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ABSTRACT 

The paper presents result for heat transfer and pressure drop in evaporation of R134a in microchannel tubes conducted 

in a facility with a 6 m long tube, modified to provide realistic situations for refrigerant blends with even the highest 

glide. The concept of the experimental facility is to measure heat transfer coefficient and pressure drop on the 

refrigerant side in condensation and evaporation with or without oil. The auto-controlled test line has 6 test sections 

for testing and 5 conditioning sections to preset the inlet quality of each test section. This facility provides data in the 

complete process of evaporation (quality from 0 to 1) or condensation (quality from 1 to 0) in a single pass. The 

secondary fluid in coolant loop for heating or cooling is water. By controlling the inlet water temperature of each test 

section, both constant wall temperature and constant heat flux conditions or anything in-between can be achieved. The 

tertiary loop is a chiller loop running with glycol/water mixtures to cool the water and refrigerant. 

First results with R134a in this facility show heat transfer coefficient and pressure drop changes with vapor quality 

and represent excellent starting point (baseline) for explorations of mixtures of low pressure and low GWP refrigerants 

that are replacements for R410A.  

 

1. INTRODUCTION 

Microchannel with smaller hydraulic diameter can increase in-tube heat transfer coefficient and pressure drop. By 

installing microchannel tubes instead of conventional tubes, the size and weight of heat exchanger can be decreased. 

In additional, a microchannel has larger surface-area-to-volume-ratio so that it has a higher boiling effect. As the 

diameter decreased from 10 to 1 millimeter, which are typical conventional tube diameter and microchannel tube 

diameter respectively, the ratio increased to 10 times. A larger surface-area-to-volume-ratio gives higher on-site 

boiling effect. Also, the smaller hydraulic diameter in microchannel tubes helps the fluid to wet the whole tube surface. 

In a conventional tube, the liquid may only fill half of the tube (stratified flow) because of the gravitational force. 

However, in a tube with the hydraulic diameter smaller than the capillary length scale, the surface tension force can 

overcome the gravitational force (Triplett et al., 1999). In microchannel tubes, an annular flow or slug flow is more 

likely to be observed than stratified flow.  

 

2. EXPERIMENTAL FACILITY AND DATA REDUCTION 

A new experimental facility has been designed and built to study heat transfer and hydraulic behavior of refrigerants 

in microchannel tubes. The facility can measure heat transfer coefficient for a given heat flux, mass flux, and wall 

temperature. In the meantime, data of diabatic pressure drop can be collected. Adiabatic pressure drop can be measured 

separately, w/o heat load. There are three loops in this facility as shown in Figure 1: refrigerant loop (green loop), 

coolant (water) loop (blue loop), and chiller (glycol) loop (purple loop). 
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Figure 1 Schematic of the experimental facility 
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2.1 Refrigerant Loop 

Figure 1 shows that subcooled refrigerant is pumped by a two gear pump setup to provide sufficient flow rate and the 

head to overcome high pressure drop in the microchannel test line.  An inline OCR measurement sampler with bypass 

is installed after the pumps. A Micro Motion CMF010 mass flow meter with the RFT9739 transmitter is used to 

measure refrigerant flow rate and density. A pre-heater of 2 kW is used to adjust the sub-cooled inlet condition to the 

test line. The test line consists of one evaporator, six test sections to measure heat transfer coefficient and pressure 

drop, and five conditioning sections between each test section. 

 

T

T T T

DP4_Ts1

T

DP4_Cs1

DP3_Ts1 DP3_Cs2

T

Evaporator

PDR

Connector

Test Section 1

Refrigerant

  
Figure 2 Schematics drawing and view to the entire test line from the inlet with DP transducers on the right  

The evaporator and conditioning sections are used for adjusting inlet condition of the following test section as showed 

more detailed in Figure 2. Starting point is enthalpy of the subcooled liquid in front the evaporator using measured 

pressure (pressure transducer) and temperature (T-type thermocouple). Heat transferred in the evaporator is 

determined by the DC system power supply that in addition to supplying power provides measurements of current and 

voltage and thus power. Quality at the inlet to the first test section is determined based on measured power of the 

evaporator and refrigerant flow rate. Pressure measured at the inlet to the first test section is a starting point for the 

pressure of entire test line.  Pressure drop through the test section is measured by two differential pressure transducers 

that are connected to the test line at the connectors. A test section has two heat transfer block. The block is 152.4mm 

long and with water jacket inside for coolant loop. Two blocks sandwich a microchannel tube and the wall 

thermocouple is measured by six inserted thermocouple probe in well near the tube on each block. Two blocks are 

tightened by four long screw bolts with nuts with the same torque (7.6 N-m). Between the blocks and microchannel, 

the surface cavities are filled with thermal paste CHEMPLEX 1381 DE with reported thermal conductivity with 0.75 

W-m-1K-1.  

T
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Figure 3 The test section: photo shows actual appearance with six TCs for measurements of wall temperature at 

each block while schematic drawing shows separate adjustments by stepper motor valves and measurements of 

coolant flow through top and bottom blocks  
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Figure 4 Mechanical drawing and photo of the microchannel tube on the facility  

In each test section, the microchannel tube is 181.8 mm long combined with heated length (152.4 mm) and the rest in 

connectors. The tube has 22 0.83-by-0.56 mm rectangular ports and 2 smaller ports as shown in figure 4. After the 

test section, refrigerant goes through visualization section and conditioning section. The conditioning section has the 

same design of test section but longer in length (400 mm), without wall temperature TC well, and is not tightened.  

The heat transfer rate of the conditioning section is determined by the flow rate of coolant into the heat transfer block 

and the temperature difference of coolant at the outlet and inlet of the block. That heat transfer rate combined with 

refrigerant mass flow rate and pressure determines increase in quality within the conditioning section.  As said above, 

pressure is determined by adding (or subtracting) pressure drop in each section. When all pressure drops are added 

together they should be a difference between the readings of pressure transducers at the inlet and outlet of the test line. 

An opening located at the outlet of the test line is for charging and evacuation. A co-axial condenser (round tube to 

microchannel) working with chiller loop is used to condense the refrigerant. A shell and tube heat exchanger subcools 

the refrigerant. An external receiver is used to help controlling system pressure.  

 

2.2 Coolant Loop 

In most cases, water is the fluid used in the coolant loop. When a lower temperature is needed water in the coolant 

loop could be replaced by ethanol or glycol mixture. A pump with VFD controller is used to pump the fluid. A reservoir 

tank is installed at the suction of the pump in order to maintain a minimum suction pressure. The pressure at the 

discharge is measured by a pressure sensor and this signal is used to adjust the pump speed to maintain discharge 

pressure. Fluid is supplied to an inlet header from where it goes to each test/conditioning section. The fluid temperature 

at the inlet to test and conditioning sections is adjusted by a 530 W heater while the flow rate is adjusted by a stepper 

motor valve. The mass flow rate is measured by two CMF010 mass flow meters per test section and a DS006 mass 

flow meter for each conditioning section. Temperature measurements are done by T-type thermocouples inserted into 

the coolant tube. Coolant from test sections and conditioning sections returns to the outlet header. A plate heat 

exchanger and a 1.5 kW heater are installed after the header to adjust coolant temperature supplied to the pump. 

 

2.3 Chiller Loop 

The chiller loop provides cooling to the refrigerant sub-cooler, refrigerant condenser, and brazed plate heat exchanger 

in the coolant loop. The chiller loop consists of a chiller with pump and reservoir tank and now is running with 50%-

50% ethylene-glycol water mixture. After the pump, glycol flows to a sub-cooler which subcools the refrigerant to 

make sure that liquid refrigerant flows into the gear pump. A 1.5 kW heater is used to adjust the condenser inlet 

temperature of glycol. A bypass has been made for the condenser to reduce pressure drop when the system is in 

evaporation mode. A plate heat exchanger is used for glycol so that the coolant loop can be cooled.  

 

2.4 Data Reduction and Error Propagation 
Table 1 Uncertainties of Measurements 

εP 3.5 kPa 

εDP 0.0015 to 0.04 kPa 

εT 0.1 to 0.2 oC 

εm 0.1% to 0.15% of rate 

ερ 0.0005 g-cm-3 
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All instruments are calibrated with data loggers to reduce uncertainties. Thermocouples are calibrated in a stable 

NESLAB thermal bath with calibrated RTD thermometer as the reference. Pressure transducers are calibrated on the 

facility referenced by Fluke pressure calibrator 717. Mass flow meters are calibrated with 275 HART communicator 

by comparing set analogy signal and reading from the data loggers. The uncertainties are listed in Table 1 and details 

of facility and calibration process can be found in Li (2016). Heat transfer coefficient (HTC in W-m-2K-1) determined 

based on the wall temperature: 

𝐻𝑇𝐶 =
𝑄

𝐴𝑠(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑟𝑒𝑓)
 (4) 

In equation 4, As is the surface area which is the total port surface area in most cases. Twall is a corrected wall 

temperature. Tref is the bulk refrigerant temperature and is equal to saturation temperature in two-phase. Q is the total 

heat transfer rate which is measured in the coolant loop from knowing the flow rate and the temperatures at inlet and 

outlet of the block.  

The pressure drop (PD in kPa m-1) is determined by dividing differential pressure measurement and the length of the 

tube.  

𝑃𝐷 =
𝐷𝑃

𝐿
 (5) 

Based on NIST technical Note 1297, the overall uncertainty (εR) of a result (R) with a known function F of n variables 

xi with known uncertainties (εxi) could be expressed in equation 6a and 6b (Taylor and Kuyatt, 1994). This equation 

is under assumptions that all variables are independent, repeated measurements show Gaussian distribution, and all 

uncertainties of variables are in the same level of confidence. In this paper, the level of confidence is 95%. 

𝑅 = 𝐹(𝑥1, 𝑥2, … 𝑥𝑖 , … ) 

𝜀𝑅 = √∑ (
𝜕𝐹

𝜕𝑥𝑖

𝜀𝑥𝑖)
2𝑛

𝑖=1

 
(6a, 6b) 

 

3. MODELS USED FOR PREDICTION OF DATA 
 

3.1 Pressure Drop in Refrigerant Two-phase Diabatic Flow-Homogeneous Approach 

Carey (1992) introduced a simple homogenous model to model the frictional and momentum pressure drop. Hartnett 

and Kostic (1993) have developed a model to predict the fully developed laminar flow in rectangular ducts. The 

frictional pressure drop is represented as: 

𝑃𝐷𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =
2𝑓𝐺2

𝐷 × 𝜌𝑇𝑃

 (7) 

In equation 8, f is a non-dimensional number, the friction factor, determined implicitly from Hartnett and Kostic (1993). 

The accelerating pressure drop (PDa) is the main contributor to momentum pressure drop which is defined as: 

𝑃𝐷𝑎 = ∫
𝑑𝑃

𝑑𝑧
𝑑𝑧 (8) 

𝑑𝑃

𝑑𝑧
=

𝑑(
𝑥

𝜌𝑔
+

1 − 𝑥
𝜌𝑓

)

𝑑𝑧
 

(9) 

The accelerating pressure will be integrated along the heated length of the tube. Summary of 7 and 8 will be the 

predicted pressure drop. 

 

3.2 Heat Transfer Coefficient in Flow Boiling – Predictions 
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Most correlations of two-phase evaporation heat transfer coefficient are developed for round tubes. Qu and Mudawar 

(2003) presented a correction to modify the round tube heat transfer coefficient prediction into a rectangular channel 

as equation 18. 

𝐻𝑇𝐶𝑟𝑒𝑐 = 𝐻𝑇𝐶𝑟𝑜𝑢𝑛𝑑

𝑁𝑢3

𝑁𝑢4

  (10) 

𝑁𝑢3  and 𝑁𝑢4  are the single-phase fully developed laminar Nusselt numbers for different wall heating conditions 

respectively. 

𝑁𝑢3 = 8.235(1 − 1.883𝛽 + 3.767𝛽2 − 5.814𝛽3 + 5.361𝛽4 − 2.0𝛽5) (11) 

𝑁𝑢4 = 8.235(1 − 2.042𝛽 + 3.085𝛽2 − 2.477𝛽3 + 1.058𝛽4 − 0.186𝛽5) (12) 

Our data is compared to five models of HTCround with correction to rectangular tube. 

 

4. RESULTS AND DISCUSSIONS 

4.1 Pressure Drop in Diabatic Evaporation Flow  

The horizontal error bar in Figure 4 is the quality change in the test section. Each test run produces six pressure drop 

data points from test sections 1 to 6. In this run, the heat flux and mass flux in each test are identical for each test 

sections. When it is needed, constant wall temperature condition can be applied. When mass flux is fixed at 121 kg- 

m-2s-1, pressure drop slightly increases as the heat fluxes are increasing from1798 to 3608 Wm -2. This is due to the 

fact that the accelerating pressure drop contributes more in the higher heat fluxes case. At the beginning, the pressure 

drop is small in the liquid phase in the bubbly flow. Pressure drop starts to increase as vapor quality goes higher. 

Figure 4 also shows the corresponding saturation pressure at each data points. The overall pressure drops from about 

530 to 440 kPa from test section 1 to 6. 

 

 
Figure 4 Diabatic pressure drop of R134a at fixed mass flux of 121 kg-m-2s-1 and different heat fluxes under 

different vapor quality and saturation pressure 
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Figure 5 Pressure drop determined and comparison to the model 

Figure 5 shows pressure drop measurements compared with the prediction of the homogeneous model (equation 7 and 

8). The prediction shows lower values than the measurements. The mean absolute error (MAE) of the homogeneous 

model is 24% and the error is defined as: 

𝑀𝐴𝐸 =
∑ |

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡

|𝑛
𝑖=1

𝑁
× 100% 

(13) 

 

4.2 Heat Transfer Coefficient 

Figure 6 shows the heat transfer coefficient at fixed mass flux and for different heat fluxes as parameters. As with 

the pressure drop experiments, each line has six data points collected from test section 1 to 6. These heat transfer 

coefficient data points are gained at the same time of measuring pressure drop. 

 
Figure 6 HTC at fixed mass flux of 121 kg-m-2s-1 and different heat fluxes under different quality and saturation 

pressure 
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Three tests are conducted and each test has an identical mass flux of 121 kgm-2s-1. Heat transfer coefficient increases 

when the heat fluxes are increasing from 1798 to 3608 Wm-2. As vapor quality increases, the heat transfer coefficient 

starts to increase. But the heat transfer coefficient is not a strong function of quality in a moderate range of quality 

(0.2 to 0.7) for low heat fluxes. At about the quality of 0.75, heat transfer coefficient reaches the highest value and 

starts to drop due to depression of boiling and dry out effects. HTC drops after it reaches the maximum points. The 

saturation pressure is also shown in figure 6. The pressure in test section 1 is about 530 kPa and in the last test section 

it is about 440 kPa. Data from the three tests are plotted with five heat transfer coefficient prediction model in Figure 

7. It shows that all models have under-predicted the heat transfer coefficient. Figure 8 plots predicted heat transfer 

coefficient versus measurement.  

 

 

Figure 7 Comparison of measurement to prediction of the three tests 

  

  

0

1000

2000

3000

4000

5000

6000

7000

0 0.5 1

H
T

C
 [

W
m

-2
K

-1
]

Vapor Quality [-]

q''=3608 W m-2

0 0.5 1

Vapor quality [-]

R134a, G=121 kgm-2s-1 

q''=2714 W m-2

0 0.5 1

Vapor quality [-]

q''=1798 W m-2

0

2000

4000

6000

0 2000 4000 6000

P
re

d
ic

te
d

 H
T

C
 [

W
m

-2
K

-1
]

Measured HTC [Wm-2K-1]

Chen (1966)

+/- 30%

0

2000

4000

6000

0 2000 4000 6000

P
re

d
ic

te
d

 H
T

C
 [

W
m

-2
K

-1
]

Measured HTC [Wm-2K-1]

Shah (1982)

+/- 30%

0

2000

4000

6000

0 2000 4000 6000

P
re

d
ic

te
d

 H
T

C
 [

W
m

-2
K

-1
]

Measured HTC [Wm-2K-1]

Kandlikar (1990)

+/- 30%

0

2000

4000

6000

0 2000 4000 6000

P
re

d
ic

te
d

 H
T

C
 [

W
m

-2
K

-1
]

Measured HTC [Wm-2K-1]

Gungor and Winterton (1986)

+/- 30%



2133, Page 9 
 

16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016 

 

Figure 8 Comparison of prediction model to measurements 

Figures 7 and 8, indicate that Chen (1966)’s model under predicts the heat transfer coefficient but with the same trends. 

The same situation for Gungor and Winterton (1986) can be observed. The models from Shah (1982) and Kandlikar 

(1990) predict an increasing curve till very high-quality zone. Tran et al. (1996) predict the enlargement of boiling 

effect at low quality but with a different trend over the whole quality change. Table 2 shows the 5 models and their 

MAE to measurement data. 

Table 2 Each model and the mean absolute error 

Model MAE [%] 

Chen (1966) 64.1 

Shah (1982) 30.9 

Kandlikar (1990) 31.9 

Gungor and Winterton (1986) 45.2 

Tran et al. (1996) 32.3 

 

5. SUMMARY AND CONCLUSIONS 

The paper presented a new type of experimental facility for microchannel heat transfer and pressure drop research in 

which R134a pressure drop and heat transfer coefficient are tested. The pressure drop increases with increasing of 

vapor quality. Higher heat flux increases slightly the pressure drop because of the increase in acceleration portion. 

The homogeneous model has an MAE of 24% in predicting pressure drop. 

Five correlations used for comparison show reasonable but imperfect accuracy. Modified Shah (1982), Kandlikar 

(1990), and Tran et al. (1996) have about 30% of MAE when predicting heat transfer coefficient in this study. 

Gungor and Winterton (1986) has an MAE of 45%, and Chen (1966) is 64%.   

The project is continuing and further analysis and data will follow. 

 

NOMENCLATURE
A area m2 

β aspect ratio - 

D diameter m 

DP differential pressure kPa 

f friction factor - 

g gravity m s-2 

G mass flux kg m-3 s-1 

HTC heat transfer coefficient W m-2K-1 

L length M 

MAE mean absolute error % 

Nu Nusselt number - 

P pressure kPa 
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PD pressure drop kPa m-1 

Q heat transfer rate W 

q'' heat flux Wm-2 

ρ density kg m-3 

T temperature oC 

x vapor quality - 

 

Subscript   

a acceleration 

f fluid 

frictional frictional 

g gas 

rec rectangular 

ref refrigerant 

round round 

s surface 

TP two phase 

wall wall 
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