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ABSTRACT 
 

The Internal Heat Exchanger (IHX) is well known for its potential to improve the performance of air conditioning 

systems.  The adoption of alternative, more environmentally friendly, refrigerants such as R744 has brought elevated 

attention to IHX development due to relatively large performance increases from IHX usage compared to 

conventional refrigerants.  Many alternative refrigerants exhibit performance shortfalls thus furthering the need for 

system enhancements such as IHX introduction.  In addition, the increasing need for even small incremental 

improvements in systems using conventional refrigerants, and EPA credits for such improvements, has driven the 

expanded development and implementation of IHXs. The focus of this paper is the evaluation of test methods 

commonly used for quantification and comparison of the performance of internal heat exchangers and the effects of 

location of measurements and oil in circulation rates on the measurement accuracy and actual IHX performance. 

Typical IHX performance measurements yield the heat exchanger capacity, effectiveness, and the refrigerant 

pressure drop across each side of the heat exchanger. Existing test standards vary widely on the required test 

conditions, allowable oil in circulation rates, and instrumentation locations. The goal of comparison testing is, of 

course, to accurately quantify performance while also achieving repeatable results which allow for a fair and useful 

comparison between IHXs. Test conditions and temperature measurement location can have a large effect on both 

the accuracy and repeatability of measurements. Conditions close to the saturation dome, i.e. low subcooling or 

superheat, can make it difficult to accurately determine and control the state point while high superheat presents an 

unrealistic operating condition which can limit the impact of the IHX. Thermal stratification across the cross section 

of the IHX tubes can also lead to measurement inconsistency depending on the temperature probe placement. Oil in 

circulation rates directly factor into the heat exchanger capacity calculations but also can affect the actual heat 

exchanged. This paper will discuss these effects and their implications on standard development and test facility 

design. 

1. INTRODUCTION 
 

Internal heat exchanger usage is becoming increasingly commonplace in the automotive industry in order to increase 

the cooling capacity and COP of A/C systems.  Capacity improvement is readily available however effects on the 

refrigeration cycle must be considered when determining potential impact on COP.  For example the added enthalpy 

difference across the evaporator may be more than offset by compressor power consumption and drop in mass flow 

rate if IHX low side pressure drop is too high.  In order to understand the impacts of the IHX, several performance 

metrics are calculated including heat exchanger capacity, heat exchanger effectiveness, and refrigerant pressure drop 

across the heat exchanger.  In order to calculate these values, pressure and temperature must be measured at each 

inlet and outlet in addition to refrigerant mass flow rate and oil in circulation rate (OCR).  The fashion in which the 

above measurements are recorded can have a significant impact on the results.  This paper will focus on temperature 

and OCR measurements and the related effects on measured and actual IHX performance.  Figure 1 shows the 

typical appearance of a coaxial IHX for automotive use. 
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Figure 1:  Typical Coaxial IHX 

 

2. BACKGROUND 

 
The internal heat exchanger uses the cold refrigerant at the evaporator exit to push the evaporator inlet further to the 

left side of the cycle.  Figure 2 shows the added capacity on the left side of the cycle with the consequence of added 

compressor power on the right side of the cycle.  COP will increase when the ratio of added compressor power 

divided by the original compressor power is less than the ratio of added capacity divided the original capacity.  The 

compressor inlet condition must be considered such that superheating and corresponding elevated suction 

temperatures caused by the IHX does not result in excessively high discharge temperatures at high load conditions.  

In addition, if the IHX pressure drop is high, the added compressor power and drop in suction density and mass flow 

rate may negate gains in evaporator enthalpy difference and cause capacity and/or COP to decrease.   

 

  
Figure 2: Cycle Improvement Attainable Using an IHX 
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3. EXPERIMENTAL FACILITY 

 
The test facility used in the IHX study was designed based on the SAE Surface Vehicle Standard, J2765; Procedure 

for Measuring System COP [Coefficient of Performance] of a Mobile Air Conditioning System on a Test Bench 

(SAE, 2008).  The facility consists of two environmental calorimeters.  The outdoor environmental chamber 

produced the ambient conditions experienced by the front end vehicle components of the system including the 

condenser, internal heat exchanger, and compressor.  The indoor chamber produced the conditions experienced by 

the evaporator.  Each chamber contains a wind tunnel designed according to ASHRAE standard 41.2 (ASHRAE, 

1987).  In the case of both wind tunnels, the air passes through the heat exchangers, flow mixers, and then flow 

measuring nozzles.  Thermocouples in the nozzle throat are then used in the airflow calculation as well as for the 

bulk air outlet temperature for each heat exchanger in the energy balance calculations.  The setup was designed to 

replicate the actual relative heights of components in the vehicle.  Three independent methods for calculating 

cooling capacity were used which exceeds the requirement of 2 independent methods in the SAE standard.  The 3 

methods used to determine capacity were the refrigerant side energy balance, air side energy balance, and a 

calorimeter energy balance where all energy entering and leaving the indoor calorimeter is measured with the 

balance being the capacity of the indoor heat exchanger. 

 
Figure 3: Experimental Facility 

 

 

Testing internal heat exchangers in a complete system facility has several advantages.  The first advantage involves 

testing the IHX in a production vehicle system exposed to real operating conditions and environments.  The ambient 

conditions must then be adjusted to meet the IHX standard test conditions and offers a “reality check” if the 

conditions needed are extremely far from what would be a realistic operating condition for the vehicle.  A second 

advantage is obtained by using the 3 independent energy balances available for evaporator capacity.  The refrigerant 

based energy balance is heavily affected by the refrigerant mass flow rate, the OCR, the IHX low side inlet 

temperature and pressure (used to calculate evaporator exit enthalpy), and the IHX high side exit temperature and 

pressure (used to calculate evaporator inlet enthalpy).  By verifying the refrigerant based capacity measurement 

against the air-side and chamber-side balances, nearly all measurements that go into the IHX performance metrics 

are covered.  Furthermore, a similar balance between refrigerant-side and air-side measurements can be made for the 

condenser, thus verifying the measurements made for the IHX high-side inlet conditions (used to calculate 

condenser exit enthalpy).  All of the above checks can greatly increase the confidence in the IHX related 

measurements.  The cooling capacity measured on the air-side and/or chamber-side can also be used to back 

calculate the evaporator exit/IHX inlet state point in the case of a 2-phase evaporator exit condition which would be 

realistic for typical in-vehicle operation for IHX systems. 
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4. MEASURED DATA AND CALCULATIONS 
 

IHX Efficiency (or Enthalpy Effectiveness) is one primary measure of the internal heat exchanger performance.  

IHX efficiency can be calculated using the following equation. 

 

𝜂𝐼𝐻𝑋 =
𝐻 𝑎𝑡 𝑇𝐼𝐻𝑋  𝐿𝑃 𝑜𝑢𝑡  & 𝑃𝐼𝐻𝑋  𝐿𝑃 𝑜𝑢𝑡  − 𝐻 𝑎𝑡 𝑇𝐼𝐻𝑋  𝐿𝑃 𝑖𝑛  & 𝑃𝐼𝐻𝑋  𝐿𝑃 𝑖𝑛  

𝐻 𝑎𝑡 𝑇𝐼𝐻𝑋  𝐻𝑃  𝑖𝑛  & 𝑃𝐼𝐻𝑋  𝐿𝑃 𝑜𝑢𝑡  − 𝐻 𝑎𝑡 𝑇𝐼𝐻𝑋  𝐿𝑃 𝑖𝑛  & 𝑃𝐼𝐻𝑋  𝐿𝑃 𝑖𝑛  
  

         (1) 

𝐻 = 𝐸𝑛𝑡ℎ𝑎𝑙𝑝𝑦, 𝑇 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑃 = 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝐿𝑃 = 𝐿𝑜𝑤 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝐻𝑃 = 𝐻𝑖𝑔ℎ 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 
 

 

IHX capacity can be calculated using both the low side and high side enthalpy differences multiplied by the OCR 

adjusted refrigerant mass flow rate. 

 
𝑄𝐼𝐻𝑋 𝐿𝑜𝑤

= 𝑚𝑟𝑒𝑓 ∗ [𝐻 𝑎𝑡 𝑇𝐼𝐻𝑋  𝐿𝑃 𝑜𝑢𝑡  & 𝑃𝐼𝐻𝑋  𝐿𝑃 𝑜𝑢𝑡  − 𝐻 𝑎𝑡 𝑇𝐼𝐻𝑋  𝐿𝑃 𝑖𝑛  & 𝑃𝐼𝐻𝑋  𝐿𝑃 𝑖𝑛  ]              (2) 

𝑄𝐼𝐻𝑋𝐻𝑖𝑔ℎ
= 𝑚𝑟𝑒𝑓 ∗ [𝐻 𝑎𝑡 𝑇𝐼𝐻𝑋  𝐻𝑃  𝑖𝑛  & 𝑃𝐼𝐻𝑋  𝐻𝑃  𝑖𝑛  − 𝐻 𝑎𝑡 𝑇𝐼𝐻𝑋  𝐻𝑃  𝑜𝑢𝑡  & 𝑃𝐼𝐻𝑋  𝐻𝑃 𝑜𝑢𝑡  ] 

 
 
Accurate measurement of temperature is integral to the above calculations.  Typically, IHX test standards specify an 

immersion style or surface mounted thermocouple located within 25mm of the IHX inlet or exit.  This specification 

can cause inaccuracies of measurement particularly on the low side outlet where temperature stratification across the 

cross section of the tube can yield large differences in temperature measurement and thus capacity and IHX 

efficiency depending on the location of the thermocouple.  Figure 4 shows the cross sectional view for an example 

coaxial style IHX (Tsuchiya, 2000).  The larger interior suction line often exhibits thermal stratification across the 

cross-section of the tube. 

 

 
Figure 4:  Example Cross Section for Coaxial IHX 

 

Table 1 shows the effect of low side exit temperature probe location on the measured temperature.  Condition A 

shows a 3°C temperature variance depending on the measurement location which is 15% of the 20°C total low side 

temperature change for this condition.  Thus, the impact on the capacity and efficiency calculations can be very 

large depending on thermocouple probe location.  Location 1 is an immersion probe in the location specified by 

most standards at 25mm from the low side exit.  Locations 2, 3, and 4 are three equally spaced immersion probes 

covering the cross section of the IHX tube immediately downstream of Location 1.  Location 5 is an immersion 

probe 200mm downstream of the low side exit after a static mixer was introduced.  When comparing the energy 

balances, the temperature measurement after the static mixer at Location 5 yielded the best results, as expected, due 

to the well mixed uniform temperature profile achieved using the mixer.  Figure 5 shows an example static mixer 

which can be inserted into the tubes directly after (or before) the IHX to unify the temperature profile (Schulz-

Hanke, 2009).  Static mixers, such as the one shown in Figure 5, are more commonly used to mix reactive 

components in joining applications but are ideal for laboratory purposes as well.  If a static mixer is used, the 

pressure drop across the IHX must be measured directly at the IHX inlet and exit so as not to include pressure drop 

induced by the mixer. 
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Table 1:  IHX Low Side Exit Temperature at Multiple Locations 

 Location 1 Location 2 Location 3 Location 4 Location 5 

Condition A 29.9°C 28.7°C 29.5°C 27.0°C 27.0°C 

Condition B 24.5°C 24.7°C 24.6°C 23.9°C 23.0°C 

Condition C 21.6°C 20.6°C 20.3°C 20.4°C 20.3°C 

 

 
Figure 5:  Static Mixer Example 

 
   

5. OCR Effect on Measurement and Performance 
 

Oil in circulation rate (OCR) requirements vary widely in various test standards.  Some standards specify a 

maximum OCR while others give either very wide (1% to 5%) or very narrow (1% +/- 0.1%) ranges.  Testing in a 

real system limits the ability to tightly control OCR, however, the impact of oil can have a significant effect on IHX 

capacity.  Typically, oil is thought to degrade heat transfer by coating tube surfaces and reducing heat transfer 

coefficients however the opposite effect has been observed at very low oil in circulation rates for superheated IHX 

test conditions.   Figure 6 shows an increase in normalized capacity as OCR increases from 0 to 1%.  It is believed 

that wetting of the IHX surfaces due to the oil in circulation has a positive effect on heat transfer under the high 

superheat conditions on the low side of the IHX.  In addition, foaming caused by the oil can increase heat transfer 

(Kim, 2012). 
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Figure 6: Effect of OCR on IHX Capacity   
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6. Conclusions 
 

The Internal Heat Exchanger (IHX) offers significant potential to improve the performance of automotive air 

conditioning systems. The adoption of alternative, more environmentally friendly, refrigerants has brought elevated 

attention to IHX development due to relatively large performance increases and/or reduced overall performance 

which can be partially mitigated by the introduction of an IHX.  Recent EPA credits have also led to IHX adoption 

as fleets work to meet carbon targets.  This study elaborated on comparison of the performance of internal heat 

exchangers and the effects of location of measurements and oil in circulation rates on the measurement accuracy and 

actual IHX performance. Typical IHX performance measurements yield the heat exchanger capacity, effectiveness, 

and the refrigerant pressure drop across each side of the heat exchanger. Existing test standards vary widely on the 

required test conditions, allowable oil in circulation rates, and instrument locations. The goal of comparison testing 

is to accurately quantify performance while also achieving repeatable results which allow for a fair and useful 

comparison between IHXs. Test conditions and temperature measurement location can have a large effect on both 

the accuracy and repeatability of measurements. Temperature probe location was shown to affect IHX capacity by 

15%.  Static mixers were presented as an option to better mix refrigerant flow prior to temperature measurement.  

Conditions close to the saturation dome, i.e. low subcooling or superheat, can make it difficult to accurately 

determine and control the state point while high superheat presents an unrealistic operating condition which can 

limit the impact of the IHX.  Testing in a full system was presented as an option to use other available energy 

balances to locate state points found at a potential two-phase evaporator exit. Oil in circulation rates directly factor 

into the heat exchanger capacity calculations but also can affect the actual heat exchanged as well as the 

measurements themselves. This paper showed that under low OCR conditions the IHX capacity counterintuitively 

increases as OCR increases.   
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