

Sensitivity Analysis For The PMV Thermal Comfort Model and The Use of Wearable Devices to Enhance Its Accuracy

Mohammad H Hasan, Fadi Alsaleem ,Mostafa Rafaie Wichita State University, Department of Mechanical Engineering Contact Information (316-978-6381, fadi.alsaleem@wichita.edu)

July 11 -14, 2016

Predicted Mean Vote

Environmental Factors

- Air temperature (convection heat transfer)
 - Relative Humidity (evaporative cooling)
 - Air Velocity (forced convection)
 - Radiant Temperature (radiation)

Personal Factors

- Metabolism (heat generation)
 - Clothing (heat resistance)

Predicted mean Vote

- Environmental Factors Simulation
- Personal Factors Simulation
- Sensitivity Analysis
- Metabolism Estimation
- Conclusion
- Future Works

2-D Comfort Zone

Comfort zone is affected by temperature, humidity, and air velocity

Multi Dimensional Comfort Zone

Complete effect of the environmental factors

- Environmental Factors Simulation
- Personal Factors Simulation
- Sensitivity Analysis
- Metabolism Estimation
- Conclusions
- Future Works

2-D Comfort Zone

The comfort zone is highly affected by clothing and metabolism in a nonlinear fashion

Multi Dimensional Comfort Zone

Environmental factors and the metabolic rate combined effect

Multi Dimensional Comfort Zone cont.

Factors of highest impact for comfort

- Environmental Factors Simulation
- Personal Factors Simulation
- Sensitivity Analysis
- Metabolism Estimation
- Conclusion
- Future Works

Sensitivity

- Comfort graphs show the qualitative sensitivity of comfort zone to different parameters
- Quantitative sensitivity can show the absolute effect of each parameter

$$S_x[f(x, y, z)] = \frac{\partial f(x, y, z)}{\partial x}$$

Metabolic Rate Sensitivity

Sensitivity to Other Parameters

Sensitivity Summary

Parameter		Sensitivity (mean)	Sensitivity (range)
Air temperature (AT)		$S_{AT} \cong .34 {}^{\circ}C^{-1}$.04
Humidity (RH)		$S_{RH} \cong 0.007 RH^{-1}$	~0
Clothing (CLO>0.5)		$S_{CLO} = 1.3 \ CLO^{-1}$	1.22
Clothing (CLO<0.5)		$S_{CLO} = 5.53 \ CLO^{-1}$	2.8
Air Velocity (AV>0.5)		$S_{AV} =72 \ m^{-1} s$	0.87
Air Velocity (AV<0.5)		$S_{AV} = -2.2 \ m^{-1} s$	2.9
	<i>T</i> =20°C	$S_{MET} = 2.09 MET^{-1}$	3.37
Metabolism	<i>T</i> =22°C	$S_{MET} = 1.6 MET^{-1}$	2.0
(MET>I)	<i>T</i> =28°C	$S_{MET} = 0.79 MET^{-1}$	1.25

- Environmental Factors Simulation
- Personal Factors Simulation
- Sensitivity Analysis
- Metabolism Estimation
- Conclusion
- Future Works

 Actual measurement require oxygen and/or biproducts through breathing

Estimation is possible through smart devices

 Heart rate, pedometers and accelerometers as metabolic rate approximators

Fitbit for MET approximation

- Metabolic equivalent :
 Energy consumed at rest per hour per
 Per unit weight
- 135 +

- BMR calculation (Kcal/sec)
- Estimated Energy Rate EER

$$MET = \frac{EER}{BMR}$$

Fitbit data acquisition

Case Study of FitBit

Two graduate students (22 year-old male and a 35 year-old male)

The values of MET varies throughout the day making the actual comfort value higher than expected

- Environmental Factors Simulation
- Personal Factors Simulation
- Sensitivity Analysis
- Metabolism Estimation
- Conclusion
- Future Works

Conclusion

 It is possible to relate back to an already-made comfort surface to solve the inverse model

 The effect of Personal factors must not be underestimated

 The use of wearable devices improves the comfort model and a feedback program can help boost the accuracy

- Environmental Factors Simulation
- Personal Factors Simulation
- Sensitivity Analysis
- Metabolism Estimation
- Conclusion
- Future Works

Future Works Personalized comfort model

Wearable device biometric data can be used to inform individual comfort level

121

Thank you!