 

in the future to enrich the dataset for this specific purpose. Since the Bayesian approach can seamlessly combine data 

from heterogeneous sources, all the data would be exploited for developing a general thermal preference model. 
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