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ABSTRACT 
 

The study emphasizes on the use of desiccant air conditioning (DAC) system for the storage of agricultural products. 

The chilling sensitivity of the tropical fruits and vegetables makes this system more promising for their optimal 

storage. The desiccant air conditioning system assisted by Maisotsenko cycle evaporative cooler is proposed in the 

study to achieve the latent and sensible load of air conditioning. In this regard, the dehumidification evaluation of 

the honeycomb like polymer based hydrophilic desiccant blocks are carried out by the means of an open-cycle 

experimental unit. The representative ideal storage zones of three temperature and relative humidity compatible 

groups of fruits and vegetables are established on the psychrometric chart on the basis of published data. The ideal 

DAC cycle analysis is accomplished at low regeneration temperature (55°C) for case-I (T = 31°C; RH = 21%) and 

case-II (T = 13°C; RH = 70%). The dehumidification analysis of the desiccant blocks recommended the time ratio 

between regeneration and dehumidification modes as 1:1 and 2:3 for the case-I and case-II respectively. The 

suggested time ratios ensure the dehumidification of the process air up to 2 g/kg of dry air and 4 g/kg of dry air in 

case-I and case-II respectively. The COP of the system was calculated as 0.90-0.43 and 0.55-0.25 at 30-90 minutes 

dehumidification with regeneration heat supplies of 1.7-2.3 kW and 2.5-3.5 kW in case-I and case-II respectively. 

The promising dehumidification by the desiccant blocks resulted in achieving the latent load itself followed by flat 

plate heat exchanger and Maisotsenko cycle evaporative cooler to achieve the sensible load. However, in case of 

high sensible loads hybrid DAC system is being recommended in this study. 
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1. INTRODUCTION 
 

The harvested agricultural products (fruits and vegetables) contain higher moisture contents (60-95%) and have 

short shelf life under ambient environmental conditions. The postharvest shelf life of these perishable agricultural 

products can be extended by minimizing the postharvest losses (PHL). The PHL are the losses of quality and 

quantity (weight) of the agricultural products. In general, the postharvest losses of fruits and vegetables are reported 

as 20-30% in the literature (El-Ramady et al., 2015). However, in case of developing countries (particularly of the 

tropical belt) these losses become higher as 30-50% of the fresh agricultural products (Atanda et al., 2011; Olosunde 

et al., 2015; El-Ramady et al., 2015). The key factors responsible for such losses are shown in Figure 1a (Mishra 

and Gamage, 2007; El-Ramady et al., 2015). The preharvest and harvest factors cannot be avoided after the 

harvesting, however, the postharvest factors can be controlled to slow down the decay process in the agricultural 

products. The management of the postharvest factors (like temperature and relative humidity) is crucial to keep the 

harvested products in healthy physiological conditions in order to extend their shelf/storage life with maximum 

quantity and quality.  

 

The most important postharvest factor on which the quality of agricultural products depends is the temperature of 

their surrounding environment. The agricultural products perform respiration after harvesting just like before their 

harvest. The equation (1) better explains the respiration process in the agricultural products (ASHRAE, 2010). It is 

evident from equation (1) that during the respiration process the ambient air oxygen reacts with the reserve 

sugar/starch of the harvested products and breakdown it into carbon dioxide, water and consequently heat (about 

2667 kJ) is released during this reaction. Furthermore, the heat generation rate during the respiration process in the 

specific agricultural products can be calculated by the correlation (ASHRAE, 2010) as given in equation (2).  

 

C6H12O6 + 6O2  →  6CO2 + 6H2O + heat                                     (1) 

 

Q =
10.7f

3600
 (1.8T + 32)g                                                                     (2) 

 

where Q is heat generation rate in (W/kg), T is temperature in (°C) and f, g are respiratory coefficients. The values of 

these coefficients for various fruits and vegetables are not tabulated in the manuscript, however these can be found 

for the particular products from the cited literature (Becker and Fricke, 1996; ASHRAE, 2010). The respiration rate 

mainly depends on the temperature that means higher the temperature higher will be the reaction rate which 

ultimately increases the decay/aging process in the products. 

 

The other important postharvest factor after the temperature is the relative humidity. Like respiration the harvested 

agricultural products also perform transpiration. In simple words, the transpiration is the loss of moisture from the 

product which mainly depends on the relative humidity of the surrounding air. It is responsible for the saleable 

weight and physical appearance of the agricultural products. Therefore, both the air temperature and the relative 

humidity have to be controlled and remained within the recommended limits in order to retard the postharvest losses. 

This can be achieved by keeping the agricultural products in the storage facilities under the ideal storage zone 

(temperature and relative humidity) environment. Thus, such controlled environment results in maintaining the 

overall good quality of the products till the end of their storage life. 

 

The most of the storage facilities available today are equipped with conventional vapor compression refrigeration 

and/or air conditioning systems. However, the postharvest losses of 24% fruits and vegetables in both developed and 

developing countries are due to the lack of storage facilities (Islam and Morimoto, 2015). Though, some studies 

reported the higher postharvest losses (about 30-40%) in the developing countries mainly due to lack of storage 

facilities (Mogaji and Fapetu, 2011; Atanda et al., 2011). Moreover, the storage systems built in developed countries 

are either not readily available or unsuitable for the bulk produce of the fruits and vegetables (Olosunde et al., 2015). 

On the other hand, irrespective of the availability of the storage facilities/space, the conventional refrigeration 

systems being used in the storage facilities are not only have the demerits of environmental degradation, high energy 

requirements etc. but also cannot be suitably used for storage of many fruits and vegetables (particularly of tropical 

areas) due to chilling injury and discoloration (Olosunde et al., 2015; Ndukwu and Manuwa, 2015).  
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The standalone evaporative cooler also cannot be used effectively in humid climatic condition (Olosunde et al., 

2015; Lal Basediya et al., 2013). In this scenario, the desiccant air conditioning (DAC) system with its well-known 

environmental and energy saving benefits (Sultan et al., 2015) can deal the latent and sensible loads of air 

conditioning distinctly. Such distinction of DAC system makes it more feasible and favorable for the storage of 

agricultural products without causing chilling injury, off-flavor and discoloration. Therefore, DAC system can be a 

viable option to be used in storage facilities/structures for on-farm and/or ex-farm storage of the agricultural 

products. The DAC system can also be used to preserve the agricultural products during their shipments through 

marines/ships.  

 

In the present study, a desiccant air conditioning system containing two separate set of desiccant blocks, one flat 

plate heat exchanger (HX), one Maisotsenko cycle evaporative cooler (MEC), and a regeneration heat source unit is 

proposed to provide the optimal storage conditions. The ideal storage zones for three different compatible groups of 

fruits and vegetables are developed on the psychrometric chart. The dehumidification evaluation of desiccant blocks 

was carried out by the means of an open-cycle experimental unit. The experimental system consists of eight 

desiccant blocks, inlet and outlet temperature and relative humidity measurement gadgets, and dehumidification & 

regeneration air sources. The system was operated for the dehumidification of inlet air at varying temperature (i.e. 

31°C to 13°C) and relative humidity (i.e. 21% to 70%). The low regeneration temperature (about 55 °C) was used to 

regenerate the desiccant blocks for their cyclic use. The regeneration and dehumidification cycle ratio was set as 2:3 

to analyze the performance of the desiccant blocks. Simple psychrometric analysis was made while considering the 

ideal desiccant air conditioning cycle. Finally, the coefficient of performance of the Maisotsenko cycle assisted 

desiccant air conditioning (M-DAC) system and regeneration heat input were calculated under the varying 

environmental conditions. In conclusion, the objective of the study is to perform the theoretical and experimental 

evaluation of the desiccant air conditioning system in order to ascertain its feasibility to achieve the latent and 

sensible loads of air conditioning for the storage of agricultural products. The methodology adopted in the study is 

shown in Figure 1b.  

 

 
 

Figure 1: a) Factors affecting the postharvest quality of the agricultural products; b) Illustration of the study 

objectives and adopted methodology 
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2. MATERIALS AND METHODS 

In the present study, the honeycomb like square shaped desiccant blocks with dimensions of 20 cm x 20 cm x 20 cm 

are used. The blocks are composed of hydrophilic polymer based sorbent. The desiccant blocks were supplied by the 

Showa Manufacturing Co., Ltd., Japan.  

 

2.1 Establishment of Ideal Storage Zones 

In this study, three different compatible groups of fruits and vegetables according to their temperature and relative 

humidity are selected for the establishment of ideal storage zones on the psychrometric chart. These groups are 

termed here as group I, II and III. The major fruits and vegetables belong to these groups (I, II, III) along with their 

recommended storage temperature (°C), relative humidity (%) and life are given in Table 1 (Kitinoja and Kader, 

2002; ASHRAE, 2010). The group I and II are selected because of their sensitivity to the chilling injury. The 

conventional vapor compression refrigeration system is not recommended in the literature for the storage of chilling 

sensitive fruits and vegetables. Whereas, the storage of fruits and vegetables of group III need slightly warmth 

conditions. The better control over temperature and relative humidity is required in case of group III, otherwise, the 

warmth and humid conditions are always prone to the growth of bacteria and fungi (Lal Basediya et al., 2013). 

Therefore, M-DAC system is proposed in the study for the optimum storage of fruits and vegetables of the group I, 

II and III. In order to establish the representative ideal storage zone an increment of 3°C is added in the temperature 

of group I and II. It can be a valid assumption because of chilling sensitivity of agricultural products of the group I 

and II. Therefore, the representative ideal storage zones developed on the psychrometric chart for the studied 

agricultural products groups are shown in Figure 2. 

 

2.2 Experimental System and Procedure 
The dehumidification analysis of desiccant blocks were carried out by the means of an open-cycle experimental unit 

placed in the controlled temperature and relative humidity room. The experimental unit consists of eight desiccant 

blocks, air flow control valves, air blower, heat exchanger, water circulator, constant temperature water bath, inlet & 

outlet temperature and relative humidity measurement gadgets, and dehumidification & regeneration air sources. 

The schematic of the experimental unit is shown in Figure 3. The honeycomb like square shaped desiccant blocks 

(20 cm x 20 cm x 20 cm) composed of hydrophilic polymer based sorbent are used in the experimental unit. The 

regeneration and process air was supplied by the air circulators (APSITE: PAU-H3200-6KHC, Tac = ± 0.5°C; RHac 

= ± 2%) and (PAU-AZ1800SE, Tac = ± 0.05-0.1°C).  However, the experimental unit is also equipped with flat plate 

heat exchanger which is connected to the water bath (ADVANTEC: TBN402DA, Tac = ± 0.1°C) through water 

circulator (EYELA CTP-3000, Tac = ± 0.1°C). This is an optional arrangement for the provision of high regeneration 

temperature and it also enable the use of only one air circulator for both the regeneration and adsorption. The inlet 

and outlet air temperature and relative humidity of the desiccant blocks were measured by the temperature and 

humidity transmitters (VAISALA: HMT 333, RHac = ± 1-1.7%; Tac = ± 0.2-0.3°C). The air mass flow rate was 

determined by measuring the pressure difference across the circular orifice through differential pressure transmitter 

(TESTO: 6349, Pac = 0.3 Pa). The air flow rate was regulated by variable speed blower (SHOWA: EC-100T-R313, 

efficiency = 90 %). The data acquisition unit (DAQMASTER: MX 100) was used to record the data for every 10 

second interval. 

 

As far as the experimental procedure is concerned, first of all, the ambient conditions of the experiment room were 

maintained by running its separate air conditioning control unit. The experiments were started with the regeneration 

of the desiccant blocks. The temperature and relative humidity of the regeneration air stream was maintained at 

55°C ± 2°C and 5 % ± 1%, respectively. The regeneration air stream was passed through desiccant blocks for 60 

minutes. The low temperature regeneration was selected in order to simulate the conditions that can be available 

through the use of low grade waste heat, solar energy and biogas. After the regeneration of the desiccant blocks the 

process air for 90 minutes was moved through them. The process air circulator was adjusted at temperature and 

relative humidity of 31-13°C and 21-70%, respectively. The time ratio between regeneration air and process air was 

adjusted as 2:3 for the performance evaluation of the desiccant blocks (Yoshida et al., 2013). The initialization of 

the desiccant blocks was made for each cycle at T= 55°C ± 2°C and RH =5 % ± 1%. The instantaneous data of the 

experiments were recorded automatically by the data logger. The mass flow rate of the process and/or regeneration 

air was calculated by the particular orifice equation (3). 
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mPA or mRA = C A √2 ρ ΔP                                                                         (3) 

 

where C is orifice flow coefficient [-], A is the area of the orifice (m
2
), ∆P is the pressure difference between inlet 

and outlet of the orifice (N/m
2
) and ρ is the density of the air (kg/m

3
). In the present experiments diameter of the 

orifice and orifice flow coefficient are taken as 8 cm and 0.6, respectively.  

 

Table 1: Compatible storage groups (I, II and III) of the agricultural products  

 

Groups Products 
Storage life 

[weeks] 
Products 

Storage life 

[weeks] 
T [°C] RH [%] 

I 

 

Okra, Eggplant, 

Cucumber 
1-2 Olive 6 

10 85-90 

Pepper 2-3 Potato 20-40 

II 

 

Avocado, Rambutan, 

Potato (new), 

Tomato (ripe) 

1-3 
Guava, Mango, 

Melon 
2-3 

13-15 

 
85-95 

Jackfruit, Grapefruit 2-8 
Lemon, Pineapple,  

Banana (green) 
4-24 

III 

 

Watermelon,  

Tomato (mature green) 
1-3 White sapote 2-3 

18-21 85-90 

Jicama 4-8 Sweet potato 20-35 

(reproduced from ref. Kitinoja and Kader, 2002; ASHRAE, 2010) 

 

 
 

Figure 2: A psychrometric representation of ideal storage zones and typical ideal DAC cycle 

 

2.3 Proposed DAC System 
The study proposes a desiccant air conditioning system which consists of two desiccant blocks, one flat plate heat 

exchanger (HX), one Maisotsenko cycle evaporative cooler (MEC), and a regeneration heat source. The schematic 

of Maisotsenko cycle assisted desiccant air conditioning (M-DAC) system is shown in Figure 4. Two separate sets 

of desiccant blocks (I and II) are used in this study to enable their switching during dehumidification and 

regeneration. The MEC can cool the air to the dew point theoretically. The working principle of the proposed system 

is as follow: The outdoor air (at state 1) when passes though desiccant blocks (I or II) it becomes dehumidified. 
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The isenthalpic dehumidification of the process air (state 2) is shown in Figure 2. The dehumidified air is then enters 

to the HX for sensible cooling of the process air (state 3). Afterwards, further sensible cooling of the process air is 

accomplished through the MEC. The MEC provides the required conditioned air (state 4) for the storage of 

agricultural products. On the regeneration side, the outdoor air (state 5 or 1) passes through the HX to recovers the 

heat of adsorption (state 6) of the dehumidified process air. The regeneration air is further heated by adding the heat 

through heat source. Finally, the heated air (state 7) passes through the desiccant blocks for their regeneration.  

 

The dehumidification data of the desiccant blocks were obtained through open-cycle experimental unit. The further 

analysis of the isenthalpic dehumidified process air is carried out by the fundamental heat and mass transfer 

equations (4-8) of the DAC system.  

 

T3 = T2 − ɛHX (T2 − T5)                                                                       (4) 

T4 = T3 − ɛMEC (T3 − T1,wb)                                                                (5) 

T6 = T5 + (
T2 − T3
mRA
mPA⁄
)                                                                        (6) 

 

where, the subscripts (1-7) define the different states of process and regeneration air as shown in Figure 4. The wet 

bulb effectiveness of MEC (ɛMEC) and HX (ɛHX) are taken as 0.6 and 0.9, respectively (Sultan et al., 2016). The 

specific heat capacity (Cp) of the air is taken as 1.006 kJ/kg∙K. The mass flow rate of process air (mPA) and 

regeneration air ( mRA ) was determined as 0.1 kg/sec (with 10% variation) during the desiccant block 

dehumidification and/or regeneration open-cycle experiments. The heat input to the regeneration air through heat 

source is determined by equation (7). Lastly, the coefficient of performance (COP) of the proposed system is 

calculated by the equation (8).  

 

Heat input = mRA Cp (T7 − T6)                                                        (7) 

COP =
mPA
mRA
(
h5 − h4
h7 − h6

)                                                                         (8) 

 

3. RESULTS AND DISCUSSION 

 

3.1 Desiccant block dehumidification 

The open-cycle desiccant block experimental unit was operated under varying inlet air temperature and relative 

humidity conditions in order to ascertain the dehumidification performance of the adsorbent. These inlet conditions 

are represented by case-I (T = 31°C; RH = 21%) and case-II (T = 13°C; RH = 70%) as shown in Figure 5. However, 

the regeneration of the adsorbent was carried out at same temperature (55°C ± 2°C) and relative humidity (5%) in 

both cases.  The time ratio during the regeneration (60 minutes) and dehumidification (90 minutes) modes were also 

kept same in case-I and case-II. The air mass flow rate was 0.1 kg/sec (±10 %) during the experiments. The outlet 

air temperature and RH profiles corresponding to the inlet conditions of case-I and case-II are shown in Figure 5. It 

is examined that almost equilibrium conditions reached after 60 minutes dehumidification in case-I as shown in 

Figure 6. It is because of higher inlet air temperature and lower relative humidity (dry conditions). Referring to the 

Figure 7, there is no further dehumidification after 60 minutes, and it does not remain isenthalpic. Therefore, the 

time ratio between regeneration and dehumidification process is suggested as 1:1. The optimized time ratio for these 

conditions ensures the dehumidification of the process air up to 2 g/kg of dry air.  

 

On the other hand, the desiccant block performs higher dehumidification up to 4 g/kg of dry air in case-II due to 

cold and humid conditions. The desiccant block has affinity towards such humid conditions. The preset time ratio 

(2:3) is optimal for case-II as it ensures the isenthalpic dehumidification up to 2 g/kg of dry air at the end of the 

dehumidification mode (90 minutes). But, such higher dehumidification does not guarantee the higher coefficient of 

performance of the system. The almost same outlet air humidity ratio values during each cycle confirms the reliable 

performance of the desiccant blocks in the long run as shown in Figure 6. Therefore, it can be concluded that the  
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Figure 3: Schematic of the desiccant blocks open cycle experimental unit 

 

 
 

Figure 4: Schematic of the proposed DAC system 

 

studied desiccant blocks can reasonably achieve the latent load of the air conditioning for the storage of fruits and 

vegetables. The low regeneration temperature (55°C) was used in order to simulate the conditions that can be 

available through the use of low grade waste heat, solar energy and biogas etc.  

 

3.2 Performance Analysis of the Proposed DAC System  

The performance of the proposed DAC system on the basis of the open-cycle desiccant block experimental data is 

carried out by the fundamental heat and mass transfer equations (4-8). The wet bulb effectiveness of the HX and 

MEC are taken as 0.9 and 0.6, respectively. The regeneration temperature is 55°C in both cases (I and II). It is 

worthy to mention that the temporal variation of the system COP (as given in Figure 8 a,b) was estimated by 

considering the process and regeneration air flow simultaneously. In contrast with the proposed desiccant blocks 

system as presented in Figure 4, the system analyses are more related to the rotary system. The coefficient of 

performance (COP) and the heat supplied through external heat source for the regeneration of the desiccant blocks 

are calculated for both the studied environmental conditions (case I and II) as shown in Figure 8 (a,b). The relative 

difference in COP and heat supplied in both the cycles of each case (I and II) are also plotted in order to ensure the 

reliable cyclic performance of the DAC system. The COP of the system was calculated as 0.90-0.43 and 0.55-0.25 at  
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Figure 5: Regeneration and dehumidified air temperature and relative humidity profiles 

 
 

Figure 6: Dehumidification performance of the desiccant block 

 

.  

Figure 7: Enthalpy profiles of regeneration and dehumidified air in case-I and case-II 
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Figure 8: a) COP of the DAC system and heat supplied for regeneration of desiccant block in case-I; b) COP of the 

DAC system and heat supplied for regeneration of desiccant block in case-II 

 
30-90 minutes of dehumidification time in case-I and case-II respectively. The corresponding regeneration heat 

supplies are increased as 1.61-2.40 kW and 2.53-3.60 kW as shown in Figure 8 (a,b).The decreasing COP and 

increasing regeneration heat supplies are due to the reduction in the heat of adsorption with increasing cycle time. 

However, these can be optimized by minimizing the dehumidification cycle time 60 minutes in case-I. The COP of 

the system in case-II is less as compared to case-I because of higher supply of regeneration heat. The negligible 

relative differences in COP and also in heat input for both the cycles of the case (I and II) confirms the sustainable 

dehumidification performance of the desiccant blocks. The desiccant blocks used in the proposed system achieved 

the latent load; whereas, the HX and MEC achieved the sensible load of air conditioning for optimal storage of 

agricultural products. However, this study proposes the use of hybrid DAC system in case of high sensible loads. 

 

4. CONCLUSIONS 

 
The present study addresses the theoretical and experimental evaluation of the desiccant air conditioning system for 

agricultural applications. The system achieves the latent load by desiccant itself whereas sensible load was 

accomplished by the Maisotsenko cycle evaporative cooler. The factors affecting the postharvest losses of the 

agricultural products are highlighted. The optimal storage zones for three compatible groups of fruits and vegetables 

are established on the basis of temperature and relative humidity. In this regard, a desiccant air conditioning system 

assisted by Maisotsenko cycle evaporative cooler has been proposed to achieve the latent and sensible load of the air 

conditioning. The dehumidification evaluation of honeycomb like hydrophilic polymer based desiccant blocks was 

done by the means of an open-cycle experimental unit under two different environmental conditions. These 

environmental conditions are represented by case-I (T = 31°C; RH = 21%) and case-II (T = 13°C; RH = 70%) in the 

study. The regeneration of desiccant blocks was made at low temperature (55°C) in order to simulate the conditions 

that can be available through the use of low grade waste heat, solar energy and biogas. The regeneration and 

dehumidification cycle ratio is recommended as 1:1 and 2:3 for case-I and case-II respectively. The suggested time 

ratios ensure the dehumidification of the process air up to 2 g/kg of dry air and 4 g/kg of dry air in case-I and case-II 

respectively. The ideal DAC cycle was established on the psychrometric chart to attain the latent and sensible loads 

of air conditioning for optimal storage of agricultural products. Finally, the coefficient of performance of the 

proposed DAC system and supply of regeneration heat was calculated using the fundamental heat and mass transfer 

equations. The COP of the system was calculated as 0.90-0.43 and 0.55-0.25 at 30-90 minutes of the 

dehumidification time in case-I and case-II respectively. The corresponding calculated regeneration heat supplies are 

increased as 1.61-2.40 kW and 2.53-3.60 kW. The results of the study showed that the desiccant air conditioning 

system can achieve the latent load of air conditioning efficiently by means of desiccant itself. However, the 

performance of MEC for the regulation of sensible load of air conditioning was partly affected when humid air is 

employed. 
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NOMENCLATURE 
 

COP  coefficient of performance [-]   Q  respiratory heat [W/kg] 

DA  dry air       RA  regeneration air 

DAC  desiccant air conditioning     RH  relative humidity [%] 

f, g  respiratory coefficients [-]    T  temperature [°C] 

G  group of agricultural products    X  humidity ratio [g/KgDA] 

h  enthalpy [kJ/kg]   ɛ  effectiveness of devices [-] 

HX  flat plate heat exchanger     ∆  Difference (in - out) 

m  air mass flow rate [kg/sec]     

M-DAC  Maisotsenko cycle assisted DAC system   Subscripts 

MEC  Maisotsenko cycle evaporative cooler   ac  accuracy 

P  pressure      in  inlet conditions 

PA  process air      out  outlet conditions  

PHL  postharvest losses [%]    wb  wet bulb 
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