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ABSTRACT

This paper reports a comparison of models for estimating the return time from a night setback condition. Fifty-seven
models are compared using simulation data that include the influence of climate, building mass, controller tuning,
room orientation, and the unoccupied control strategy on return time. Two-parameter models are recommended for
estimating the return time for both heating and cooling. The models use the room air temperature and an EWMA of the
normalized heating demand (for the heating model) or cooling demand (for the cooling model) as predictor variables.
The outdoor air temperature, a common input for predicting return time, is not used in the recommended models, but
influences the return time through its effect on the heating and cooling demands.

1. INTRODUCTION

Night setback is a common strategy used to reduce energy use in buildings. It involves decreasing the heating setpoint
and increasing the cooling setpoint throughout a building during unoccupied periods. When the building temperature
is within the range defined on the lower end by the heating setpoint and on the upper end by the cooling setpoint,
heating and cooling are not needed. Thus widening this range enables energy savings. To ensure occupant comfort and
maximize energy savings, the building temperature must be returned to the heating or cooling setpoint at occupancy,
but not before. The time required to warm up or cool down a building from a night setback condition is referred to as
the return time and algorithms for predicting return time are commonly referred to as optimal start algorithms.

Optimal start algorithms use a model for predicting return time. The model often has parameters that are learned over
time. Numerous studies in the literature describe comparisons of candidate models for predicting return time e.g.,
(Birtles & John, 1985; Levermore, 2000; John & Salvidge, 1986; Seem et al., 1989; Fraisse et al., 1999; Yang et al.,
2003; Vrecko et al., 2009). The models commonly employ the temperature of a representative room in the building
and outdoor air temperature as predictor variables. Predicting the return time from night setback can be particularly
difficult when the temperature of the representative room reaches either the unoccupied heating or cooling setpoint. In
the former case, the heating system will be turned on to provide heating to that room and other rooms served by that
system. If the control of the heating system results in the room temperature being maintained at a fixed value (e.g.,
at the unoccupied setpoint), the room temperature will remain essentially unchanged despite the fact that the load on
the room could be changing significantly. Furthermore, since the heating system is already being used to maintain the
room temperature at the current condition, the capacity available to raise the temperature to the occupied setpoint (when
optimal start begins) will vary depending on the load. In this scenario, the utility of the room temperature as a predictor
of return time is reduced because significantly different return times could result for the same room temperature.

The objective of this study is to compare candidate models for predicting return time from night setback using simu-
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lation data reflecting the influence of climate, building mass, controller tuning, room orientation, and the unoccupied
control strategy on the return time of a room. The ultimate goal of the work is to select return time models for heating
(i.e., a model for predicting the return time when heating is required) and cooling. This study expands on the previous
body of work on optimal start algorithms by considering a more comprehensive set of models, including traditional
model forms that use room and outdoor air temperature as predictor variables for return time, and new model forms
that include a measure of the heating demand or cooling demand as a predictor variable.

The paper is organized as follows. The next section describes the simulation study carried out to generate data for com-
paring candidate models. Next, the models are compared through an analysis of the fit of each model to each data set,
and the preferred heating and cooling models are selected. Finally, conclusions and future work are presented.

2. SIMULATION STUDY

To compare models for predicting the return time from night setback, data are needed that relate return time to room air
temperature, outdoor air temperature, and room heating or cooling demand at the beginning of the optimal start period,
and the room air temperature at the end of the optimal start period. (The optimal start period is the period of time
between the beginning and end of the Warmup or Cooldown state. These states are introduced in the next paragraph.)
Computer simulations were used to generate the data. The simulation platform consists of a Modelica building model
implemented in Dymola, and the optimal start algorithm implemented as a Matlab function in Simulink. The Dymola
and Simulink models run synchronously and exchange data through the middleware TISC (Kossel et al., 2006).

Figure 1 illustrates the simulation platform and the data exchange between the simulation tools. At each time step the
optimal start algorithm determines the state of operation (Unoccupied, Warmup, Cooldown or Normal) appropriate
for the current time and conditions and passes a binary variable Socc to Dymola indicating whether the building model
should use occupied or unoccupied setpoints for room temperature control during the next time step. The building
model executes using the appropriate room setpoints and then passes data back to the optimal start algorithm that are
used to determine Socc for the next time step. Included in these data are the occupied (Tc,set) and unoccupied (Tc,set,unocc)
cooling setpoints, the occupied (Th,set) and unoccupied (Th,set,unocc) heating setpoints, the room (Troom) and outdoor
(Tout) temperatures, and exponentially weighted moving averages (EWMAs) of the normalized room cooling (ūc) and
heating (ūh) demands. The data also include the current time (t), the time until the next occupied period (tnext), and the
occupancy status (O). The following sections provide more detailed descriptions of the building model and optimal
start algorithm. Important factors influencing return time that are considered in this study are then described.

2.1 Description of the Building Model
The building model in Figure 1 consists of either a single-room or multi-room model interfaced to a control model, a
weather model, an occupancy model, and models needed for data exchange (not shown). At each time step a setpoint
model provides the room heating and cooling setpoints to the control model based on the value of Socc. For the multi-
room model, a single room was selected from the five controlled rooms to be used in the optimal start algorithm. Thus,
when the variable Socc changes, indicating the setpoints for the representative room should be changed from unoccupied
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Figure 1: Simulation platform for optimal start data generation
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to occupied values (or from occupied to unoccupied), all the room setpoints are changed simultaneously.

The single-room model was adapted from the OneRoom_HVAC model distributed with the HumanComfort Library
(Michaelsen & Eiden, 2009) and is modeled as a perimeter room on an intermediate floor of a multi-floor building.
The multi-room model was adapted from the VAVReheat model distributed with the Buildings Library (Wetter et al.,
2014) and consists of a core room coupled to four perimeter rooms. Collectively, the five rooms are modeled as an
intermediate floor of a multi-floor building. Some of the heat transfer mechanisms in the room models are (Wetter et
al., 2011; Michaelsen & Eiden, 2009): 1) transient heat conduction through multi-layered walls; 2) heat conduction and
solar radiation transmitted through windows; 3) convection at interior and exterior surfaces of walls and windows; 4)
solar radiation distribution within the room; and 5) infrared radiation exchange between surfaces in the room.

The room models treat the air as well mixed. Individual rooms have a heat port that connects to the air volume of
the room. In the simulations, the room temperature is controlled by adding a sensible convective heat flow to the air
volume using this heat port. The air temperature of the individual room is input to a feedback controller (contained
in the control model) to determine the sensible heat flow needed to maintain the room temperature within the limits
defined by the current temperature setpoints. This sensible heat flow is the room heating (for positive values) or cooling
(for negative values) demand.

2.2 Description of the Optimal Start Algorithm
Figure 2 shows a detailed state transition diagram for the optimal start algorithm. As stated previously, there are four
states: Unoccupied, Warmup, Cooldown, and Normal. During the Unoccupied state, unoccupied heating and cooling
setpoints are used to control the room temperature. At each time step, the algorithm determines whether it is necessary
to initiate either heating (Warmup) or cooling (Cooldown) using a model for predicting the return time for the current
conditions. The model used for predicting the return time τ̂set for heating is given by

τ̂set = wh,1(Th,set − Troom) +wh,2ūh +wh,3Tout (1)

where wh,i are the heating model parameters and other variables are defined in the description of Figure 1. Equation 1
is used if the current value of the room temperature Troom is less than the occupied heating setpoint Th,set. The model
used for predicting the return time for cooling is given by

τ̂set = wc,1(Troom − Tc,set) +wc,2ūc +wc,3Tout (2)

where wc,i are the cooling model parameters. Equation 2 is used if the current value of Troom is greater than the
occupied cooling setpoint Tc,set. The predicted return time τ̂set calculated from Equation 1 or 2 is compared with
the time remaining until the next occupied period tnext and operation transitions to the appropriate state (Warmup or
Cooldown) if the time remaining until the next occupied period is less than or equal to τ̂set. If the conditions for applying
Equations 1 and 2 are not satisfied, or if tnext > τ̂set, operation continues in the Unoccupied state unless the occupancy
schedule forces a transition to the Normal state. Prior to a transition to either the Warmup or Cooldown state, variables
needed to update the parameters of the appropriate model must be stored.

The nomenclature τ̂set in Equations 1 and 2 emphasizes that the initial prediction of the return time uses the occupied
heating setpoint as the target temperature during Warmup and the occupied cooling setpoint as the target temperature
during Cooldown. The EWMA of the normalized heating demand ūh is determined by calculating the EWMA of the
sensible heating divided by the maximum possible sensible heating (determined from sizing simulations). The EWMA
of the normalized cooling demand ūc is determined in a similar way. One-minute sampled values and a smoothing
constant of 0.05 are used to calculate the EWMAs.

During the Warmup state, the HVAC system is heating the room to raise the room temperature to the occupied heating
setpoint temperature. If the room temperature rises above the target temperature (in this case the occupied heating
setpoint minus an offset ε), control transitions to the Normal state. If the HVAC system has inadequate heating capacity,
the room temperature may not reach the target temperature during theWarmup state. In this situation control transitions
back to the Unoccupied state at the end of scheduled occupancy for that day. Prior to transitioning from the Warmup
state, recursive least squares is used to update the heating model parameters provided the room temperature at the start
of Warmup was less than the target temperature.
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Unoccupied
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Figure 2: State transition diagram for optimal start algorithm

The offset parameter ε is important for situations when the temperature asymptotically approaches the setpoint. Without
the offset, the return time can include a period of time (perhaps significant in length) when the room temperature is
nearly equal to the setpoint, but approaching it very slowly. If the model parameters are updated with this data point, the
model will learn that it needs to start Warmup earlier (perhaps significantly earlier) for these conditions. The resultant
impact on comfort will be minimal, but the impact on energy use could be significant.

During the Cooldown state, the HVAC system is cooling the room to lower the room temperature to the occupied
cooling setpoint temperature. If the room temperature drops below the target temperature (in this case the occupied
cooling setpoint plus an offset ε), or scheduled occupancy begins, control transitions to the Normal state. Prior to
transitioning from the Cooldown state, recursive least squares is used to update the cooling model parameters provided
the room temperature at the start of Cooldown was greater than the target temperature.

During the Normal state, the occupied heating and cooling setpoints are used to control the HVAC system. Control
transitions to the Unoccupied state when the occupancy schedule changes to unoccupied.

At each time step, the optimal start algorithm uses internal variables and the inputs shown in Figure 1 to determine the
state of operation and, based on the state, outputs the binary variable Socc indicating whether occupied or unoccupied
heating and cooling setpoints are to be used to control the room temperature. In addition, for each day that requires
operation in either the Warmup or Cooldown state, the algorithm updates the appropriate model parameters using the
actual return time and predictor variable values for that day. In particular, the room setpoint in Equations 1 and 2 is
replaced by the actual room temperature at the end of the Warmup or Cooldown state.

2.3 Factors Affecting Return Time
The optimal start algorithm is intended for use in any building. As such, it is important to consider the main factors
that are anticipated to affect the return time, and to assess the performance of the prediction models on a data set
representative of these factors. The factors affecting return time considered in this study are climate, building thermal
mass, room orientation (e.g., east facing, north facing), controller tuning, and unoccupied control strategy.

To study the influence of climate, simulations were performed using TMY3 weather data (Wilcox &Marion, 2008) for
six U.S. cities representing a range of climatic conditions. The six cities considered are Baltimore, Boulder, Chicago,
Miami, Phoenix, and Seattle.
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The influence of the building mass on return time was studied by considering buildings with heavy and light construc-
tions. For the simulations utilizing the room model from the Buildings Library, the heavy construction buildings have
walls and floors that are the same as the Department of Energy (DoE) new construction reference large office building
(Deru et al., 2010) for a particular location. The external wall layers of the heavy construction buildings consist of
gypsum board, insulation, concrete, and stucco. The light construction buildings have walls and floors that are the same
as the DoE reference medium office building for a particular location. The external wall layers of the light construction
buildings consist of gypsum board, insulation and wood siding. The floors, ceilings and internal walls for the heavy
and light construction buildings are identical.

The simulations utilizing the roommodel from the HumanComfort Library considered only a heavy construction build-
ing. The external wall layer consists of concrete, insulation and a facade plate. The internal walls are hollow cinder
blocks and the floor is concrete.

Room orientation can affect return time due to the potential for significant direct solar heat gain through east facing
windows in themorning. For cooling, this will lengthen the return time compared to a day that is partly cloudy or cloudy,
whereas for heating, it will reduce the return time. East and north facing rooms are included in the simulations.

Controller tuning affects how aggressively the room temperature approaches the setpoint and therefore can influence
return time. Cases with "well-tuned" proportional-integral (PI) controller parameters and other cases with controller
parameters that result in "sluggish" and "very sluggish" controller behavior were simulated. The control loops of
interest are used to regulate the sensible heating and cooling provided to the rooms. In the first step of the tuning
process, relay auto-tuningwas used to determine the ultimate period and ultimate gain for the rooms. From these values,
the Tyreus-Luyben tuning relations (Seborg et al., 2004) were used to calculate the controller gains and integral times
representative of "well-tuned" controllers. Sluggish and very sluggish controller behavior are obtained by dividing the
well-tuned controller gain by five and ten, respectively.

The strategy used to control the room air temperature during unoccupied periods can impact the estimate of the return
time because it affects the room temperature, a common input variable to return time models. Two different strategies
are used in this study to control the heating and cooling during unoccupied periods, namely PI control and on-off
control. Consider a situation in which the nighttime heating load on a room is sufficient to cause the room temperature
to fall below the unoccupied heating setpoint. Assuming there is sufficient heating capacity, PI control will maintain
the room air temperature at the unoccupied heating setpoint, whereas on-off control will cause the heating to cycle on
and off and the room air temperature will rise and fall accordingly. During this period when the heating is cycling,
the room air temperature could vary by several degrees. Because the model for predicting the return time commonly
includes the room air temperature, the predicted return time could vary significantly over a 5-10 minute time period
despite the fact that the load on the room has likely not changed in any significant way during this time.

Equipment sizing also affects return time. Since the HVAC equipment was not modeled in this study, sizing was
performed by determining the maximum sensible convective heating and cooling inputs required to maintain the room
temperature between its occupied setpoints for a one-year period (i.e., the building was assumed to be continuously
occupied). The maximum sensible heating and cooling inputs for a given climate, building mass, and orientation are
scaled by 120% and 140% to simulate equipment oversizing.

3. SUMMARY OF SIMULATION RESULTS

The results described in this section are based on data from 140 simulations. The simulations are one year in length and
data were exchanged at one-minute intervals between the optimal start algorithm and building model. The multi-room
model was occupied from 7 a.m. until 8 p.m. on weekdays and unoccupied on weekends. The single-room model
was occupied from 6 a.m. until 6 p.m. on weekdays and unoccupied on weekends. Holidays were not simulated. All
simulations include cooling data (days with return times of greater than 1 minute in the Cooldown state), while 104
of the simulations also had heating data (days with return times greater than 1 minute in the Warmup state). Each
simulation took 3-6 hours to complete.

Histograms of the actual return times for heating and cooling are shown in Figure 3. Although difficult to see in Figure
3, the maximum return time for heating (888 minutes) is more than an order of magnitude larger than that for cooling
(68 minutes). This is because the Cooldown state occurs early in the morning when the cooling load is relatively small
compared to the peak load for which the equipment is sized, while the Warmup state coincides with the period when

4th International High Performance Buildings Conference at Purdue, July 11-14, 2016



1657, Page 6

the peak heating loads are experienced. It is evident that the histograms are heavily weighted toward shorter return
times. For heating, 90% of the data have a return time less than 111 minutes, and for cooling, 90% of the data have
a return time less than 34 minutes. The longest return times for both heating and cooling occur on Mondays after the
building has been unoccupied and in night setback operation for the weekend.

Plots of the return time versus candidate predictor variables for one simulation are shown in Figure 4 for both heating
and cooling. The simulation case used the multi-room model, Chicago weather and wall construction, heavy mass,
east orientation, very sluggish tuning, PI control during the unoccupied period and 20% oversizing. The plot label ΔT
corresponds to ΔTh = Tf − Ti for heating, where Tf and Ti are the final and initial room temperatures during Warmup.
For cooling, ΔT = ΔTc = Ti −Tf where Ti and Tf are the initial and final room temperatures during Cooldown. The plot
label ū corresponds to ūh for heating and ūc for cooling. The definitions of ΔT and ū also apply to tables that follow.
Although this is only one simulation out of more than 100, Figure 4 is illustrative when considering the results in the
next section.

4. COMPARISON OF MODELS

Table 1 lists the 57 models compared in this study. In Table 1, ai, bi and ci are the model parameters. The statistical
indices used for the model comparison and the results of that comparison are presented next.

4.1 Statistical Indices for Model Comparison
Results of the model comparison are reported in terms of two statistical indices. The root mean square of the prediction
errors compares the actual and predicted return times for a single simulation and a single model and is given by

RMSPEm,s =

¿
ÁÁÁÁÀ

n
∑
i=1
(τi − τ̂i,−i)2

n
(3)

where τi is the actual return time for observation i, τ̂i,−i is the predicted return time for observation i, n is the number
of return times for a simulation, and subscripts s and m correspond to a particular simulation case and a particular
model. τ̂i,−i is determined by removing observation i from the data set, performing a regression with the remaining
observations, and using the parameter estimates to predict the return time for observation i. This procedure is called
cross-validation with one sample left out. To summarize the performance of a model, the average RMSPE for each
model over all simulations is determined from
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Figure 3: Histogram of actual return times for heating and cooling
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Figure 4: Actual return time versus candidate predictor variables for a single simulation

RMSPEm =

S
∑
s=1

RMSPEm,s

S
(4)

where S is the total number of simulations. For each simulation, the difference between the root mean square of the
prediction errors for model m and the minimum root mean square of the prediction errors for all models is given
by

δm,s = RMSPEm,s − min
m=1 to 57

(RMSPEm,s) (5)

Thus, δm,s represents the performance of a particular model for a particular simulation relative to the best performing
model for that simulation. For eachmodel, the worst case relative performance across all simulations is given by

δm,max = max
s=1 to S

(δm,s) (6)

The statistic δm,max can help identify models that have poor performance on one or more simulations despite having
good performance on average. All other criteria being equal, preference in the model selection will be given to the
model with the smallest value of δm,max.

4.2 RESULTS
The top heating models based on their performance over all simulations are compared in Table 2. Each model in Table
2 has the lowest value of RMSPEm among a subset of models from Table 1. For example, among the models with three
parameters having a functional form τ̂ = f(ΔTh, ūh,Tout), model 51 has the lowest RMSPEm.
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Table 1: Models compared for estimating return time from night setback

No. Formula No. Formula

1 τ̂ = a1(ΔT) 30 τ̂ = a3(ΔT)3 + b1ū + b2ū2 + b3ū3
2 τ̂ = a2(ΔT)2 31 τ̂ = a2(ΔT)2 + a3(ΔT)3 + b1ū + b2ū2
3 τ̂ = a3(ΔT)3 32 τ̂ = a0 + a2(ΔT)2 + a3(ΔT)3 + b1ū + b2ū2
4 τ̂ = a0 + a1(ΔT) 33 τ̂ = a1(ΔT) + c1Tout
5 τ̂ = a0 + a2(ΔT)2 34 τ̂ = a2(ΔT)2 + c1Tout
6 τ̂ = a0 + a3(ΔT)3 35 τ̂ = a3(ΔT)3 + c1Tout
7 τ̂ = a1(ΔT) + a3(ΔT)3 36 τ̂ = a0 + a1(ΔT) + c1Tout
8 τ̂ = a0 + a1(ΔT) + a2(ΔT)2 37 τ̂ = a0 + a2(ΔT)2 + c1Tout
9 τ̂ = a0 + a1(ΔT) + a3(ΔT)3 38 τ̂ = a0 + a3(ΔT)3 + c1Tout
10 τ̂ = a0 + a1(ΔT) + a2(ΔT)2 + a3(ΔT)3 39 τ̂ = a1(ΔT) + a2(ΔT)2 + c1Tout
11 τ̂ = a1(ΔT) + b1ū 40 τ̂ = a2(ΔT)2 + c1Tout + c2T2out
12 τ̂ = a2(ΔT)2 + b1ū 41 τ̂ = a3(ΔT)3 + c1Tout + c2T2out
13 τ̂ = a3(ΔT)3 + b1ū 42 τ̂ = a0 + a1(1 −w)(ΔT) + c1wTout
14 τ̂ = a3(ΔT)3 + b2ū2 43 log τ̂ = a0 + a1(ΔT) + c1Tout
15 τ̂ = a3(ΔT)3 + b3ū3 44 τ̂ = a0 + a1(ΔT) + a2(ΔT)2 + c1Tout
16 τ̂ = a0 + a1(ΔT) + b1ū 45 τ̂ = a0 + a2(ΔT)2 + c1Tout + c2T2out
17 τ̂ = a0 + a2(ΔT)2 + b1ū 46 τ̂ = a0 + a3(ΔT)3 + c1Tout + c2T2out
18 τ̂ = a0 + a3(ΔT)3 + b1ū 47 τ̂ = a2(ΔT)2 + a3(ΔT)3 + c1Tout + c2T2out
19 τ̂ = a1(ΔT) + a2(ΔT)2 + b1ū 48 τ̂ = a0 + a2(ΔT)2 + a3(ΔT)3 + c1Tout + c2T2out
20 τ̂ = a1(ΔT) + a3(ΔT)3 + b1ū 49 τ̂ = a1(ΔT) + b1ū + c1Tout
21 τ̂ = a2(ΔT)2 + b1ū + b2ū2 50 τ̂ = a2(ΔT)2 + b1ū + c1Tout
22 τ̂ = a2(ΔT)2 + b1ū + b3ū3 51 τ̂ = a3(ΔT)3 + b1ū + c1Tout
23 τ̂ = a3(ΔT)3 + b1ū + b2ū2 52 τ̂ = a0 + a1(ΔT) + b1ū + c1Tout
24 τ̂ = a3(ΔT)3 + b1ū + b3ū3 53 τ̂ = a0 + a2(ΔT)2 + b1ū + c1Tout
25 τ̂ = a0 + a1(ΔT) + a2(ΔT)2 + b1ū 54 τ̂ = a0 + a3(ΔT)3 + b1ū + c1Tout
26 τ̂ = a0 + a2(ΔT)2 + b1ū + b2ū2 55 τ̂ = a3(ΔT)3 + b1ū + b2ū2 + c1Tout
27 τ̂ = a0 + a3(ΔT)3 + b1ū + b2ū2 56 τ̂ = a1(ΔT) + a2(ΔT)2 + b1ū + c1Tout
28 τ̂ = a1(ΔT) + a2(ΔT)2 + b1ū + b2ū2 57 τ̂ = a1(ΔT) + a3(ΔT)3 + b1ū + c1Tout
29 τ̂ = a1(ΔT) + a3(ΔT)3 + b1ū + b2ū2

Among the models with one or two parameters, model 13 is clearly superior based on the statistical measures in
Table 2. Performance exceeding that of model 13 can be achieved (e.g., by models 24, 51, 27, 55, and 32), but the
improvement comes at a cost of one or more additional parameters and does not appear to be sufficient to justify a more
complex model. It is interesting to note that models of the form τ̂ = f(ΔTh,Tout) perform poorly compared with the
best performing models of the form τ̂ = f(ΔTh, ūh). For instance, model 13 is far superior to model 35. Furthermore,
the top six models in Table 2 use ūh as an input, but only two of the six use Tout. Although it is only one simulation, it
is apparent from Figure 4 that the return time for the heating data are better correlated to ūh than Tout. Based on these
results, model 13 is recommended for predicting the return time from night setback when heating is needed.

The top cooling models based on their performance over all simulations are compared in Table 3. Note the prediction
errors quantified by RMSPEm are significantly smaller than those for heating in Table 2. This is expected because the
return times for cooling are significantly shorter than those for heating.

From Table 3 it can be seen that all the models perform well, with the exception of model 32. For model 32 there is
a single simulation for which the RMSPE is 862.5 minutes. This results in the relatively large value of RMSPEm, and
the extreme value of δm,max. Among the cooling models with one or two parameters, the performances of models 4, 11,
and 33 are nearly the same. Model 11 has a slightly larger value of RMSPEm than the other two models, but a smaller
value of δm,max and is recommended over the other two models for this reason. Better performance can be achieved
with models having more parameters, but the additional complexity is not justified based on these results. Thus, model
11 is recommended for use for predicting the return time from night setback when cooling is needed.
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Table 2: Top performing heating models for different numbers of parameters and inputs (Results in minutes)

Model No. No. Par. Formula RMSPEm δm,max
3 1 τ̂ = a3(ΔTh)3 66.43 141.15
7 2 τ̂ = a1(ΔTh) + a3(ΔTh)3 65.05 142.28
13 2 τ̂ = a3(ΔTh)3 + b1ūh 36.06 80.26
35 2 τ̂ = a3(ΔTh)3 + c1Tout 65.79 142.40
9 3 τ̂ = a0 + a1(ΔTh) + a3(ΔTh)3 64.24 142.62
24 3 τ̂ = a3(ΔTh)3 + b1ūh + b3ū3h 35.29 80.26
38 3 τ̂ = a0 + a3(ΔTh)3 + c1Tout 65.53 142.81
51 3 τ̂ = a3(ΔTh)3 + b1ūh + c1Tout 35.37 75.56
10 4 τ̂ = a0 + a1(ΔTh) + a2(ΔTh)2 + a3(ΔTh)3 63.62 146.29
27 4 τ̂ = a0 + a3(ΔTh)3 + b1ūh + b2ū2h 34.89 79.63
47 4 τ̂ = a2(ΔTh)2 + a3(ΔTh)3 + c1Tout + c2T2out 65.64 145.00
55 4 τ̂ = a3(ΔTh)3 + b1ūh + b2ū2h + c1Tout 34.79 75.56
32 5 τ̂ = a0 + a2(ΔTh)2 + a3(ΔTh)3 + b1ūh + b2ū2h 35.81 61.19
48 5 τ̂ = a0 + a2(ΔTh)2 + a3(ΔTh)3 + c1Tout + c2T2out 65.16 146.48

Table 3: Top performing cooling models for different numbers of parameters and inputs (Results in minutes)

Model No. No. Par. Formula RMSPEm δm,max
1 1 τ̂ = a1(ΔTc) 3.44 6.25
4 2 τ̂ = a0 + a1(ΔTc) 2.77 4.98
11 2 τ̂ = a1(ΔTc) + b1ūc 2.90 2.85
33 2 τ̂ = a1(ΔTc) + c1Tout 2.88 4.21
9 3 τ̂ = a0 + a1(ΔTc) + a3(ΔTc)3 2.60 5.04
16 3 τ̂ = a0 + a1(ΔTc) + b1ūc 2.21 1.75
36 3 τ̂ = a0 + a1(ΔTc) + c1Tout 2.60 4.23
49 3 τ̂ = a1(ΔTc) + b1ūc + c1Tout 2.46 2.15
10 4 τ̂ = a0 + a1(ΔTc) + a2(ΔTc)2 + a3(ΔTc)3 2.60 5.12
25 4 τ̂ = a0 + a1(ΔTc) + a2(ΔTc)2 + b1ūc 2.09 1.74
44 4 τ̂ = a0 + a1(ΔTc) + a2(ΔTc)2 + c1Tout 2.44 4.16
52 4 τ̂ = a0 + a1(ΔTc) + b1ūc + c1Tout 2.02 1.33
32 5 τ̂ = a0 + a2(ΔTc)2 + a3(ΔTc)3 + b1ūc + b2ū2c 8.43 861.90
48 5 τ̂ = a0 + a2(ΔTc)2 + a3(ΔTc)3 + c1Tout + c2T2out 2.58 4.08

To summarize, model 13 is recommended for predicting the return time from night setback for heating and is given
by

τ̂h = wh,1(ΔTh)3 +wh,2ūh (7)

Model 11 is recommended for predicting the return time from night setback for cooling and is given by

τ̂c = wc,1(ΔTc) +wc,2ūc (8)

Although the models recommended for predicting the return time for heating and cooling do not use the outdoor air
temperature as a predictor variable, the outdoor temperature affects the normalized heating and cooling demand and,
therefore, is indirectly included. By including an EWMA of the normalized heating and cooling demand in the models,
the recent history of the heating and cooling in the room, including intermittent heating and cooling required to keep
the room temperature within the bounds of the unoccupied setpoints, can be captured.
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5. CONCLUSIONS AND FUTUREWORK

The performance of 57 models for predicting return time from night setback was compared using simulation data
reflecting the influence of climate, building mass, controller tuning, room orientation, and the unoccupied control
strategy. The return times for heating were significantly longer than those for cooling and separate models are recom-
mended for the two cases. In each case, a two-parameter model is recommended that uses the room air temperature
and an EWMA of the normalized heating or cooling demand as predictor variables. The outdoor air temperature, a
common input for predicting return time, is not used in the recommended models, but is indirectly included through
its influence on the heating and cooling demands.

Future work will entail testing the preferred models using the same simulation test bed described here and will con-
sider the energy and comfort tradeoffs associated with practical implementation issues such as limiting the maximum
allowable return time and changing the unoccupied heating and cooling setpoints.
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