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Thermodynamic properties of low-GWP refrigerant for Centrifugal Chiller

Masato FUKUSHIMA1*, Hiroki HAYAMIZU1, Mai HASHIMOTO1

1AGC Chemicals, Research & Development Division, ASAHI GLASS CO., LTD.,
10 Goikaigan, Ichihara, Chiba 2908566, Japan

e-mail: masato-fukusima@agc.com

ABSTRACT

Thermodynamic properties of HCFO-1224yd(CF3CF=CHCl), including critical parameters, vapor-liquid
coexistence curve, vapor pressure and PVT properties, were determined experimentally. The measurements of
vapor-liquid coexistence curve in the critical region were made through visual observation of the disappearance of
meniscus at the vapor-liquid interface within an optical cell. The vapor pressure and the PVT properties were made
using the constant-volume method. The saturated liquid densities were obtained by the method using pyrex glass
floats. The critical density was determined as 530±5kg/m3. The critical temperature was determined 429.18±0.05K
as the saturation temperature corresponding to the critical density. The critical pressure was determined by
extrapolation of the vapor pressure measurements to the critical temperature as 3.380±0.005MPa.

1. INTRODUCTION

In refrigeration and air-conditioning industry, HFCs refrigerants such as HFC-134a, HFC-245fa, R-410A and R-
404A were developed as CFCs or HCFCs alternative refrigerants which have Ozone depletion Potential (ODP). But
HFCs have high global warming potential (GWP), there are urgent needs to reduce HFCs emissions. Internationally,
North America proposes to capture the gradual reduction of HFCs in the Montreal Protocol Meeting, which is for
the purpose of protecting the ozone layer. In Europe, HFCs are regulated by the F-gas regulation and Mobile Air-
Conditioning systems (MAC) Directive. On the other hand, in Japan, the revision of the part of act on Ensuring the
Implementation of Recovery and Destruction of Fluorocarbons concerning Designated Products is determined, and
this revision is going to be enforced on April 1st, 2015. To replace high GWP refrigerants, Low-GWP refrigerants
are currently in development. HCFO-1224yd has the good characters such as low-GWP, non-flammable, low-
toxicity, good-chemical and thermal suitability, good-compatibility with oil and equipment components (Fukushima
et al, 2015). HCFO-1224yd has similar thermal properties to HFC-245fa, so it is suitable to use as the refrigerant to
alternate HFC-245fa and HCFC-123 for centrifugal chiller, organic Rankine cycle system, heat pumps. In this study,
we present measurements of the thermodynamic properties of HCFO-1224yd.

2. EXPERIMENTAL

2.1 Vapor-liquid coexistence curve near the critical region
The vapor-liquid coexistence curve near the critical region has been measured by the observation of meniscus
disappearance. Figure 1 shows a schematic diagram of the apparatus. The main portion of apparatus includes an
optical cell, expansion vessel and supplying vessel. These three vessels were connected to each other by three valves.
The measurements were made by visual observation of the disappearance of the meniscus at the vapor-liquid
interface within the optical cell. The temperature measurements were conducted with 25-ohm platinum resistance
thermometer calibrated to ITS-90 with an aid of a thermometer bridge. The sample density was determined as the
sample mass weight divided by the inner volume of the optical cell, the expansion vessel and the supplying vessel.
These values were calibrated by filling water with known density under room temperature conditions, and were
corrected with respect to the thermal expansion and pressure deformation. The experimental uncertainties of
temperature and density were estimated within ± 20 mK and ± 3 kg/m3, respectively.
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A: Optical cell B: Expansion vessel C: Supplying vessel D: Rocking frame E: Vacuum pump
F: Platinum resistance thermometer G: Main-heater H: Sub-heater I: Stirrer

J: Thermometer bridge K: PID controller L: Thermostated bath
Figure 1: Schematic diagram of the apparatus for Vapor-liquid coexistence curve near the critical region

2.2 Vapor pressure and PVT properties
The vapor pressure and PVT properties have been measured by the constant volume method. Figure 2 shows a
schematic diagram of the apparatus. The spherical sample vessel was made of 304 stainless steel. The differential
pressure detector was connected with the sample vessel to separate the sample fluid from the nitrogen gas in the
pressure transmitting system by a stainless steel membrane, and the whole setup was immersed into a thermostat
bath. After confirming the established thermal equilibrium between the sample and the bath fluid, the temperature
and pressure were measured by the methods which are mentioned Sec. 2.1. The pressure was measured by digital
pressure indicators and a differential pressure gauge. The experimental uncertainties of temperature, pressure and
density were estimated within ± 10 mK, ± 3 kPa and ± 0.2 %, respectively.
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A: Vessel B: Differential pressure detector C: Platinum resistance thermometer D: Thermometer bridge
E: Thermostat bath F: Main-heater G: Sub-heater H: Platinum resistance thermometer
I: PID controller J: Stirrer K: Tester L: Digital pressure gage M: Pressure controller

N: Digital pressure gage O: Differential pressure detector Q: Vacuum pump P: N2 bottle

Figure 2: Schematic diagram of the apparatus for Vapor pressure and PVT properties
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2.3 Saturated liquid density
The saturated liquid density has been measured by method using pyrex glass floats. Figure 3 shows a schematic
diagram of the apparatus. The pyrex glass floats and sample liquid were put in the high pressure glass vessel, and the
whole setup was immersed into a thermostat bath. Their behaviour was observed carefully controlling temperature
of the bath. The temperature required to hold the float freely suspended in the liquid was measured. The method of
temperature measurement is the same as mentioned above in Sec. 2.1. The density of the float was determined to be
accurate to ± 1 kg/m3 at room temperature condition, and was corrected with respect to the thermal expansion
deformation of glass. The experimental uncertainties of temperature and density were estimated ± 20 mK and ± 3
kg/m3, respectively.
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F

E

A: Optical cell B: Pyrex glass floats C: Platinum resistance thermometer D: Heater
E: Cooler F: Stirrer G: Thermostated bath H: Thermometer bridge

Figure 3: Schematic diagram of the apparatus for Saturated liquid density the method using pyrex glass floats

2.4 Sample
The purity of the HCFO-1224yd sample used in the experiments was 98.4 %(Z isomer/E isomer=91/9). The water
content was less than 5 wtppm.

3. RESULTS

3.1 Vapor-liquid coexistence curve near the critical region
The experimental temperature-density data along the vapor-liquid coexistence curve near the critical region are
given in Table 1 and Figure 4. Totally 7 measurements in the range from 371 to 675 kg/m3 were obtained between
the temperature of 427 K and the critical temperature.

Table 1: Experimental results of vapor-liquid coexistence curve near the critical region
T (K) ρ (kg/m3) T (K) ρ (kg/m3)

427.71
428.25
428.66
429.19

371.20
414.70
417.01
469.29

429.17
429.02
427.66

530.18
600.00
674.13
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Figure 4: Experimental results of vapor-liquid coexistence curve near the critical region

3.2 Vapor pressure and PVT properties
Vapor pressure and PVT properties were measured along 7 isochores. 201 PVT property measurements were
obtained in the range of temperature from 313 to 473 K, of pressure from 0.2 to 9.5 MPa, and density from 51 to 793
kg/m3. These results are given in Table 2. Figures 5 and 6 show the distribution of the present vapour pressure and
PVT properties data.

Figure 5: Experimental results of vapor pressure and PVT properties
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Figure 6: Experimental results of vapor pressure and PVT properties
(Filled symbols: the vapor-liquid two phase state)

Table 2: Experimental results of vapour pressure and PVT properties
(Asterisks: the vapor-liquid two phase state)

T (K) P (kPa) ρ (kg/m3) T (K) P (kPa) ρ (kg/m3)
313.428
328.413
343.374
357.144
357.423
358.506
359.260
359.408
360.232
373.217
373.260
373.580
393.447
413.239
433.259
453.222
473.220

313.420
323.313
333.407
343.411
353.128
363.103

243.62
381.95
574.33
808.09
811.98
822.71
826.19
826.02
830.94
881.17
880.95
880.30
952.46

1021.03
1084.38
1154.01
1219.10

247.4
331.0
434.8
570.3
737.2
924.0

51.55
51.51
51.48
51.45
51.45
51.44
51.44
51.44
50.44
51.41
51.41
51.41
51.36
51.31
51.26
51.20
51.25

97.88
97.84
97.79
97.75
97.70
97.65

*
*
*
*
*

*
*
*
*
*
*

373.261
378.198
378.228
379.276
379.367
380.222
380.228
381.278
382.120
383.224
383.307
384.285
386.164
386.319
387.249
387.355
388.170
388.282
393.216
393.371
403.206
403.389
413.246
423.411

1155.7
1290.6
1294.2
1319.1
1321.0
1348.1
1352.5
1376.2
1404.6
1431.4
1438.2
1460.8
1492.6
1490.7
1501.1
1501.6
1509.9
1507.0
1548.3
1546.8
1629.9
1629.2
1705.5
1779.6

97.61
97.58
97.58
97.58
97.58
97.58
97.58
97.57
97.57
97.56
97.56
97.56
97.55
97.55
97.54
97.54
97.54
97.54
97.51
97.51
97.47
97.47
97.42
97.37

*
*
*
*
*
*
*
*
*
*
*
*
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Table 2: Experimental results of vapor pressure and PVT properties (continue)
(Asterisks: the vapor-liquid two phase state)

T (K) P (kPa) ρ (kg/m3) T (K) P (kPa) ρ (kg/m3)
433.406
443.370
453.412
463.200
473.300

313.353
328.535
373.198
383.235
385.208
387.213
389.290
391.090
403.250
408.352
409.294
410.283
410.283
410.306
410.445
411.193
411.288
412.202
412.288
413.308
423.214
423.324
423.342
433.185
443.893
453.160
463.289
473.360

313.409
328.465
343.539
358.261
373.108
388.106
403.049
418.224
418.339
419.233
422.264
423.181
423.202
424.230
424.241
425.201
425.234
426.251

1850.2
1922.6
1995.7
2066.8
2137.3

247.8
388.2

1157.2
1426.6
1488.2
1555.2
1621.9
1680.5
2114.3
2325.9
2369.5
2411.9
2411.9
2412.4
2416.0
2449.2
2455.0
2492.8
2496.5
2529.6
2726.3
2724.1
2725.2
2911.5
3110.7
3274.8
3449.2
3621.4

247.3
388.7
581.3
828.3

1166.1
1592.6
2120.5
2786.7
2787.7
2839.0
2991.1
3039.3
3040.4
3084.8
3086.8
3117.9
3122.5
3154.4

97.32
97.27
97.22
97.17
97.12

199.43
199.29
198.87
198.78
198.76
198.74
198.72
198.70
198.59
198.54
198.53
198.52
198.52
198.52
198.51
198.51
198.51
198.50
198.50
198.49
198.39
198.39
198.39
198.29
198.18
198.09
197.99
197.89

296.78
296.57
296.37
296.16
295.96
295.74
295.53
295.31
295.31
295.29
295.25
295.23
295.23
295.22
295.22
295.21
295.20
295.19

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*

427.271
428.076
433.066
443.166
453.119
463.203
473.173

323.352
328.295
333.298
333.398
338.242
343.434
348.318
353.367
358.178
363.398
368.139
368.166
368.186
373.250
378.244
383.178
393.296
402.947
403.251
408.423
413.270
418.352
423.326
424.382
425.355
426.388
427.419
428.406
429.456
430.219
431.505
432.354
433.277
438.311
443.181
448.424
453.261
458.268
463.245
468.366
473.197

313.295
328.316
343.407

3187.3
3216.8
3376.9
3684.9
3988.0
4283.3
4570.2

338.8
390.5
448.5
448.0
510.1
582.4
649.9
745.5
837.6
940.3

1049.7
1050.0
1050.8
1170.2
1302.3
1441.7
1760.9
2117.0
2126.3
2339.0
2557.0
2795.8
3056.9
3109.0
3165.5
3220.4
3274.8
3332.6
3399.6
3452.6
3519.4
3571.8
3635.5
3943.8
4253.1
4564.5
4866.8
5168.2
5456.9
5708.0
5969.6

247.3
386.9
579.4

295.17
295.16
295.09
294.94
294.79
294.64
294.49

538.26
538.14
538.02
538.01
537.89
537.77
537.64
537.52
537.39
537.26
537.14
537.14
537.14
537.01
536.88
536.76
536.49
536.24
536.23
536.10
535.97
535.83
535.70
535.67
535.65
535.62
535.59
535.57
535.54
535.52
535.48
535.46
535.44
535.30
535.17
535.03
534.90
534.76
534.62
534.48
534.35

593.69
593.28
592.87

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
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Table 2: Experimental results of vapor pressure and PVT properties (continue)
(Asterisks: the vapor-liquid two phase state)

T (K) P (kPa) ρ (kg/m3) T (K) P (kPa) ρ (kg/m3) 
358.320
373.289
388.338
403.249
413.220
423.262
423.305
424.289
425.405
426.342
427.347
428.309
429.327
430.309
431.382
432.345
433.258
433.317
434.344
435.340
443.277
443.405
453.293
463.272
473.241

313.436

835.3
1167.7
1592.9
2124.3
2551.7
3049.4
3049.2
3103.8
3157.5
3211.4
3271.6
3324.8
3391.1
3454.8
3524.9
3591.9
3661.3
3662.2
3729.8
3802.7
4379.2
4383.7
5113.8
5858.3
6614.9

249.3

592.46
592.04
591.61
591.18
590.89
590.60
590.60
590.57
590.54
590.51
590.48
590.45
590.42
590.39
590.36
590.33
590.30
590.30
590.27
590.24
590.01
590.00
589.71
589.41
589.11

793.32

*
*
*
*
*
*
*
*
*
*
*

*

323.466
333.517
343.542
353.498
363.485
373.573
383.520
393.514
403.529
413.542
418.440
419.551
420.488
421.465
421.608
422.232
422.448
423.250
423.410
423.479
433.468
433.563
443.371
453.453
463.377
473.286

337.4
447.6
583.5
747.2
943.5

1177.1
1449.1
1768.3
2135.6
2567.1
2800.8
2855.1
2901.1
2952.6
2957.8
2991.3
3007.6
3093.5
3118.1
3134.5
4338.3
4333.4
5604.0
6899.2
8197.1
9495.7

792.96
792.59
792.22
791.86
791.48
791.10
790.73
790.35
789.96
789.57
789.38
789.34
789.30
789.26
789.26
789.23
789.22
789.19
789.19
789.18
788.79
788.79
788.40
787.99
787.60
787.19

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

3.3 Saturated liquid density
Saturated liquid densities were obtained in the temperature range from 263 to 325 K. The measurements had been
conducted by the method using pyrex glass floats. These results are given in Table 3. Also 2 saturated liquid density
was determined as the intersection points of PVT property data in the compressed liquid region and vapor pressure.
The uncertainties of the analyzing points for saturated density and temperature were estimated within 0.4 % and 0.5
K. This result is also given in Table 5 and Figure 7.

Table 3: Experimental results of saturated liquid densities
buoy cont. vol.

T (K) ρ’ (kg/m3) T (K) ρ’ (kg/m3)
286.26
290.26
295.44
300.55
308.11
314.18
317.59
325.87

1395
1384
1371
1354
1336
1320
1304
1281

428.50
422.56

590
789
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Figure 7: Experimental results of saturated liquid density

4. DISSCUSION

4.1 Critical parameters
On the basis of measurements of the density-temperature relation along the vapor-liquid coexistence curve in the
range densities from 469.2 to 600.0 kg/m3 near the critical point, the critical density was determined by the
observation of disappearance of the vapor-liquid interface and of the intensity of critical opalescence. The critical
density was determined as follows:

c=530±5kg/m3

The critical temperature can be determined as the saturation temperature corresponding to the critical density. A
shown in Table 1, the saturation temperature in the density range between 469.2 and 600.0 kg//m3 agree with each
other within uncertainty of temperature measurements, and that of density of 530.0 kg/m3, closest the critical density,
was 429.17 K. Therefore, we determined the critical temperature as follows:

Tc=429.18±0.05K

The critical pressure was determined by extrapolation of the vapor pressure measurements to the critical temperature
as follows:

Pc=3.380±0.005MPa

4.2 Vapor pressure
The correlation of vapor pressure was developed. This equation is given by

lnPvpr = (A0+ A11.5+A22.5+A35)/Tr (1)

where τ=(1-T/Tc), A0, A1, A2 and A3 are fitting parameters. The parameters of equation (1) were determined by the
least square fitting based on the present data. The best values for the parameters and root mean square deviations are
given in Table 4. Figure 8 shows the vapor pressure deviations from equation (1).
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Figure 8: Deviation of vapor pressure measurements from eq. (1)

4.3 Saturated liquid density
The correlation of saturated liquid density was developed. This equation is given by

ρ’/ρc =1+B0τ1/3+B1τ2/3+B2τ+B3τ4/3 (2)

where τ=(1-T/TC) and B0, B1, B2 and B3 are fitting parameters. These parameters of equation (2) were determined by
the least square fitting based on the present data. The best values for the parameters and root mean square deviations
are given in Table 4. Figure 9 shows the saturated liquid density deviation from equation (2).

Table 4: Numerical constants of coefficients in equations (1) and (2)

Eq.(1)

A0

A1

A2

A3

RMS Dev.(%)/Number of data points

-7.6720
1.9095
-2.6381
-5.5113

0.51 / 116

Eq.(2)

B0

B1

B2

B3

RMS Dev.(%)/Number of data points

0.51475
9.6947
-18.564
12.138

1.97 / 13
TC

PC

ρC

(K)
(MPa)

(kg/m3)

429.18
3.380
530
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Figure 9: Deviation of saturated liquid density measurements from eq. (2)

5. CONCLUSION

The thermodynamic properties data for HCFO-1224yd were determined experimentally. The critical parameters
were determined by our present data. The correlations of vapor pressure and saturated liquid density were developed
based on the present measurements.

NOMENCLATURE

P pressure (MPa, kPa)

 density (kg/m3)
' saturated liquid density (kg/m3)
RMS Dev. root mean square deviation
T temperature (K)

Subscript
c critical
r reduced, as in Tr = T/Tc, Pvpr = Pvp/Pc

vp vapor pressure
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