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ABSTRACT

Building energy systems comprising of many subsystems with local information and heterogenous preferences demand
the need for coordination in order to perform optimally. The performance required by a typical airside HVAC system
involving a large number of zones are multifaceted, involves attainment of various objectives (such as optimal supply
air temperature) which requires coordination among zones. The use of traditional centralized optimization involving a
large number of variables is very difficult to solve in near real time. This paper presents a novel distributed optimization
framework to achieve energy efficiency in large-scale buildings. The primary goals are to achieve scalability, robust-
ness, flexibility and low-cost commissioning. The results are presented using the proposed distributed optimization
framework based on a physical testbed in the Iowa Energy Center and demonstrates the advantages of the proposed
methodology compared to a typical baseline strategy. The paper outlines a real-life implementation of the proposed
framework based on the VOLTTRON™ platform, recently developed by the Pacific Northwest National Laboratory
(PNNL).

1. INTRODUCTION

Buildings are complex systems with a large variety of heterogeneous sub-systems involved in complex electro-mechanical
interaction. Hence, energy usage optimization poses a difficult technical challenge that needs to be robust, scalable and
easily deployable. In this context, a multi-agent based control strategy for optimal control of centralized air condition-
ing systems is proposed in (Cai, Kim, Putta, Braun, & Hu, 2015), where two distributed optimization algorithms have
been formulated to minimize the energy consumption satisfying the constraints on the load. Recently, (Cai, Braun,
Kim, & Hu, 2016) proposes a multi-agent control based demand response strategy for multi-zone buildings. In (Jiang,
Chinde, Kohl, Sarkar, & Kelkar, 2016), authors have proposed a modular optimization framework using Generalized
Gossip for building energy systems that naturally generalizes to the entire spectrum of “complete disagreement” to
“complete agreement (consensus)” which will be useful for handling multiple energy resources and constraints. This
paper implements and tests the effectiveness of the Generalized Gossip-based distributed optimization framework on
the Iowa Energy Center’s Energy Resource Station (ERS) testbed with the objective to reduce energy costs while main-
taining zone comfort. These goals are accomplished by implementing the proposed framework within a multi-agent
environment called VOLTTRON™.

VOLTTRON™ an open source multi-agent system platform, developed by PNNL (Akyol et al., 2012; Lutes et al.,
2014) which has several built-in features such as security, resource management etc., and leaving the developers to
write agents and control their behavior. The rationale (Weiss, 1999) behind multi-agent systems (MAS) is well suited
for diverse applications ranging from the internet to the building sector. These applications are inherently distributed,
complex and solutions to such problems using centralized architecture pose limitations to the hardware or software
involved. Multi-agent systems, as distributed systems have succeeded in solving complex problems while offering
several desirable features such as speed, efficiency, scalability, and flexibility etc., one such complex problem is the
case of buildings which is discussed in this paper.

There are several agent development platforms which support the MAS conceptual design such as JADE, ZEUS,
VOLTTRON™ etc. The description regarding these platforms and comparison studies in the context of microgrid
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applications is provided in (Kantamneni, Brown, Parker, & Weaver, 2015). It is noted that VOLTTRON™ is best
employed by facilities and building managers, since it efficiently utilizes sensor and instrumentation data. The use of
VOLTTRON™ platform has been demonstrated in several applications (Haack, Akyol, Carpenter, Tews, & Foglesong,
2013; Haack, Akyol, Tenney, et al., 2013) such as achieving the power consumption goal in a building while charging
Electric Vehicle within user schedule, control of an electric bus for a local transit company and coordinating commercial
building energy usage. In (Khamphanchai et al., 2014; Khamphanchai, Pipattanasomporn, Kuzlu, & Rahman, 2015)
a low-cost, user-friendly building energy management platform has been built on the top of VOLTTRON to facilitate
improved sensing and control of equipment in small and medium-sized buildings. The platform is aimed at improving
energy efficiency and participate in demand response by controlling the loads in buildings. Overall, VOLTTRON™
provides a natural way of designing and implementing distributed control algorithms.

The organization of the paper is as follows. In section 2, we discuss the problem setup. In section 3, we discuss the
generalized gossip based distributed optimization framework. In section 4, the overview and implementation aspects
of VOLTTRON™ are discussed followed by conclusions presented in section 5.

2. PROBLEM SETUP

Building are complex energy systems composed of multiple subsystems which have different mathematical structures
and evolve in different scales either in time or space. These components are interconnected due to which there are
inherent dependencies between the local and the system-wide events. The major issue that persists in the building sys-
tems research is to increase the energy efficiency in buildings, the reason for this is two folds: the percentage share in
the total energy consumption and the greenhouse gas emissions. These key issues are of paramount importance to meet
the national energy demands and the environment challenges. Building efficiency needs to be considered as a means
to provide occupant comfort and safe indoor environment and also building systems, in particular, has distributed na-
ture, which demands the need for distributed control architectures and optimization. There are several disadvantages
associated with the centralized optimization such as handling large scale systems with given time complexity and scal-
ability issues often lead to the path for distributed optimization. The computational complexity in the distributed setup
is addressed primarily based on the modularity in the modeling and control design phases. Distributed optimization
problems arise in various fields of engineering where the set of agents coordinate to perform the task optimally.

Multi-agent coordination and control framework is adopted and tested in diverse applications and in the context of
building systems application (Cai et al., 2015) provides a multi-agent control methodology for optimal control of
centralized air conditioning systems. We have proposed a modular optimization framework in (Jiang et al., 2016),
where the supervisory optimization scheme is completely decoupled from the data-driven micro-level modeling aspect
leading to a significantly scalable and flexible architecture. The primary goals of the proposed framework are to achieve
scalability, robustness, flexibility and low-cost commissioning. We present a formulation of the proposed methodology
with regards to an illustrative example scenario for air-side heating, ventilation and air-conditioning (HVAC) system
as presented in Fig. 1. In this energy supply-demand problem, individual zones become energy consumers that are
served with conditioned air by an air handling unit (AHU).

2.1 Air-side HVAC (AHU-VAYV) System

The general layout of a typical AHU-VAV HVAC system is shown in Fig. 1. While a central AHU provides conditioned
air to each variable-air-volume (VAV) box, VAVs in turn supplies conditioned air to each zone. From a supervisory
decision-making perspective, a few setpoints (e.g., supply air temperature (SAT) setpoint, mixed air temperature set-
point and duct static pressure setpoint) need to be determined for energy usage minimization while maintaining zone
comfort levels. For simplicity, we consider SAT setpoint as the optimization variable to demonstrate the effectiveness
of the proposed algorithm. Consider a situation where every zone in a building has the same comfort requirement and
the same external/internal loads. In that case, a common SAT setpoint can be determined that satisfies the requirement
of each zone. However, in reality due to the diversity of zones, AHU SAT is typically kept at a very low value (e.g.,
55°F) such that VAVs can reheat the supply air as needed before it enters the zones. Therefore, optimization can help
decide a variable setpoint that reduces the excess energy use in this ‘first cooling and then reheating’ process. SAT
setpoint can be further optimized based on the knowledge of outside air condition and zone thermal dynamics. For
more details on the problem description and the assumptions refer to (Jiang et al., 2016).
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Figure 1: Typical layout of an AHU-VAV HVAC system

3. DISTRIBUTED OPTIMIZATION USING GENERALIZED GOSSIP

This section describes a solution approach for the distributed building energy optimization problem formulated above.
Most of the material in this section is taken from (Jiang et al., 2016). The approach uses a recently proposed generalized
gossip-based algorithm. Theoretical contributions to the proposed framework can be found in (Jiang, Sarkar, & Kushal,
2015).

3.1 Background of Generalized Gossip protocol

Consider an undirected graph G = (V, A) consisting of N agents, where V = {1,2,.... N} and AV x V. If (i,j) € A,
then agent i can communicate with agentj. Let the distributed building energy optimization problem be defined on the
network as follows:

N .
minimize f{x) = ZI: f(x)

subject tox € X

M

where f : R — R are agent level objective functions (possibly convex or non-convex), X is a nonempty, closed, and
compact subset of R™. x is a vector whose i component is represented by x'.

The basic definitions (Boyd, Xiao, & Mutapcic, 2003; Johansson, Keviczky, Johansson, & H., December, 2008) and
assumptions used in this paper are:

Definition 1 : A vector g € RY is a subgradient of a convex function /: RM — R at a point z ¢ RY if

)2 fz) +g" (v -z),Vy e RY )

Definition 2 : The set of all subgradients of a convex function of fat z € R™ is called the subdifferential of f'at z, and is
denoted by 9f(z):
Nz) = {g e RYfY) 2 flz) +&" (v - 2), Yy e R} ©)

Assumption I (Subgradient boundedness): There exists a scalar G for all i = 1, ..., N such that
| ()2 < G, vg'(x) € Of (x), ¥x e X 4)

Note, this assumption can be derived from the Lipschitz continuity relationship.

A vector notation of the update law for the proposed algorithm (derived from (Nedic & Ozdaglar, Janury, 2009)
and (Sarkar, Mukherjee, & Ray, 2013)) for the optimization variable is as follows:

x(k+1) = (1-0)I1(k)x(k) + O(x(k) — V(k)). %)

where V (k) is the subgradient of / at x'(k) computed by agent i. IT € RY x R" is the agent interaction matrix. @ is the
user-defined control parameter.
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3.2 Optimization algorithm overview

The proposed supervisory optimizer aims to determine optimal AHU supply air temperature based on information
exchange among local zones. The crucial advantage of this framework is that local zones can use any local controllers
and suitable modeling scheme. However, as long as they can compute subgradient for local cost function for energy

optimization and achieving comfort, the supervisory control layer can run the generalized gossip protocol for global
energy optimization.

In this context, each local zone needs modeling of thermal dynamics in order to compute subgradients for their local cost
functions (refer (Jiang et al., 2016)). In this paper, although we use a data-driven ARX modeling scheme for zones,
any other technique with same input-output conditions can be seamlessly accommodated. However, the local cost
functions may be nonlinear and nonconvex and therefore, subgradients can be found using numerical differentiation.
The modeling and optimization scheme also consider the local controllers for heating/cooling coil in AHU and dampers,
reheat coils in VAV boxes. Currently, simple PI controllers are used for these local controllers (which is common for
most of the HVAC equipment in commercial buildings (Bengea et al., 2015).

The basic workflow of the supervisory control framework is illustrated in Fig. 2. In this framework, an optimization
interval is considered within which it is assumed that predictions from zone thermal modeling would be reliable, as well
as the optimized AHU supply air temperature setpoint, would be appropriate. The supervisory decision-making process
begins with subgradient-based optimization depending on the initial conditions. The building operation starts with
optimized AHU supply air temperature setpoint. After expiry of the optimization interval, the supply air temperature
setpoint is re-optimized based on current conditions. For validating the proposed algorithms scheme, a case study in

o @ @ ® . '
Building Building Building Time
operation operation operation —
i i i i i
Tsa_sp1 T, Tsa_sp2 T, Tsa_sp3 T m Tsa_spa
Tsa, - Tsa ... Tsar---
Optimization interval
— Generalized Gossip based Distributed Optimization

Initial
conditions

Figure 2: Workflow of the supervisory control framework
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Figure 3: AHU supply air temperature under supervisory control and baseline control with different outside
air temperatures.
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Figure 4: Zone temperature regulation during days with different outside air temperatures under supervisory
control.

this paper is performed on a simulation (one AHU, four zones) based on the physical Energy Resource Station testbed
in the lowa Energy Center (Center, 2010). A typical baseline supply air temperature schedule is considered where
the setpoint is kept constant at 55 °F. Moreover, the zone thermal modeling was performed using actual historical
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Figure 5: (a) Energy cost in 28 test days in winter; and (b) Within 6 days energy consumed in AHU, VAV and
by fans by supervisory control and baseline control.

data collected from the testbed during winter season. For validating the algorithm under different ambient conditions,
the testing period in this case study is one month. As shown in Fig. 3, optimized supply air temperature setpoint
varies under different ambient conditions and is different from the constant baseline condition. Zone temperature
regulation performance for all 4 zones with different heating/cooling setpoints during unoccupied and occupied hours
is shown in Fig. 4. The reason why local zone temperature control aims at approaching heating setpoint is because
the testing was performed in the winter season in order to save energy. Figure 5(a) shows that in all 28 days, zone
temperature by the proposed supervisory control scheme consumes less energy compared to baseline control. The
energy consumption during 6 representative days by AHU heating/cooling coils, VAV reheat coils and AHU fans under
baseline and supervisory control is shown in Fig. 5(b). The results demonstrate that in the supervisory framework
cooling/heating energy consumed in AHU and the fan energy is reduced compared to baseline control, which validates
the effectiveness of the proposed algorithm and control framework for HVAC systems.

4. VOLTTRON™ PLATFORM: OVERVIEW & IMPLEMENTATION

A new open source language-agnostic agent platform called VOLTTRON™ has been recently developed by PNNL
(Lutes et al., 2014; Haack, Akyol, Carpenter, et al., 2013) for smart city applications with built-in security and resource
management. Customized applications can be built on this platform for efficiently managing energy usage among
appliances and devices, including HVAC systems, lighting, and electric vehicles. Key features include: (i) real-time
data processing, (ii) automatic adjustment of data resolution and sampling frequency, (iii) data correlation from multiple
domains, and (iv) support for distributed sensing, optimization and control applications. A software architecture for
VOLTTRON™ based implementation of the proposed application is shown in Fig. 6(b). While data being used by
applications live on the message bus, historical data can be stored in a cloud service and used for future on- or off-line
uses. There are numerous database options of which, we consider SQLite as the VOLTTRON™ Historian which is very
simple because of the automatic database creation during the launch. Furthermore, it provides resource guarantees for
agents in the platform, including memory and processor utilization, authentication and authorization services, directory
services for agent and resource location.

Fig. 6(a) shows the general layout of the ERS testbed. It consists of eight zones divided into two for each direction,
East, South, West and North, respectively. The A test rooms ( East-A,South-A, West-A, Interior-A) are served by air
handling unit AHU-A, while B test rooms ( East-B, South-B, West-B, Interior-B) are served by air handling unit AHU-
B. The common and general service areas of the building are not typically used for research testing. All the test rooms
within the ERS are intended to simulate a typical office space and each room has approximately 266 ft* of floor space.
The building automation control system at the ERS is a modern commercial grade DDC system - Distech Controls’
EC-Net AX™ Web-based Multi-protocol Building Automation and Energy Management Platform(Center, 2010). The
system at our facility is a fully native BACnet system. The DDC systems is fully equipped with instrumentation and
senosrs required for various building energy efficiency related research. There are total 1200 monitoring and control
points with 600 of them collect data every minute. For the implementation purpose, we have considered A-test rooms
served by air handling unit AHU-A.
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Figure 6: (a) ERS Test bed; and (b) VOLTTRON™ based implementation of the proposed framework for super-
visory control of Building HVAC system; the Message Bus provides a common platform for sharing information
between applications, e.g., actuator scheduler, weather forecast service and optimization agent; historical data can
be stored in a cloud service built on VOLTTRON™ Historian (SQLite) or otherwise for future use.

4.1 VOLTTRON™ Agents: Description

The VOLTTRON™ user guide provides a systematic procedure, templates, and examples for developing agents and
to install the VOLTTRON™ platform, by which one can develop simple agents for their own purpose. In the proposed
setup we have built optimization agent on the top of VOLTTRON™ which avails the existing benefits. The agents
in VOLTTRON™ are given as follows: (1) BACnet Proxy agent (2) Master Driver Agent (3) Weather Agent (3)
Optimization agent (4) Weather agent (5) Listener Agent (6) Actuator Agent. The functionalities of individual agents
are described below:

1. BACnet Proxy Agent: Device communication on a network happens through the virtual BACnet device and this
agent is specifically used for communicating with the BACnet devices and managing the virtual BACnet device.

2. Master Driver Agent: Coordination among the drivers of devices is accomplished using this agent.

3. Weather agent: This agent interacts with remote applications such as online weather services like Weather Un-
derground (www.wunderground.com). The weather information is used by the Zone Model to calculate the
temperatures needed for computing the subgradients.

4. Optimization Agent: This agent serves the purpose of predicting the temperatures given the weather information
and the parameters of the zone model identified using the data from the ERS test bed. The algorithm described
in (Jiang et al., 2016) is implemented in Python to calculate the subgradients based on which the optimal AHU
supply air temperature (SAT) is calculated.

5. Listener Agent: It logs all the activity on the message bus and is useful in testing the agent functionality in terms
of publishing the required data. It can be used as a starting point for developing other agents.

6. Actuator Agent: This agent has the capability to assert control over the devices by accepting commands from
the agents and scheduling times to issue commands to devices.

Message Bus in VOLTTRON™ is a common place where data from all the agents and the devices are collected. All
agents use publish/subscribe mechanism to communicate with the other agents. All the data published onto the message
bus either by the devices or the agents will be collected by the historian and stores for retrieval or analysis purpose
such as plotting etc.
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4.2 Implementation

A detailed description of the steps from installing to configuring devices and writing agents can be found in (Lutes et
al., 2014). We briefly provide the implementation steps in our setting below:

« Install the VOLTTRON™ by following the steps given in user guide (Lutes et al., 2014) and move to the devel-
oper branch. ECLIPSE an integrated development environment (IDE) is used as a tool for agent development.

« The machine running the VOLTTRON™ is physically connected through Ethernet network to the DISTECH
network manager (router) to which all the individual devices of interest are connected. For the sake of conve-
nience, we have shown only the five devices (1AHU and 4 VAVs) in Fig. (6(b)).

« Since the Host machine is Windows, we installed Virtual Machine (VM) to run Linux and VOLTTRON™ and
configured VM to use a bridged adapter to avoid problems with different IP address.

« The immediate step after installing VOLTTRON™ is to find and configure the BACnet devices. The scripts
such as bacnet_scan and grab_bacnet_config files which are there in the VOLTTRON™ repository can be used
to detect the devices and generates a registry configuration file in CSV format for the BACnet driver which
consists of a list of point names. This points list can be changed based on user interest.

+ Configure the BACnet Proxy Agent by filling the address field in the configuration file with the IP address of
Linux machine and specify the subnet mask. Since the BACnet network is on a default port (47808) there is no
need to mention the port number.

 Setup the Master Driver Agent which consists of list device configuration files. For each device, we need to
create driver configuration file, CSV file and the entry in the Master Driver Agent configuration file.

« Import the VOLTTRON™ into ECLIPSE and launch VOLTTRON™, BACnet Proxy Agent, Master Driver
Agent and Listener Agent using the steps given in (Lutes et al., 2014). The output console of Listener Agent
displays the device topics and messages.

* Develop the Optimization Agent by subscribing to the data from the message bus and implementing the algorithm
scheme provided in section (3).

* Launching the Optimization Agent similar to other agents and it publishes the Supply Air Temperature (SAT)
setpoint to message bus. Launching Historian agent stores the data to the SQLite database.

» Launch the Actuator Agent and schedule the timing to override the SAT setpoint of the AHU device.

In this context, we have developed an Optimization agent and a screenshot showing the supply air temperature in the
output console is shown in Fig. 7.

5. CONCLUSIONS

This paper presents the implementation aspects of the Generalized Gossip-based distributed optimization for building
energy systems using VOLTTRON™. Optimization agent has been developed in VOLTTRON™ to realize the pro-
posed framework which generates the optimal supply air temperature setpoint. The future work is aimed at increasing
the scope of the optimization framework to entire air-side as well as water-side HVAC system and comparison of the
energy cost using the proposed framework with the existing framework at ERS testbed.
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Figure 7: Opitmization Agent implementation in VOLTTRON™
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