

Second-Law Analysis to Improve the Energy Efficiency of Environmental Control Unit

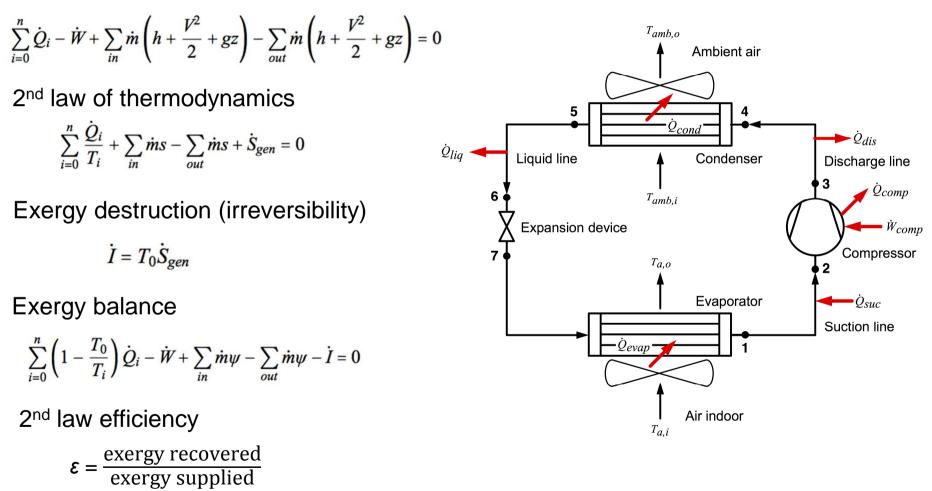
Ammar M. BAHMAN and Eckhard A. GROLL

Purdue University School of Mechanical Engineering Ray W. Herrick Laboratories West Lafayette, IN 47907, USA

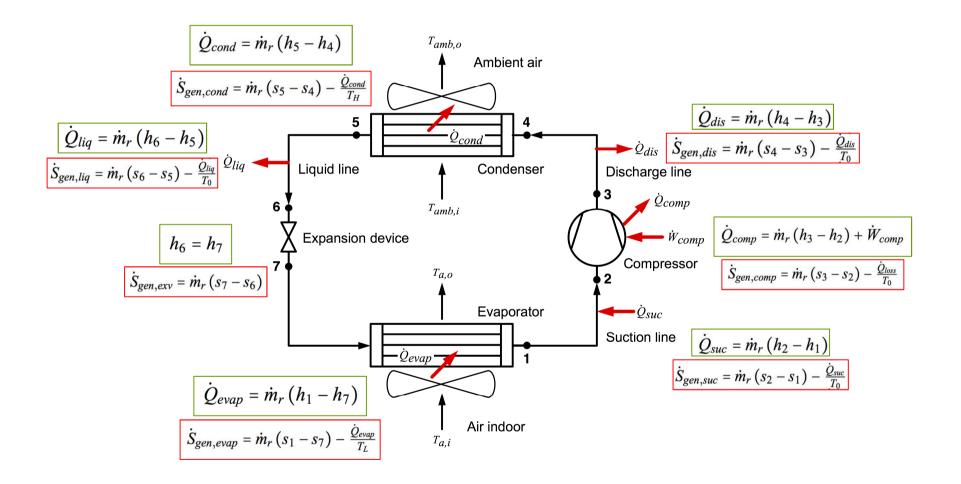
- Motivation
- Objectives
- Thermodynamic Modeling
 - » 1st and 2nd law analysis
 - » Availability analysis
- Experimental Methodology
- Results and Comparison
- Conclusions

AB1 Should I include an introduction section to talk about second law ? Ammar Bahman, 6/26/2016

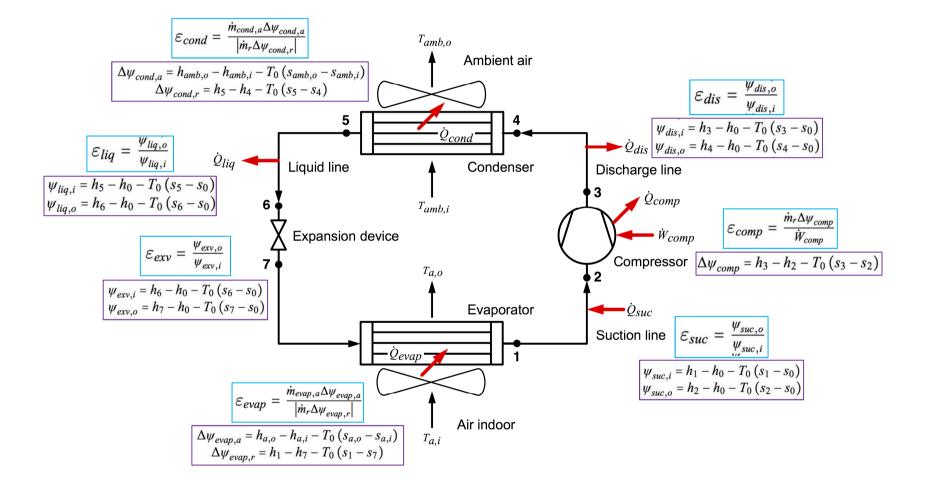
- Environmental Control Units (ECUs) are used by the military for space cooling inside shelters in hot climate regions
- Need for identifying components with the potential to improve the efficiency of the ECU
- Lack of second-law analyses applied to ECUs

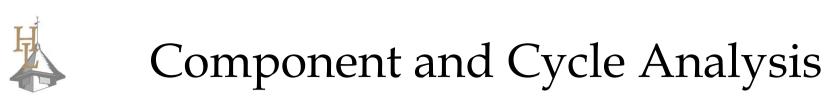


- Develop a methodology, based on second-law analysis, to evaluate the irreversibilities within each component of an ECU
- Identify the potential in each component to contribute to the exergetic efficiency of the overall system in high temperature ambient conditions
- Comparisons of three units to provide a clear direction of how to increase the system exergetic efficiency of Environmental Control Units

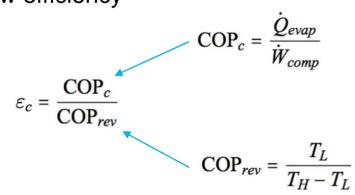


1st law of thermodynamics




1st and 2nd law Analysis

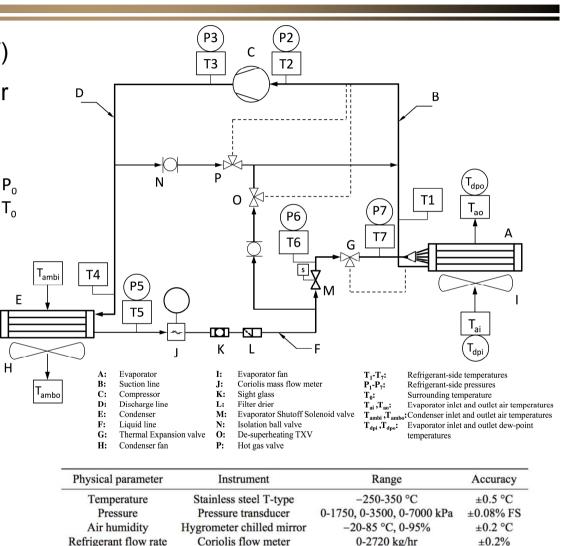
Availability Analysis


Exergy destruction ratio

$$E_{d} = \frac{\dot{I}_{i}}{\sum \dot{I}_{i}}$$

$$E_{d} = \frac{\dot{I}_{i}}{\sum \dot{I}_{i}}$$

$$\sum \dot{I}_{i} = T_{0} \left(\dot{S}_{gen,comp} + \dot{S}_{gen,cond} + \dot{S}_{gen,exv} + \dot{S}_{gen,suc} + \dot{S}_{gen,dis} + \dot{S}_{gen,liq} \right)$$



Experimental Setup

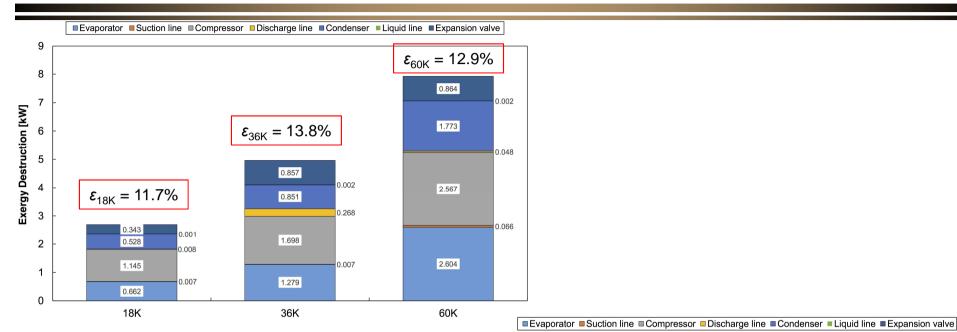
- 3 ECUs (1.5 RT, 3 RT, and 5 RT)
- Tested in psychrometric chamber
- R407C and R410A
- Hermetic scroll compressor
- Aluminum micro-channel condenser
- Aluminum fin and copper tube evaporator (e-coated)
- Thermal expansion valve
- Hot-gas by-pass circuit
- Charged under condition: Outdoor: 95°F (db) / 75°F (wb) Indoor: 80°F (db) / 67°F (wb)

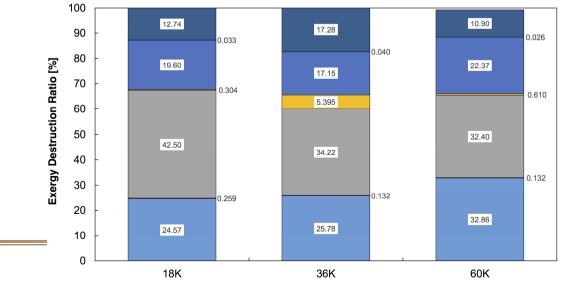
Power transducer

Power consumption

±0.25% FS

0-45 kW




- Test conditions: Indoor: 90°F (db) / 85°F (wb) Outdoor: 125°F (db) / 75°F (wb)
- Steady-state, data measurements every two seconds for 15 minutes
- Air-side and refrigerant-side within 6% per ANSI/AHRI Standard 210/240
- Properties evaluated using Engineering Equation Solver (EES)

Unit	State	Pressure kPa	Temperature °C	Enthalpy kJ/kg	Entropy kJ/kg-K	Specific volume m ³ /kg	Description
	1	655.8	16.59	420.4	1.785	0.037150	Evaporator outlet
	2	655.8	17.92	421.7	1.790	0.037430	Compressor inlet
	3	3108	111	486.2	1.857	0.009306	Compressor outlet
18K	4	3108	110	485.1	1.854	0.009252	Condenser inlet
	5	3095	60.57	295.6	1.307	0.001048	Condenser outlet
	6	3080	60.47	295.5	1.307	0.001047	Expansion valve inle
	7	975	19.76	295.6	1.331	0.010040	Evaporator inlet
36K	1	1069	18.58	434.5	1.829	0.025910	Evaporator outlet
	2	1069	19.14	435.1	1.831	0.026010	Compressor inlet
	3	4363	110.1	492.6	1.875	0.007530	Compressor outlet
	4	4363	95.26	471.5	1.819	0.006708	Condenser inlet
	5	4316	58.67	302.3	1.326	0.001165	Condenser outlet
	6	4301	58.57	302.1	1.326	0.001165	Expansion valve inle
	7	1308	16.4	302.4	1.355	0.008100	Evaporator inlet
60K	1	625.3	20.75	425.2	1.806	0.040160	Evaporator outlet
	2	625.3	25.75	430	1.822	0.041210	Compressor inlet
	3	3213	111.9	486.2	1.855	0.008957	Compressor outlet
	4	3213	110.2	484	1.849	0.008862	Condenser inlet
	5	3145	61.2	296.8	1.311	0.001052	Condenser outlet
	6	3130	61.1	296.6	1.31	0.001052	Expansion valve inle
	7	1072	23.05	296.8	1.329	0.008100	Evaporator inlet

Results and Comparison

 ε_{comp} ε_{evap} ε_{cond} Unit % % % 18K 62.5 48.8 9.7 36K 70.5 50.0 7.5 71.8 60K 45.5 4.8

July 14, 2016

- Conducted 2nd-Law analyses of 3 military ECUs to identify the contribution of each component to the overall irreversibilities of the units.
- ECUs were experimentally investigated at high ambient condition and comparisons between the individual components were made to provide a clear direction of how to increase the exergetic efficiency
- The exergy destruction (or irreversibility) associated with each component in the tested ECUs follow the sequence:
 - » Compressor (32.4% to 42.5% of the total system irreversibility)
 - » Evaporator (24.6% to 32.9%)
 - » Condenser (19.6% to 22.4%)
- Compressor should be considered first in increasing the exergetic efficiency of all ECUs; whereas in 60K ECU, evaporator should also be considered.
- Second-law analysis helps identifying components with higher exergy destruction (or irreversibility)

THANK YOU