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ABSTRACT 
 

An intermittent thermochemical sorption refrigeration system consisted of a reactor and an evaporator/condenser 

was constructed and studied by using strontium chloride/EG (expanded graphite) as composite sorbent and ammonia 

as refrigerant. Firstly, the sorption characteristic of strontium chloride/EG-ammonia was investigated, and the 

reaction enthalpy and entropy were obtained experimentally and compared with other previous data. Then, from the 

view of practical application, the specific cooling power (SCP) and coefficient of performance (COP) of the system 

were obtained at different operating temperatures. The regeneration process of SrCl2 was driven by high-temperature 

heat transfer fluid with temperature of 94±1.5oC from an external heat source, which was used to simulate solar 

collectors. In the evaporation–adsorption process, the evaporation temperature varied from 15 to -15oC, and heat 

sink temperature was kept at 25±0.5oC. The experimental results showed that the COP increases with increasing 

evaporation temperature, and its maximum value could reach 0.24 when the evaporation temperature was 15oC, and 

the corresponding mean SCP was 291.5W/kg.  

 

1. INTRODUCTION 
 

Nowadays, three important issues, including greenhouse gas emissions, global warming and climate change have 

drawn the worldwide attention, and are urging people to enact the environmental regulations, which focus on how 

energy is obtained and utilized around the world. The Montreal Protocol (Velders et al., 2007) and the Kyoto 

Protocol (United Nations, 1997) put restrictions on the production and use of ozone depletion substances such as 

CFCs’ and HFCs’, which are widely utilized in the vapor compression refrigeration systems and contribute to the 

ozone layer depletion and greenhouse gas emissions. Moreover, the electricity consumed by the system during 

operation increases the depletion of fossil fuels. Air conditioning and refrigeration industry is affected badly by the 

protocols. As consequence, researchers are required to explore new alternative ways to ease the issues mentioned 

above (Kiplagat et al., 2013).  

Solid–gas sorption refrigeration systems have a lower negative environmental impact in comparison with vapor 

compression refrigeration systems by employing nature friendly fluids (e.g. water, methanol, ammonia, etc.) as 

refrigerants (Wang and Oliveira, 2006), among which ammonia has been appointed as a substitution of CFCs’ and 

HFCs’ by the International Refrigeration Institute (Spinner, 1993). These refrigerants have zero ozone depletion 

potential (ODP) and zero global warming potential (GWP), which meet the requirements of the Montreal Protocol 

and Kyoto Protocol. The working principle of a sorption refrigeration system is based on the sorbent’s ability to 

absorb the refrigerant vapor at low temperature and to desorb it at high temperature. The sorption refrigeration 

machine can be driven by low-grade heat and not use electricity as the main driving energy. The low-grade heat 
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source could be industrial waste heat, exhaust gases from engines or solar thermal collectors. Therefore, the 

application of sorption refrigeration technology would also contribute to the efforts to solve the energy scarcity (Li 

et al., 2011). The comprehensive reviews in literatures (Wang and Oliveira, 2006; Meunier, 1998; Li et al., 2014) 

discuss the feasibilities of solid sorption systems and the progress in the development of different solid-gas sorption 

refrigeration thermodynamic cycle driven by low-grade thermal energy. 

The sorption refrigeration machines that use chemical sorbents such as metal chlorides [Iloeje et al.,1995; Oliveira 

et al., 2007a; Kiplagat et al., 2010; Goetz et al., 1997] have been studied. Ammonia is often employed as the 

refrigerant in the machines. The chemisorption process follows the monovariant characteristic between pressure and 

temperature in the equilibrium condition. The main advantage of metal chloride working pairs is the larger sorption 

capacity and volume cooling density, which is about 5-6 times higher than those obtained with physical adsorption 

working pairs [Wongsuwan et al., 2001]. This implies that cooling systems based on thermochemical reaction 

process can have smaller reactor size and lower manufacturing costs when compared with those based on physical 

adsorption process. However, Metal chlorides usually suffer the drawbacks of low thermal conductivity and 

agglomeration, which will make the mass and heat transfer deteriorate and cause low heat addition/removal rates, 

resulting in long cycle times and low cooling power density. Hence, some porous materials such expanded graphite 

[Oliveira et al., 2009], carbon fibers [Aidoun and Ternan, 2002] and activated carbon [Cacciola et al., 1995; Wang 

et al., 2004] are employed as additives to prevent the agglomeration phenomenon so as to improve the mass and heat 

transfer in reactive salts. Moreover, machines using ammonia as the refrigerant have higher pressure in the system 

than those using methanol or water, which means better mass transfer. 

Solar-powered sorption refrigeration has been regarded as a promising technology due to its distinct advantage of 

the close coincidence of high peak cooling demands with the maximum available solar thermal energy. Li et al. 

(2012) proposed a solar-powered multimode thermochemical sorption refrigeration system and its working mode 

could be switched for air-conditioning, refrigeration or deep-freezing according to the available solar insolation. 

Considering only single stage machines, Duenas et al. (2001) and Rivera et al.(2007)  studied the dynamic behavior 

of solar heating system of a thermochemical refrigerator based on solid-gas reaction between barium chloride(BaCl2) 

and ammonia, and found that the relative low temperatures of dissociation were between 50oC and 60oC, which 

could be supplied by flat plate collectors. Moreover, their further research showed that the generation temperature 

was 53 oC for a condensation temperature of 23 oC, and in the evaporation-adsorption process, the evaporation 

temperature was between -10 and 0oC. Kiplagat et al. (2010) showed that the specific cooling capacity of a 

consolidated composite based on Lithium chloride and expanded graphite was 1.8-6.7 times higher than the value 

obtained when activated carbon acted as the sorbent. Oliveira et al. (2009) utilized a composite sorbent (NaBr and 

expanded graphite) in chemisorption air conditioning systems driven by low-grade heat source, and found the SCP 

and COP of the system is 129W/kg and 0.46 when the heat source temperature, the heat sink temperature and the 

evaporation temperature was 65oC, 30oC and 15oC, respectively. Li et al. (2009) developed a consolidated 

composite sorbent made of BaCl2 and expanded graphite for solar-powered thermochemical cooling systems, and 

found the heat transfer and sorption characteristics could be improved significantly by using consolidated composite 

sorbent. Sanchez et al. (2015) studied the effect of the reactor’s characteristics on the performance of a 

chemisorption refrigerator using an SrCl2 composite sorbent with the aid of simulation, and found that it was 

possible to improve the cooling power and the COP of a chemisorption refrigerator with the same relative increment 

above their minimum value by adjusting the values of independent variables 

By now, the report about the SrCl2/NH3 chemisorption refrigeration is very little, especially in consideration of the 

practical application. This paper describes a chemisorption refrigeration system based on SrCl2/EG composite 

sorbent and NH3, which is driven by low-grade heat source. From the view of practical application, the effects of the 

different evaporation temperatures on the COP and SCP of the system are studied. 

 

2. EXPERIMENT SYSTEM 
 

2.1 System description 
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A small scale chemisorption experiment device was designed and constructed to operate under a single stage cycle 

(Figure 1). The device consisted mainly of a thermochemical reactor, a condenser/evaporator, and an expansion 

valve. The reactor was filled with SrCl2/EG composite sorbent and the condenser/evaporator was used to store liquid 

NH3. The auxiliary systems including two thermostatic circulators were set up to supply the heat for regeneration 

and evaporation process, and take the heat away for sorption and condensation process by pumping the heat transfer 

fluid with the setting temperature into reactor and condenser/evaporator. For the heat transfer fluid, it is the mixture 

of ethylene glycol /water by volume ratio of 2:3, and its freezing point is -40oC. 

            
                                           (a)                                                                                                   (b) 

Figure 1: Experiment system, (a) the overall schematic of system; (b) the photograph of the main part 

 

The reactor was connected to a condenser/evaporator through stainless steel pipes fitted with flow control valves. 

Measurement transducers such as temperature and pressure sensors were installed in the system. 

 

2.1.1 Reactor: In the reactor, the decomposition and synthesis processes occur as shown in Equation (1). 
synthesis

2 3 3 2 3decomposition
SrCl NH +7NH SrCl 8NH +Δ rH                                                (1) 

The reactor is mainly consist of  20 finned tubes made of carbon steel which are filled with the composite sorbents 

and covered by a thin wire mesh to prevent the sorbent from trickling out. Figure 2 shows the photographs of the 

filled fin tube heat exchanger and reactor without thermal insulation material. 

 

 

Figure 2: The photographs of fin tube heat exchanger and reactor 

 

The salt was impregnated into expanded graphite powder according to the procedure given by Oliveira et al. (2007b), 

which involves expansion and exfoliation of raw expandable graphite (mesh 80, type KP80, from Qingdao Tianhe 
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Graphite Co. Ltd., China) at 800 oC for 2 min and soaking it in a salt solution. Then, the resultant slurry was placed 

in a drying oven at 120 oC for 24 h to remove the water. Thereafter, the composite sorbents were manually filled into 

the spaces between fins and the host tube. Finally, the fin tubes were arranged in a cylindrical steel case with an 

internal diameter of 151 mm, as shown in Figure 2. Before conducting the experiment, the reactor was dried at 

temperature between 170 oC and 200 oC in vacuum condition for about 1h in order to remove all the moisture 

absorbed by the salt during the filling process. 

 

Table 1: Construction details of the reactor 

 

Parameters Value 

Number of fin for every finned tube 149 

Fin thickness  0.4 mm 

Fin length  9.5 mm 

Distance between fins  5 mm 

Number of heat exchange tube 20 

Inner diameter of heat exchange tube ∅ 10mm 

outer diameter of heat exchange tube ∅ 16mm 

length of every heat exchange tube 860mm 

Inner diameter of shell ∅ 151mm 

Mass of salt (ms)  3.73 kg 

Mass of expanded graphite (mEG)  0.65 kg 

Inert material/composite sorbent heat capacity ratio (RCp)  11.8 

Thickness of the adsorber case wall 4 mm 

Pressure loading capacity of the reactor case wall 3.0 MPa 

 

The heat transfer fluid exchanged heat with the sorbent through the walls of the finned pipes, whereas the refrigerant 

gas entered and left the sorbent through the pores of expanded graphite and the spare space in the reactor; hence, the 

steel case always contained some NH3 during the operation of the system. The detailed parameters of the finned tube 

heat exchanger and the reactive bed are given in Table 1. 

 

2.1.2 Data measurement and acquisition: In the inlet and outlet of reactor and condenser/evaporator, four 

thermocouples (PT100) were placed to measure the temperature of heat transfer fluid (
,Ad inT ,

,Ad outT ,
,Cd inT ,

,Cd outT  ). 

In the reactor and condenser/evaporator, a mechanical pressure gauge and a pressure sensor were placed to measure 

the pressure (
AdP ,

CdP ). Also, four thermocouples were placed inside the reactor to measure the temperature of 

reactor (
,1AdT ,

,2AdT ,
,3AdT ,

,4AdT ), which were inserted into different depth in the radial direction of reactor, and one 

thermocouple was placed between the two sub-reactors to measure the temperature of heat transfer fluid (
,Ad mT ) in 

the channel.  

 

Table 2: Specifications of the measuring sensors 

 

Equipment  Specification Quantity Accuracy 

Temperature sensor  PT100 (-50~450oC) 9 ±0.15 oC 

Pressure sensor  0~4 MPa 2 0.5% 

Pressure gauge 0~3.6Mpa 2 2.5% 

 

The data from sensors were captured every 6 seconds and stored in an Agilent 34927A data logger. The 

specifications of the measuring sensors are shown in Table 2. The mass flow rate of the heat transfer fluid in the 

reactor and evaporator were measured by weighing the fluid which outflowed at setting time. For every 

experimental condition, the measurements were conducted for 3 times to obtain the mean value. It was because the 

effect of temperature on the viscosity of heat transfer fluid would lead to the change of mass flow rate of the heat 

transfer fluid. Moreover, the heat capacity of heat transfer fluid at different temperature was referred. 

 

2.2. Experimental conditions 
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In this intermittent system, three independent parameters were controlled during the operation of the machine: (1) 

the inlet temperature of heat transfer fluid in the evaporator (TEv,in); (2) the inlet temperature of heat transfer fluid in 

the reactor during the regeneration period (TAd,in); and (3) the heat sink temperature. The time for regeneration 

process was set for 40 minutes, and the time for generation process 20 minutes. One experimental condition was 

repeated for 3 times to allow an estimation of the experimental error. The initial condition for every experiment was 

kept the same, where both the temperatures of reactor and condenser/evaporator were at 25±0.5 oC, and the valve 

was open. 

 

2.3. Coefficient of performance (COP) and specific cooling power (SCP)  
The COP is calculated with Equation (2), whereas the SCP is calculated using Equation (3): 

Ev

Ds

Q
COP

Q


                                                                                 (2) 

Ev

S

Q
SCP

m t


                                                                               (3) 

Where ms is the mass of the salt (kg), t is the evaporation time(s), QEv and QDs are determined from the following 

equations, respectively: 
200

, ,

0

( )EvEv p Ev in Ev out i

i

Q m C T T t


                                                             (4) 

400

, ,

0

( )AdDs p Ad in Ad out i

i

Q m C T T t


                                                             (5) 

where m  is the mass flow rate of the heat transfer fluid, 
pC  is the specific heat capacity of heat transfer fluid. t  is 

equal to 6 seconds. 

 

3. RESULTS AND DISCUSSION 

 
3.1 Determination of reaction enthalpy and entropy 
Refer to the Equation (1). The relation between the equilibrium temperature and the pressure, and its stoichiometric 

coefficients were given in literature (Neveu and Castaing, 1993). In this work, we firstly characterized the 

equilibrium condition for this reaction, and confirmed the reaction enthalpy and entropy. 
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 Experimental value of SrCl
2
/NH

3

 Fitting line of S/G (SrCl
2
/NH

3
)

synthesis

2 3 3 2 3decomposition
SrCl NH +7NH SrCl 8NH +7Δ rH 

 
Figure 3: The equilibrium pressure of the reactor at different temperatures 

 

Keep the valve closed, and record the equilibrium pressure of the reactor at different temperature, and then the 

fitting line could be obtained as Figure 3. It was found that the equilibrium temperature and pressure kept well linear 

relationship with the value of R2 approaching to 1. According to the fitting line of S/G (SrCl2/NH3), we showed the 

corresponding Equation (6): 

 

4770
ln 27.08P

T
  

                                                                       (6) 
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ln r rH S

P
RT R

 
  

                                                                         (7) 
Combined with the gas constant  8.3145J/ mol KR   , the values of 

rH and
rS  can be calculated depending on the 

Clapeyron equation (7). The table 3 lists the value of 
rH and

rS obtained in this study and the data from (Neveu 

and Castaing, 1993), it is found that the biggest difference is just 4.2%, so the results are available. 

 

Table 3:  The comparison of reaction enthalpy and entropy 

 

Reactant 
rH ( kJ/mol ) 

rS [  kJ/ mol K ] Reference 

SrCl2/NH3(8-1) 
39.66 225.16 Present study 

41.43 228.80 (Neveu and Castaing, 1993) 

 

3.2 The temperature and pressure evaluation curve with time 
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      (a)                                                                               (b) 

            Figure 4: The temperature and pressure profiles of adsorber and condenser/evaporator in 

 (a) regeneration, and (b) adsorption stage 

 

Figure 4 shows the temperature and pressure profiles of adsorber and condenser/evaporator in the decomposition 

and synthesis stage. The mean value of 
,1AdT ,

,2AdT ,
,3AdT  and

,4AdT was defined as 
,Ad meanT . The operation process was 

described as follows: Firstly, the reactor and condenser were kept at ambient temperature (25±0.5oC), and the valve 

kept open. At the 5th minute, the hot heat transfer fluid with temperature of 94±1.5 oC was pumped into the reactor to 

heat the sorbent, at the same time, the heat transfer fluid with ambient temperature was pumped into condenser to 

keep it at constant temperature. Combined the profiles of temperature with pressure, it could be known that the 

temperature difference between the inlet and outlet of condenser began to increase obviously at about 20 th min, 

which indicated that desorption or regeneration process took place. The corresponding temperature of reactor was 

81oC. The temperature difference between the inlet and outlet of reactor reached the stable value when temperature 

of reactor was 85oC. Moreover, due to the open valve, the pressure value of reactor and condenser kept the same, 

and showed the same change trend with the outlet temperature of condenser. At the 45th min, the valve was closed, 

and the regeneration process was finished. 



 

 2159, Page 7 
 

16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016 

Then, the heat transfer fluid in the high-temperature thermostatic circulator was adjusted into the temperature of 

25±0.5oC, and that in the low-temperature thermostatic circulator was adjusted into the temperature of 15±0.5 oC and 

then pumped into the condenser to cool it until 15±0.5oC. Meanwhile, the adsorber was cooled naturally. 

Before the sorption stage, the pressure value in the evaporator was far lower than that in the reactor. In order to 

prevent the synthesis reaction being too drastic, it was necessary to lower the pressure value in the reactor by 

cooling it with the heat sink temperature of 25±0.5 oC from the high-temperature thermostatic circulator. Observe 

the pressure change in the reactor and open the valve until the pressure in the reactor was approaching to that in the 

evaporator. Then, the evaporation-sorption stage began, and the process lasted about 20 minutes. 

 

3.3 Effect of the condensation temperature on the desorption mass of NH3 
When the heat source temperature is set at 94 oC, for the different condensation temperature of 30, 25, 20, 15, 10  oC, 

the desorption quantity ( m’) of NH3 for per kilometer salt is calculated by the following equation: 

  
400

, ,

0

( )CdCd p Cd out Cd in i

i

Q m C T T t


                                                             (8) 

3

Cd
NH

Q
m

H



                                                                                 (9) 

3NH

s

m
m

m
’                                                                               (10) 

Where the 
CdQ  is the condensation heat released in the regeneration-condensation stage, H  is the phase change 

enthalpy of NH3 at the condensation temperature, and the 
sm  is the mass of salt in the reactor. 
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Figure 5: Variation of the desorption mass of NH3 with the condensation temperature 

 

Figure 5 shows the desorption mass of NH3 changes with the condensation temperature at heat source temperature of 

94±1.5oC. The regeneration mass of NH3 decreases with increasing the condensation temperature. Depending on the 

sorption equilibrium relationship of SrCl2/NH3 obtained above, the condensation temperatures of 10, 15, 20, 25, and 

30 oC are corresponding to the regeneration temperature of 74.6, 78.3, 83.5, 86.5, and 91.3oC. The sorbent needs to 

be heated to the regeneration temperature firstly, and then the regeneration process will take place. The regeneration 

process is conducted for 40 minutes, and the heat source temperature is kept at 94  oC, so the lower regeneration 

temperature corresponding to the condensation temperature will lead to bigger driven force for decomposition 

reaction, which means more desorption mass of NH3. In theory, the maximum value of desorption mass of NH3 is 

0.75kg/kg SrCl2. Here, the maximum value tested is 0.288kg/kg SrCl2. 

 

3.4 Effect of the evaporation temperature on the COP 

Heat source temperature was kept at 94±1.5 oC, the heat sink temperature was kept at 25±0.5oC. For different 

evaporation temperature of -15,-10,-5, 0, 5, 10, and 15 oC, the COP of system was calculated by equation (2). Figure 

6 shows that the COP varies with the evaporation temperature. Due to the constant heat sink temperature, the lower 

evaporation temperature made the driven force for regeneration reaction smaller, so the evaporation quantity of 
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liquid NH3 decreased, which contributed to the lower cooling output and the lower COP. The maximum value of 

COP tested was 0.24 for evaporation temperature of 15 oC, and the minimum one was 0.13 for evaporation 

temperature of -15oC. Consider the heat capacity of reactor, including metal and composite sorbent heat capacity, 

the value was relatively high. 

Compared with other researches, the COP was not high, and the one reason could be the large sensible heat load of 

the reactor, which led to more heat input to reactor in the regeneration stage. Obviously, this problem could be 

settled by increasing the quantity of salt and decreasing the proportion between the mass of the reactor and the mass 

of sorbent, which meant increasing the scale of the system. The other reason could be the short time of regeneration, 

it could be seen that the regeneration process was not enough depending on the outlet temperature evolution of the 

condenser when the regeneration process was conducted for 40 minutes. Here, we considered the compromise 

between the COP and SCP 
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Figure 6: Variation of the COP with the evaporation temperatures 
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Figure 7:  The evolution curve of SCP with the time at different evaporation temperatures 

 

The SCP of system was calculated according the equation (3). For different evaporation temperatures, the evolution 

curves of SCP with the evaporation time were showed in Figure 7, which indicated that for every evaporation 

temperature, the SCP increased firstly with the evaporation time and then decreased. In the initial stage of 

evaporation process, the pressure in the reactor decreased fast with its temperature decreasing, so the driven force 

between the reactor and evaporator increased, and evaporation process was sped up. It would reach the maximum 

value when it approached to the equilibrium pressure of SrCl2/NH3 corresponding to the evaporation temperature. 
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With the synthesis reaction going on, the driven force would decrease, so the evaporation rate decreased also. For 

different evaporation temperatures of -15, -10, -5, 0, 5, 10, and 15 oC, the maximum values were 393.0, 361.8, 302.3, 

270.9, 218.5, 163.2, and 121.9 W/kg, respectively, and the mean value were 291.5, 277.2, 241.0, 217.7, 183.2, 

136.9,and 96.8 W/kg, respectively. 
 

4. CONCLUSION 

 
An intermittent thermochemical refrigeration system using strontium chloride (SrCl2)/expanded graphite(EG) as 

composite sorbent and ammonia as refrigerant was constructed and studied from the view of practical application. 

The sorption characteristic of SrCl2/NH3 was investigated, and the reaction enthalpy and entropy were obtained 

experimentally, which confirm previous reported data. Experimental results showed that the system could utilize 

effectively solar energy with temperature about 94 oC and output the cooling capacity. The COP obtained varied 

between 0.13 and 0.24 depending on the evaporation temperature ranging from -15 to 15oC. The mean SCP 

increased from 98.6 to 291.5W/kg in the same range of evaporation temperature. The value was far higher than that 

obtained with physical adsorption icemaker using consolidated activated carbon–methanol as working pair in which 

COP and SCP were 0.125 and 32.6 W/kg, respectively. 
 

Nomenclatures 

COP Coefficient of performance  

SCP specific cooling power 

EG expanded graphite 

Dimensional variables  

m mass (kg) 

R ratio 

T temperature (°C) 

P pressure (Mpa) 

Cp specific heat capacity 

ΔH   enthalpy change (kJ/kg) or (kJ/mol) 

ΔS  entropy change  [kJ/(kg·K)] or [kJ/(mol·K)] 

t time (min) 

Subscript  

Ds desorption 

Cd condenser/condensation 

Ev evaporator/evaporation 

Ad adsorption bed 

in inlet 

out outlet 

s salt 

r reaction 
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