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1. Introduction

�To train black-box models for building energy forecasting, 

building data from normal operational lack sufficient information

�The focus of modeling has 

traditionally been on how to 

represent a data set well

However

�The impact of how such a data 

set represents the real system 

have not been well studied

�Mature excitation theories in 

system identification

However

� Lack of universal theory for 

generating training training in 

black-box models

�Study whether excitation theories in system identification can 

be used in black-box model training process
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1. Introduction
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Experiment One: 
Normal Operation Data vs. 
Excitation Data
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2. Experiment One: Normal operation data vs. excitation data

�Experiment Building: Virtual EnergyPlus Medium-size Reference Building

�Normal Operation Description: 

- Zone temperature set-point schedule: 

7

Week Days Saturday Sunday

Until: 06:00,26.7℃ Until: 06:00,26.7℃

Until: 24:00,26.7℃Until: 22:00,24.0℃ Until: 18:00,24.0℃

Until: 24:00,26.7℃ Until: 24:00,26.7℃



2. Experiment One: Normal operation data vs. excitation data

�Excite Object: Zone Temperature Set-point

�Excitation Details: 

- Signal: Multi-sine

- Frequency: 15 minutes

- Amplitude: [16,32]℃

�Black-box models: Kriging, RBF, PR, MARS, SVM

(1 Excitation + 1 Normal Operation) 

* 5 black-box models= 10 Models

� Index to evaluate model accuracy and extendibility: 

- Normalized Root Mean Square Error (NRMSE) of

- Training error

- and testing error: similar weather condition (accuracy), extended weather 

condition (extendibility)
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Experiment One
Results and Discussion
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3. Experiment One Results and Discussion
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3. Experiment One Results and Discussion

By using normal operation training data to train models, most of the black-box models have 

higher prediction accuracy than System Identification (SID) model (17% better). 

By using zone-temperate-excited training data to train models, the System Identification (SID) model 

has higher accuracy than most of the black-box models (48% better).

Training a System Identification (SID) model by using excited training data can raise the accuracy of 

forecasting (43% better). 

However, for black-box models, training them by normal operation data can achieve better model 

accuracy than training them by excited inputs and output (32% worse). 
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Experiment Two:
Different Excitation Schemes
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4. Experiment Two: Different Excitation Schemes

�Experiment Building: Virtual EnergyPlus Medium-size Reference 

Building

�Excite Object: Zone Temperature Set-point

�Excitation Details: 

- Signal: Pseudorandom Binary Signal (PRBS), Multi-level 

Pseudorandom Signal (MPRS), Multi-step Down Signal (MSDS)

- Frequency: 15min, 30min, 60min, 120min

- Amplitude: Small Range[24,26.7]℃, Medium Range[20, 30]℃; Large 

Range [16,32]℃

3 signal * 4 frequency * 3 amplitude = 36 excitation schemes
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4. Experiment Two: Different Excitation Schemes

�Black-box modeling algorithms: Kriging, RBF, PR, MARS, SVM 

36 excitation * 5 black-box modeling algorithms = 180 Models

�Index to evaluate model accuracy and extendibility: 

- Normalized Root Mean Square Error (NRMSE) of 

- 1. Training error

- and Testing error: 2. similar weather condition (accuracy), 3. 

extended weather condition (extendibility), 4. extended zone set-

point condition (extendibility)

180 Models * 4 kinds of training and testing error = 720 NRMSE to 

evaluate models and excitation effect 16



2h Excitation1h Excitation30m Excitation15m Excitation

5:00                            13:00       19:00 Time

4. Experiment Two: Different excitation schemes

Zone Temperature Set-point Excitation Signal Examples

Pseudorandom Binary Signal (PRBS), Small Range: [24,26.7]℃
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Experiment Two
Results and Discussion
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5. Experiment Two Results and Discussion

M-level Step-down > MPRS > PRBS

Medium Range [20, 30] > Small Range[24,26.7] > Large Range[16,32]

30min = 60min > 15min >> 120min

MARS > RBF > Kriging > PR > SVM
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Conclusions
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Future Work
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Thanks!

ANY QUESTIONS?

You can find me at:
lz356@drexel.edu
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