

A Study on High Efficiency Wing-vane Compressor - Part 1: A Simulation Analysis of Dynamic Model -

Raito KAWAMURA¹*, Shin SEKIYA², Tatsuya SASAKI³, Hideaki MAEYAMA⁴, Shinichi TAKAHASHI⁵, Kanichiro SUGIURA⁶

^{1, 2, 3} Mitsubishi Electric Corporation, Advanced Technology R&D Center, ⁴ Mitsubishi Electric Corporation, Living Environment Systems Laboratory, ^{5, 6} Mitsubishi Electric Corporation, Shizuoka Works,

MITSUBISHI ELECTRIC CORPORATION

We introduce the new type compressor "**Wing-vane compressor**" with 3 parts as follows,

Part 1: **A Simulation Analysis of Dynamic Model**

Part 2: *Lubrication Characteristic of The Partial Arc Guide Bearing*

Part 3:

Experimental Evaluation of The Prototype

Wing-vane compressor

Part 1: A Simulation Analysis of Dynamic Model

CONTENTS

1. INTRODUCTION

2. BASIC STRUCTURE OF WING-VANE COMPRESSOR

3. OPERATING PRINCIPLE

4. CHARACTERIZATION

5. CONCLUSIONS

for a greener tomorrow Changes

1. INTRODUCTION

Air-conditioning and cooling systems

Package Air Conditioner & Multi Systems

Refrigerant

HFC (Hydro fluorocarbon)

□Mainly used as refrigerant □Affect global warming

To prevent global warming

□Need to develop technologies for the use of **low GWP refrigerants**

Room Air Conditioner

Problem

Compared with R410A, R1234yf has a low density. Larger sizes are required in compressor

performance degradation.

Developed *"Wing-Vane Compressor"* To prevent an increase in size without

© Mitsubishi Electric Corporation

2. BASIC STRUCTURE

■ The compression mechanism is composed of a frame, cylinder, cylinder-head, rotor, shaft, four bushes, and two wing-vanes.

■ The wing-vane is composed of one vane and two vane-guides

The vane-guides are fitted into the groove in the frame and the cylinder-head.

Fig.1 Basic structure of wing-vane compressor

2. BASIC STRUCTURE

■ The tip of vane does not contact with the cylinder inside.

■ The wing-vane compressor can achieve a high efficiency and small size using this structure.

Fig.2 Horizontal cross-sectional view of compression mechanisms

6

3. OPERATING PRINCIPLE

The vane rotates around the center of the cylinder.

■ It is possible to keep the gap between the vane tip and the cylinder.

3. OPERATING PRINCIPLE

Animation of operating principle

4. CHARACTERIZATION

(1) Compression chamber volume change

360

360

Fig.6 Calculation model of the torque and the rotor load characteristics

(Evaporation temperature 52°C, Condensation temperature 5°C)

Fig.7 Characteristics with respect to rotation angle 10 © Mitsubishi Electric Corporation

4. CHARACTERIZATION

(3) Vane load

 F_p : Load applied on the vane from the pressure difference (side),

 F_b : Load applied on the vane from the pressure difference (back/ tip),

F_s: Load applied on the bush,

 \mathbf{F}_{cv} : Centrifugal force applied on the vane,

 F_{ca} : Centrifugal force applied on the vane-guide,

$$F_{1} = \frac{\left\{2F_{ca} + \left(F_{b} + F_{cv}\right)\cos(\zeta) + \left(F_{s} - F_{p}\right)\sin(\zeta)\right\}\sin(\alpha/2) + \left\{F_{s} - F_{p}\right)\cos(\zeta) - \left(F_{b} + F_{cv}\right)\sin(\zeta)\right\}\cos(\alpha/2)}{2\sin(\alpha)}$$

$$F_{2} = \frac{\left\{2F_{ca} + \left(F_{b} + F_{cv}\right)\cos(\zeta) + \left(F_{s} - F_{p}\right)\sin(\zeta)\right\}\sin(\alpha/2) - \left\{F_{s} - F_{p}\right)\cos(\zeta) - \left(F_{b} + F_{cv}\right)\sin(\zeta)\right\}\cos(\alpha/2)}{2\sin(\alpha)}$$

Fig.8 Calculation model of the stability of the vane-guide

Luau applied on varie-guide

*Under specific operating conditions (evaporation temperature 52°C, condensation temperature 5°C)

Fig.9 Characteristics with respect to rotation angle

5. CONCLUSIONS

■ A new "wing-vane compressor" which has no contact between the vane and cylinder has been developed to prevent an increase in size without performance degradation.

■ The characteristics of the compression process, torque, and rotor load, are almost the same as the sliding-vane type.

■ Lubrication of the newly added vane-guide is important to ensure reliability.

Next Presentation

Part 2: *Lubrication Characteristic of The Partial Arc Guide Bearing*

MITSUBISHI ELECTRIC Changes for the Better