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ABSTRACT 
 

The use of small diameter tubes in air-to-refrigerant heat exchangers has significant advantages, which include 

increase in heat transfer coefficient, reduction in size, reduction in material or weight and reduction in refrigerant 

charge. However, there are no airside correlations for small diameter tubes below 2.0mm in the literature. Furthermore, 

conventional empirical correlation development relies on testing of samples, which is inherently time consuming, 

expensive and has a limited range of applicability. This paper presents equations for airside friction and heat transfer 

characteristics for bare tube air-to-refrigerant Heat eXchangers (HX) with tube diameters ranging from 0.5mm to 

2mm, and are valid for 2 to 40 rows of tubes in both staggered and inline arrangements. The correlations presented in 

this article are developed based on comprehensive CFD simulations for a large design space and include experimental 

validation. More than 80% of source data can be predicted within 10% error and more than 90% within 20% error. In 

this paper we use these correlations to optimize the condenser and evaporator of a 3 ton air-conditioning unit using 

R410A as the working fluid. The HX optimization framework uses a Multi-Objective Genetic Algorithm (MOGA) 

and an in-house HX design tool based on a segmented ε-NTU method. The ultimate goal of optimizing these HX’s is 

to obtain better system performance. Therefore, the HX optimization targets the reduction of thermal resistance 

resulting in a smaller approach temperature and reduced pressure lift. A theoretical analysis showed that the maximum 

COP improvement is of 29%, however a 10% improvement is possible with realistic approach temperatures. The 

optimum HX’s not only deliver the higher COP but are at least 50% more compact, 80% less material volume, have 

smaller face areas and reduced the overall system charge in 20%. 
 

 

1. INTRODUCTION 
 

There are a significant number of publications investigating experimentally, analytically and numerically the thermal-

hydraulic performance of gas flow over tube banks. The interest is evident from its wide application from industrial 

processes to residential heating and cooling.  

Grimison (1937), then later Žukauskas (1972) presented, perhaps, the most comprehensive experimental studies on 

the subject including the development of empirical correlations. Žukauskas (1972) correlations are the most commonly 

used even nowadays. Starting in the late 1970’s numerical approaches became popular, especially as computational 

capabilities keep on continuously increasing. Launder and Massey (1978) proposed a cost-effective computational 

method for laminar flow prediction over staggered tubes and compared against experimental data from Bergelin et al. 

(1952). Fujii et al. (1984) focused on the in-line configuration for fixed number of tube rows and constant tube pitch 

ratios, varying only the Reynolds number. Wung and Chen (1989a,b) presented a parametric analysis on Prandtl and 

Reynolds numbers and correlated their numerical data into expressions. Their analysis however did not account for 

geometry variables. Dhaubhadel et al. (1987) solved the same problem as Fujii et al. (1984) but for staggered 

arrangement. Beale and Spalding (1999) investigated unsteady flow on both in-line and staggered tube banks. Wilson 

and Bassiouny (2000) studied single and double row tube banks parameterizing tube pitches and Reynolds number. 

They also compared their results with empirical data. Buyruk (2002) made a similar study using fine grid resolutions. 

mailto:dfbace@umd.edu
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On an analytical approach Khan et al. (Khan, Culham, & Yovanovich, 2006) developed alternate equations for heat 

transfer and friction for both inline and staggered arrangements. Their equations are limited to tube pitch ratios ranging 

from 1.05 to 3. They found good agreement with Grimison (1937) and Žukauskas (1972) for a 16.4mm tube diameter. 

There are no explicit evidences that the available equations in the literature can predict the thermal-hydraulic 

performances for tube banks using small tube diameters (below 7.0mm). A recent study from Bacellar et al. (2016) 

presented new equations for airside thermal-hydraulic characteristics prediction for bare tube bundle with diameters 

ranging from 0.5mm to 2.0mm, in staggered arrangement. 

The main advantages of reducing the tube diameter include high surface area to volume ratio, significant material 

reduction, refrigerant side volume reduction, which would result in refrigerant charge reduction; but more importantly 

a significant enhancement in heat transfer coefficient (Paitoonsurikarn et al., 2000; Kasagi et al., 2003; Bacellar et al., 

2015). In other words, with smaller tubes the need for fins becomes less significant or even dispensable. Some 

manufacturers are already producing tubes with 4.0mm, 5.0mm and 7.0mm, however the use of fins is still required. 

For such diameters the majority of the literature focus on the refrigerant side (e.g. (Huang, et al., 2010)), with few 

studies including the airside (e.g. (Wu et al., 2012)). 

Microchannel HX’s have proven to be an excellent HX for vapor compression applications. In this paper, we present 

the optimization of indoor and outdoor units for an R410A 3-ton system operating in cooling mode. The optimized 

HX’s are bare tube bundles with diameters ranging from 0.5mm to 2.0mm in both staggered and in-line arrangements. 

For the latter we briefly present the correlation development using the same procedure in (Bacellar et al., 2016). The 

baseline HX’s are louvered fin-and-tube HX’s using tube diameters of 7.0mm and 9.5mm for the outdoor and indoor 

units respectively. The baseline system was modeled and verified against the rating point. 

 

2. METHODOLOGY 
 

This paper presents the application of a design framework for evaporators and condensers for a 3-ton system. The 

framework (Figure 1) is split into four parts, and each is described in detail in the following sections along with the 

according results. The first part is the problem specification, where we define the design characteristics such as 

operating conditions, capacity and flow arrangements. The following is the actual design and optimization; in this 

part, we present the performance evaluation objectives and the tools used to perform the optimization. This work 

focuses on tube diameters below 2.0mm, which the existing correlations cannot accurately predict. To overcome this 

limitation we have developed CFD-based correlations for a large design space allowing great computational time 

savings during the optimization. The third part presents a brief formulation for a Multi-Attribute Utility Function 

(MAUF) used to select the best alternative from the Pareto sets. The last part is the evaluation of the optimum HX’s 

in the system context and their comparison to the baseline. 

 
Figure 1: Design framework. 

 

3. PROBLEM SPECIFICATION 
 

The baseline for this study is a R410A 3-ton system, operating in cooling mode. The baseline cycle was modeled, 

simulated  using an in-house code (Winkler et al., 2008) and verified against the rating design point for the cooling 

mode. The overall system rating and numerical simulation are presented in Table 1. 
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Ultimately, the purpose of optimizing the HX is to improve the system’s performance. There are two possible ways 

to tackle this problem; one is by optimizing the COP of the cycle, the other is to design the HX’s for a new set of 

operating conditions that would result in higher COP. In this paper, we choose the second approach. To evaluate a 

hypothetical improved cycle (Figure 2) we apply factors to the saturation pressures, and refrigerant pressure drops. 

The assumptions include same air heat capacitance rates and inlet temperatures, same superheating, same sub-cooling, 

and same isentropic and volumetric efficiencies. The constraint variables are the outlet approach temperatures and 

these are limited to 1°C or higher. The analyses showed that by reducing the high saturation pressure in 6%, increasing 

the low saturation pressure in 1.05% and reducing the refrigerant pressure drop in 20% the COP can be improved by 

10% (Table 1). Assuming no pressure drop and 0°C approach temperatures on both HX’s, the maximum hypothetical 

COP improvement would be of 28.8% by reducing the high pressure by 12% and increasing the lower pressure by 

4%. 

 

Table 1: 3-ton system, cooling mode. 

Cycle 
Charge COP* COP Q 

Sub- 

cooling 

Super 

heating 

Ref. ṁ Evap. AFR Cond. AFR 

kg - - kW K K kg/s m³/s m³/s 

Baseline (rated) 5.557 4.507 3.900 10.029 5.447 3.890 0.06224 0.505 1.84 

Baseline (simulated) 4.907 4.506 3.858 10.025 5.445 3.901 0.06168 0.505 1.84 

Improved system - 4.992 4.210** 10.030 5.447 3.911 0.05994 0.505 1.84 

*w/o fan power **using rated fan power 

 

 
Figure 2: 3-ton system analysis: a) P-h diagram; b) Temperature profiles. 

 

 

Table 2: HX performances for both baseline and improved cycles. 

HX Evaporator Condenser 

Metric 
Q Psat ΔPref UA ΔTml ΔPair Q Psat ΔPref UA ΔTml ΔPair 

W kPa kPa W/K K Pa W kPa kPa W/K K Pa 

Baseline 10.025 1166 18 2061.52 4.86 57.2* 12.251 2682 41 912.30 13.43 4.0** 

Improved 10.030 1178 13 2351.66 4.26 N/A 12.040 2521 33 1269.19 9.49 N/A 

*Rated value **Calculated value (Wang et al., 2001) 

 

 

The design problem for this study is, therefore, optimizing HX’s that have the performance characteristics to deliver 

the 3-ton capacity under the improved operating conditions. The HX’s consist of a tube bundle, for both staggered and 

in-line arrangements, in crossflow configuration. The tube circuiting is similar to Microchannel HX’s, i.e. connected 

to headers, with up to 3 passes (Figure 3).  



 

 2118, Page 4 
 

16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016 

 
Figure 3: HX’s design space: a) staggered; b) in-line. 

 

4. DESIGN AND OPTIMIZATION 
 

4.1 Correlation development 
The airside performance is evaluated using the novel correlations proposed for tube bundles within the design space 

specified (Figure 3). For the staggered arrangement the equations were published by Bacellar et al. (Bacellar et al., 

2016). In this, paper we present the correlations for the in-line arrangement. 

The source data for the fitted equations are purely numerical using CFD. The Design of Experiment consists of 900 

samples generated using Latin Hypercube Sampling (LHS) (McKay, Beckman, & Conover, 1979). The simulations 

are carried out in an automated fashion (Parallel Parameterized CFD (PPCFD) (Abdelaziz et al., 2010)). The 

correlations proposed are modifications of existing correlations applied to larger range of tube diameters. The 

coefficients are determined by solving the minimum of the square differences sum (equation 1). 

 

  
2

, , , ,ss i correlation i CFDi
e j f       (1) 

 

4.1.1 CFD Models 

The CFD computational domain is a two dimensional cross section segment of the HX, assuming any end effects to 

be negligible. The inlet boundary has uniform velocity and uniform temperature (300K), whereas the outlet boundary 

is at constant atmospheric pressure. The upper and lower boundaries are periodic, and the tube walls are at constant 

temperature of 340K. The fluid properties use ideal gas model, and the turbulence is evaluated using the k-ε relizable 

model. The convergence criteria used is 10-5. The near wall region mesh is a fine map scheme with growing layers at 

a ratio of 1.2 (Figure 4). The core of the computational domain is a pave mesh scheme with an average element size 

equal to the last row of the boundary layer mesh. 

 
Figure 4: CFD computational domain and mesh. 



 

 2118, Page 5 
 

16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016 

4.2.2 CFD Data Reduction 

Since the CFD models serve to determine the airside thermal and hydraulic resistances, there is no need to account for 

additional thermal resistances. Thus with constant wall temperature, the capacitance ratio yields Cmin / Cmax = 0, then 

the heat transfer coefficient can be easily calculated through ε-NTU method as per equations (1-3). The pressure drop 

is determined as the difference between inlet and outlet static pressures, assuming that local losses are negligible. 

  

      ln 1 ln 1 out in wall inNTU T T T T            (2) 

 min/ /o oh UA A NTU C A     (3) 

  2/3Pr c pj h u c   (4) 

       
2 22 1 1c m o in in m c in outf A A P u           

 
  (5) 

 

4.2.3 Proposed Equations 

Four subsets of correlations for each performance factor is proposed according to the number of tube rows. The 

correlations coefficients are presented in Table 3, and the verification against the source data is presented in Figure 5. 

 

      3 4 21 2

1 ,Re
o

p p cp p

D c l o t o l tj c N P D P D P P   (6)   

      2 3 41 2

1 ,Re
o

p p pp c

D c t l l o t of c P P P D P D N   (7)   

 ,Re
oD c c ou D    (8)   

   6

1 3 4 , 5ln(Re ) ln
o

c

D c l op c c N c N P D   
 

  (9)   

   9

2 7 8 ,ln(Re )
o

c

D c l op c c P D    (10)   

 3 10 11 ,ln(Re )
oD cp c c N    (11)   

.  
,4 12 13 ln Re

o cDp c c N    (12)  

 

Table 3. Correlations Coefficients. 

 j f 

N 2-9 10-24 25-34 35-40 2-9 10-24 25-34 35-40 

c1 6.808 1.079 4.072 0.059 4.358 0.834 3.627 1.905 

c2 -0.019 0.283 0.819 0.732 -1.500 0.160 -1.255 -3.427 

c3 -0.865 -0.694 -1.668 0.300 -0.593 -0.614 -0.947 1.841 

c4 -0.072 0.018 -0.151 0.025 -0.058 -0.045 0.149 0.309 

c5 0.215 0.091 0.476 -0.099 0.210 0.068 0.080 -0.617 

c6 -0.557 -0.671 -0.831 -0.012 -1.512 2.005 -4.952 0.395 

c7 -1.390 -0.925 -0.362 -0.514 -1.096 -0.720 4.492 0.313 

c8 2.861 2.297 1.130 0.665 4.546 0.138 10.000 10.000 

c9 -3.997 0.439 -0.234 1.116 -0.233 2.779 -2.034 -2.737 

c10 -0.114 0.359 -0.584 -0.081 -0.643 0.733 8.397 5.098 

c11 0.696 -0.056 0.446 0.003 0.941 0.147 -0.591 -0.649 

c12 -1.072 -1.739 -0.315 -0.806 0.144 -1.684 -3.116 1.814 

c13 0.285 0.393 0.541 -0.043 0.557 0.278 0.322 -0.228 

 

4.2 Performance Evaluation Criteria 
In this paper, we use the performance-degradation number (equation 13) as the Performance Evaluation Criteria 

(PEC). Typically, the performance of the HX is heavily focused on reducing the friction losses to the same thermal 

resistance. The performance-degradation number is one way to ensure the optimizer will seek the reduction of both 

thermal and hydraulic resistances. 
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Figure 5: Correlation verification against source data. 

 

 sNTU N    (13) 

 

In many applications, the envelope volume is not much of an issue as long as the design can satisfy potential limitations 

on tube length, face area and/or aspect ratio. The face area can be more critical since it can affect the cross section of 

an air duct, size of an equipment casing, or the size of the front of a car for example. Ultimately the metrics that 

evaluate better the geometrical aspects of a HX are the surface hydraulic diameter (equation 14), since it is inversely 

proportional to compactness, and the actual face area. 

 

 4 4 /h c o o hD A A d V A D     (14) 

 

4.3 Multi-objective optimization 
Studies on HX optimization have now become very common, particularly since computational power is increasing at 

great strides along with improved CFD codes and optimization methods like Multi-Objective Genetic Algorithms 

(MOGA) (method used in this paper). An in-house code (Jiang et al., 2006) that allows modeling and simulation of 

various types of air-to-refrigerant HX’s using a segmented ε-NTU approach is used for the present analysis. This tool, 

assisted by the new airside correlations, allows the optimizer to build and evaluate full sized HX designs. The 

optimization problem is described on Table 4.  

 

Table 4: Optimization problem. 

Optimization Evaporator Condenser 

Objectives 
min Af 

max ψ 

Constraints 

10.02 ≤ Q ≤ 10.04kW 12.00 ≤ Q ≤ 12.05kW 

VHX ≤ 14,612 cm³ VHX ≤ 41,884cm³ 

ΔPair ≤ 50 Pa ΔPair ≤ 15 Pa 

8.62 ≤ ΔPref ≤ 13.78 kPa 20.84 ≤ ΔPref ≤ 33.3 kPa 

0.5 ≤ uair ≤ 2.0 m/s  0.5 ≤ uair ≤ 1.2 m/s 

0.61<AR<1.61 

Population Size 200 

Replacement (%) 10 

Max Iterations 750 

 

The optimization results are presented in Figure 6 in the next section, which includes the selection criteria. 
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5. HX SELECTION 
 

To select the HX we developed a Multi-Attribute Performance Utility Function based on Scott and Antonsson (2005) 

method (equation 15). The single attribute utility functions are calculated using the exponential form (equation 16). 

One way to define shape factor (γ) is by assuming that for the median criteria values the utility is 0.5.  

 

  
1

1( )
( ) ,    if 0  ( ) ( )

i
i

p
p

wi i w

i

i

wu x
U x p U x u x

w

  
     
 





  (15) 

 

( )
1

( )

1
( ) ,   , 4 , ,    ,    0 ( ) 1

1

ix a

i h f i ib a

e
u x x D A a x b u x

e




 

 


 


       

  (16) 

 

 
Figure 6: Optimization Results. 

 

 

 

Table 5: Comparison of HX designs. 

HX Type 
Do Banks d h l Af 4σ/Dh Matl’ Vol. 

mm - m m m m² cm²/cm³ cm³ 

Baseline 1 Evaporator 9.5 4 0.076 1.12 0.43 0.48 6.79 3600 

Baseline 2 Condenser 7.0 1 0.019 1.01 2.71 2.74 5.02 5900 

Staggered 1 Evaporator 0.86 22 0.029 0.67 0.47 0.31 7.40 587 

Staggered 2 Condenser 0.57 10 0.012 1.69 1.09 1.83 12.68 1194 

In-line 1 Evaporator 0.70 18 0.026 0.71 0.44 0.31 13.75 615 

In-line 2 Condenser 0.60 18 0.026 1.37 1.17 1.60 13.43 2266 

 

 

 

Table 6: HX performance comparison. 

HX Evaporator Condenser 

Metric 
Q Psat ΔPref UA ΔTml ΔPair Q Psat ΔPref UA ΔTml ΔPair 

W kPa kPa W/K K Pa W kPa kPa W/K K Pa 

Baseline 10.025 1166 18 2061.5 4.86 57.2* 12.251 2682 41 912.3 13.43 4.0** 

Expected 10.03 1178 13 2351.7 4.26 N/A 12.04 2521 33 1269.19 9.49 N/A 

Staggered 10.038 1178 9.4 3061.1 3.28 44.9 12.05 2521 31.0 1307.3 9.22 9.97 

In-line 10.038 1178 13.1 2839.6 3.53 33.7 12.049 2521 20.9 1304.8 9.23 11.00 

*Rated value **Calculated value (Wang, Lee, & Sheu, 2001) 
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6. SYSTEM ANALYSIS 
 

In this section, we present the system level analysis. Four cycles are simulated with a combination of the optimum 

HX selected in the previous section. The purpose here is to investigate whether the desired cycle performance 

improvement can be achieved, in addition to the evaluation of the potential charge reduction when using small 

diameter tube HX’s. All system simulations use the in-house code (Winkler et al., 2008) for vapor compression cycle 

analyses. It must be noted that the fan power was not taken into consideration since there is lack of information 

regarding the rated airside pressure drop in the condenser. If the predicted value of 4.0Pa is correct, then the fan power 

consumed in the new condensers can be twice or more as high as the baseline. If that were the case, then the total 

power consumed would be similar to the baseline and the real COP improvement would not reach 10%. The results 

are summarized in Figure 7and Table 7. 

 

Table 7: Cycle analysis with optimized HX designs. 

Cycle 
Evaporator Condenser Psat High Psat Low Q Wc COP* Charge 

- - kPa kPa kW kW - kg 

Baseline Baseline Baseline 2682.00 1166.00 10.03 2.22 4.51 4.91 

Expected N/A N/A 2521.00 1178.00 10.03 2.01 4.99 - 

Cycle1 Staggered Staggered 2534.05 1169.76 10.42 2.10 4.96 3.72 

Cycle2 In-line Staggered 2533.30 1170.81 10.40 2.10 4.95 3.73 

Cycle3 Staggered In-line 2530.61 1170.50 10.38 2.10 4.95 4.09 

Cycle4 In-line In-line 2531.43 1171.20 10.38 2.10 4.95 4.10 

*w/o fan power 

 

 
Figure 7: Cycle analysis – qualitative results: a) COP; b) Charge distribution. 

 

7. CONCLUSIONS 
 

This paper presented a comprehensive design framework and its application to evaporators and condensers using 

R410A for a 3-ton system. A parametric analysis showed a theoretical maximum COP improvement of 29%, however 

a more realistic scenario where the approach temperatures are at least 1°C would result in 10% better COP. The 

baseline HX’s were already sized to have very low thermal resistance at a cost of size and material consumption. On 

the other hand, the potential improvement in terms of performance is limited. On section 4.1 we presented the new 

equations for thermal-hydraulic prediction for in-line bare tubes with diameters ranging from 0.5mm-2.0mm. These 

equations in addition to the ones for staggered equations presented in another publication were used to optimize the 

HX’s. The performance-degradation number is a more robust way of balancing thermal and hydraulic resistances, 

when typically the second is favored over the first. The optimization problem formulation had the air pressure drop in 

the condenser constrained to a typical value of 15Pa. The baseline condenser has a predicted pressure drop of 4.0Pa. 

Since the rated value is unknown, the analysis disregarded the fan power, however, this can affect the real COP. The 

optimum HX’s resulted in designs with tubes no larger than 0.86mm and several tube banks. The face area was reduced 

by at least 33% and the compactness was increased by a factor of approximately 2. The material volume reduction 
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reached more than 80%. From a performance perspective, the thermal resistance was reduced by more than 30%, 

while the refrigerant pressure drop was reduced by at least 20%. The system analysis showed that the optimum designs 

matched quite well with the expected improvement. The new designs demonstrated a potential improvement in 10% 

in the COP (provided the fan power not to have a significant impact), while the charge was reduced in more than 20% 

for the whole system but more than 50% within the HX’s. 

 

NOMENCLATURE 
 

Ac Minimum free flow area m² Pl Tube longitudinal pitch mm 

Afr Frontal face area m² Pr Prandtl number - 

AFR Airflow rate m³/s Pt Tube transversal pitch mm 
Ao Surface area m² Q Heat transfer rate W 

AR Aspect ratio - Re Reynolds Number - 

C Heat capacitance rate W/K T Temperature K 
COP Coefficient of Performance - u Velocity m/s 

cp Specific heat J/kg.K U Multi-Attribut Utility Function - 

d Depth m u(x) Single Attribute Utility Function - 
Dh Surface hydraulic diameter m UA Thermal  conductance W/K 

Do Tube outer diameter mm uc Maximum velociy m/s 

e Error function - V Volume m³ 
f Friction factor - V Volume flow rate m³/s 

h Heat transfer coefficient W/m².K Ẇ Compressor power W 

h Height m ΔP Pressure drop Pa 
j Colburn factor - ΔTmax Inlet appraoch temperature K 

l Tube length mm ΔTml Logarithmic Mean Temperature Difference K 

ṁ Mass flow rate kg/s Greek Letters  

N Nuber of tube banks - ρ Density kg/m³ 

Ns Entropy generation units - ε Effectiveness - 
NTU Number of transfer units - μ Dynamic viscosity Pa.s 

p Norm order - σ Contraction ratio (u/umax) - 

P Pressure Pa ψ Performance-degradation number - 
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