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Introduction and Motivation

Heating, Ventilating and Air Conditioning units (HVAC) are
a major electrical energy consumer in the buildings.

* Most modern buildings still condition rooms with a set-point assuming
maximum occupancy rather than actual usage.
 Rooms are often over-conditioned needlessly.

. using a proper HVAC control
strategy that accounts for actual occupancy levels [Erickson et al.
(2011)].

* Any off-line strategy for pre-defined control parameters is unable to
achieve high accuracy occupancy estimation.
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HVAC, Occupancy and Set-point
Hierarchy of Occupancy based Control:

* The first step is estimation of the occupancy.

* The second step is determination of temperature set-point.
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Figure 1 The importance of occupant in HVAC energy consumption
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Occupancy Heterogeneity

A typical occupancy profile of a office/conference
room in weekday.
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Gap Analysis

9 1) What is the probability for this room to be occupied? 9
® 2) How many people are in the room? ®

.

Discrepancies from measurements

NO practical estimation algorithm for occupancy and HVAC control

« Effects of occupancy on HVAC energy consumption;
 HVAC response to occupancy based HVAC controls;

Research Gaps
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Binary occupancy state

Use y(t) (7(t)) to denote the number for the room to be occupied
(unoccupied).

For next time step (t + 1)
If the room is occupied, we do y(t+1) =p(t)+1

If the room is unoccupied, we do nt+)=n(t)+1
Table 1: Binary count for () and 7)(j)

Actual Time | Time Sequence Count
12:00 AM 1 v(1) and 7(1)
12:30 AM 2 v(2) and 7(2)
11:00 PM 47 v(47) and 7(47)
11:30 PM 48 ~(48) and 7(48)
* So the probability to be occupied 1s denoted as: P(j) = - (jf;:i);(j) forj=1---48.
¢ So the probability NOT to be occupied is denoted as: P(j) = %ﬁ})m fory=1---48.
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Kalman Filter and Expectation Maximization (EM)
algorithm

 EM s a filter-based iterative numerical scheme to compute maximum
likelihood estimates of the parameters given the measurement data.

« State-space model used on-line and updated with new observations

State equation Trp+1 = Arzy + Brwy

ve = Ciwi+ Divy

where zr+1 € R™*! (R"*! denotes the space of real vectors of dimension n x 1) is the state that characterizes the
occupancy: it is a variable of the time series {z;. } determined by the previous state 2, and the noise term wj, € R™*!
introduced at each k. Ay € R"*™ and B, € R™*™ are corresponding coefficients.

* Unknown system parameters S, = {Ax, Bx, Cx, Di} and states {x; } can be
estimated through a finite set of received signal measurement data.

#,OAK RIDGE

. National Laboratory



Finite state automata (FSA)

Input/output behavior of FSA can be reconstructed by General
Systems Problem Solver (GSPS) [George Klir, 1969].

round time (vy) occupancy (v2) input  output  count likelihood
11 ) a a 47 0.959
10 10 ® aad b 2 0.041
9 19 @ aab 4 v .
8 I3 @ b : }
7 7 a aba .
6 I6 a b 0 0
5 t5 b abb a 0 0
4 Iy a b : Oli
3 t b . o
1 £ a I 0.33
| - il 2 0.67
a 0 0
 a: Occupied ui b 1 1
« b: Unoccupied bbb g 2 ?
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Temperature setting algorithm

Discomfort tolerance index a is
defined to model consumer choice on
thermal comfort, which is used to

capture the

trade-off between thermal comfort

Algorithm 1 Temperature Setting Algorithm

and enerqy cost.

High discomfort tolerance (i.e., a > 0);

Low tolerance (a = 0).

1: Step 1:
Initialize o
3: Step 2:
4 ne —T"“T""” +1
5: for all hour 1 = 1 to 48 do

6:  Range < max(0y) - min(Oy)
7. ro< min(Oy)
8: end for

9: if a =0 then

10: Gotostep 3
11: else

122 Gotostep 4
13: end if

14: Step 3:
15: for all set-powtj (j = 1 ton) do

" Range
16: i1 % Vs

17: Goto Step 5

18: end for

19: Step 4:

20: for all set-powntj (j = 1 ton) do

2ED-2
A: R 1+Range*——~(1_2,,,)

22: end for

23: Step 5:

24: for all hour h =1 t0 48 do

% T3« kargmin{j: Op <15} - 1] + Tin
26: end for
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Experiment setup

We use a segment of real occupancy data, “10/13/2010 ~ 4/5/2011".
The sampling interval is 30 minutes, so any sensor collects 48
occupancy samples each day. i.e. we have 8352 samples.

Natural questions which arise are: ?

1) What is the probability for this room to be occupied? (Binary
Occupancy)
2) How many people are in the room? (Detailed Occupancy)
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Results: Binary occupancy using GSPS
model

Estimated probability of occupancy
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Results: Occupancy estimation
using GSPS model

Estimate detailed number of people

14

12

Real Current Measurements ——— Real Current Measurements
-—+4—- GSPS (5000) - —— - GSPS (5000)

Occupancy
Occupancy

Samples (30 Mins.) Samples (30 Mins.)

(a) Occupancy estimation using GSPS model 3000 points (b) Occupancy estimation using GSPS model 5000 points
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Results: Occupancy estimation using
EM algorithm

Estimate detailed number of people

AL L
Estimation using EM
True Measurements
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(a) Occupancy estimation using EM algorithm
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Comparison of results

Root mean square error (RMSE): Accuracy:

MSE(D) = ]lv Z:I(O(k) —0(k)).

RMSE(0) := \/ MSE(0)

acc (0) =

1 (O(k)) := {

N - T 1(0k) - O(k))

N

where O and O are true and estimated occupancy. respectively: and 1 (O(k)) is given as:

1 ifO(k) >0,
0 otherwise.

Comparison of binary estimations :

Comparison of detailed occupancy
estimation y

Methods Estimation | Accuracy
RMSE
Probability counting 0.206 0.683
GSPS (3000) 0.094 0.889
GSPS (5000) 0.086 0.912
Methods Estimation Accuracy
RMSE
GSPS (3000) 3.078 0.700
GSPS (5000) 2.646 0.715
EM 3.715 0.615
%OAK RIDGE
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Results: Detailed temperature set-points
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Summary

* Proposed method based on FSA and EM achieves high accuracy
occupancy estimation.

e Also:

* Provides an effective algorithm to automatically assign reference
temperature set-points based on the occupancy information.

* FSA needs big training data while EM does not.

* Uses real occupancy data to estimate binary (on/off) as well as
detailed occupancy amount.

o Future work:
 Incorporate with advanced occupancy detection/tracking algorithm

* Apply the proposed occupancy estimation and temperature setting
strategy into control design problem
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Thank you!
Questions?
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