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ABSTRACT 

 

Valves are widely  used in HVAC systems to regulate liquid flow rate, such as hot - and chilled-water valves utilized 

in cooling and heating coils. These valves are typically controlled with motorized actuators where significant 

backlash hysteresis might exist and the backlash magnitude mostly depends on the clearance of the manufactured 

gearbox. Due to the hysteresis effect, unsatisfactory tracking performance results when using a conventional PI 

controller. To  understand the control effect from the backlash hysteresis, this paper develops an emulator model for 

a cooling coil and valve set derived from field  measurements. Based on observations of the simulation results, a self-

learning backlash inverse control approach is proposed to mit igate the backlash effect with moderate modifications 

to a conventional PI control. In the proposed approach, a self-learn ing procedure is carried out at the beginning of 

the control implementation period to estimate the backlash magnitude for a specific valve. Then a backlash inverse 

block is added to an existing PI controller to compensate for the hysteresis effect residing in the valve. The validity 

of the proposed method was verified with both simulation and experimental tests and significant improvement was 

observed in the control performance.  

 

1. INTRODUCTION 
 

Valves are commonly used in industrial and commercial applications to regulate liquid flow rate for various 

purposes. In build ing HVAC systems, valves are employed for regulation of hot- and chilled-water in cooling and 

heating coils to control the heat exchange rate. For valves with automatic control capability, motorized actuators are 

typically utilized for driv ing a valve to open or close based on a control command provided by a feedback controller. 

Backlash type hysteresis often exists in an actuator gearbox where the stem position differs at a given input 

command when the actuation changes its direction, causing difficult ies in obtaining a stable control. The hysteresis 

magnitude depends on the manufacturing clearance that can vary significantly even for the same batch of products.  

 

This study was motivated by the unsatisfactory comfort  control that had been observed in the HVAC system serving 

multip le offices that are Living Laboratories fo r the Center fo r High Performance Buildings at Purdue University. 

The unsatisfactory performance was main ly caused by valve hysteresis residing in the chilled- and hot-water valves. 

Conventional PID controllers were not able to provide stable control due to the valve hysteresis and the control 

variables were observed to oscillate significantly. As a consequence, space temperatures fluctuated and comfort 

requirements could not be satisfied. A companion paper (Cai, Kurtu lus and Braun, 2016) presented a comprehensive 

set of experimental test results comparing different valve characteristics in variable -air-volume (VAV) box reheat 

and air handling unit (AHU) cooling coil valves and investigated their impacts on control performance. The results 

showed severe control temperature fluctuations for valves having significant backlash-type hysteresis. In addition, 

the control fluctuations led to unnecessarily high cooling/heating power so demand costs would be raised for  

buildings subject to demand charges. Backlash-type hysteresis commonly  exists in HVAC valves due to the 

relatively low manufacturing tolerances employed and emphasis on low cost solutions . All position controlled 

valves that were surveyed in Cai et al. (2016) suffered from significant backlash hysteresis (more than 5%). Thus, a 

specifically devised control approach for handling such backlash-type hysteresis could bring tremendous benefits for 

buildings in energy cost reduction and improved comfort.   
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Backlash inverse control has been studied extensively in the control community as an effective approach to mitigate 

backlash-type hysteresis in a control system. The backlash inverse controller is typically implemented in  series with 

a typical feedback controller, e .g., PI controller, to compensate for backlash-type non-linearity. For systems with 

unknown backlash sizes, adaptive inverse control is often utilized to estimate and adapt the backlash size (Tao and 

Kokotovic, 1993, Tao and Kokotovic, 1996 and Ahmad and Khorrami, 1999). However, most of the adaptive laws 

in the previous work are only valid for linear systems and very few studies considered case studies with nonlinear 

plants.  

 

Hagglund (2007) proposed an on-line estimat ion algorithm for backlash magnitude based on closed-loop operation 

data. The on-line estimat ion step achieved a similar goal to the self-learn ing process proposed in the current study. 

But the estimation mechanism is different: Hagglund (2007) utilized the delay time and magnitude in the system 

reaction to infer the backlash size that requires informat ion of the PI control settings and estimation of the plant 

static process gain. In addition, the backlash estimation quality highly depends on external disturbances. The self-

learning process within the present paper, however, is based on simple observations in the control behavior and no 

informat ion is needed in terms of plant characteristics or PI control settings. In addition, it is more robust in handling 

external d isturbances.    

 

Some previous research work studied dynamic modeling of hydronic valves with hysteresis to enable controller 

design and performance assessment. For example, Kumar and Mittal (2010) developed a dynamic model o f the 

liquid flow process within a regulation valve. A hysteresis model was incorporated to capture the hysteresis effect 

and the overall model p rovided a simulation test bed to investigate different valve control approaches. Tudoroiu and 

Zaheeruddin (2005) considered a similar case study as the present paper where the valve backlash hysteresis effect 

on control performance of a discharge air temperature system was studied. The paper relied on a dynamic simulation 

model to investigate the backlash effect and fluctuations were observed in the discharge air te mperature when valve 

backlash magnitude was increased gradually. However, the study mainly focused on the fault detection problem 

without addressing the control problem.  

 

This paper focuses on the development of data-driven cooling coil and valve models that are useful in understanding 

control stability issues caused by valve hysteresis and in developing controllers  to mit igate the backlash hysteresis 

effect leading to improved control performance. Based on the observed control chattering patterns , a self-learning 

approach is proposed to estimate the backlash magnitude and a corresponding backlash inverse controller is 

implemented to improve the control performance. The effect iveness of this approach has been demonstrated via both 

simulation and experimental tests although only simulation results will be presented in this paper due to space 

limitat ions. Note that the proposed self-learning backlash inverse control approach is generally applicable for 

hydronic valves although only a HVAC applicat ion is demonstrated here.  

 

2. VALVE AND COOLING COIL DATA-DRIVEN MODELS 

 
A valve model with hysteresis effects and a dynamic cooling coil model were developed based on field 

measurements from the Living Labs at Purdue University. Details of the experimental setup were presented in the 

companion paper by Cai, Kurtu lus and Braun (2016). These models are combined in a simulation tool for 

understanding, developing and validating the backlash inverse control approach. 

 

2.1 Valve Models 
2.1.1 Valve hysteresis model: the actuation of valve opening in response to control command follows a dynamic 

behavior because of the inherent hysteresis where the valve opening does not only depend on the current control 

command but also requires informat ion of the prev ious control action to determine the current actuation status in the 

backlash region (on the increasing or decreasing curve or in between, as shown in Figure 1 (a)). A discrete-time 

backlash dynamic model can be formulated as 
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where t is the time step index, cmd is the model input and also the valve control command, x is a state of the 

dynamic system that represents the position within the backlash curves (increasing or decreasing curve or in 

between), open is the model output which is the valve opening in  percentage. The model has one independent 

parameter xBL, which is the backlash magnitude while the parameter α is a dependent parameter representing the 

slope of the increasing/decreasing curve that can be determined by the value of xBL.   
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(a)                                                                        (b) 

Figure 1. (a): backlash hysteresis curves. (b): valve static characteristic curve. 

 

2.1.2 Valve static characteristic curve: there is a static characteristic curve for the valve itself that correlates the 

delivered flow going through the valve to the valve opening, as shown in Figure 1 (b). For equal percentage control 

valves, the curve typically exh ibits an exponential form in the lower range and the curve becomes flat in the higher 

range due to loss of authority (Chapter 47 of ASHRAE Handbook-HVAC Systems and Equipment, 2012). The exact 

shape of the curve is dependent on the valve type, the shape of valve opening, and pressure characteristics of the 

hydronic system. It is difficult to find a general model form and thus, an empirical model utilizing the generalized 

logistic model (Richards, 1959) is used here to capture this static correlation:  
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where m is the delivered flow, mmax is the valve nominal flow at 100% opening and open is the valve opening 

percentage as described in the previous sub-section. Parameters a, b and c  together determine the shape of the curve 

and their values were estimated based on training data. Parameter b determines the growth rate, c  corresponds to the 

opening where the maximum growth rate occurs and a characterizes the asymmetrical pattern.  

 

2.1.3 Valve model estimation: the parameters xBL, a, b  and c in Equations (1) and (2) were estimated simultaneously 

from a t rain ing data set collected from the Living Labs cooling coil valve. W ithin the training data, the control 

command (cmd) was randomly perturbed within the range of 0% to 50%  (the maximum cooling command was 

within  45% during  the year of 2015) and each perturbation was held for 5 minutes to allow the flow to reach steady 

state. The in itial control command was started from 0% so that the experiment started on the increasing curve. 

Figure 2 shows the model validation results where the scatter plot on the left hand side shows the predicted and 

measured chilled water flow rates  and the plot on the right hand side shows the data points along with the estimated 

curves. Very good agreement was achieved between the model predictions and actual measurements and thus, the 
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estimated valve model captures the valve characteristics including backlash hysteresis. The estimated backlash 

magnitude (xBL) was close to 7%. 
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Figure 2. Left: comparison of model p redictions and actual measurements. Right: data points on top of the estimated 

model curves. 

 

2.2 Dynamic Cooling Coil Model 
A dynamic model was established for the cooling coil where multip le key parameters were estimated from operation 

data collected from the Living Labs. The model was adapted from Zhou (2005) which utilizes a finite volume 

method with the whole cooling coil being discretized into mult iple control volumes. The multi-row cross/counter-

flow co il is assumed to be pure counter-flow arrangement and an effectiveness-NTU and enthalpy potential method 

is used to calculate heat transfer rates for each of the control volumes.  
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Figure 3. Control volumes in the cooling coil model 

 

Figure 3 illustrates the finite volume method for the cooling coil under the counter-flow assumption. For each 

control volume, water and coil material energy balances are written in a discrete-time formulat ion. If no moisture is 

condensing on the coil surfaces within the control volume, then the resulting equations are: 
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The variable t inside the brackets is the time step index and the superscript i indicates association to the ith control 

volume. Equation (3) is formulated under an exp licit  fo rm to avoid solving systems of equations for each time step. 

However, the exp licit  solution scheme requires the time step to be small enough to obtain a stable solution with any 

given spatial discretization. The number of control volumes determines the model accuracy but is constrained by the 

chosen time step. The present study used 1 second as the time step and discretized the coil into 8 control volumes, 

which is the largest number of control vo lumes to reach a stable solution (for a given  time step, there is a min imum 

spatial d iscretizat ion step to achieve a stable numerical solution, which corresponds to the discretization with 8 

control volumes for this specific case). This discretization granularity well leveraged model accuracy and 

computational requirements. Uniform temperature is assumed for the co il material in each control volume and the 
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air and water temperatures in each  control volume are assumed to follow some steady-state profiles instead of being 

uniform and the effectiveness-NTU method is used for water and air side heat transfer rate calculations. i

aT  and i

wT  

in these equations represent the control volume exit  temperatures, which equal the inlet temperatures of the 

downstream control volumes. i

cT  is the bulk temperature of the coil material. Cw  and Cc are thermal capacitances of 

the water body and coil material, respectively, inside each control volume and they are estimated parameters in the 

training process. mw and ma are water and air mass flow rates. cp,w and cp,a are specific heats for water and air, 

respectively. The air-side and water-side heat transfer resistances, Ra and Rw, are inverses of the effectiveness 

capacitance rate products that are characterized through empirical relations trained using data.   

 

When the concerned coil section is wet (air dewpoint temperature is higher than the coil temperature) , the driving 

potential for heat and mass transfer is enthalpy differential instead of temperature d ifferential and thus, the following 

formulat ion is used for the coil energy balance: 

 
1 1

*
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where hs,c is the air saturated enthalpy at the coil temperature i

cT  and *

aR  is an air-side resistance for combined heat 

and mass transfer. 

 

Dynamics in  the air stream are neglected due to the low thermal inertia and the outlet air conditions for each  control 

volume are calculated based on air side heat transfer for both dry- and wet-co il cases: 
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where 
a

 is an overall air-side effect iveness for heat transfer that accounts for both forced-air convection and 

conduction though the fin material. For dry-co il conditions, the outlet air humid ity ratio stays the same as the inlet 

while fo r wet-coil conditions, the outlet air humidity is calcu lated with psychrometric routines based on the outlet air 

dry-bulb temperature and enthalpy that is calculated as follows: 
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Here *

a  is an overall air-side effect iveness for both heat and mass transfer that accounts for forced-air convection, 

condensation, and conduction though the fin material.  The air- and water-side resistances are calculated based on 

effectiveness correlations in terms of mass flow rates using the following forms : 
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The key parameters in the model were estimated from field measurements and the estimatio n parameters are Cc, Cw 

in Equation (3) and β1 to β6 in Equation (4). A t rain ing data set with several random step changes in the air and water 

flow rates was collected for the cooling coil serving the Living  Labs and  the train ing results are plotted in  Figure 4. 

Since the present study main ly concerns the supply air temperature behavior, regression was carried out to minimize 

the root mean square error between the predicted and measured supply air temperatures. All initial temperature 

states were assumed to be 20ºC and a 30-minute warm-up period was considered so that the regression process only 

minimized the root mean square of the errors from the 1801 second onwards. Note that both the valve and coil 

estimation problems involved nonlinear regressions and the Levenberg-Marquardt method (Madsen et al., 2004) was 

used to find the optimal parameter values. As can be seen from Figure 4, very good agreement was achieved 
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between the measured and predicted supply air temperatures (denoted by 'TA lvg' in the p lot). Although the lea ving 

water temperature (denoted by 'TW lvg') behavior was not accounted for explicitly in the regression process, the 

predicted and measured leaving water temperatures also show good agreement and the small discrepancy is believed 

to be attributed to sensor biases for the water and air flow rates  (energy imbalance between  the water and air sides). 

The only significant differences in water temperature occur for zero water flow rate, which would have no impact on 

simulation results 
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Figure 4. Model train ing results with artificially perturbed air and water flow rates. 

 

To validate the model performance, a validation data set was collected under normal operation with  a resetting 

supply air temperature strategy to reduce VAV box reheat. Figure 5 shows the validation results and good accuracy 

was achieved in the supply air temperature prediction even though the operating conditions differed significantly 

from those in the training data set.  
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Figure 5. Cooling coil validation results with real operation data. 

 

3. SIMULATION TESTS 
 

3.1 Simulation Test Setup 
An emulator model was constructed by combining the valve and cooling coil models developed in the preceding 

section. Figure 6 shows the component layout of the emulator models along with the feedback control loop. For 

typical cooling coil operation, a feedback controller, e.g.,  a PI controller, is used to generate control commands for 

the valve actuator to adjust valve opening so that the supply air temperature fo llows the setpoint. The emulator 
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consists of three component models  developed in the preceding section: an actuator backlash model that takes the PI 

control command and outputs the actual valve opening; a valve static curve model translating the valve open ing to 

water flow rate; and a dynamic cooling coil model that provides outlet air and water condit ions  based on the chilled 

water flow rate and other boundary conditions . The cooling coil outlet air temperature is used as the control variable. 

In the simulation tests, boundary conditions, such as airflow rate and in let water and air temperatures, were extracted 

from actual measurements in the Liv ing Labs.  

 

 
 

Figure 6. Simulat ion and control diagram. 

 

3.2 PI Control Results 
Figure 7 shows simulat ion results with a conventional PI controller with proportional and integral gains  fine tuned 

by field engineers. The supply air temperature setpoint was artificially perturbed to test the setpoint tracking 

performance. Note that in actual system operations, resetting supply air temperature setpoint strategies are usually 

employed as an energy efficient option to reduce reheat in terminal VAV boxes. With the conventional PI controller, 

the control variable, i.e ., the supply air temperature, fluctuated significantly due to the valve hysteresis.   

 

3.3 Backlash Inverse Control Results 
Figure 8 shows the backlash inverse control diagram. It simply adds a backlash inverse (BI) control b lock between 

the conventional PI controller and the control plant. The backlash inverse block is a dynamic system that is an 

inverse of the backlash model formulated in Equation (1) so that the net effect is unity. The backlash magnitude in 

the backlash inverse block should match that of the actual control plant  to fully compensate for the backlash effect. 

However, the actual backlash magnitude is unknown so a self -learning process is proposed to adapt the backlash 

inverse block for a specific valve, which will be described at the end of this section.   

 

Figure 9 and Figure 10 show the test results of backlash inverse controllers with 60% and 95% backlash magnitude 

estimates relat ive to the true valve (7%), respectively. The backlash inverse control with a 60% backlash estimate 

has led to reduced fluctuation in  the supply air temperature compared  to the baseline PI controller. However, the 

control action was still delayed due to the underestimated backlash size and control fluctuation still existed. The 

95% backlash inverse control provided almost perfect temperature tracking as the backlash hysteresis effect was 

well compensated for.  
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Figure 7. Conventional PI control results. 

 

 
 

Figure 8. Backlash inverse control diagram. 

 

Although backlash inverse control is effect ive in mit igating backlash hysteresis effects, an overestimated backlash 

could compromise the control performance with significant chattering in the control action. With an overestimated 

backlash, the backlash inverse controller over-compensates for the backlash effect at each switch time lead ing to 

excessive control action in  the reverse direction. Th is leads to high frequency mode switches and control chattering. 

Figure 11 shows the variations of mode switch  frequency and tracking erro r (RMSE between the setpoint and 

control variable) with respect to different relative backlash estimates (normalized with the actual backlash 

magnitude). The mode switch frequency was calculated by averaging the numbers of mode switches within  each 10-

minute time b lock. It can be seen that as the backlash estimate approaches the actual value from zero, tracking 

performance improves consistently with decreasing tracking RMSE. However, when the backlash estimate rises 

beyond the actual value, the tracking error increases as a consequence of control chattering. The mode switch 

frequencies shown on the left hand side of Figure 11 are relatively constant when the backlash estimate is below the 

actual value. Once the estimate passes the actual backlash magnitude, the mode switch frequency increases 

dramat ically. This pattern fo rms the basis of the proposed self-learning process: increase the backlash estimate until 

significant control chattering occurs. Figure 12 shows the self-learn ing process for estimating the backlash size with 

a 0.7% (equal to 10% of the actual backlash magnitude) step adjustment. When the mode switch frequency stays 

within 200% of the frequency corresponding to the minimum backlash estimate (0.7% for the considered case), the 

backlash estimate is stepped up and if mode switch frequency goes beyond 200% of the frequency with the 

minimum backlash estimate, the backlash estimate is stepped down. In the demonstrated case shown in Figure 12, 

backlash estimate updating was performed every 30 minutes and the learning process took less than 3 hours to 

identify the correct backlash size. Note that the init ial guess and step adjustment of the backlash estimate could take 

any arbitrarily s mall but nonzero value although the number of iterat ions to reach convergence will vary.  
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Figure 9. Backlash inverse control with 60% of the estimate. 
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Figure 10. Backlash inverse control with 95% of the estimate.  
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Figure 11. Control behaviors with different backlash estimates  normalized with the actual backlash magnitude (7%). 
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Figure 12. Self-learning process to estimate the backlash size.  

 

6. CONCLUSIONS 
 

This paper proposed a self-learn ing backlash inverse control approach to mitigate the backlash hysteresis effects 

associated with typical hydronic valves and to improve control performance. A specific HVAC application was 

considered as a case study that applied the proposed backlash inverse control approach  to a cooling coil valve. To 

assess the control performance improvement, an emulator was constructed combin ing dynamic models of an 

actuator (backlash effect) and a cooling coil calib rated with field measurements obtained from Living Labs at 

Purdue. Simulation test results showed that for valves with noticeable backlash hys teresis, a conventional PI 

controller led to low frequency fluctuations in the supply air temperature (control variable). The proposed backla sh 

inverse control added to a conventional PI controller demonstrated significantly improved control performance in  

mitigating the backlash effects and the best performance was achieved when the backlash size estimate was equal to 

or slightly less than the actual valve backlash. Intensive control chattering occurs when the backlash size is 

overestimated so a self-learning process was proposed that increments the backlash estimate from zero  until 

significant chattering occurs. Th is self-learn ing process was tested within  the emulator model and the actual 

backlash size was identified within three hours of operation.  

 

The proposed backlash inverse control approach was also tested in the actual cooling coil operation serving the 

Living Labs. The experimental testing results showed a close match with the simulat ion results under both baseline 

and backlash inverse controls. However, the measurement noise in the experimental test induced severe mode 

switches. This issue was previously reported by Dean et al. (1995) where a backlash inverse controller was applied 

and tested within a servomotor. To overcome this issue, a buffered backlash inverse controller was proposed and the 

testing results showed significantly improved control performance with moderate mode switches . Due to  space 

limitat ions, the buffered backlash inverse controller and the experimental testing results will be reported in future 

publications.  

 

NOMENCLATURE 
 

cmd control command   (%)  

xBL  backlash magnitude  (-)   

α backlash curve slope  (-) 
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x backlash state  (-) 

m mass/volumetric flow rate  (kg/s or l/s) 

open valve opening  (%) 

t time index  (-) 

T temperature   (K) 

cp specific heat at constant pressure (kJ/kg-K) 

h enthalpy  (kJ/kg) 

R thermal resistance  (K/W) 

C thermal capacitance  (kJ/K) 

є effectiveness  (-) 

Tsup/Tlvg AHU supply air temperature  (K) 

 

Subscript 

a air  

w water 

c coil material 

sp  setpoint 

max maximum  

 

Superscript 

i the i-th control volume  

* heat and mass transfer 

 

REFERENCES 

 
Ahmad, N. J., and Khorrami, F., "Adaptive control of systems with backlash hysteresis at the input."  American 

Control Conference, 1999. 

ASHRAE. ASHRAE Handbook- HVAC Systems and Equipment, 2012. 

Cai, J., Kurtulus O. and Braun, J.E., " Experimental performance investigation of cooling or heating coil valves and 

their impact on temperature controls", 16th International Refrigeration and Air Conditioning Conference at 

Purdue, 2016.  

Dean, S.R., Surgenor, B.W. and Iordanou, H.N., "Experimental evaluation of a backlash inverter as applied to a 

servomotor with gear t rain." IEEE Conference on Control Applications, 1995. 

Hägglund, Tore. "Automatic on-line estimat ion of backlash in control loops." Journal of Process Control, 2007. 

Kumar, V. and Mittal, A.P., "Dynamic modeling of liquid-flow process due to hysteresis of pneumatic control 

valve", International Journal of Intelligent Control and Systems, 2010 

Madsen, K., Nielsen, H.B. and Tingleff, O., Methods for Nonlinear Least Squares Problems, Informatics and 

Mathematical Modeling, Technical University of Denmark, 2004.  

Tao G. and P. Kokotovic. "Adaptive control of systems with backlash". Automatica, 1993 

Tao G. and P. Kokotovic, Adaptive Control of Systems with Actuator and Sensor Nonlinearities , John Wiley & 

sons, 1996 

Tudoroiu, N., and M. Zaheeruddin, "Fault detection and diagnosis of valve actuators in HVAC systems."  IEEE 

Conference on Control Applications, 2005. 

Zhou, X., Dynamic modeling of chilled water cooling coils, Ph.D. d issertation, Purdue University, 2005. 

 
 

 

 

 


	Purdue University
	Purdue e-Pubs
	2016

	Self-learning Backlash Inverse Control of Cooling or Heating Coil Valves Having Backlash Hysteresis
	Jie Cai
	James E. Braun

	21ST INTERNATIONAL CONGRESS OF REFRIGERATION

