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ABSTRACT

We propose a multi-objective optimization algorithm for optimal energy storage by residential customers
using Li-Ion batteries. Our goal is to quantify the benefits of optimal energy storage to solar customers
whose electricity bills consist of both Time of Use charges ($/kWh, with different rates for on-peak and
off-peak hours) and demand charges ($/kW, proportional to the peak rate of consumption in a month). We
first define our energy storage optimization problem as minimization of the monthly electricity bill subject
to certain constraints on the energy level and the charging/discharging rate of the battery, while accounting
for battery’s degradation due to cycling and depth of discharge. We solve this problem by constructing
a sequence of parameterized multi-objective dynamic programs whose sets of non-dominated solutions are
guaranteed to contain an optimal solution to our energy storage problem. Unlike the standard formulation
of our energy storage problem, each of the parameterized optimization problems satisfy the principle of
optimality - hence can be solved using standard dynamic programming algorithms. Our numerical case
studies on a wide range of load profiles show that in the presence of demand charges, optimal energy storage
using the existing residential batteries can reduce the monthly electricity bill by up to 52% relative to the
case where no energy storage is used.

1.INTRODUCTION

One concern of electric utilities is that rapid integration of renewables such as distributed solar generation
may change customers’ consumption behavior in ways that current generating units cannot accommodate for
these changes. The demand peaks are of particular concern to regulated public utilities as these utilities are
required to maintain reserve generating capacity as determined by the demand peak. According to a recent
report by Arizona Public Services (APS (2014)), the demand peak in Arizona is projected to increase by 40%
over a period of next 15 years (See Fig. 1). In order to cover the cost of increasing the generating capacity
and influence the consumption behavior of rational customers, Arizona’s utilities Salt River Project (SRP)
and APS have recently incorporated demand charges in some of their pricing plans. Demand charges are
proportional to the maximum rate at which the electricity is consumed by the customer during the on-peak
hours within a month. Thus, in this new form of pricing, the amount paid by the customer within a month
is

J(q) ∶= 30pon ∫
Ton
q(t)dt + 30poff ∫

Toff
q(t)dt + pd sup

t∈Ton

q(t), (1)

where q(t) is the power supplied by the utility company. The first two terms in (1) are Time of Use (ToU)
charges, where pon ($/kWh) and poff ($/kWh) are the on-peak and off-peak prices. The third term is the
monthly demand charge, where pd ($/kW) is called the demand price. In (1), Ton and Toff denote the on-peak
and off-peak periods respectively.
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One approach for rational customers to reduce their consumption peaks (as a response to the integration
of demand charges) is energy storage (Dunn and Tarascon (1997)). Several papers have studied optimal
use of battery storage for residential customers (Bozchalui et al. (2012); Boaro et al. (2013); Huang and
Liu (2013); Wei et al. (2015)). Majority of the existing papers use Model Predictive Control (Giorgio et al.
(2012)), dynamic programming-based algorithms (Boaro et al. (2013); Huang and Liu (2013)) or neural
networks (Wei et al. (2015)) to find optimal storage programs under real-time or ToU pricing. Li et al.
(2011) have coupled the problem of optimal scheduling of battery and other controlled appliances with a
social welfare optimization problem at the utility level to find optimal battery schedules and optimal real-time
prices. Although optimal battery scheduling is a well-developed research area, to the best of our knowledge,
there has been no studies on optimal scheduling of residential-sized batteries in the presence of demand
charges.
From the mathematical standpoint, the presence of demand charges poses a significant challenge in solving
the underlying optimization problem. In particular, because of the existence of the term sup q(t) (a non-
separable term with respect to time) in the electricity bill defined in (1), the problem min J(q) violates
the principle of optimality (Bellman and Dreyfus (1962)). The principle of optimality provides sufficient
conditions for optimal control algorithms such as dynamic programming and Hamiltonian-based algorithms
to converge to an optimal solution. While works such as Oudalov et al. (2007) and Rowe et al. (2014) have
included some forms of demand charges in their storage optimization problems, they have not addressed the
problem of inseparability of the objective function and violation of the principle of optimality.
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Figure 1: Net retail load for typical summer
and winter days in Arizona for years 2014 and
2029 (projected)

In this paper, we establish a provably convergent
algorithm for optimal battery scheduling for resi-
dential customers, under a combined ToU and de-
mand pricing plan. We achieve this in two steps:
First, we replace sup q(t) in the objective function
with an lp approximation of q(t) for some large p.
Then, we construct a sequence of multi-objective
optimization problems (similar to Li and Haimes
(1991, 1987)) whose sets of non-dominated solutions
contain an optimal solution to the residential bat-
tery optimization as p tends to infinity. The ob-
jective functions of these multi-objective problems
are separable with respect to time - hence can be
minimized using the existing dynamic programming
algorithms. In a number of numerical case studies,
we applied our algorithm to the residential battery
optimization problem for a wide range of customer’s
load, while considering the effects of solar generation
and battery’s degradation over 5 years. We used one of the existing residential-sized battery in the market
as the source of energy storage. Our numerical analysis shows that optimal energy storage can reduce the
monthly electricity bill by up to 52% using SRP’s pricing plan (SRP (2015)). Moreover, we observed that
under a combined ToU and demand pricing, optimal energy storage is most effective (in terms of saving over
5 years) for those customers who have the highest monthly peak load within our range of analysis.

2.OPTIMAL ENERGY STORAGE PROBLEM

In this section, we first define a model describing the amount of energy stored in the battery and the battery
degradation due to cycling and depth of discharge. We then use this model to define our residential battery
storage optimization problem under a mixed ToU and demand pricing plan.

2.1 A Model for Battery Storage and Degradation
To model the amount of energy stored in the battery, we use the difference equation

e(d, k + 1) = e(d, k) + η u(d, k)∆t, (2)

International High Performance Buildings Conference at Purdue, July 11-14, 2016



3648, Page 3

where e(d, k) denotes the amount of energy stored in the battery at time t = k∆t of day d, u(d, k) denotes the
charging/discharging (+/−) rate at time t = k∆t of day d, and η denotes the charging efficiency. We denote
the initial capacity of the battery by CI , meaning that the initial energy level e(0,0) is bounded by CI .
Moreover, we denote the maximum charging and discharging rates by ū and u, meaning that u(k) ∈ [u, ū]
for all k.
We model the capacity of the battery at day d and time-step k as

cb(d, k) = (1 − β(d, k))CI , (3)

where β(d, k) denotes the battery’s degradation rate. We model the degradation rate as the sum of cycling
degradation and depth of discharge degradation:

β(d, k) = αn(d, k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

cycling degradation

+
T

∑
k=0

γ(d, k)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
depth of discharge degradation

. (4)

In (4), n(d, k) is the total number of cycles completed till time-step k of day d. We calculate the number of
cycles recursively as

n(d, k + 1) = n(d, k) + η∆t ∣u(d, k)∣
2 cb(d, k)

. (5)
In (4), γ(d, k) is the depth of discharge degradation at time-step k of day d. We use a model similar to the
Li-Ion battery model by Yoshida et al. (2016) to calculate γ(d, k) as

γ(d, k) =
⎧⎪⎪⎨⎪⎪⎩

X ζ(d, k) + Y ζ(d, k) ≥ 0.7
0 otherwise

, (6)

where ζ(d, k) is the depth of discharge at time-step k and is calculated as

ζ(d, k) = cb(d, k) − e(d, k)
cb(d, k)

.

In this paper, we consider one of the existing residential-sized batteries in the market as the battery used
by the residential customer. As declared by the manufacturer, this battery degrades to 80% of its initial
capacity CI = 10 kWh after completing 5000 round-trip cycles. To capture the 20% drop in the capacity, we
set the parameters α, X and Y in (4) and (6) to 1 × 10−4, 5.8 × 10−6 and −4 × 10−6 respectively.

2.2 Problem Statement: Residential Battery Storage Optimization
We define our battery storage optimization problem as minimizing the monthly electricity bill subject to
constraints on the battery’s energy-level and charging/discharging rates. To define the electricity charges
within a month, we divide each day into two off-peak periods from 12 AM to ton and toff to 12 AM. Let
us denote the electricity price during the of-peak periods by poff ($/kWh). The on-peak period starts at
ton and ends at toff. We denote the electricity price during this period by pon ($/kWh). In addition to the
on-peak and off-peak charges, we assume that customers are charged proportional to their maximum rate of
consumption during the on-peak hours in a month. We denote the proportionality ratio by pd ($/kW) and
call it the demand price. Given the prices poff, pon and pd, the ToU charge in a month is calculated as

Jt(q, poff, pon) =
N=30
∑
d=1

⎛
⎝
poff

ton−1
∑
k=0

q(d, k)∆t + pon
toff−1
∑

k=ton

q(d, k)∆t + poff

24/∆t

∑
k=toff

q(d, k)∆t
⎞
⎠
,

and the demand charge is calculated as
Jd(q, pd) = pd sup

k∈{ton,⋯,toff−1}
d∈{1,⋯,30}

q(d, k), (7)

where q(d, k) is the power supplied by the grid at time-step k of day d.

International High Performance Buildings Conference at Purdue, July 11-14, 2016



3648, Page 4

We now define the problem of optimal residential battery storage for a month as

min
u(d,k),β(d,k)∈R
e(d,k),n(d,k)∈R

Jt(q, poff, pon) + Jd(q, pd) subject to

q(d, k) = qa(d, k) − qs(d, k) + u(d, k) for d ∈ Φd and k ∈ Φk

e(d, k + 1) = e(d, k) + η u(d, k)∆t for d ∈ Φd and k ∈ Φk

e(d,0) = e(d − 1, 24
∆t
) + η u(d − 1, 24

∆t
)∆t for d ∈ Φd

0 ≤ e(d, k) ≤ (1 − β(d, k))CI for d ∈ Φd and k ∈ Φk

β(d, k) = αn(d, k) +
T

∑
k=0

γ(d, k) for d ∈ Φd and k ∈ Φk

n(d, k + 1) = n(d, k) + η∆t ∣u(d, k)∣
2 cb(d, k)

for d ∈ Φd and k ∈ Φk

u ≤ u(d, k) ≤ ū for d ∈ Φd and k ∈ Φk

e(0,0) = e0, n(0,0) = 0, (8)

where we define Φd ∶= {1,⋯,N} and Φk ∶= {0,⋯,24/∆t}. The second line of Problem (8) constrains the sum
of the power, u, given to the battery and the power, qa, consumed by the appliances to be equal to the total
power supplied by the grid and the solar Photovoltaics. Lines 3 and 4 enforce the change in the battery’s
energy level to be proportional to the power given to or take from the battery. Line 5 constrains the energy
level of the battery to stay below the battery’s capacity. Lines 6 and 7 model the battery’s degradation.
Finally, Line 8 constrains the charging/discharging rate to stay within a pre-specified bound determined by
the manufacturer.

3.SOLUTION METHODOLOGY: MULTI-OBJECTIVE DYNAMIC
PROGRAMMING

The residential battery optimization defined in (8) is an instance of the general optimal control problem

J⋆(z) ∶= min
uk∈Rm,xk∈Rn

J(x0, u0,⋯, xN−1, uN−1, xN)

subject to xk+1 = f(xk, uk), x0 = z for k = 0,⋯,N
xk ∈X for k = 1,⋯,N
uk ∈ U for k = 0,⋯,N − 1, (9)

where z ∈ Rn is a given initial state, and f ∶ Rn ×Rm → Rn, X ⊂ Rn and U ⊂ Rm are known. It can be shown
that if the objective function, J , of Problem (9) is time-separable, i.e., there exist maps ψk ∶ Rn×Rm×R→ R
for k = 0,⋯,N − 1 and ψN ∶ Rn → R such that

J(x0, u0,⋯, xN−1, uN−1, xN) = ψ0

⎛
⎝
x0, u0, ψ1(x1, u1, ψ2(⋯, ψN−1(xN−1, uN−1, ψN(xN))))

⎞
⎠
, (10)

for all uk ∈ Rm, where xk = f(xk−1, uk−1) for k = 1,⋯,N , then one can apply dynamic programming to
Problem (9) to find J⋆(z) for any z ∈ X. Dynamic programming uses the principle of optimality (Bellman
and Dreyfus (1962)) to reduce Problem (9) to a finite sequence of optimization problems indexed by the
time-steps k = 0,⋯,N (also known as Bellman’s recursive formula):

Vk(z) =min
v∈U
(g(z, v) + Vk+1(f(z, v))) for z ∈X and k ∈ Φk/N

VN(z) = h(z) for all z ∈X. (11)

It can be shown that J(z) = V0(z). Moreover, at each time-step k and state z, the minimizer v in (11) is
an optimal control. Unfortunately, the objective function of Problem (8) is not time-separable. Specifically,
the supremum function in Jd as defined in (7), can not be represented in the Form (10). Moreover, it can be
shown that the objective function of Problem (8) violates the principle of optimality. As a result, dynamic
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programming will not necessarily converge to an optimal solution. In this section, we resolve this issue in
two steps. First, we approximate the supremum function in Jd using the lp-norm of q(d, k), i.e.,

sup
k∈{ton,⋯,toff−1}

d∈{1,⋯,30}

q(d, k) ≈ p

¿
ÁÁÀ

30

∑
d=1

toff−1
∑

k=ton

q(d, k)p

for some large p ∈ N. We then use Theorem 1 to define a multi-objective optimization problem whose set of
non-dominated solutions contains an optimal solution to Problem (9) when p → ∞. Before presenting the
theorem, we define the set of non-dominated solutions as follows.

Definition 1 Consider the multi-objective optimization problem
min

uk∈Rm,xk∈Rn
[D1(x0, u0,⋯, uN−1, xN−1, xN),⋯,DM(x0, u0,⋯, uN−1, xN−1, xN)]

subject to xk+1 = f(xk, uk), x0 = z for k = 0,⋯,N
xk ∈X for k = 1,⋯,N
uk ∈ U for k = 0,⋯,N − 1,

for some z ∈ Rn,X ⊂ Rn, U ⊂ Rm, where the maps Di ∶ Rn×Rm×⋯×Rn×Rm×Rn → R are known. A solution
(x0, u⋆0,⋯, u⋆N−1, x⋆N−1, x⋆N) to the multi-objective problem is called non-dominated if there exists no other
feasible (x0, u0,⋯, uN−1, xN−1, xN) such that Di(x0, u0,⋯, uN−1, xN−1, xN) ≤ Di(x0, u⋆0,⋯, u⋆N−1, x⋆N−1, x⋆N)
for i = 1,⋯,M , with strict inequality for at least one i.

We now present the main theorem.

Theorem 1 Suppose there exist maps f ∶ Rn ×Rm,

G ∶ R ×⋯ ×R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M-times

→ R and Di ∶ (Rn ×Rm) ×⋯ × (Rn ×Rm)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(N−1)-times

×Rn → R

for i = 1,⋯,M such that:
I. (Time-separability of Di) For each i ∈ {1,⋯,M}, there exist maps ψi,j ∶ Rn × Rm × R → R for
j = 1,⋯,N − 1 and ψi,N ∶ Rn → R such that

Di(x0, u0,⋯, xN−1, uN−1, xN) = ψi,0

⎛
⎝
x0, u0, ψi,1(x1, u1, ψi,2(⋯, ψi,N−1(xN−1, uN−1, ψi,N(xN))))

⎞
⎠

(12)

for all uk ∈ Rm, where xk = f(xk−1, uk−1), k = 1,⋯,N ;

II. (Backward monotonicity Di) For each i ∈ {1,⋯,M} and any j ∈ {1,⋯,N}, if ψi,j in (12) satisfies

ψi,j

⎛
⎝
xj , uj , ψi,j+1(xj+1, uj+1, ψi,j+2(⋯, ψi,N−1(xN−1, uN−1, ψi,N(xN))))

⎞
⎠

> ψi,j

⎛
⎝
xj , vj , ψi,j+1(yj+1, vj+1, ψi,j+2(⋯, ψi,N−1(yN−1, vN−1, ψi,N(yN))))

⎞
⎠

for all xj ∈ Rn and for some (uj ,⋯, uN−1) and (vj ,⋯, vN−1), where xk = f(xk−1, uk−1) for k = j+1,⋯,N
and yk = f(yk−1, vk−1) for k = j + 1,⋯,N with yj = xj, then

ψi,j−1
⎛
⎝
xj−1, uj−1, ψi,j

⎛
⎝
xj , uj , ψi,j+1(xj+1, uj+1, ψi,j+2(⋯, ψi,N−1(xN−1, uN−1, ψi,N(xN))))

⎞
⎠
⎞
⎠

> ψi,j−1
⎛
⎝
xj−1, uj−1,

⎛
⎝
xj , vj , ψi,j+1(yj+1, vj+1, ψi,j+2(⋯, ψi,N−1(yN−1, vN−1, ψi,N(yN))))

⎞
⎠
⎞
⎠

for all xj−1 ∈ Rn, uj−1 ∈ Rm;
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III. (Monotonicity of J) G,Di and the objective function J in Problem (9) satisfy
J(x0, u0,⋯, xN−1, uN−1, xN) =

G(D1(x0, u0,⋯, xN−1, uN−1,XN),⋯,DM(x0, u0,⋯, xN−1, uN−1,XN)), (13)

where ∂G(D1,⋯,DM)
∂Di

> 0 for i = 1,⋯,M.

Then, an optimal solution to Problem (9) is a non-dominated solution of the multi-objective problem

min
uk∈Rm,xk∈Rn

[D1(x0, u0,⋯, uN−1, xN−1, xN),⋯,DM(x0, u0,⋯, uN−1, xN−1, xN)]

subject to xk+1 = f(xk, uk), x0 = z for k = 0,⋯,N
xk ∈X for k = 1,⋯,N
uk ∈ U for k = 0,⋯,N − 1.

See Li and Haimes (1987) for a proof. To apply Theorem 1 to our residential battery optimization problem,
defined in (8), let us start by defining the maps G and Di in theorem 1 as

D1(q(1,0),⋯, q(30,24/∆t)) ∶=
30

∑
d=1

⎛
⎝
poff

ton−1

∑
k=0

q(d, k)∆t + pon

toff−1

∑
k=ton

q(d, k)∆t + poff

24/∆t

∑
k=toff

q(d, k)∆t
⎞
⎠
, (14)

D2(q(1, ton),⋯, q(30, toff − 1)) ∶= ppd
30

∑
d=1

toff−1
∑

k=ton

q(d, k)p (15)

and
G(D1,D2) ∶=D1 + p

√
D2, (16)

where recall that p
√
D2 is the lp-norm approximation of the monthly demand charge, Jd, as defined in (7).

Moreover, let us define x ∶= [q, e, n] and v ∶= [u,β], where recall that q is the power supplied by the utility
company, e is the energy stored in the battery, n is the number of cycles, u is the power given to or taken
from the battery and β is the battery’s degradation rate. Then, Condition I of Theorem 1 holds if we
define

ψ1,N(x) ∶= poff ∆t x1,

ψ1,j(x,u,ψ1,j+1(y, v)) ∶=
⎧⎪⎪⎨⎪⎪⎩

pon ∆t x1 + ψ1,j+1(y, v,ψ1,j+2) if j ∈ Γ
poff ∆t x1 + ψ1,j+1(y, v,ψ1,j+2) if j ∈ {0,⋯,N}/Γ

(17)

and

ψ2,j(x,u,ψ1,j+1(y, v)) ∶=
⎧⎪⎪⎨⎪⎪⎩

ppd x
p
1 + ψ2,j+1(y, v,ψ2,j+2) if j ∈ Γ

0 if j ∈ {0,⋯,N}/Γ,
(18)

where N = 30 × 24/∆t and Γ is defined as Γ ∶=
30

⋃
i=1
{i ⋅ ton,⋯, i (toff − 1)}. Condition II follows immediately by

using ψi,j as defined in (17) and (18). Finally, D1,D2 and G defined in (14), (15) and (16) satisfy Condition
III:

∂G(D1,D2)
∂D1

= 1 > 0, ∂G(D1,D2)
∂D2

= 1

p
D

1−p
p

2 > 0

if we choose p to be even and

sup{∣q(1,⋯, ton)∣,⋯, ∣q(30, toff − 1)∣} = sup{q(1,⋯, ton),⋯, q(30, toff − 1)} ≥ 0.

This corresponds to the typical case where the consumption peak during the on-peak period is positive and
is greater than or equal to the maximum power sent back to the grid during the on-peak period. Since all
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the conditions of Theorem 1 hold, the multi-objective optimization problem

min
u(d,k),β(d,k)∈R
e(d,k),n(d,k)∈R

[D1(q(1,0),⋯, q(30,
24

∆t
)),D2(q(1,0),⋯, q(30,

24

∆t
))]

subject to
q(d, k) = qa(d, k) − qs(d, k) + u(d, k) for d ∈ Φd and k ∈ Φk

e(d, k + 1) = e(d, k) + η u(d, k)∆t for d ∈ Φd and k ∈ Φk

e(d,0) = e(d − 1, 24
∆t
) + η u(d − 1, 24

∆t
)∆t for d ∈ Φd

0 ≤ e(d, k) ≤ (1 − β(d, k))CI for d ∈ Φd and k ∈ Φk

β(d, k) = αn(d, k) +
T

∑
k=0

γ(d, k) for d ∈ Φd and k ∈ Φk

n(d, k + 1) = n(d, k) + η∆t ∣u(d, k)∣
2 cb(d, k)

for d ∈ Φd and k ∈ Φk

u ≤ u(d, k) ≤ ū for d ∈ Φd and k ∈ Φk

e(0,0) = e0, n(0,0) = 0, (19)

yields an optimal solution to our residential battery optimization problem defined in (8). Various algo-
rithms (e.g., ε-constraint by Miettinen (2012) and Envelope by Li and Haimes (1987)) can be applied to
Problem (19) to compute the set of non-dominated solutions. In this paper, we choose to use the lin-
ear scalarization approach in Boyd and Vandenberghe (2004). In this approach, the set of non-dominated
solutions to Problem (19) is the parameterized set of solutions to

min D1(q(1,0),⋯, q(30,24/∆t)) + λD2(q(1,0),⋯, q(30,24/∆t)) (20)

subject to the constraints of Problem (19), where λ is a positive parameter. Fortunately, the objective
function of Problem (20) is time-separable - implying that applying dynamic programming for each λ > 0
yields a non-dominated solution to the multi-objective Problem (19).

4.NUMERICAL CASE STUDIES

In this section, we apply our multi-objective approach, described in Section 3, to our residential battery
optimization problem, defined in Section 2, using a wide range of load profiles and two pricing plans. The
results are optimal charging/discharging rates as a functions of time, minimum electricity bills, and the
amounts which the customers save from optimal energy storage in each scenario.
We consider three load profiles qa1, qa2 and qa3 (corresponding to small, medium and large houses) with 5.66
kW, 8.09 kW and 12.14 kW as their maximum values over the summer and 3.89 kW, 5.55 kW and 8.32 kW
as their maximum values over the winter. These load profiles were synthesized based on the measured load
of a group of Salt River Project’s (SRP) retail customers in Arizona. As for the electricity pricing, we use
SRP’s E-22 plan and a modified version of E-27 P plan( SRP (2015)). The first plan only includes ToU
charges, whereas the second plan charges include both ToU and demand charges. The on-peak period for
E-22 plan consist of those hours from 4 PM to 7 PM. The on-peak period of plan E-27 P is from 1 PM to
8 PM for the months May to October. From November to April, the on-peak period of plan E-27 P consist
of those hours from 5 AM to 9 AM and from 5 PM to 9 PM. The electricity prices for all the seasons are
presented in Table 1. To synthesize a solar generation profile for each day, we created a random generator
which uses a time-varying mean and standard deviation of solar generation for a typical summer day and a
time-varying mean and standard deviation for a typical winter day. The means and standard deviations for
summer and winter were calculated based on the solar radiation data measured at Equestrian Manor station
in Scottsdale, AZ for the entire months July and January. In our scenarios, we consider Tesla’s Powerwall
battery as the source of energy storage. The two existing models of Powerwall battery possess CI =7 kWh
and CI =10 kWh as storage capacities, ū = 3.3 kW as the maximum charging/discharging rate and η = 0.92
as the charging/discharging efficiency.
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Table 1: SRP’s pricing plans (SRP (2015)): E-22 (ToU) and modified E-27 P (ToU & demand).
Summer: May, June, Sep. & Oct. Summer peak: July & Aug. Winter: Nov. through April.

Pricing plan Off-peak price
($/kWh)

On-peak price
($/kWh)

Demand price
($/kW)

E-22 (Summer) 0.0840 0.3033 0
E-22 (Summer peak) 0.0864 0.3588 0
E-22 (Winter) 0.0758 0.1215 0
E-27 P (Summer) 0.0371 0.0486 14.63
E-27 P (Summer peak) 0.0423 0.0633 17.82
E-27 P (Winter) 0.0390 0.0430 5.68

4.1 Case Study I: Analysis of The Benefits of Optimal Energy Storage Over a Month
We applied our multi-objective method to the battery optimization problem defined in (8), except that
we reduced the 30-day period (N = 30) in Problem (8) to 3 Summer peak days in order to simplify
the presentation of results. Accordingly, we scaled the demand price in Table 1 by a factor of 1

10
, i.e.,

pd = 1
10
× 17.82 $/kW. In Table 2, we have presented the resulting ToU and demand charges for 3 cus-

tomers with loads qa1, qa2 and qa3, and for pricing plans E-22 and modified E-27 P. Assuming that the
three-day simulation is repeated ten times, we calculated the monthly bill by multiplying the sum of 3-day
charges by ten. For comparison, we have also included the same results for the case where no battery
storage is used. For all the cases associated with modified E-27 P pricing, we solved Problem (20) for 500
values of the weighting parameter λ in (20), using time-step ∆t = 0.5 hour and l20-norm approximation
for the supremum function in (7). The resulting non-dominated solutions corresponding to the load qa2
are shown in Fig. 2. A Matlab implementation of our method calculated the 500 non-dominated solu-
tions in 14.11 minutes using a Core i7 machine with 16 GB of RAM. From Table 2 we observe that in the
presence of demand charges (as in modified E-27 P pricing), the customer with the largest house (heavy
load) achieves the greatest saving from optimal energy storage, whereas in the absence of demand charges
(E-22 pricing), savings from optimal storage are independent of load. In Fig. 3, we have shown the result-
ing optimal charging/discharging rates and optimal energy storage corresponding to the load qa2 for plans
E-27 P and E-22 respectively. Fig. 3 (Left) shows that in the presence of demand charges, optimal strat-
egy for battery storage involves precise peak shaving (power going into the battery decreases in response
to an increase in appliances load) during the on-peak hours. In the absence of demand charges, optimal
strategy is straightforward: Apply maximum discharging rate during the on-peak hours (see Fig. 3 (Right)).
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Figure 2: Non-dominated solutions for the
multi-objective battery storage optimiza-
tion problem using medium load profile qa2

4.2 Case Study II: Long-term Analysis of The
Benefits of Optimal Energy Storage

To quantify the long-term benefits of optimal energy
storage for residential customers, and assessing battery’s
degradation under optimal operation, we applied our
method to Problem (8) for the duration of 5 years. To
reduce the computation, we used the appliances load of
3 representative days for each month, assuming that the
same load is repeated 10 times during the month. We ac-
counted for the battery’s degradation during the entire
month by multiplying the degradation rate β (defined
in (4)) by a factor of 10. The resulting total bills (for
5 years) corresponding to using qa1, qa2 and qa3 as the
load profiles and modified E-27 P as the pricing plan are
shown in Table 3. For comparison, in Table 3, we have
also included the bills corresponding to no battery stor-
age. Moreover, we have included the cost of operating
the battery for 5 years as (CI −CF )/CI × $3750 consid-
ering that $3750 is the market price of Tesla’s Powerwall battery with CI = 10 kWh of capacity. CF denotes
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Figure 3: Optimal charging/discharging rates and energy storage during three Summer peak
days for q2a appliances load and E-27 P (Left), E-22 (Right) pricing plans

Table 2: ToU & demand charges for 3 days using Summer peak plans E-27 P (top) and E-22
(bottom), and light, medium & heavy loads: qa1, qa2 & qa3. (Left: with battery - Right: no
battery)

Load profile ToU
charge($)

Demand
charge($)

Monthly
bill ($)

Monthly
saving ($)

qa1 (light) 3.30 - 4.03 1.37 - 5.86 46.70 - 98.95 52.25
qa2 (medium) 7.45 - 8.20 3.78 - 9.49 112.30 - 176.91 64.61
qa3 (heavy) 14.39 - 15.15 9.95 - 16.38 243.43 - 315.04 71.61

Load profile ToU
charge($)

Demand
charge($)

Monthly
bill ($)

Monthly
saving ($)

qa1 (light) 2.38 - 11.26 0 23.88 - 112.64 88.76
qa2 (medium) 13.59 - 22.47 0 135.94 - 224.71 88.77
qa3 (heavy) 32.27 - 41.14 0 322.71 - 411.47 88.76

the remaining capacity after 5 years. We have also calculated the total saving from the battery (see Table 3)
as Bb − (Cb +Bn), where Bb denotes the electricity bill when optimal energy storage is used, Bn denotes the
electricity bill when no energy storage is used, and Cb denotes the cost of operating the battery. From the
table we observe that similar to our analysis in Section 4.1, the customer with the highest load (qa3) achieves
the greatest benefit from optimal energy storage. Specifically, the customer with load qa3 gains 21% and
32% greater benefits relative to the customers with qa2 and qa1 respectively.

5.CONCLUSIONS
We addressed the problem of optimal energy storage for residential customers who are charged for both
total energy consumed and peak rate of consumption (demand) during a month. Because of the presence of
demand charges, this problem violates the principle of optimality - a sufficient condition for Hamiltonian-
based algorithms and dynamic programming to converge to an optimal solution. We approached this problem
by defining a sequence of multi-objective dynamic programs, indexed by p, whose sets of non-dominated
solutions are guaranteed to contain an optimal solution to the original problem as p → ∞. Since the
principle of optimality holds for each multi-objective problem in the sequence, standard policy iteration and
linear scalarization can be used to find sub-optimal non-dominated solutions for each p. Our numerical case
studies over a wide range of customers’ load profiles show that optimal energy storage using the existing
residential batteries and solar generation can reduce the monthly electricity bill by up to 52%, in the presence
of demand charges. Moreover, our long-term numerical analysis over the load range, 5.6 kW to 12.1 kW,
shows that in the presence of demand charges and battery degradation, a customer with twice the peak load
gains 32% higher benefit from optimal energy storage over 5 years.

International High Performance Buildings Conference at Purdue, July 11-14, 2016



3648, Page 10

Table 3: Total bill (for 5 years), final capacity of battery, cost to battery & saving from storage
using light, medium and heavy load: qa1, qa2 & qa3. (Left: with battery - Right: no battery)

Load profile Total bill ($) Final
Capacity (kWh)

Cost to
Battery ($)

Total
saving ($)

qa1 (light) 1599.13 - 2352.73 9186.1 305.21 448.39
qa2 (medium) 3493.93 - 4318.25 9098.3 338.13 486.19
qa3 (heavy) 6730.27 - 7657.36 9103.2 336.37 590.72
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