
Purdue University
Purdue e-Pubs
International Refrigeration and Air Conditioning
Conference School of Mechanical Engineering

2016

Wavy Fin Profile Optimization Using NURBS for
Air-To-Refrigerant Tube-Fin Heat Exchangers with
Small Diameter Tubes
Daniel Bacellar
University of Maryland, United States of America, dfbace@umd.edu

Vikrant Aute
University of Maryland, United States of America, vikrant@umd.edu

Reinhard Radermacher
University of Maryland, United States of America, raderm@umd.edu

Follow this and additional works at: http://docs.lib.purdue.edu/iracc

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Bacellar, Daniel; Aute, Vikrant; and Radermacher, Reinhard, "Wavy Fin Profile Optimization Using NURBS for Air-To-Refrigerant
Tube-Fin Heat Exchangers with Small Diameter Tubes" (2016). International Refrigeration and Air Conditioning Conference. Paper
1612.
http://docs.lib.purdue.edu/iracc/1612

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77954787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Firacc%2F1612&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1612&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1612&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Firacc%2F1612&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1612&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


 

 2119, Page 1 
 

16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016 

Wavy Fin Profile Optimization Using NURBS for Air-To-Refrigerant Tube-Fin Heat 

Exchangers with Small Diameter Tubes 

 
Daniel BACELLAR1, Vikrant AUTE2*, Reinhard RADERMACHER3 

 
1,2,3Center for Environmental Energy Engineering 

Department of Mechanical Engineering, University of Maryland 

College Park, MD 20742 USA 
1Tel: 301-405-7314, 2Tel: 301-405-8726, 3Tel: 301-405-5286 

Email: 1dfbace@umd.edu, 2vikrant@umd.edu, 3raderm@umd.edu 

 

* Corresponding Author 

 

ABSTRACT 
 

The major limitation of any air-to-refrigerant Heat eXchanger (HX) is the air side thermal resistance which can account 

for 90%, or more, of the overall thermal resistance. For this reason, the secondary heat transfer surfaces (fins) play a 

major role in these HX’s by providing additional surface area. Many researchers extensively investigate how to 

improve the performance of fins. The most common passive heat transfer augmentation method applied to fins uses 

surface discontinuity; providing an efficient disruption-reattachment mechanism of the boundary layer. Such approach 

is leveraged by louvers, slits and even vortex generators. In some applications, however, these concepts are not 

adequate especially when there is high fouling or frosting, which is the case of many HVAC&R systems including 

heat pumps for cold climates. In such cases a continuous fin surface is required, which can usually be plain or wavy. 

The latter provides larger surface area and can induce turbulent flows improving the heat transfer. Normally the wavy 

fins either have a smooth sinusoidal or Herringbone profile, longitudinal to the airflow direction. In this paper, we 

propose a novel wavy fin design method using Non-Uniform Rational B-Splines (NURBS) on the longitudinal 

direction as well. The tools used in this work include automated CFD simulations, metamodeling and Multi-Objective 

Genetic Algorithm (MOGA). The analysis comprises optimizing a conventional Herringbone wavy fin and uses it as 

a baseline. While maintaining tube diameter, tube pitches, and number of rows, fin spacing and thickness we perform 

an optimization on the fin profile using NURBS and compare the potential thermal-hydraulic performance 

improvements.  
 

 

1. INTRODUCTION 
 

Applications such as heat pumps in cold climates face an extra challenge of frosting in the outdoor unit, which 

ultimately compromises the overall system performance. For these systems, the commonly known high performance 

fins like slits and louvers are not suitable. It has been shown empirically that louver fins have a poorer performance 

compared to plain wavy and flat fins, respectively under frosting/defrosting operating modes (Silva et al., 2011; Huang 

et al., 2014). Wavy fins are an elegant way of balancing the thermal-hydraulic performance with, and without, frost 

accumulation, compared to louver and flat fins, which are compensating fin types for each of the operating conditions. 

Wavy fins are well understood and discussed extensively in the literature (Kays, 1960; Kays & London, 1984; Wang 

et al., 1999). There is so much that can be done with wavy fins. One way to improve the performance and increase 

compactness is by optimizing the wave shape. Such type of study is more common on wavy fins and flat tube HX’s. 

Dong et al. (2010) investigated the performances of wavy fin and flat tube with smooth and Herringbone profiles. 

Recently Song et al. (2015) presented a wavy-fin channel optimization using Constructal Theory (Bejan & Lorente, 

2008). Internally enhanced tubes have been subject of studies regarding fin profile optimization (Fabbri, 1997; Fabbri, 

1998). 

 

To the author’s knowledge there are no studies on the external fin shape optimization for fin and round tube HX’s, 

especially for tube diameters below 5.0mm. In this paper, we present a wavy fin design method using NURBS to find 

and optimum periodic profile. The purpose is to compare with a conventional Herringbone wavy fin. This study 

consists of optimizing the shape of the fin while maintaining all other dimensions and air velocity fixed. 

mailto:dfbace@umd.edu
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2. METHODOLOGY 
 

2.1 Design and optimization framework 
The numerical optimization framework (Figure 1) consists of an Approximation Assisted Optimization (Abdelaziz, 

Azarm, Aute, & Radermacher, 2010), which involves four main steps: a) Problem specification and Design of 

Experiments (DoE) development; b) CFD modeling and Simulations; c) Metamodel development; d) Multi-Objective 

Optimization.  

 

 
Figure 1: Optimization framework. 

 

2.2 Problem Specification 
In this paper, we are optimizing a wavy fin and round tube surface using small tube diameters. Conventional wavy 

fins can be either smooth or Herringbone (Figure 2). As a baseline we picked the latter and optimized the surface that 

targeting maximum NTU and minimum Cf using the design variables showed in Figure 2. We have selected a design 

that has a tube diameter of 3. For the same scaling and topology variables (tube diameter, tube pitches, tube banks, fin 

spacing, fin thickness and air velocity) we optimize the wave profile for the same amplitude and frequency as the 

Herringbone using NURBS curve with 7 control points and 6th degree interpolation (Figure 4). The design variables 

are reduced to 6, which are the coordinate pairs of 3 control points. Four additional control points are pre-determined 

in order to ensure continuity and differentiability at the boundary vertices guaranteeing a smooth periodicity (Figure 

4). 

 
Figure 2: Conventional wavy fin and tube design space: a) Herringbone; b) Smooth. 

 

 
Figure 3: Baseline Herringbone fin. 
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Figure 4: Fin profiles: a) Sample NURBS waves; b) Comparison between sample NURBS and conventional waves. 

 

 

 
Figure 5: Computational domain, mesh and contour plots. 

 

2.3 CFD Modeling 
The CFD computational domain is a two dimensional cross section segment of the HX, assuming any end effects to 

be negligible. The inlet boundary has uniform velocity and uniform temperature (300K), whereas the outlet boundary 

is at constant atmospheric pressure. The upper and lower boundaries are periodic, and the tube walls are at constant 

temperature of 330K, whilst the fin walls are coupled to the tubes. The faces parallel to the fins on the sides are 

periodic. The fluid properties use ideal gas model, and the turbulence is evaluated using the k-ε realizable model. The 

convergence criteria used is 10-5. The near wall region mesh is a fine map scheme with growing layers at a ratio of 1.2 

(Figure 5). The core of the computational domain is a pave mesh scheme with an average element size equal to the 

last row of the boundary layer mesh. 

 

2.4 Data reduction 
Since the CFD models serve to determine the airside thermal and hydraulic resistances, there is no need to account for 

additional thermal resistances. Thus with constant wall temperature, the capacitance ratio yields Cmin / Cmax = 0, then 

the heat transfer coefficient can be easily calculated through ε-NTU method as per equations (1-3). The pressure drop 

is determined as the difference between inlet and outlet static pressures, assuming that local losses are negligible.  

 

      ln 1 ln 1 out in wall inNTU T T T T            (1) 

 min/ /o o oh UA A NTU C A      (2) 

  1 1 , ( )
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o

o

A
f h

A
        (3) 

 

The fin effectiveness is obtained using the Schmidt (Schmidt, 1949) approximation method. 
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2.5 Parallel Parameterized CFD 
In order to handle a large number of designs the Parallel Parameterized CFD (PPCFD) (Abdelaziz et al., 2010) is a 

suitable method that allows one to automate CFD simulations. The code consists of reading and writing data and it 

communicates with the CFD modeling and simulation environments in an automated fashion. The analyses in this 

study used the ANSYS® platform, more specifically Gambit 2.4.6 for geometry and meshing, and Fluent 14.5 for the 

simulation runs. 

 

 

 
Figure 6: Metamodel verification against random designs. 

   

2.6 CFD Metamodels 
We have generated a Design of Experiments using Latin Hypercube Sampling method, containing 170 samples. These 

were simulated using the PPCFD method previously explained. The post-processed data was used to develop a 

metamodel correlating heat transfer and pressure drop to the control points defining the fin profile. The metamodel 

accuracy verification comprises evaluating its ability of predicting responses from random CFD simulations (in 

addition to the DoE). In this study, the metamodel “goodness” is evaluated using the Metamodel Acceptability Score 

(MAS) (Hamad, 2006). The MAS value indicates the fraction of predicted responses from a set of random simulations, 

of which the Absolute Relative Error is equal or less than an established threshold (𝑒𝑀𝐴𝑆 = 10%). In this work, the 

metamodel is acceptable when: {𝑀𝐴𝑆 ≥ 1 − 𝑒𝑀𝐴𝑆}. The relative error (ei) (eq. 4) compares the predicted response 

(ŷ(i)) with the actual CFD response (y(i)). The metamodel results are shown in Figure 6. 

 

 ˆ( ) ( ) ( )ie y i y i y i    (4) 

 

3. PERFORMANCE COMPARISON ANALYSIS 
 

3.1 Multi-Objective Optimization 
In this paper, we are optimizing the surface performance. Although the surface area between the baseline and the new 

designs should be very similar, it is important to quantify the heat transfer performance in terms of thermal resistance, 

thus characterizing the improvement in heat transfer coefficient but also the area enhancement factor. For this reason, 

the optimization problem (eq. 5) consists of maximizing the airside NTU (eq. 6) by the friction factor (Cf) (eq. 7) and 

the HX surface area (eq. 8). Typically, the HX optimization targets more surface area to reduce thermal resistance. In 

this case the reduction of the surface area has two benefits: the first is if the performance is improving with minimum 

surface area, then we are seeking designs with higher heat transfer coefficient which is a more noble way of reducing 

thermal resistance. Secondly, if such surfaces are used under potential frosting conditions then the less surface for 

frost to grow the better. This problem is solved using Multi-Objective Genetic Algorithm (MOGA) with a population 

size of 150, 10% replacement and 500 iterations. 
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Figure 7: Optimization Results and wave profiles. 

 

The optimization objectives are not conflicting thus the unusual Pareto set. As the area increases there is a positive 

impact on NTU. Figure 7 shows a comparison of the fin profile between the baseline and one of the optimum designs. 

All optimum designs have similar profile with slight differences on the x-coordinates. 

 

3.2 CFD Analysis 
 

 
Figure 8. Fin temperature profile: a) baseline; b) optimum design. 
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Figure 9. Velocity and pressure contours: a) baseline; b) optimum design. 

 

From Figure 8 we can see that for the optimum design the fin temperatures are lower than the baseline, indicating that 

more heat is being transferred to the air stream. The pressure contours, however, show that the optimum design has 

higher pressure drop. The results here are absolutely inconclusive as to whether such optimum fin would outperform 

the conventional one under frosting or fouling conditions since the performances are very similar and they are 

compensating in terms of thermal-hydraulic characteristics.  

 

4. CONCLUSIONS 
 

This paper presented one of the first studies on fin profile optimization for fin and round tube HX’s using diameters 

below 5.0mm. The optimization results suggest a potential improvement in thermal resistance both from heat transfer 

coefficient and surface area augmentation. The higher friction can have enhanced negative effects under severe 

operating conditions, i.e. frosting or fouling. The overall results suggest the design space studied should be extended 

in order to capture more designs that may potentially have lower pressure drop in addition to a higher heat transfer. 

As future work the simulations should include frosting and fouling effects as well. Additionally a more comprehensive 

analysis would be optimizing the whole surface including tube and fin dimensions. This paper serves as a starting 

point for a research opportunity with many possibilities to explore this type of surface. 

 

NOMENCLATURE 

 
Ac Minimum free flow area m² Pd Wave amplitude mm 

Afin Fin surface area m² Pl Tube longitudinal pitch - 

Afr Frontal face area m² Pt Tube transverse pitch - 

Ao Surface area m² T Temperature K 

C Heat capacitance rate W/K u Velocity m/s 

Cf Friction factor - UA Thermal  conductance W/K 

cp Specific heat J/kg.K uc Maximum velocity - 

d Depth mm Xf Half wavelength mm 

Dh Surface hydraulic diameter mm ΔP Pressure drop Pa 

Do Tube outer diameter -    

e Absolute relative difference -    

Fp Fin pitch - Greek Letters   

h Heat transfer coefficient W/m².K δf Fin thickness mm 

k Air conductivity W/m.K ε Effectiveness - 

N Number of tube banks - η Fin efficiency - 

NTU Number of tranfer units - ηo Fin effectiveness - 
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