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ABSTRACT

This paper presents a complete numerical procedure to study the fluid-structure interaction problem of incompress-
ible flow through reed valves, typically employed in hermetic reciprocating compressors. A partitioned semi-implicit
coupling scheme is implemented, which only strongly couples the added-mass-effect (pressure term) of the fluid to
the structure hence, assuring numerical stability and avoiding excessive computational cost. The fluid is solved by a
three-dimensional CFD solver using large eddy simulation closures to model the turbulent flow, while the reed valve is
described with the classical plate theory and the normal mode summation method. To showcase the potentiality of the
proposed methodology, a sensitivity analysis regarding valve thickness is carried out for a given velocity in the feed-
ing channel. Considerable differences, mainly in valve lift and pressure drop, are appreciated between the considered
configurations.

1. INTRODUCTION

High efficiency of hermetic reciprocating compressors has become an essential requirement in the domestic refrigera-
tion field as a result of their increasing worldwide electricity consumption and the environmental awareness. According
to Ribas et al. (2008), almost half of the compressor thermodynamic losses are produced during suction and discharge
processes. Therefore, special attention should be given to the flexible reed valves that regulate the gas flow in both
processes. In addition, valves are determining not only in terms of efficiency but also regarding installation reliabil-
ity, since they have been identified to be the most common cause of compressor failures (Leonard, 1996; Woo et al.,
2010).

The study and optimization of these reed valves are challenging tasks due to the complexity of the fluid-structure inter-
action (FSI) problem. Significant work has been carried out in order to predict the flow field bymeans of computational
fluid dynamics (CFD). Matos et al. (2000) and Barbi et al. (2012) performed a three-dimensional simulation of a lami-
nar flow through a valve, in the former solved with a one-dimensional model and in the latter with a predefined motion.
Besides, the flow was studied in two dimensions by Matos et al. (2002), Kim et al. (2006) and Gasche et al. (2010) re-
sulting from an axisymmetric problem arrangement or from simplifications. Mayer et al. (2014) used a loosely-coupled
strategy to combine a three-dimensional turbulent model for the refrigerant with a strain-stress structural solver for the
valve. Encouraging agreement with experimental data was obtained.

This work arises from the effort made by Estruch et al. (2014), who focused on a three-dimensional turbulent flow
through a simple rectangular reed valve. A newly developed FSI method allows strongly coupling of the fluid and
structural solvers, assuring numerical stability with an acceptably moderate increase in computational cost. The CFD
solver consists of a three-dimensional explicit finite volume model formulated in a second-order, conservative and
collocated unstructured grid arrangement. The turbulent nature of the flow is modeled by the wall-adapting local
eddy-viscosity (WALE) model. For the elastic reed valve, it is followed the classical flat plate theory based on the
structure modal analysis in order to save considerable effort in time and cost. The geometric interaction between both
dynamically moving media is managed with a fluid deformable mesh and the space conservation law, whereas the
immerse boundary method is used to establish static bodies, i.e. the valve seat and the channel.
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Two distinct objectives are pursued in this paper. The first one is to present a complete numerical procedure to analyze
FSI applications, for instance the turbulent flow through reed valves. The second is to evaluate the sensitivity of these
valves regarding their thickness. To do so, a generic reed valve is considered together with a feeding channel with a
suction flow inlet condition.

2. MATHEMATICAL AND NUMERICAL MODEL

The developed FSI algorithm is built on a partitioned approach, which uses independent solvers for fluid and structural
sub-problems and adopts a coupling scheme to account for the interaction of the domains. In order to precisely satisfy
the coupling condition at the fluid-structure interface and to avoid numerical instabilities, a strongly coupled scheme is
followed. It enforces the exact coupling condition by means of iterating between the fluid and structural solvers until
the convergence criterion is met.

The change in the geometric domains –derived from the deformation of the structure– is taken into account by directly
moving the solid mesh and updating the fluid grid according to the new solid interface position. The fluid mesh
adaptation is governed by the equations of elasticity similarly to Stein and Tezduyar (2002) and Smith (2011). By
introducing a stiffening in the smaller grid elements, large displacements can be accomplish preserving themesh quality
near the solid surfaces. Namely, not influencing the accurate calculation of the boundary layers.

Throughout the valve opening, new fluid elements will appear between the valve and the seat. Since there is no
remeshing but the fluid mesh is just deforming, extra elements are needed under the valve, which first perform as rigid
seat and later as fluid. The immerse boundary technique allows this change in the nature of an element thanks to a
modification in its viscosity.

Firstly, the governing equations of both sub-domains, the fluid Ωf and the structure Ωs, are presented. Then, there is
the description of the algorithm for solving the coupling problem on the interface Γ = Ωf ∩Ωf.

2.1 Governing equations
The governing equations for the fluid correspond with the incompressible Navier-Stokes and continuity equations
within an arbitrary Lagrangian Eulerian formulation to consider dynamic mesh effects,

∇ ⋅ u⃗ = 0 (1)
∂u⃗
∂t
+ (u⃗ − u⃗w) ⋅ ∇u⃗ = − 1

ρf
∇p + μ

ρf
Δu⃗ (2)

where the unknowns p and u⃗ are the fluid pressure and velocity, respectively. The velocity of the control volume's faces,
u⃗w, is nonzero as long as the mesh moves. Its value is calculated by means of the space conservation law (Estruch et al.,
2013). The fractional step projection method is adopted to decouple velocity and pressure and solve equations 1 and 2.
The expected turbulence of the flow will generate small scales of motion that need high grid refinement to be properly
solved. The influence of these scales of turbulence can be modeled by Large Eddy Simulation (LES) techniques so
as not to require that refinement. In this work, LES has been performed using the wall-adapting local-eddy viscosity
model (WALE), available in TermoFluids code (Lehmkuhl et al., 2009).

On the fluid-structure interface Γ, there is a Dirichlet boundary condition determined by the displacement of the struc-
ture d⃗

u⃗ = ∂d⃗
∂t

. (3)

By contrast, the structure has a traction boundary condition on the common interface. This external force is represented
by σ⃗Γ and is a function of fluid velocity and pressure distribution on Γ, σ⃗Γ = σ⃗Γ (u⃗,p)Γ. Therefore, having adapted
the mesh and updated the boundary conditions (Equation 3), the fluid solver is able to find p and u⃗ in Ωf and, in this
manner, evaluate a new traction distribution on the solid surface

σ⃗Γ = F⃗ (d⃗) . (4)

In regards to the reed structure, a solver based on the Kirchhoff-Love theory for isotropic plates under transverse
loading is employed, hence just the normal component of σ⃗Γ is taken into account. Likewise, only the displacement in
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the plate transverse direction is treated as unknown, since the rest can be derived easily from it,

dx (x⃗) = −z∂dz
∂x

(5)

dy (x⃗) = −z∂dz
∂y

(6)

dz (x⃗) = dz (x, y) (7)

considering z as the plate normal direction and locating the mid-surface plane of the structure on z = 0.
Referring to Soedel (1992), the valve motion can be described from the superposition of its infinite normal modes of
vibration. Each mode m has a natural radial frequency ωm and a particular deformation pattern in z direction known
as mode shape φm(x, y). Thus, the transverse displacement is a linear combination of the normal modes of the system.
For practical applications only the first few modes do actually participate and, consequently, only a finite number of
modes should be computed:

dz (x, y, t) =
∞
∑
m=1

qm(t)φm(x, y) (8)

where φm(x, y) as well as ωm of any given plate geometry can be found experimentally or numerically by a structural
solver.

The combination of both assumptions, the plate theory and the assumed modes method, leads to one generalized
momentum equation for each mode,

q̈m(t) + 2ξωmq̇m(t) +ω
2
mqm(t) =

∫Γ φm(x, y)σΓ,z(x, y, t)dΓ
ρsh ∫Γ φ2m(x, y)dΓ

(9)

where ξ is the damping ratio and h is the plate thickness. A Newmark time integration scheme is employed to find the
generalized coordinates qm, q̇m and q̈m.

Moreover, the impact between the valve and its seat is assumed to occur in such a short period of time that only the
velocity is affected by the collision. Hence, a coefficient of restitution Cr has been advocated in order to model the
impact. When the coefficient of restitution is set to one, all the kinetic energy is preserved after impact. Having solved
Equation 9 at time step tn+1, if contact is detected, the generalized velocity will be corrected with the approximation of
Sheu and Hu (2000)

q̇m (t
n+1) = −Crq̇m (t

n) . (10)

Similarly to Equation 4 for the fluid solver, the structural solver can be summarized by

d⃗ = S⃗ (σ⃗Γ) (11)

in other words, given the current fluid traction on the solid, the solver S⃗ will obtain the deformation or displacement of
the structure.

2.2 Fluid-Structure Interaction coupling scheme
Defining the fluid and structural equations concisely as Equations 4 and 11 reduces the coupled fluid-structure system
of equations into an interface problem of the form:

S⃗ ○ F⃗ (d⃗) − d⃗ = 0 (12)

with d⃗ and functions F⃗ and S⃗, all in the new time step tn+1. Instead of solving the interface problem 12 as in implicit
schemes, here a semi-implicit approach is followed. This approach couples only the pressure stress term of the fluid,
implicitly to the structure, while the rest of the fluid terms are coupled explicitly. It has been shown that pressure stress
term is responsible for the added-mass effect, and coupling it explicitly will cause numerical instability (Causin et al.,
2005). By coupling this term implicitly, the stability issue is overcome, while explicitly coupling the other terms saves
a significant computational cost.
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Figure 1: FSI problem domain. Dimensions in mm.

Thanks to the fractional step method, the pressure stress term can be split off from the fluid flow equations. At the
beginning of a new time step, once the moving mesh function has updated the domain Ωf and the velocities u⃗w, a
predictor velocity, which does not take into account the pressure gradient, is calculated. Then, a pressure field is
derived from this intermediate velocity. The structure will deform facing this pressure field and, as a result, a new
velocity boundary condition will arise in Γ (Equation 3). The implicit coupling is fixed for these two steps, the fluid
pressure solver and the structural solver. So the new FSI interface problem is modified to

S⃗ ○ f⃗ (d⃗) − d⃗ = 0 (13)

where f⃗ is just the fluid pressure solver. To solve the nonlinear FSI interface problem, a fixed-point solver with a block
Gauss-Seidel method and Aitken's relaxation has been chosen in this study. Aitken's dynamic relaxation mitigates
possible convergence problems at the Gauss-Seidel method and reduces the number of iterations required. For further
details of the FSI coupling scheme please refer to Naseri et al. (2016).

3. PROBLEM DEFINITION

Figure 1 shows the dimensions of the simulation domain and the reed valve chosen for the test. The domain contains a
feeding channel, a rigid seat, a reed valve and an empty space downstream. Two different valve thicknesses have been
considered: 0.18 mm and 0.20 mm.

The fluid properties are: ρf = 19 kg/m3 and μ = 9.4 ⋅ 10−6 Pa⋅s. The valve material is steel and its properties are:
ρs = 7870 kg/m3, ν = 0.29 and E = 2.05 ⋅ 1011 Pa. The damping ratio of Equation 9 is taken from Prater and Hnat
(2003) ξ = 0.04 and the coefficient of restitution from Habing and Peters (2006) Cr = 0.3.
There is an inlet velocity boundary condition at the beginning of the channel. It is a time dependent mass flow that
belongs to the suction process of a one-dimensional simulation of a hermetic reciprocating compressor, Figure 2 (Lopez,
2016). The average fluid velocity along the channel results in a Reynolds number close to 3 ⋅ 104, hence a turbulent
flow is developed indeed.

The natural modes of vibration of the reed valve (φm(x, y) and ωm) should be studied previously to the FSI simulation.
A commercial structural solver has been used defining a clamped end, like in a cantilevered beam. For this problem
only the first four modes has been considered. The normal mode shapes are illustrated for the thinnest valve in Figure
3 –the deformation is pretty similar for the thicker valve– whereas the natural frequencies are presented in Table
1.
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Figure 2: Suction mass flow profile extracted from Lopez (2016).

Figure 3: Normal mode shapes of the 0.18 mm-thick valve. From left to right: mode 1, 2, 3 and 4.

4. NUMERICAL RESULTS

The results presented in this section have been obtained with a coarse computational mesh of 4 ⋅ 105 control volumes.
It would be appropriate to perform a mesh refinement analysis to ensure that the FSI solution has converged. Even so,
the flow phenomena obtained is consistent and accomplishes a qualitative accurate transient simulation of the turbulent
flow through the reed valve.

Figure 5 outlines the valve lift throughout the suction process, which is equivalent here to the displacement of the
valve point coincident with the channel axis. The numerical results show that the dynamic action of the reed valve is
definitely dependent on the thickness. Although the first peak force exerted by the fluid while impacting with the valve
is almost equal in both cases, the maximum lift is 18 % lower in the thickest design. It is clearly due to the bending
stiffness of the valve, which rises with the thickness. This rigidity is at the same time affecting the oscillation period,
as was also derived from the modal analysis of the valves (Table 1). A higher thickness implies a major number of
opening oscillations and impacts, what can eventually influence to structural and acoustic issues. Nevertheless, neither
of them seems to be suitable for the suction process proposed, as their stiffness make them oscillate in excess for a
regular refrigerant flow.

Since it is the mass flow that is imposed in the boundary condition, the parameter to compare suction process efficiency
will be the pressure drop of the flow through the valve. Thus, the smaller is the pressure drop, the more fluid mass
will be suctioned and placed in the compression chamber. The transient evolution of the pressure on the inlet orifice
is presented in Figure 6. It seems to be generally higher with h = 0.20 mm. It has been observed that this pressure is
qualitatively identical to the fluid pressure on the valve, specifically around the channel axis. As can be seen, there are
five pressure peaks that emerge from those times when the valve is going to close and there is still a feeding flow along
the channel. In fact, the last bounces of the valve, those beyond 7 ms, would not provide any benefit for the suction
cycle because there is no feeding flow anymore.

Table 1: Natural frequencies of the valves.

mode 1 mode 2 mode 3 mode 4

h = 0.18 mm 339.7 Hz 2349 Hz 2499 Hz 7234 Hz

h = 0.20 mm 377.4 Hz 2606 Hz 2777 Hz 8035 Hz

23rd International Compressor Engineering Conference at Purdue, July 11-14, 2016
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Figure 4: Fluid flow during the first valve oscillation for the 0.18mm-thick valve (left) and for the 0.20mm-thick
valve (right). Contour surfaces of velocity at ∣u⃗∣ = 5m/s.
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Figure 5: Valve lift.
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Figure 6: Pressure drop measured on the channel inlet orifice.

Finally, the flow behavior during the first opening oscillation is depicted in Figure 4. Just prior to having a wide outflow
aperture (at t = 0.8 ms), a considerable increase of velocity is appreciated between the valve and the seat. Therefore,
large velocity gradients and high vorticity appears in this area. Later, the velocity tends to slow down along with the
feeding velocity (Figure 2) until the valve moves towards the seat again narrowing the passage.

5. CONCLUSIONS

A semi-implicit FSI coupling scheme, that only couples the pressure stress term of the fluid implicitly to the structure,
is used to solve the fluid flow through a reed valve. The geometric arrangement of the different elements is treated with
a moving mesh technique, for the flexible valve, and with the immerse boundary method, for the rigid seat. The flow is
studied bymeans of a three-dimensional CFD solver with LESmodel whereas the valve response is evaluated according
to the plate theory and the assumed modes method. The proposed methodology shows a good numerical performance
and is proven to be appropriate for FSI applications as this one. All together is used to carry out a thickness sensitivity
analysis considering a generic reed valve and a particular suction mass flow configuration. The results demonstrate
that this parameter is a crucial aspect for the design of reed valves since it has a big influence in the valve and fluid
dynamics during the suction process. In the particular case analyzed, the thinner plate of 0.18 mm seems to be better
in terms of pressure drop through the valve, though it is clear that an even less-rigid valve would be more suitable for
the suction conditions considered.

NOMENCLATURE

Cr coefficient of restitution
d⃗ displacement vector of the structure
E Young's modulus
h valve thickness
p pressure
u⃗ velocity vector
t time

μ dynamic viscosity
φm(x, y) mth normal mode shape function
ν Poisson's ratio
ξ damping ratio
ρ density
σ⃗Γ fluid load on the structure
ωm mth normal natural frequency
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Subscript
f fluid
s structure
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