CEEE CENTER for ENVIRONMENTAL ENERGY ENGINEERING

A Review of the State of the Art in Modeling of Air-to-Refrigerant Heat Exchangers for HVAC&R Applications Paper 2534

Vikrant Aute vikrant@umd.edu

16th International Refrigeration And Air Conditioning Conference at Purdue, July 11-14, 2016, Purdue, Indiana

Contents

- Motivation
- Literature Review
- Proposed Approach
- Benchmarks
- Conclusions

Motivation

- Motivation
- Heat exchangers are everywhere!!!
 - Heat pumps, refrigeration,...
- Key component
- Improved HX
 - Higher efficiency
 - Lower cost
 - Lower charge
 - Lower emissions

Heat Exchanger (HX) Models

Black-box

- Polynomials, Neural Networks, Kriging,...
- Physics-based
 - Single-lump models
 - Finite Volume models, aka discretized or distributed parameter models
 - Focus of this review

PIRT for HX Model

- Heat transfer
 - Refrigerant (tube-side) phase change
 - Dehumidification (fin-side)
- Pressure drop
 - Core (refrigerant and air-side)
 - Headers, connecting pipes etc.
- Flow maldistribution
- Fin conduction

HX Geometries

Additional Designs

Control Volumes

Air-side Propagation

$$0.5(\dot{m}_{air,i}W_{i,out} + \dot{m}_{air,j}W_{j,out}) = \dot{m}_{air,k}W_{k,in}$$

Flow Path Representation

 Adjacency matrix/lists (based on Graph theory, by Euler, 1736)

Thermophysical Properties

- Refrigerants
 - NIST REFPROP 9.1
 - Various accelerated versions
- Air-side
 - ASHRAE RP-1485, real gas model
 - ASHRAE Handbook 2013, ideal gas model
 - ASHRAE SPC213P (ideal gas model)

Control Volumes

- Heat Transfer
 - Eps-NTU
 - UA-LMTD
 - Energy balance
- Pressure drop
 - Evaluate simultaneously
 - After heat transfer
- Thermophysical properties
 - Evaluate at inlet, or average

Refrigerant-side Correlations

- Flow regime maps based correlations
 - Can have discontinuities
- Continuity between single phase and twophase correlations, during phase transition
- Recommend to use correlations based on the following fluid classes
 - Ammonia
 - CO2
 - Water/steam
 - Hydrocarbons
 - Pure fluids
 - Blends

Correlations

- No extrapolation!!!
- Sanity check
 - Check partial derivatives based on known physics
 - Piece-wise equations
- Consistency between forward and backward calculations

Air Flow Maldistribution

- Method-1: Input to model
 - Data obtained from lab or external simulations
- Method-2: Co-simulation
 - Couple HX model with CFD
 - Need to consider mass conservation

Refrigerant Flow Maldistribution

- Flow distribution in HX core is straightforward (assuming DP correlations work)
- Headers/manifolds are a challenge

PPCFD Analyses

Temperature

Velocity

Co-Simulation

Outlook

- Heat Exchanger simulation tools have come a long way
- Leveraged capabilities
 - Co-simulation
 - Optimization
- More to be done
 - How to make HX more compact?
 - How to reduce the overall volume of the (HX + Fan)?
 - How to account for flow maldistribution?

Thank You

